1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059 |
- //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/GraphWriter.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #ifdef EXPENSIVE_CHECKS
- #include "llvm/ADT/ScopeExit.h"
- #endif
- using namespace llvm;
- #define DEBUG_TYPE "lcg"
- void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
- Edge::Kind EK) {
- EdgeIndexMap.try_emplace(&TargetN, Edges.size());
- Edges.emplace_back(TargetN, EK);
- }
- void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
- Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
- }
- bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
- auto IndexMapI = EdgeIndexMap.find(&TargetN);
- if (IndexMapI == EdgeIndexMap.end())
- return false;
- Edges[IndexMapI->second] = Edge();
- EdgeIndexMap.erase(IndexMapI);
- return true;
- }
- static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
- DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
- LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
- if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second)
- return;
- LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
- Edges.emplace_back(LazyCallGraph::Edge(N, EK));
- }
- LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
- assert(!Edges && "Must not have already populated the edges for this node!");
- LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
- << "' to the graph.\n");
- Edges = EdgeSequence();
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Function *, 4> Callees;
- SmallPtrSet<Constant *, 16> Visited;
- // Find all the potential call graph edges in this function. We track both
- // actual call edges and indirect references to functions. The direct calls
- // are trivially added, but to accumulate the latter we walk the instructions
- // and add every operand which is a constant to the worklist to process
- // afterward.
- //
- // Note that we consider *any* function with a definition to be a viable
- // edge. Even if the function's definition is subject to replacement by
- // some other module (say, a weak definition) there may still be
- // optimizations which essentially speculate based on the definition and
- // a way to check that the specific definition is in fact the one being
- // used. For example, this could be done by moving the weak definition to
- // a strong (internal) definition and making the weak definition be an
- // alias. Then a test of the address of the weak function against the new
- // strong definition's address would be an effective way to determine the
- // safety of optimizing a direct call edge.
- for (BasicBlock &BB : *F)
- for (Instruction &I : BB) {
- if (auto *CB = dyn_cast<CallBase>(&I))
- if (Function *Callee = CB->getCalledFunction())
- if (!Callee->isDeclaration())
- if (Callees.insert(Callee).second) {
- Visited.insert(Callee);
- addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
- LazyCallGraph::Edge::Call);
- }
- for (Value *Op : I.operand_values())
- if (Constant *C = dyn_cast<Constant>(Op))
- if (Visited.insert(C).second)
- Worklist.push_back(C);
- }
- // We've collected all the constant (and thus potentially function or
- // function containing) operands to all the instructions in the function.
- // Process them (recursively) collecting every function found.
- visitReferences(Worklist, Visited, [&](Function &F) {
- addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
- LazyCallGraph::Edge::Ref);
- });
- // Add implicit reference edges to any defined libcall functions (if we
- // haven't found an explicit edge).
- for (auto *F : G->LibFunctions)
- if (!Visited.count(F))
- addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
- LazyCallGraph::Edge::Ref);
- return *Edges;
- }
- void LazyCallGraph::Node::replaceFunction(Function &NewF) {
- assert(F != &NewF && "Must not replace a function with itself!");
- F = &NewF;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
- dbgs() << *this << '\n';
- }
- #endif
- static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
- LibFunc LF;
- // Either this is a normal library function or a "vectorizable"
- // function. Not using the VFDatabase here because this query
- // is related only to libraries handled via the TLI.
- return TLI.getLibFunc(F, LF) ||
- TLI.isKnownVectorFunctionInLibrary(F.getName());
- }
- LazyCallGraph::LazyCallGraph(
- Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
- LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
- << "\n");
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
- // If this function is a known lib function to LLVM then we want to
- // synthesize reference edges to it to model the fact that LLVM can turn
- // arbitrary code into a library function call.
- if (isKnownLibFunction(F, GetTLI(F)))
- LibFunctions.insert(&F);
- if (F.hasLocalLinkage())
- continue;
- // External linkage defined functions have edges to them from other
- // modules.
- LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
- << "' to entry set of the graph.\n");
- addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
- }
- // Externally visible aliases of internal functions are also viable entry
- // edges to the module.
- for (auto &A : M.aliases()) {
- if (A.hasLocalLinkage())
- continue;
- if (Function* F = dyn_cast<Function>(A.getAliasee())) {
- LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
- << "' with alias '" << A.getName()
- << "' to entry set of the graph.\n");
- addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
- }
- }
- // Now add entry nodes for functions reachable via initializers to globals.
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- for (GlobalVariable &GV : M.globals())
- if (GV.hasInitializer())
- if (Visited.insert(GV.getInitializer()).second)
- Worklist.push_back(GV.getInitializer());
- LLVM_DEBUG(
- dbgs() << " Adding functions referenced by global initializers to the "
- "entry set.\n");
- visitReferences(Worklist, Visited, [&](Function &F) {
- addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
- LazyCallGraph::Edge::Ref);
- });
- }
- LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
- : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
- EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
- SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) {
- updateGraphPtrs();
- }
- bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
- ModuleAnalysisManager::Invalidator &) {
- // Check whether the analysis, all analyses on functions, or the function's
- // CFG have been preserved.
- auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
- return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
- }
- LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
- BPA = std::move(G.BPA);
- NodeMap = std::move(G.NodeMap);
- EntryEdges = std::move(G.EntryEdges);
- SCCBPA = std::move(G.SCCBPA);
- SCCMap = std::move(G.SCCMap);
- LibFunctions = std::move(G.LibFunctions);
- updateGraphPtrs();
- return *this;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
- dbgs() << *this << '\n';
- }
- #endif
- #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
- void LazyCallGraph::SCC::verify() {
- assert(OuterRefSCC && "Can't have a null RefSCC!");
- assert(!Nodes.empty() && "Can't have an empty SCC!");
- for (Node *N : Nodes) {
- assert(N && "Can't have a null node!");
- assert(OuterRefSCC->G->lookupSCC(*N) == this &&
- "Node does not map to this SCC!");
- assert(N->DFSNumber == -1 &&
- "Must set DFS numbers to -1 when adding a node to an SCC!");
- assert(N->LowLink == -1 &&
- "Must set low link to -1 when adding a node to an SCC!");
- for (Edge &E : **N)
- assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
- #ifdef EXPENSIVE_CHECKS
- // Verify that all nodes in this SCC can reach all other nodes.
- SmallVector<Node *, 4> Worklist;
- SmallPtrSet<Node *, 4> Visited;
- Worklist.push_back(N);
- while (!Worklist.empty()) {
- Node *VisitingNode = Worklist.pop_back_val();
- if (!Visited.insert(VisitingNode).second)
- continue;
- for (Edge &E : (*VisitingNode)->calls())
- Worklist.push_back(&E.getNode());
- }
- for (Node *NodeToVisit : Nodes) {
- assert(Visited.contains(NodeToVisit) &&
- "Cannot reach all nodes within SCC");
- }
- #endif
- }
- }
- #endif
- bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
- if (this == &C)
- return false;
- for (Node &N : *this)
- for (Edge &E : N->calls())
- if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
- return true;
- // No edges found.
- return false;
- }
- bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
- if (this == &TargetC)
- return false;
- LazyCallGraph &G = *OuterRefSCC->G;
- // Start with this SCC.
- SmallPtrSet<const SCC *, 16> Visited = {this};
- SmallVector<const SCC *, 16> Worklist = {this};
- // Walk down the graph until we run out of edges or find a path to TargetC.
- do {
- const SCC &C = *Worklist.pop_back_val();
- for (Node &N : C)
- for (Edge &E : N->calls()) {
- SCC *CalleeC = G.lookupSCC(E.getNode());
- if (!CalleeC)
- continue;
- // If the callee's SCC is the TargetC, we're done.
- if (CalleeC == &TargetC)
- return true;
- // If this is the first time we've reached this SCC, put it on the
- // worklist to recurse through.
- if (Visited.insert(CalleeC).second)
- Worklist.push_back(CalleeC);
- }
- } while (!Worklist.empty());
- // No paths found.
- return false;
- }
- LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
- dbgs() << *this << '\n';
- }
- #endif
- #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
- void LazyCallGraph::RefSCC::verify() {
- assert(G && "Can't have a null graph!");
- assert(!SCCs.empty() && "Can't have an empty SCC!");
- // Verify basic properties of the SCCs.
- SmallPtrSet<SCC *, 4> SCCSet;
- for (SCC *C : SCCs) {
- assert(C && "Can't have a null SCC!");
- C->verify();
- assert(&C->getOuterRefSCC() == this &&
- "SCC doesn't think it is inside this RefSCC!");
- bool Inserted = SCCSet.insert(C).second;
- assert(Inserted && "Found a duplicate SCC!");
- auto IndexIt = SCCIndices.find(C);
- assert(IndexIt != SCCIndices.end() &&
- "Found an SCC that doesn't have an index!");
- }
- // Check that our indices map correctly.
- for (auto [C, I] : SCCIndices) {
- assert(C && "Can't have a null SCC in the indices!");
- assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
- assert(SCCs[I] == C && "Index doesn't point to SCC!");
- }
- // Check that the SCCs are in fact in post-order.
- for (int I = 0, Size = SCCs.size(); I < Size; ++I) {
- SCC &SourceSCC = *SCCs[I];
- for (Node &N : SourceSCC)
- for (Edge &E : *N) {
- if (!E.isCall())
- continue;
- SCC &TargetSCC = *G->lookupSCC(E.getNode());
- if (&TargetSCC.getOuterRefSCC() == this) {
- assert(SCCIndices.find(&TargetSCC)->second <= I &&
- "Edge between SCCs violates post-order relationship.");
- continue;
- }
- }
- }
- #ifdef EXPENSIVE_CHECKS
- // Verify that all nodes in this RefSCC can reach all other nodes.
- SmallVector<Node *> Nodes;
- for (SCC *C : SCCs) {
- for (Node &N : *C)
- Nodes.push_back(&N);
- }
- for (Node *N : Nodes) {
- SmallVector<Node *, 4> Worklist;
- SmallPtrSet<Node *, 4> Visited;
- Worklist.push_back(N);
- while (!Worklist.empty()) {
- Node *VisitingNode = Worklist.pop_back_val();
- if (!Visited.insert(VisitingNode).second)
- continue;
- for (Edge &E : **VisitingNode)
- Worklist.push_back(&E.getNode());
- }
- for (Node *NodeToVisit : Nodes) {
- assert(Visited.contains(NodeToVisit) &&
- "Cannot reach all nodes within RefSCC");
- }
- }
- #endif
- }
- #endif
- bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
- if (&RC == this)
- return false;
- // Search all edges to see if this is a parent.
- for (SCC &C : *this)
- for (Node &N : C)
- for (Edge &E : *N)
- if (G->lookupRefSCC(E.getNode()) == &RC)
- return true;
- return false;
- }
- bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
- if (&RC == this)
- return false;
- // For each descendant of this RefSCC, see if one of its children is the
- // argument. If not, add that descendant to the worklist and continue
- // searching.
- SmallVector<const RefSCC *, 4> Worklist;
- SmallPtrSet<const RefSCC *, 4> Visited;
- Worklist.push_back(this);
- Visited.insert(this);
- do {
- const RefSCC &DescendantRC = *Worklist.pop_back_val();
- for (SCC &C : DescendantRC)
- for (Node &N : C)
- for (Edge &E : *N) {
- auto *ChildRC = G->lookupRefSCC(E.getNode());
- if (ChildRC == &RC)
- return true;
- if (!ChildRC || !Visited.insert(ChildRC).second)
- continue;
- Worklist.push_back(ChildRC);
- }
- } while (!Worklist.empty());
- return false;
- }
- /// Generic helper that updates a postorder sequence of SCCs for a potentially
- /// cycle-introducing edge insertion.
- ///
- /// A postorder sequence of SCCs of a directed graph has one fundamental
- /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
- /// all edges in the SCC DAG point to prior SCCs in the sequence.
- ///
- /// This routine both updates a postorder sequence and uses that sequence to
- /// compute the set of SCCs connected into a cycle. It should only be called to
- /// insert a "downward" edge which will require changing the sequence to
- /// restore it to a postorder.
- ///
- /// When inserting an edge from an earlier SCC to a later SCC in some postorder
- /// sequence, all of the SCCs which may be impacted are in the closed range of
- /// those two within the postorder sequence. The algorithm used here to restore
- /// the state is as follows:
- ///
- /// 1) Starting from the source SCC, construct a set of SCCs which reach the
- /// source SCC consisting of just the source SCC. Then scan toward the
- /// target SCC in postorder and for each SCC, if it has an edge to an SCC
- /// in the set, add it to the set. Otherwise, the source SCC is not
- /// a successor, move it in the postorder sequence to immediately before
- /// the source SCC, shifting the source SCC and all SCCs in the set one
- /// position toward the target SCC. Stop scanning after processing the
- /// target SCC.
- /// 2) If the source SCC is now past the target SCC in the postorder sequence,
- /// and thus the new edge will flow toward the start, we are done.
- /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
- /// SCC between the source and the target, and add them to the set of
- /// connected SCCs, then recurse through them. Once a complete set of the
- /// SCCs the target connects to is known, hoist the remaining SCCs between
- /// the source and the target to be above the target. Note that there is no
- /// need to process the source SCC, it is already known to connect.
- /// 4) At this point, all of the SCCs in the closed range between the source
- /// SCC and the target SCC in the postorder sequence are connected,
- /// including the target SCC and the source SCC. Inserting the edge from
- /// the source SCC to the target SCC will form a cycle out of precisely
- /// these SCCs. Thus we can merge all of the SCCs in this closed range into
- /// a single SCC.
- ///
- /// This process has various important properties:
- /// - Only mutates the SCCs when adding the edge actually changes the SCC
- /// structure.
- /// - Never mutates SCCs which are unaffected by the change.
- /// - Updates the postorder sequence to correctly satisfy the postorder
- /// constraint after the edge is inserted.
- /// - Only reorders SCCs in the closed postorder sequence from the source to
- /// the target, so easy to bound how much has changed even in the ordering.
- /// - Big-O is the number of edges in the closed postorder range of SCCs from
- /// source to target.
- ///
- /// This helper routine, in addition to updating the postorder sequence itself
- /// will also update a map from SCCs to indices within that sequence.
- ///
- /// The sequence and the map must operate on pointers to the SCC type.
- ///
- /// Two callbacks must be provided. The first computes the subset of SCCs in
- /// the postorder closed range from the source to the target which connect to
- /// the source SCC via some (transitive) set of edges. The second computes the
- /// subset of the same range which the target SCC connects to via some
- /// (transitive) set of edges. Both callbacks should populate the set argument
- /// provided.
- template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
- typename ComputeSourceConnectedSetCallableT,
- typename ComputeTargetConnectedSetCallableT>
- static iterator_range<typename PostorderSequenceT::iterator>
- updatePostorderSequenceForEdgeInsertion(
- SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
- SCCIndexMapT &SCCIndices,
- ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
- ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
- int SourceIdx = SCCIndices[&SourceSCC];
- int TargetIdx = SCCIndices[&TargetSCC];
- assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
- SmallPtrSet<SCCT *, 4> ConnectedSet;
- // Compute the SCCs which (transitively) reach the source.
- ComputeSourceConnectedSet(ConnectedSet);
- // Partition the SCCs in this part of the port-order sequence so only SCCs
- // connecting to the source remain between it and the target. This is
- // a benign partition as it preserves postorder.
- auto SourceI = std::stable_partition(
- SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
- [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
- for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I)
- SCCIndices.find(SCCs[I])->second = I;
- // If the target doesn't connect to the source, then we've corrected the
- // post-order and there are no cycles formed.
- if (!ConnectedSet.count(&TargetSCC)) {
- assert(SourceI > (SCCs.begin() + SourceIdx) &&
- "Must have moved the source to fix the post-order.");
- assert(*std::prev(SourceI) == &TargetSCC &&
- "Last SCC to move should have bene the target.");
- // Return an empty range at the target SCC indicating there is nothing to
- // merge.
- return make_range(std::prev(SourceI), std::prev(SourceI));
- }
- assert(SCCs[TargetIdx] == &TargetSCC &&
- "Should not have moved target if connected!");
- SourceIdx = SourceI - SCCs.begin();
- assert(SCCs[SourceIdx] == &SourceSCC &&
- "Bad updated index computation for the source SCC!");
- // See whether there are any remaining intervening SCCs between the source
- // and target. If so we need to make sure they all are reachable form the
- // target.
- if (SourceIdx + 1 < TargetIdx) {
- ConnectedSet.clear();
- ComputeTargetConnectedSet(ConnectedSet);
- // Partition SCCs so that only SCCs reached from the target remain between
- // the source and the target. This preserves postorder.
- auto TargetI = std::stable_partition(
- SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
- [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
- for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I)
- SCCIndices.find(SCCs[I])->second = I;
- TargetIdx = std::prev(TargetI) - SCCs.begin();
- assert(SCCs[TargetIdx] == &TargetSCC &&
- "Should always end with the target!");
- }
- // At this point, we know that connecting source to target forms a cycle
- // because target connects back to source, and we know that all the SCCs
- // between the source and target in the postorder sequence participate in that
- // cycle.
- return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
- }
- bool LazyCallGraph::RefSCC::switchInternalEdgeToCall(
- Node &SourceN, Node &TargetN,
- function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
- assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
- SmallVector<SCC *, 1> DeletedSCCs;
- #ifdef EXPENSIVE_CHECKS
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- SCC &SourceSCC = *G->lookupSCC(SourceN);
- SCC &TargetSCC = *G->lookupSCC(TargetN);
- // If the two nodes are already part of the same SCC, we're also done as
- // we've just added more connectivity.
- if (&SourceSCC == &TargetSCC) {
- SourceN->setEdgeKind(TargetN, Edge::Call);
- return false; // No new cycle.
- }
- // At this point we leverage the postorder list of SCCs to detect when the
- // insertion of an edge changes the SCC structure in any way.
- //
- // First and foremost, we can eliminate the need for any changes when the
- // edge is toward the beginning of the postorder sequence because all edges
- // flow in that direction already. Thus adding a new one cannot form a cycle.
- int SourceIdx = SCCIndices[&SourceSCC];
- int TargetIdx = SCCIndices[&TargetSCC];
- if (TargetIdx < SourceIdx) {
- SourceN->setEdgeKind(TargetN, Edge::Call);
- return false; // No new cycle.
- }
- // Compute the SCCs which (transitively) reach the source.
- auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
- #ifdef EXPENSIVE_CHECKS
- // Check that the RefSCC is still valid before computing this as the
- // results will be nonsensical of we've broken its invariants.
- verify();
- #endif
- ConnectedSet.insert(&SourceSCC);
- auto IsConnected = [&](SCC &C) {
- for (Node &N : C)
- for (Edge &E : N->calls())
- if (ConnectedSet.count(G->lookupSCC(E.getNode())))
- return true;
- return false;
- };
- for (SCC *C :
- make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
- if (IsConnected(*C))
- ConnectedSet.insert(C);
- };
- // Use a normal worklist to find which SCCs the target connects to. We still
- // bound the search based on the range in the postorder list we care about,
- // but because this is forward connectivity we just "recurse" through the
- // edges.
- auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
- #ifdef EXPENSIVE_CHECKS
- // Check that the RefSCC is still valid before computing this as the
- // results will be nonsensical of we've broken its invariants.
- verify();
- #endif
- ConnectedSet.insert(&TargetSCC);
- SmallVector<SCC *, 4> Worklist;
- Worklist.push_back(&TargetSCC);
- do {
- SCC &C = *Worklist.pop_back_val();
- for (Node &N : C)
- for (Edge &E : *N) {
- if (!E.isCall())
- continue;
- SCC &EdgeC = *G->lookupSCC(E.getNode());
- if (&EdgeC.getOuterRefSCC() != this)
- // Not in this RefSCC...
- continue;
- if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
- // Not in the postorder sequence between source and target.
- continue;
- if (ConnectedSet.insert(&EdgeC).second)
- Worklist.push_back(&EdgeC);
- }
- } while (!Worklist.empty());
- };
- // Use a generic helper to update the postorder sequence of SCCs and return
- // a range of any SCCs connected into a cycle by inserting this edge. This
- // routine will also take care of updating the indices into the postorder
- // sequence.
- auto MergeRange = updatePostorderSequenceForEdgeInsertion(
- SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
- ComputeTargetConnectedSet);
- // Run the user's callback on the merged SCCs before we actually merge them.
- if (MergeCB)
- MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end()));
- // If the merge range is empty, then adding the edge didn't actually form any
- // new cycles. We're done.
- if (MergeRange.empty()) {
- // Now that the SCC structure is finalized, flip the kind to call.
- SourceN->setEdgeKind(TargetN, Edge::Call);
- return false; // No new cycle.
- }
- #ifdef EXPENSIVE_CHECKS
- // Before merging, check that the RefSCC remains valid after all the
- // postorder updates.
- verify();
- #endif
- // Otherwise we need to merge all the SCCs in the cycle into a single result
- // SCC.
- //
- // NB: We merge into the target because all of these functions were already
- // reachable from the target, meaning any SCC-wide properties deduced about it
- // other than the set of functions within it will not have changed.
- for (SCC *C : MergeRange) {
- assert(C != &TargetSCC &&
- "We merge *into* the target and shouldn't process it here!");
- SCCIndices.erase(C);
- TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
- for (Node *N : C->Nodes)
- G->SCCMap[N] = &TargetSCC;
- C->clear();
- DeletedSCCs.push_back(C);
- }
- // Erase the merged SCCs from the list and update the indices of the
- // remaining SCCs.
- int IndexOffset = MergeRange.end() - MergeRange.begin();
- auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
- for (SCC *C : make_range(EraseEnd, SCCs.end()))
- SCCIndices[C] -= IndexOffset;
- // Now that the SCC structure is finalized, flip the kind to call.
- SourceN->setEdgeKind(TargetN, Edge::Call);
- // And we're done, but we did form a new cycle.
- return true;
- }
- void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
- Node &TargetN) {
- assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
- #ifdef EXPENSIVE_CHECKS
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
- assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
- "Source and Target must be in separate SCCs for this to be trivial!");
- // Set the edge kind.
- SourceN->setEdgeKind(TargetN, Edge::Ref);
- }
- iterator_range<LazyCallGraph::RefSCC::iterator>
- LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
- assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
- #ifdef EXPENSIVE_CHECKS
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
- SCC &TargetSCC = *G->lookupSCC(TargetN);
- assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
- "the same SCC to require the "
- "full CG update.");
- // Set the edge kind.
- SourceN->setEdgeKind(TargetN, Edge::Ref);
- // Otherwise we are removing a call edge from a single SCC. This may break
- // the cycle. In order to compute the new set of SCCs, we need to do a small
- // DFS over the nodes within the SCC to form any sub-cycles that remain as
- // distinct SCCs and compute a postorder over the resulting SCCs.
- //
- // However, we specially handle the target node. The target node is known to
- // reach all other nodes in the original SCC by definition. This means that
- // we want the old SCC to be replaced with an SCC containing that node as it
- // will be the root of whatever SCC DAG results from the DFS. Assumptions
- // about an SCC such as the set of functions called will continue to hold,
- // etc.
- SCC &OldSCC = TargetSCC;
- SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
- SmallVector<Node *, 16> PendingSCCStack;
- SmallVector<SCC *, 4> NewSCCs;
- // Prepare the nodes for a fresh DFS.
- SmallVector<Node *, 16> Worklist;
- Worklist.swap(OldSCC.Nodes);
- for (Node *N : Worklist) {
- N->DFSNumber = N->LowLink = 0;
- G->SCCMap.erase(N);
- }
- // Force the target node to be in the old SCC. This also enables us to take
- // a very significant short-cut in the standard Tarjan walk to re-form SCCs
- // below: whenever we build an edge that reaches the target node, we know
- // that the target node eventually connects back to all other nodes in our
- // walk. As a consequence, we can detect and handle participants in that
- // cycle without walking all the edges that form this connection, and instead
- // by relying on the fundamental guarantee coming into this operation (all
- // nodes are reachable from the target due to previously forming an SCC).
- TargetN.DFSNumber = TargetN.LowLink = -1;
- OldSCC.Nodes.push_back(&TargetN);
- G->SCCMap[&TargetN] = &OldSCC;
- // Scan down the stack and DFS across the call edges.
- for (Node *RootN : Worklist) {
- assert(DFSStack.empty() &&
- "Cannot begin a new root with a non-empty DFS stack!");
- assert(PendingSCCStack.empty() &&
- "Cannot begin a new root with pending nodes for an SCC!");
- // Skip any nodes we've already reached in the DFS.
- if (RootN->DFSNumber != 0) {
- assert(RootN->DFSNumber == -1 &&
- "Shouldn't have any mid-DFS root nodes!");
- continue;
- }
- RootN->DFSNumber = RootN->LowLink = 1;
- int NextDFSNumber = 2;
- DFSStack.emplace_back(RootN, (*RootN)->call_begin());
- do {
- auto [N, I] = DFSStack.pop_back_val();
- auto E = (*N)->call_end();
- while (I != E) {
- Node &ChildN = I->getNode();
- if (ChildN.DFSNumber == 0) {
- // We haven't yet visited this child, so descend, pushing the current
- // node onto the stack.
- DFSStack.emplace_back(N, I);
- assert(!G->SCCMap.count(&ChildN) &&
- "Found a node with 0 DFS number but already in an SCC!");
- ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
- N = &ChildN;
- I = (*N)->call_begin();
- E = (*N)->call_end();
- continue;
- }
- // Check for the child already being part of some component.
- if (ChildN.DFSNumber == -1) {
- if (G->lookupSCC(ChildN) == &OldSCC) {
- // If the child is part of the old SCC, we know that it can reach
- // every other node, so we have formed a cycle. Pull the entire DFS
- // and pending stacks into it. See the comment above about setting
- // up the old SCC for why we do this.
- int OldSize = OldSCC.size();
- OldSCC.Nodes.push_back(N);
- OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
- PendingSCCStack.clear();
- while (!DFSStack.empty())
- OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
- for (Node &N : drop_begin(OldSCC, OldSize)) {
- N.DFSNumber = N.LowLink = -1;
- G->SCCMap[&N] = &OldSCC;
- }
- N = nullptr;
- break;
- }
- // If the child has already been added to some child component, it
- // couldn't impact the low-link of this parent because it isn't
- // connected, and thus its low-link isn't relevant so skip it.
- ++I;
- continue;
- }
- // Track the lowest linked child as the lowest link for this node.
- assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
- if (ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- // Move to the next edge.
- ++I;
- }
- if (!N)
- // Cleared the DFS early, start another round.
- break;
- // We've finished processing N and its descendants, put it on our pending
- // SCC stack to eventually get merged into an SCC of nodes.
- PendingSCCStack.push_back(N);
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber)
- continue;
- // Otherwise, we've completed an SCC. Append it to our post order list of
- // SCCs.
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number.
- auto SCCNodes = make_range(
- PendingSCCStack.rbegin(),
- find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
- return N->DFSNumber < RootDFSNumber;
- }));
- // Form a new SCC out of these nodes and then clear them off our pending
- // stack.
- NewSCCs.push_back(G->createSCC(*this, SCCNodes));
- for (Node &N : *NewSCCs.back()) {
- N.DFSNumber = N.LowLink = -1;
- G->SCCMap[&N] = NewSCCs.back();
- }
- PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
- } while (!DFSStack.empty());
- }
- // Insert the remaining SCCs before the old one. The old SCC can reach all
- // other SCCs we form because it contains the target node of the removed edge
- // of the old SCC. This means that we will have edges into all the new SCCs,
- // which means the old one must come last for postorder.
- int OldIdx = SCCIndices[&OldSCC];
- SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
- // Update the mapping from SCC* to index to use the new SCC*s, and remove the
- // old SCC from the mapping.
- for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
- SCCIndices[SCCs[Idx]] = Idx;
- return make_range(SCCs.begin() + OldIdx,
- SCCs.begin() + OldIdx + NewSCCs.size());
- }
- void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
- Node &TargetN) {
- assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) != this &&
- "Target must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- // Edges between RefSCCs are the same regardless of call or ref, so we can
- // just flip the edge here.
- SourceN->setEdgeKind(TargetN, Edge::Call);
- #ifdef EXPENSIVE_CHECKS
- verify();
- #endif
- }
- void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
- Node &TargetN) {
- assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) != this &&
- "Target must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- // Edges between RefSCCs are the same regardless of call or ref, so we can
- // just flip the edge here.
- SourceN->setEdgeKind(TargetN, Edge::Ref);
- #ifdef EXPENSIVE_CHECKS
- verify();
- #endif
- }
- void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
- Node &TargetN) {
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
- SourceN->insertEdgeInternal(TargetN, Edge::Ref);
- #ifdef EXPENSIVE_CHECKS
- verify();
- #endif
- }
- void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
- Edge::Kind EK) {
- // First insert it into the caller.
- SourceN->insertEdgeInternal(TargetN, EK);
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) != this &&
- "Target must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- #ifdef EXPENSIVE_CHECKS
- verify();
- #endif
- }
- SmallVector<LazyCallGraph::RefSCC *, 1>
- LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
- assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
- RefSCC &SourceC = *G->lookupRefSCC(SourceN);
- assert(&SourceC != this && "Source must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(SourceC.isDescendantOf(*this) &&
- "Source must be a descendant of the Target.");
- #endif
- SmallVector<RefSCC *, 1> DeletedRefSCCs;
- #ifdef EXPENSIVE_CHECKS
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- int SourceIdx = G->RefSCCIndices[&SourceC];
- int TargetIdx = G->RefSCCIndices[this];
- assert(SourceIdx < TargetIdx &&
- "Postorder list doesn't see edge as incoming!");
- // Compute the RefSCCs which (transitively) reach the source. We do this by
- // working backwards from the source using the parent set in each RefSCC,
- // skipping any RefSCCs that don't fall in the postorder range. This has the
- // advantage of walking the sparser parent edge (in high fan-out graphs) but
- // more importantly this removes examining all forward edges in all RefSCCs
- // within the postorder range which aren't in fact connected. Only connected
- // RefSCCs (and their edges) are visited here.
- auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
- Set.insert(&SourceC);
- auto IsConnected = [&](RefSCC &RC) {
- for (SCC &C : RC)
- for (Node &N : C)
- for (Edge &E : *N)
- if (Set.count(G->lookupRefSCC(E.getNode())))
- return true;
- return false;
- };
- for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
- G->PostOrderRefSCCs.begin() + TargetIdx + 1))
- if (IsConnected(*C))
- Set.insert(C);
- };
- // Use a normal worklist to find which SCCs the target connects to. We still
- // bound the search based on the range in the postorder list we care about,
- // but because this is forward connectivity we just "recurse" through the
- // edges.
- auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
- Set.insert(this);
- SmallVector<RefSCC *, 4> Worklist;
- Worklist.push_back(this);
- do {
- RefSCC &RC = *Worklist.pop_back_val();
- for (SCC &C : RC)
- for (Node &N : C)
- for (Edge &E : *N) {
- RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
- if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
- // Not in the postorder sequence between source and target.
- continue;
- if (Set.insert(&EdgeRC).second)
- Worklist.push_back(&EdgeRC);
- }
- } while (!Worklist.empty());
- };
- // Use a generic helper to update the postorder sequence of RefSCCs and return
- // a range of any RefSCCs connected into a cycle by inserting this edge. This
- // routine will also take care of updating the indices into the postorder
- // sequence.
- iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
- updatePostorderSequenceForEdgeInsertion(
- SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
- ComputeSourceConnectedSet, ComputeTargetConnectedSet);
- // Build a set, so we can do fast tests for whether a RefSCC will end up as
- // part of the merged RefSCC.
- SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
- // This RefSCC will always be part of that set, so just insert it here.
- MergeSet.insert(this);
- // Now that we have identified all the SCCs which need to be merged into
- // a connected set with the inserted edge, merge all of them into this SCC.
- SmallVector<SCC *, 16> MergedSCCs;
- int SCCIndex = 0;
- for (RefSCC *RC : MergeRange) {
- assert(RC != this && "We're merging into the target RefSCC, so it "
- "shouldn't be in the range.");
- // Walk the inner SCCs to update their up-pointer and walk all the edges to
- // update any parent sets.
- // FIXME: We should try to find a way to avoid this (rather expensive) edge
- // walk by updating the parent sets in some other manner.
- for (SCC &InnerC : *RC) {
- InnerC.OuterRefSCC = this;
- SCCIndices[&InnerC] = SCCIndex++;
- for (Node &N : InnerC)
- G->SCCMap[&N] = &InnerC;
- }
- // Now merge in the SCCs. We can actually move here so try to reuse storage
- // the first time through.
- if (MergedSCCs.empty())
- MergedSCCs = std::move(RC->SCCs);
- else
- MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
- RC->SCCs.clear();
- DeletedRefSCCs.push_back(RC);
- }
- // Append our original SCCs to the merged list and move it into place.
- for (SCC &InnerC : *this)
- SCCIndices[&InnerC] = SCCIndex++;
- MergedSCCs.append(SCCs.begin(), SCCs.end());
- SCCs = std::move(MergedSCCs);
- // Remove the merged away RefSCCs from the post order sequence.
- for (RefSCC *RC : MergeRange)
- G->RefSCCIndices.erase(RC);
- int IndexOffset = MergeRange.end() - MergeRange.begin();
- auto EraseEnd =
- G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
- for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
- G->RefSCCIndices[RC] -= IndexOffset;
- // At this point we have a merged RefSCC with a post-order SCCs list, just
- // connect the nodes to form the new edge.
- SourceN->insertEdgeInternal(TargetN, Edge::Ref);
- // We return the list of SCCs which were merged so that callers can
- // invalidate any data they have associated with those SCCs. Note that these
- // SCCs are no longer in an interesting state (they are totally empty) but
- // the pointers will remain stable for the life of the graph itself.
- return DeletedRefSCCs;
- }
- void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
- assert(G->lookupRefSCC(SourceN) == this &&
- "The source must be a member of this RefSCC.");
- assert(G->lookupRefSCC(TargetN) != this &&
- "The target must not be a member of this RefSCC");
- #ifdef EXPENSIVE_CHECKS
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- // First remove it from the node.
- bool Removed = SourceN->removeEdgeInternal(TargetN);
- (void)Removed;
- assert(Removed && "Target not in the edge set for this caller?");
- }
- SmallVector<LazyCallGraph::RefSCC *, 1>
- LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
- ArrayRef<Node *> TargetNs) {
- // We return a list of the resulting *new* RefSCCs in post-order.
- SmallVector<RefSCC *, 1> Result;
- #ifdef EXPENSIVE_CHECKS
- // Verify the RefSCC is valid to start with and that either we return an empty
- // list of result RefSCCs and this RefSCC remains valid, or we return new
- // RefSCCs and this RefSCC is dead.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() {
- // If we didn't replace our RefSCC with new ones, check that this one
- // remains valid.
- if (G)
- verify();
- });
- #endif
- // First remove the actual edges.
- for (Node *TargetN : TargetNs) {
- assert(!(*SourceN)[*TargetN].isCall() &&
- "Cannot remove a call edge, it must first be made a ref edge");
- bool Removed = SourceN->removeEdgeInternal(*TargetN);
- (void)Removed;
- assert(Removed && "Target not in the edge set for this caller?");
- }
- // Direct self references don't impact the ref graph at all.
- if (llvm::all_of(TargetNs,
- [&](Node *TargetN) { return &SourceN == TargetN; }))
- return Result;
- // If all targets are in the same SCC as the source, because no call edges
- // were removed there is no RefSCC structure change.
- SCC &SourceC = *G->lookupSCC(SourceN);
- if (llvm::all_of(TargetNs, [&](Node *TargetN) {
- return G->lookupSCC(*TargetN) == &SourceC;
- }))
- return Result;
- // We build somewhat synthetic new RefSCCs by providing a postorder mapping
- // for each inner SCC. We store these inside the low-link field of the nodes
- // rather than associated with SCCs because this saves a round-trip through
- // the node->SCC map and in the common case, SCCs are small. We will verify
- // that we always give the same number to every node in the SCC such that
- // these are equivalent.
- int PostOrderNumber = 0;
- // Reset all the other nodes to prepare for a DFS over them, and add them to
- // our worklist.
- SmallVector<Node *, 8> Worklist;
- for (SCC *C : SCCs) {
- for (Node &N : *C)
- N.DFSNumber = N.LowLink = 0;
- Worklist.append(C->Nodes.begin(), C->Nodes.end());
- }
- // Track the number of nodes in this RefSCC so that we can quickly recognize
- // an important special case of the edge removal not breaking the cycle of
- // this RefSCC.
- const int NumRefSCCNodes = Worklist.size();
- SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
- SmallVector<Node *, 4> PendingRefSCCStack;
- do {
- assert(DFSStack.empty() &&
- "Cannot begin a new root with a non-empty DFS stack!");
- assert(PendingRefSCCStack.empty() &&
- "Cannot begin a new root with pending nodes for an SCC!");
- Node *RootN = Worklist.pop_back_val();
- // Skip any nodes we've already reached in the DFS.
- if (RootN->DFSNumber != 0) {
- assert(RootN->DFSNumber == -1 &&
- "Shouldn't have any mid-DFS root nodes!");
- continue;
- }
- RootN->DFSNumber = RootN->LowLink = 1;
- int NextDFSNumber = 2;
- DFSStack.emplace_back(RootN, (*RootN)->begin());
- do {
- auto [N, I] = DFSStack.pop_back_val();
- auto E = (*N)->end();
- assert(N->DFSNumber != 0 && "We should always assign a DFS number "
- "before processing a node.");
- while (I != E) {
- Node &ChildN = I->getNode();
- if (ChildN.DFSNumber == 0) {
- // Mark that we should start at this child when next this node is the
- // top of the stack. We don't start at the next child to ensure this
- // child's lowlink is reflected.
- DFSStack.emplace_back(N, I);
- // Continue, resetting to the child node.
- ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
- N = &ChildN;
- I = ChildN->begin();
- E = ChildN->end();
- continue;
- }
- if (ChildN.DFSNumber == -1) {
- // If this child isn't currently in this RefSCC, no need to process
- // it.
- ++I;
- continue;
- }
- // Track the lowest link of the children, if any are still in the stack.
- // Any child not on the stack will have a LowLink of -1.
- assert(ChildN.LowLink != 0 &&
- "Low-link must not be zero with a non-zero DFS number.");
- if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- ++I;
- }
- // We've finished processing N and its descendants, put it on our pending
- // stack to eventually get merged into a RefSCC.
- PendingRefSCCStack.push_back(N);
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber) {
- assert(!DFSStack.empty() &&
- "We never found a viable root for a RefSCC to pop off!");
- continue;
- }
- // Otherwise, form a new RefSCC from the top of the pending node stack.
- int RefSCCNumber = PostOrderNumber++;
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number. Update the DFS numbers and low link numbers in the
- // process to avoid re-walking this list where possible.
- auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
- if (N->DFSNumber < RootDFSNumber)
- // We've found the bottom.
- return true;
- // Update this node and keep scanning.
- N->DFSNumber = -1;
- // Save the post-order number in the lowlink field so that we can use
- // it to map SCCs into new RefSCCs after we finish the DFS.
- N->LowLink = RefSCCNumber;
- return false;
- });
- auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
- // If we find a cycle containing all nodes originally in this RefSCC then
- // the removal hasn't changed the structure at all. This is an important
- // special case, and we can directly exit the entire routine more
- // efficiently as soon as we discover it.
- if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
- // Clear out the low link field as we won't need it.
- for (Node *N : RefSCCNodes)
- N->LowLink = -1;
- // Return the empty result immediately.
- return Result;
- }
- // We've already marked the nodes internally with the RefSCC number so
- // just clear them off the stack and continue.
- PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
- } while (!DFSStack.empty());
- assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
- assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
- } while (!Worklist.empty());
- assert(PostOrderNumber > 1 &&
- "Should never finish the DFS when the existing RefSCC remains valid!");
- // Otherwise we create a collection of new RefSCC nodes and build
- // a radix-sort style map from postorder number to these new RefSCCs. We then
- // append SCCs to each of these RefSCCs in the order they occurred in the
- // original SCCs container.
- for (int I = 0; I < PostOrderNumber; ++I)
- Result.push_back(G->createRefSCC(*G));
- // Insert the resulting postorder sequence into the global graph postorder
- // sequence before the current RefSCC in that sequence, and then remove the
- // current one.
- //
- // FIXME: It'd be nice to change the APIs so that we returned an iterator
- // range over the global postorder sequence and generally use that sequence
- // rather than building a separate result vector here.
- int Idx = G->getRefSCCIndex(*this);
- G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
- G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
- Result.end());
- for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size()))
- G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I;
- for (SCC *C : SCCs) {
- // We store the SCC number in the node's low-link field above.
- int SCCNumber = C->begin()->LowLink;
- // Clear out all the SCC's node's low-link fields now that we're done
- // using them as side-storage.
- for (Node &N : *C) {
- assert(N.LowLink == SCCNumber &&
- "Cannot have different numbers for nodes in the same SCC!");
- N.LowLink = -1;
- }
- RefSCC &RC = *Result[SCCNumber];
- int SCCIndex = RC.SCCs.size();
- RC.SCCs.push_back(C);
- RC.SCCIndices[C] = SCCIndex;
- C->OuterRefSCC = &RC;
- }
- // Now that we've moved things into the new RefSCCs, clear out our current
- // one.
- G = nullptr;
- SCCs.clear();
- SCCIndices.clear();
- #ifdef EXPENSIVE_CHECKS
- // Verify the new RefSCCs we've built.
- for (RefSCC *RC : Result)
- RC->verify();
- #endif
- // Return the new list of SCCs.
- return Result;
- }
- void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
- Node &TargetN) {
- #ifdef EXPENSIVE_CHECKS
- auto ExitVerifier = make_scope_exit([this] { verify(); });
- // Check that we aren't breaking some invariants of the SCC graph. Note that
- // this is quadratic in the number of edges in the call graph!
- SCC &SourceC = *G->lookupSCC(SourceN);
- SCC &TargetC = *G->lookupSCC(TargetN);
- if (&SourceC != &TargetC)
- assert(SourceC.isAncestorOf(TargetC) &&
- "Call edge is not trivial in the SCC graph!");
- #endif
- // First insert it into the source or find the existing edge.
- auto [Iterator, Inserted] =
- SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
- if (!Inserted) {
- // Already an edge, just update it.
- Edge &E = SourceN->Edges[Iterator->second];
- if (E.isCall())
- return; // Nothing to do!
- E.setKind(Edge::Call);
- } else {
- // Create the new edge.
- SourceN->Edges.emplace_back(TargetN, Edge::Call);
- }
- }
- void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
- #ifdef EXPENSIVE_CHECKS
- auto ExitVerifier = make_scope_exit([this] { verify(); });
- // Check that we aren't breaking some invariants of the RefSCC graph.
- RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
- RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
- if (&SourceRC != &TargetRC)
- assert(SourceRC.isAncestorOf(TargetRC) &&
- "Ref edge is not trivial in the RefSCC graph!");
- #endif
- // First insert it into the source or find the existing edge.
- auto [Iterator, Inserted] =
- SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
- (void)Iterator;
- if (!Inserted)
- // Already an edge, we're done.
- return;
- // Create the new edge.
- SourceN->Edges.emplace_back(TargetN, Edge::Ref);
- }
- void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
- Function &OldF = N.getFunction();
- #ifdef EXPENSIVE_CHECKS
- auto ExitVerifier = make_scope_exit([this] { verify(); });
- assert(G->lookupRefSCC(N) == this &&
- "Cannot replace the function of a node outside this RefSCC.");
- assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
- "Must not have already walked the new function!'");
- // It is important that this replacement not introduce graph changes so we
- // insist that the caller has already removed every use of the original
- // function and that all uses of the new function correspond to existing
- // edges in the graph. The common and expected way to use this is when
- // replacing the function itself in the IR without changing the call graph
- // shape and just updating the analysis based on that.
- assert(&OldF != &NewF && "Cannot replace a function with itself!");
- assert(OldF.use_empty() &&
- "Must have moved all uses from the old function to the new!");
- #endif
- N.replaceFunction(NewF);
- // Update various call graph maps.
- G->NodeMap.erase(&OldF);
- G->NodeMap[&NewF] = &N;
- // Update lib functions.
- if (G->isLibFunction(OldF)) {
- G->LibFunctions.remove(&OldF);
- G->LibFunctions.insert(&NewF);
- }
- }
- void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
- assert(SCCMap.empty() &&
- "This method cannot be called after SCCs have been formed!");
- return SourceN->insertEdgeInternal(TargetN, EK);
- }
- void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
- assert(SCCMap.empty() &&
- "This method cannot be called after SCCs have been formed!");
- bool Removed = SourceN->removeEdgeInternal(TargetN);
- (void)Removed;
- assert(Removed && "Target not in the edge set for this caller?");
- }
- void LazyCallGraph::removeDeadFunction(Function &F) {
- // FIXME: This is unnecessarily restrictive. We should be able to remove
- // functions which recursively call themselves.
- assert(F.hasZeroLiveUses() &&
- "This routine should only be called on trivially dead functions!");
- // We shouldn't remove library functions as they are never really dead while
- // the call graph is in use -- every function definition refers to them.
- assert(!isLibFunction(F) &&
- "Must not remove lib functions from the call graph!");
- auto NI = NodeMap.find(&F);
- if (NI == NodeMap.end())
- // Not in the graph at all!
- return;
- Node &N = *NI->second;
- // Cannot remove a function which has yet to be visited in the DFS walk, so
- // if we have a node at all then we must have an SCC and RefSCC.
- auto CI = SCCMap.find(&N);
- assert(CI != SCCMap.end() &&
- "Tried to remove a node without an SCC after DFS walk started!");
- SCC &C = *CI->second;
- RefSCC *RC = &C.getOuterRefSCC();
- // In extremely rare cases, we can delete a dead function which is still in a
- // non-trivial RefSCC. This can happen due to spurious ref edges sticking
- // around after an IR function reference is removed.
- if (RC->size() != 1) {
- SmallVector<Node *, 0> NodesInRC;
- for (SCC &OtherC : *RC) {
- for (Node &OtherN : OtherC)
- NodesInRC.push_back(&OtherN);
- }
- for (Node *OtherN : NodesInRC) {
- if ((*OtherN)->lookup(N)) {
- auto NewRefSCCs =
- RC->removeInternalRefEdge(*OtherN, ArrayRef<Node *>(&N));
- // If we've split into multiple RefSCCs, RC is now invalid and the
- // RefSCC containing C will be different.
- if (!NewRefSCCs.empty())
- RC = &C.getOuterRefSCC();
- }
- }
- }
- NodeMap.erase(NI);
- EntryEdges.removeEdgeInternal(N);
- SCCMap.erase(CI);
- // This node must be the only member of its SCC as it has no callers, and
- // that SCC must be the only member of a RefSCC as it has no references.
- // Validate these properties first.
- assert(C.size() == 1 && "Dead functions must be in a singular SCC");
- assert(RC->size() == 1 && "Dead functions must be in a singular RefSCC");
- // Finally clear out all the data structures from the node down through the
- // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need
- // to adjust LazyCallGraph data structures.
- N.clear();
- N.G = nullptr;
- N.F = nullptr;
- C.clear();
- RC->clear();
- RC->G = nullptr;
- // Nothing to delete as all the objects are allocated in stable bump pointer
- // allocators.
- }
- // Gets the Edge::Kind from one function to another by looking at the function's
- // instructions. Asserts if there is no edge.
- // Useful for determining what type of edge should exist between functions when
- // the edge hasn't been created yet.
- static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
- Function &NewFunction) {
- // In release builds, assume that if there are no direct calls to the new
- // function, then there is a ref edge. In debug builds, keep track of
- // references to assert that there is actually a ref edge if there is no call
- // edge.
- #ifndef NDEBUG
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- #endif
- for (Instruction &I : instructions(OriginalFunction)) {
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- if (Function *Callee = CB->getCalledFunction()) {
- if (Callee == &NewFunction)
- return LazyCallGraph::Edge::Kind::Call;
- }
- }
- #ifndef NDEBUG
- for (Value *Op : I.operand_values()) {
- if (Constant *C = dyn_cast<Constant>(Op)) {
- if (Visited.insert(C).second)
- Worklist.push_back(C);
- }
- }
- #endif
- }
- #ifndef NDEBUG
- bool FoundNewFunction = false;
- LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
- if (&F == &NewFunction)
- FoundNewFunction = true;
- });
- assert(FoundNewFunction && "No edge from original function to new function");
- #endif
- return LazyCallGraph::Edge::Kind::Ref;
- }
- void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
- Function &NewFunction) {
- assert(lookup(OriginalFunction) &&
- "Original function's node should already exist");
- Node &OriginalN = get(OriginalFunction);
- SCC *OriginalC = lookupSCC(OriginalN);
- RefSCC *OriginalRC = lookupRefSCC(OriginalN);
- #ifdef EXPENSIVE_CHECKS
- OriginalRC->verify();
- auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
- #endif
- assert(!lookup(NewFunction) &&
- "New function's node should not already exist");
- Node &NewN = initNode(NewFunction);
- Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
- SCC *NewC = nullptr;
- for (Edge &E : *NewN) {
- Node &EN = E.getNode();
- if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
- // If the edge to the new function is a call edge and there is a call edge
- // from the new function to any function in the original function's SCC,
- // it is in the same SCC (and RefSCC) as the original function.
- NewC = OriginalC;
- NewC->Nodes.push_back(&NewN);
- break;
- }
- }
- if (!NewC) {
- for (Edge &E : *NewN) {
- Node &EN = E.getNode();
- if (lookupRefSCC(EN) == OriginalRC) {
- // If there is any edge from the new function to any function in the
- // original function's RefSCC, it is in the same RefSCC as the original
- // function but a new SCC.
- RefSCC *NewRC = OriginalRC;
- NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
- // The new function's SCC is not the same as the original function's
- // SCC, since that case was handled earlier. If the edge from the
- // original function to the new function was a call edge, then we need
- // to insert the newly created function's SCC before the original
- // function's SCC. Otherwise, either the new SCC comes after the
- // original function's SCC, or it doesn't matter, and in both cases we
- // can add it to the very end.
- int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
- : NewRC->SCCIndices.size();
- NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
- for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
- NewRC->SCCIndices[NewRC->SCCs[I]] = I;
- break;
- }
- }
- }
- if (!NewC) {
- // We didn't find any edges back to the original function's RefSCC, so the
- // new function belongs in a new RefSCC. The new RefSCC goes before the
- // original function's RefSCC.
- RefSCC *NewRC = createRefSCC(*this);
- NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
- NewRC->SCCIndices[NewC] = 0;
- NewRC->SCCs.push_back(NewC);
- auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
- PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
- for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
- RefSCCIndices[PostOrderRefSCCs[I]] = I;
- }
- SCCMap[&NewN] = NewC;
- OriginalN->insertEdgeInternal(NewN, EK);
- }
- void LazyCallGraph::addSplitRefRecursiveFunctions(
- Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
- assert(!NewFunctions.empty() && "Can't add zero functions");
- assert(lookup(OriginalFunction) &&
- "Original function's node should already exist");
- Node &OriginalN = get(OriginalFunction);
- RefSCC *OriginalRC = lookupRefSCC(OriginalN);
- #ifdef EXPENSIVE_CHECKS
- OriginalRC->verify();
- auto VerifyOnExit = make_scope_exit([&]() {
- OriginalRC->verify();
- for (Function *NewFunction : NewFunctions)
- lookupRefSCC(get(*NewFunction))->verify();
- });
- #endif
- bool ExistsRefToOriginalRefSCC = false;
- for (Function *NewFunction : NewFunctions) {
- Node &NewN = initNode(*NewFunction);
- OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
- // Check if there is any edge from any new function back to any function in
- // the original function's RefSCC.
- for (Edge &E : *NewN) {
- if (lookupRefSCC(E.getNode()) == OriginalRC) {
- ExistsRefToOriginalRefSCC = true;
- break;
- }
- }
- }
- RefSCC *NewRC;
- if (ExistsRefToOriginalRefSCC) {
- // If there is any edge from any new function to any function in the
- // original function's RefSCC, all new functions will be in the same RefSCC
- // as the original function.
- NewRC = OriginalRC;
- } else {
- // Otherwise the new functions are in their own RefSCC.
- NewRC = createRefSCC(*this);
- // The new RefSCC goes before the original function's RefSCC in postorder
- // since there are only edges from the original function's RefSCC to the new
- // RefSCC.
- auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
- PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
- for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
- RefSCCIndices[PostOrderRefSCCs[I]] = I;
- }
- for (Function *NewFunction : NewFunctions) {
- Node &NewN = get(*NewFunction);
- // Each new function is in its own new SCC. The original function can only
- // have a ref edge to new functions, and no other existing functions can
- // have references to new functions. Each new function only has a ref edge
- // to the other new functions.
- SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
- // The new SCCs are either sibling SCCs or parent SCCs to all other existing
- // SCCs in the RefSCC. Either way, they can go at the back of the postorder
- // SCC list.
- auto Index = NewRC->SCCIndices.size();
- NewRC->SCCIndices[NewC] = Index;
- NewRC->SCCs.push_back(NewC);
- SCCMap[&NewN] = NewC;
- }
- #ifndef NDEBUG
- for (Function *F1 : NewFunctions) {
- assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
- "Expected ref edges from original function to every new function");
- Node &N1 = get(*F1);
- for (Function *F2 : NewFunctions) {
- if (F1 == F2)
- continue;
- Node &N2 = get(*F2);
- assert(!N1->lookup(N2)->isCall() &&
- "Edges between new functions must be ref edges");
- }
- }
- #endif
- }
- LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
- return *new (MappedN = BPA.Allocate()) Node(*this, F);
- }
- void LazyCallGraph::updateGraphPtrs() {
- // Walk the node map to update their graph pointers. While this iterates in
- // an unstable order, the order has no effect, so it remains correct.
- for (auto &FunctionNodePair : NodeMap)
- FunctionNodePair.second->G = this;
- for (auto *RC : PostOrderRefSCCs)
- RC->G = this;
- }
- LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
- Node &N = get(F);
- N.DFSNumber = N.LowLink = -1;
- N.populate();
- NodeMap[&F] = &N;
- return N;
- }
- template <typename RootsT, typename GetBeginT, typename GetEndT,
- typename GetNodeT, typename FormSCCCallbackT>
- void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
- GetEndT &&GetEnd, GetNodeT &&GetNode,
- FormSCCCallbackT &&FormSCC) {
- using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
- SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
- SmallVector<Node *, 16> PendingSCCStack;
- // Scan down the stack and DFS across the call edges.
- for (Node *RootN : Roots) {
- assert(DFSStack.empty() &&
- "Cannot begin a new root with a non-empty DFS stack!");
- assert(PendingSCCStack.empty() &&
- "Cannot begin a new root with pending nodes for an SCC!");
- // Skip any nodes we've already reached in the DFS.
- if (RootN->DFSNumber != 0) {
- assert(RootN->DFSNumber == -1 &&
- "Shouldn't have any mid-DFS root nodes!");
- continue;
- }
- RootN->DFSNumber = RootN->LowLink = 1;
- int NextDFSNumber = 2;
- DFSStack.emplace_back(RootN, GetBegin(*RootN));
- do {
- auto [N, I] = DFSStack.pop_back_val();
- auto E = GetEnd(*N);
- while (I != E) {
- Node &ChildN = GetNode(I);
- if (ChildN.DFSNumber == 0) {
- // We haven't yet visited this child, so descend, pushing the current
- // node onto the stack.
- DFSStack.emplace_back(N, I);
- ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
- N = &ChildN;
- I = GetBegin(*N);
- E = GetEnd(*N);
- continue;
- }
- // If the child has already been added to some child component, it
- // couldn't impact the low-link of this parent because it isn't
- // connected, and thus its low-link isn't relevant so skip it.
- if (ChildN.DFSNumber == -1) {
- ++I;
- continue;
- }
- // Track the lowest linked child as the lowest link for this node.
- assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
- if (ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- // Move to the next edge.
- ++I;
- }
- // We've finished processing N and its descendants, put it on our pending
- // SCC stack to eventually get merged into an SCC of nodes.
- PendingSCCStack.push_back(N);
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber)
- continue;
- // Otherwise, we've completed an SCC. Append it to our post order list of
- // SCCs.
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number.
- auto SCCNodes = make_range(
- PendingSCCStack.rbegin(),
- find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
- return N->DFSNumber < RootDFSNumber;
- }));
- // Form a new SCC out of these nodes and then clear them off our pending
- // stack.
- FormSCC(SCCNodes);
- PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
- } while (!DFSStack.empty());
- }
- }
- /// Build the internal SCCs for a RefSCC from a sequence of nodes.
- ///
- /// Appends the SCCs to the provided vector and updates the map with their
- /// indices. Both the vector and map must be empty when passed into this
- /// routine.
- void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
- assert(RC.SCCs.empty() && "Already built SCCs!");
- assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
- for (Node *N : Nodes) {
- assert(N->LowLink >= (*Nodes.begin())->LowLink &&
- "We cannot have a low link in an SCC lower than its root on the "
- "stack!");
- // This node will go into the next RefSCC, clear out its DFS and low link
- // as we scan.
- N->DFSNumber = N->LowLink = 0;
- }
- // Each RefSCC contains a DAG of the call SCCs. To build these, we do
- // a direct walk of the call edges using Tarjan's algorithm. We reuse the
- // internal storage as we won't need it for the outer graph's DFS any longer.
- buildGenericSCCs(
- Nodes, [](Node &N) { return N->call_begin(); },
- [](Node &N) { return N->call_end(); },
- [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
- [this, &RC](node_stack_range Nodes) {
- RC.SCCs.push_back(createSCC(RC, Nodes));
- for (Node &N : *RC.SCCs.back()) {
- N.DFSNumber = N.LowLink = -1;
- SCCMap[&N] = RC.SCCs.back();
- }
- });
- // Wire up the SCC indices.
- for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I)
- RC.SCCIndices[RC.SCCs[I]] = I;
- }
- void LazyCallGraph::buildRefSCCs() {
- if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
- // RefSCCs are either non-existent or already built!
- return;
- assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
- SmallVector<Node *, 16> Roots;
- for (Edge &E : *this)
- Roots.push_back(&E.getNode());
- // The roots will be iterated in order.
- buildGenericSCCs(
- Roots,
- [](Node &N) {
- // We need to populate each node as we begin to walk its edges.
- N.populate();
- return N->begin();
- },
- [](Node &N) { return N->end(); },
- [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
- [this](node_stack_range Nodes) {
- RefSCC *NewRC = createRefSCC(*this);
- buildSCCs(*NewRC, Nodes);
- // Push the new node into the postorder list and remember its position
- // in the index map.
- bool Inserted =
- RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second;
- (void)Inserted;
- assert(Inserted && "Cannot already have this RefSCC in the index map!");
- PostOrderRefSCCs.push_back(NewRC);
- #ifdef EXPENSIVE_CHECKS
- NewRC->verify();
- #endif
- });
- }
- void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
- SmallPtrSetImpl<Constant *> &Visited,
- function_ref<void(Function &)> Callback) {
- while (!Worklist.empty()) {
- Constant *C = Worklist.pop_back_val();
- if (Function *F = dyn_cast<Function>(C)) {
- if (!F->isDeclaration())
- Callback(*F);
- continue;
- }
- // blockaddresses are weird and don't participate in the call graph anyway,
- // skip them.
- if (isa<BlockAddress>(C))
- continue;
- for (Value *Op : C->operand_values())
- if (Visited.insert(cast<Constant>(Op)).second)
- Worklist.push_back(cast<Constant>(Op));
- }
- }
- AnalysisKey LazyCallGraphAnalysis::Key;
- LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
- static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
- OS << " Edges in function: " << N.getFunction().getName() << "\n";
- for (LazyCallGraph::Edge &E : N.populate())
- OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
- << E.getFunction().getName() << "\n";
- OS << "\n";
- }
- static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
- OS << " SCC with " << C.size() << " functions:\n";
- for (LazyCallGraph::Node &N : C)
- OS << " " << N.getFunction().getName() << "\n";
- }
- static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
- OS << " RefSCC with " << C.size() << " call SCCs:\n";
- for (LazyCallGraph::SCC &InnerC : C)
- printSCC(OS, InnerC);
- OS << "\n";
- }
- PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
- OS << "Printing the call graph for module: " << M.getModuleIdentifier()
- << "\n\n";
- for (Function &F : M)
- printNode(OS, G.get(F));
- G.buildRefSCCs();
- for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
- printRefSCC(OS, C);
- return PreservedAnalyses::all();
- }
- LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
- : OS(OS) {}
- static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
- std::string Name =
- "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
- for (LazyCallGraph::Edge &E : N.populate()) {
- OS << " " << Name << " -> \""
- << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
- if (!E.isCall()) // It is a ref edge.
- OS << " [style=dashed,label=\"ref\"]";
- OS << ";\n";
- }
- OS << "\n";
- }
- PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
- OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
- for (Function &F : M)
- printNodeDOT(OS, G.get(F));
- OS << "}\n";
- return PreservedAnalyses::all();
- }
|