1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829 |
- //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements routines for folding instructions into simpler forms
- // that do not require creating new instructions. This does constant folding
- // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
- // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
- // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
- // simplified: This is usually true and assuming it simplifies the logic (if
- // they have not been simplified then results are correct but maybe suboptimal).
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/CmpInstAnalysis.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstSimplifyFolder.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/OverflowInstAnalysis.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/KnownBits.h"
- #include <algorithm>
- #include <optional>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "instsimplify"
- enum { RecursionLimit = 3 };
- STATISTIC(NumExpand, "Number of expansions");
- STATISTIC(NumReassoc, "Number of reassociations");
- static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &,
- unsigned);
- static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
- static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
- const SimplifyQuery &, unsigned);
- static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
- unsigned);
- static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
- const SimplifyQuery &, unsigned);
- static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
- unsigned);
- static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse);
- static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
- static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &,
- unsigned);
- static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &,
- unsigned);
- static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, bool,
- const SimplifyQuery &, unsigned);
- static Value *simplifySelectInst(Value *, Value *, Value *,
- const SimplifyQuery &, unsigned);
- static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
- Value *FalseVal) {
- BinaryOperator::BinaryOps BinOpCode;
- if (auto *BO = dyn_cast<BinaryOperator>(Cond))
- BinOpCode = BO->getOpcode();
- else
- return nullptr;
- CmpInst::Predicate ExpectedPred, Pred1, Pred2;
- if (BinOpCode == BinaryOperator::Or) {
- ExpectedPred = ICmpInst::ICMP_NE;
- } else if (BinOpCode == BinaryOperator::And) {
- ExpectedPred = ICmpInst::ICMP_EQ;
- } else
- return nullptr;
- // %A = icmp eq %TV, %FV
- // %B = icmp eq %X, %Y (and one of these is a select operand)
- // %C = and %A, %B
- // %D = select %C, %TV, %FV
- // -->
- // %FV
- // %A = icmp ne %TV, %FV
- // %B = icmp ne %X, %Y (and one of these is a select operand)
- // %C = or %A, %B
- // %D = select %C, %TV, %FV
- // -->
- // %TV
- Value *X, *Y;
- if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
- m_Specific(FalseVal)),
- m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
- Pred1 != Pred2 || Pred1 != ExpectedPred)
- return nullptr;
- if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
- return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
- return nullptr;
- }
- /// For a boolean type or a vector of boolean type, return false or a vector
- /// with every element false.
- static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); }
- /// For a boolean type or a vector of boolean type, return true or a vector
- /// with every element true.
- static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); }
- /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
- static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
- CmpInst *Cmp = dyn_cast<CmpInst>(V);
- if (!Cmp)
- return false;
- CmpInst::Predicate CPred = Cmp->getPredicate();
- Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
- if (CPred == Pred && CLHS == LHS && CRHS == RHS)
- return true;
- return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
- CRHS == LHS;
- }
- /// Simplify comparison with true or false branch of select:
- /// %sel = select i1 %cond, i32 %tv, i32 %fv
- /// %cmp = icmp sle i32 %sel, %rhs
- /// Compose new comparison by substituting %sel with either %tv or %fv
- /// and see if it simplifies.
- static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, Value *Cond,
- const SimplifyQuery &Q, unsigned MaxRecurse,
- Constant *TrueOrFalse) {
- Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
- if (SimplifiedCmp == Cond) {
- // %cmp simplified to the select condition (%cond).
- return TrueOrFalse;
- } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
- // It didn't simplify. However, if composed comparison is equivalent
- // to the select condition (%cond) then we can replace it.
- return TrueOrFalse;
- }
- return SimplifiedCmp;
- }
- /// Simplify comparison with true branch of select
- static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, Value *Cond,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
- getTrue(Cond->getType()));
- }
- /// Simplify comparison with false branch of select
- static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, Value *Cond,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
- getFalse(Cond->getType()));
- }
- /// We know comparison with both branches of select can be simplified, but they
- /// are not equal. This routine handles some logical simplifications.
- static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
- Value *Cond,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // If the false value simplified to false, then the result of the compare
- // is equal to "Cond && TCmp". This also catches the case when the false
- // value simplified to false and the true value to true, returning "Cond".
- // Folding select to and/or isn't poison-safe in general; impliesPoison
- // checks whether folding it does not convert a well-defined value into
- // poison.
- if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
- if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse))
- return V;
- // If the true value simplified to true, then the result of the compare
- // is equal to "Cond || FCmp".
- if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
- if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse))
- return V;
- // Finally, if the false value simplified to true and the true value to
- // false, then the result of the compare is equal to "!Cond".
- if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
- if (Value *V = simplifyXorInst(
- Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// Does the given value dominate the specified phi node?
- static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I)
- // Arguments and constants dominate all instructions.
- return true;
- // If we are processing instructions (and/or basic blocks) that have not been
- // fully added to a function, the parent nodes may still be null. Simply
- // return the conservative answer in these cases.
- if (!I->getParent() || !P->getParent() || !I->getFunction())
- return false;
- // If we have a DominatorTree then do a precise test.
- if (DT)
- return DT->dominates(I, P);
- // Otherwise, if the instruction is in the entry block and is not an invoke,
- // then it obviously dominates all phi nodes.
- if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
- !isa<CallBrInst>(I))
- return true;
- return false;
- }
- /// Try to simplify a binary operator of form "V op OtherOp" where V is
- /// "(B0 opex B1)" by distributing 'op' across 'opex' as
- /// "(B0 op OtherOp) opex (B1 op OtherOp)".
- static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
- Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- auto *B = dyn_cast<BinaryOperator>(V);
- if (!B || B->getOpcode() != OpcodeToExpand)
- return nullptr;
- Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
- Value *L =
- simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse);
- if (!L)
- return nullptr;
- Value *R =
- simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse);
- if (!R)
- return nullptr;
- // Does the expanded pair of binops simplify to the existing binop?
- if ((L == B0 && R == B1) ||
- (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
- ++NumExpand;
- return B;
- }
- // Otherwise, return "L op' R" if it simplifies.
- Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
- if (!S)
- return nullptr;
- ++NumExpand;
- return S;
- }
- /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
- /// distributing op over op'.
- static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L,
- Value *R,
- Instruction::BinaryOps OpcodeToExpand,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
- return V;
- if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// Generic simplifications for associative binary operations.
- /// Returns the simpler value, or null if none was found.
- static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
- Value *LHS, Value *RHS,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
- // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = RHS;
- // Does "B op C" simplify?
- if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
- // It does! Return "A op V" if it simplifies or is already available.
- // If V equals B then "A op V" is just the LHS.
- if (V == B)
- return LHS;
- // Otherwise return "A op V" if it simplifies.
- if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = LHS;
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
- // Does "A op B" simplify?
- if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
- // It does! Return "V op C" if it simplifies or is already available.
- // If V equals B then "V op C" is just the RHS.
- if (V == B)
- return RHS;
- // Otherwise return "V op C" if it simplifies.
- if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- // The remaining transforms require commutativity as well as associativity.
- if (!Instruction::isCommutative(Opcode))
- return nullptr;
- // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = RHS;
- // Does "C op A" simplify?
- if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
- // It does! Return "V op B" if it simplifies or is already available.
- // If V equals A then "V op B" is just the LHS.
- if (V == A)
- return LHS;
- // Otherwise return "V op B" if it simplifies.
- if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = LHS;
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
- // Does "C op A" simplify?
- if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
- // It does! Return "B op V" if it simplifies or is already available.
- // If V equals C then "B op V" is just the RHS.
- if (V == C)
- return RHS;
- // Otherwise return "B op V" if it simplifies.
- if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- return nullptr;
- }
- /// In the case of a binary operation with a select instruction as an operand,
- /// try to simplify the binop by seeing whether evaluating it on both branches
- /// of the select results in the same value. Returns the common value if so,
- /// otherwise returns null.
- static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- SelectInst *SI;
- if (isa<SelectInst>(LHS)) {
- SI = cast<SelectInst>(LHS);
- } else {
- assert(isa<SelectInst>(RHS) && "No select instruction operand!");
- SI = cast<SelectInst>(RHS);
- }
- // Evaluate the BinOp on the true and false branches of the select.
- Value *TV;
- Value *FV;
- if (SI == LHS) {
- TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
- FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
- } else {
- TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
- FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
- }
- // If they simplified to the same value, then return the common value.
- // If they both failed to simplify then return null.
- if (TV == FV)
- return TV;
- // If one branch simplified to undef, return the other one.
- if (TV && Q.isUndefValue(TV))
- return FV;
- if (FV && Q.isUndefValue(FV))
- return TV;
- // If applying the operation did not change the true and false select values,
- // then the result of the binop is the select itself.
- if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
- return SI;
- // If one branch simplified and the other did not, and the simplified
- // value is equal to the unsimplified one, return the simplified value.
- // For example, select (cond, X, X & Z) & Z -> X & Z.
- if ((FV && !TV) || (TV && !FV)) {
- // Check that the simplified value has the form "X op Y" where "op" is the
- // same as the original operation.
- Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
- if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
- // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
- // We already know that "op" is the same as for the simplified value. See
- // if the operands match too. If so, return the simplified value.
- Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
- Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
- Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
- if (Simplified->getOperand(0) == UnsimplifiedLHS &&
- Simplified->getOperand(1) == UnsimplifiedRHS)
- return Simplified;
- if (Simplified->isCommutative() &&
- Simplified->getOperand(1) == UnsimplifiedLHS &&
- Simplified->getOperand(0) == UnsimplifiedRHS)
- return Simplified;
- }
- }
- return nullptr;
- }
- /// In the case of a comparison with a select instruction, try to simplify the
- /// comparison by seeing whether both branches of the select result in the same
- /// value. Returns the common value if so, otherwise returns null.
- /// For example, if we have:
- /// %tmp = select i1 %cmp, i32 1, i32 2
- /// %cmp1 = icmp sle i32 %tmp, 3
- /// We can simplify %cmp1 to true, because both branches of select are
- /// less than 3. We compose new comparison by substituting %tmp with both
- /// branches of select and see if it can be simplified.
- static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- // Make sure the select is on the LHS.
- if (!isa<SelectInst>(LHS)) {
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
- SelectInst *SI = cast<SelectInst>(LHS);
- Value *Cond = SI->getCondition();
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
- // Does "cmp TV, RHS" simplify?
- Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
- if (!TCmp)
- return nullptr;
- // Does "cmp FV, RHS" simplify?
- Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
- if (!FCmp)
- return nullptr;
- // If both sides simplified to the same value, then use it as the result of
- // the original comparison.
- if (TCmp == FCmp)
- return TCmp;
- // The remaining cases only make sense if the select condition has the same
- // type as the result of the comparison, so bail out if this is not so.
- if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
- return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
- return nullptr;
- }
- /// In the case of a binary operation with an operand that is a PHI instruction,
- /// try to simplify the binop by seeing whether evaluating it on the incoming
- /// phi values yields the same result for every value. If so returns the common
- /// value, otherwise returns null.
- static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- PHINode *PI;
- if (isa<PHINode>(LHS)) {
- PI = cast<PHINode>(LHS);
- // Bail out if RHS and the phi may be mutually interdependent due to a loop.
- if (!valueDominatesPHI(RHS, PI, Q.DT))
- return nullptr;
- } else {
- assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
- PI = cast<PHINode>(RHS);
- // Bail out if LHS and the phi may be mutually interdependent due to a loop.
- if (!valueDominatesPHI(LHS, PI, Q.DT))
- return nullptr;
- }
- // Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = nullptr;
- for (Value *Incoming : PI->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PI)
- continue;
- Value *V = PI == LHS ? simplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse)
- : simplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
- // If the operation failed to simplify, or simplified to a different value
- // to previously, then give up.
- if (!V || (CommonValue && V != CommonValue))
- return nullptr;
- CommonValue = V;
- }
- return CommonValue;
- }
- /// In the case of a comparison with a PHI instruction, try to simplify the
- /// comparison by seeing whether comparing with all of the incoming phi values
- /// yields the same result every time. If so returns the common result,
- /// otherwise returns null.
- static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- // Make sure the phi is on the LHS.
- if (!isa<PHINode>(LHS)) {
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
- PHINode *PI = cast<PHINode>(LHS);
- // Bail out if RHS and the phi may be mutually interdependent due to a loop.
- if (!valueDominatesPHI(RHS, PI, Q.DT))
- return nullptr;
- // Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = nullptr;
- for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
- Value *Incoming = PI->getIncomingValue(u);
- Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PI)
- continue;
- // Change the context instruction to the "edge" that flows into the phi.
- // This is important because that is where incoming is actually "evaluated"
- // even though it is used later somewhere else.
- Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
- MaxRecurse);
- // If the operation failed to simplify, or simplified to a different value
- // to previously, then give up.
- if (!V || (CommonValue && V != CommonValue))
- return nullptr;
- CommonValue = V;
- }
- return CommonValue;
- }
- static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
- Value *&Op0, Value *&Op1,
- const SimplifyQuery &Q) {
- if (auto *CLHS = dyn_cast<Constant>(Op0)) {
- if (auto *CRHS = dyn_cast<Constant>(Op1)) {
- switch (Opcode) {
- default:
- break;
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- if (Q.CxtI != nullptr)
- return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI);
- }
- return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
- }
- // Canonicalize the constant to the RHS if this is a commutative operation.
- if (Instruction::isCommutative(Opcode))
- std::swap(Op0, Op1);
- }
- return nullptr;
- }
- /// Given operands for an Add, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
- return C;
- // X + poison -> poison
- if (isa<PoisonValue>(Op1))
- return Op1;
- // X + undef -> undef
- if (Q.isUndefValue(Op1))
- return Op1;
- // X + 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // If two operands are negative, return 0.
- if (isKnownNegation(Op0, Op1))
- return Constant::getNullValue(Op0->getType());
- // X + (Y - X) -> Y
- // (Y - X) + X -> Y
- // Eg: X + -X -> 0
- Value *Y = nullptr;
- if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
- match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
- return Y;
- // X + ~X -> -1 since ~X = -X-1
- Type *Ty = Op0->getType();
- if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Ty);
- // add nsw/nuw (xor Y, signmask), signmask --> Y
- // The no-wrapping add guarantees that the top bit will be set by the add.
- // Therefore, the xor must be clearing the already set sign bit of Y.
- if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
- match(Op0, m_Xor(m_Value(Y), m_SignMask())))
- return Y;
- // add nuw %x, -1 -> -1, because %x can only be 0.
- if (IsNUW && match(Op1, m_AllOnes()))
- return Op1; // Which is -1.
- /// i1 add -> xor.
- if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
- if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
- return V;
- // Try some generic simplifications for associative operations.
- if (Value *V =
- simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse))
- return V;
- // Threading Add over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A + select(cond, B, C)" means evaluating
- // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
- return nullptr;
- }
- Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Query) {
- return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
- }
- /// Compute the base pointer and cumulative constant offsets for V.
- ///
- /// This strips all constant offsets off of V, leaving it the base pointer, and
- /// accumulates the total constant offset applied in the returned constant.
- /// It returns zero if there are no constant offsets applied.
- ///
- /// This is very similar to stripAndAccumulateConstantOffsets(), except it
- /// normalizes the offset bitwidth to the stripped pointer type, not the
- /// original pointer type.
- static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
- bool AllowNonInbounds = false) {
- assert(V->getType()->isPtrOrPtrVectorTy());
- APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
- V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
- // As that strip may trace through `addrspacecast`, need to sext or trunc
- // the offset calculated.
- return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType()));
- }
- /// Compute the constant difference between two pointer values.
- /// If the difference is not a constant, returns zero.
- static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
- Value *RHS) {
- APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
- APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
- // If LHS and RHS are not related via constant offsets to the same base
- // value, there is nothing we can do here.
- if (LHS != RHS)
- return nullptr;
- // Otherwise, the difference of LHS - RHS can be computed as:
- // LHS - RHS
- // = (LHSOffset + Base) - (RHSOffset + Base)
- // = LHSOffset - RHSOffset
- Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset);
- if (auto *VecTy = dyn_cast<VectorType>(LHS->getType()))
- Res = ConstantVector::getSplat(VecTy->getElementCount(), Res);
- return Res;
- }
- /// Test if there is a dominating equivalence condition for the
- /// two operands. If there is, try to reduce the binary operation
- /// between the two operands.
- /// Example: Op0 - Op1 --> 0 when Op0 == Op1
- static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- // Recursive run it can not get any benefit
- if (MaxRecurse != RecursionLimit)
- return nullptr;
- std::optional<bool> Imp =
- isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL);
- if (Imp && *Imp) {
- Type *Ty = Op0->getType();
- switch (Opcode) {
- case Instruction::Sub:
- case Instruction::Xor:
- case Instruction::URem:
- case Instruction::SRem:
- return Constant::getNullValue(Ty);
- case Instruction::SDiv:
- case Instruction::UDiv:
- return ConstantInt::get(Ty, 1);
- case Instruction::And:
- case Instruction::Or:
- // Could be either one - choose Op1 since that's more likely a constant.
- return Op1;
- default:
- break;
- }
- }
- return nullptr;
- }
- /// Given operands for a Sub, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
- return C;
- // X - poison -> poison
- // poison - X -> poison
- if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
- return PoisonValue::get(Op0->getType());
- // X - undef -> undef
- // undef - X -> undef
- if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
- return UndefValue::get(Op0->getType());
- // X - 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // X - X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // Is this a negation?
- if (match(Op0, m_Zero())) {
- // 0 - X -> 0 if the sub is NUW.
- if (IsNUW)
- return Constant::getNullValue(Op0->getType());
- KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (Known.Zero.isMaxSignedValue()) {
- // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
- // Op1 must be 0 because negating the minimum signed value is undefined.
- if (IsNSW)
- return Constant::getNullValue(Op0->getType());
- // 0 - X -> X if X is 0 or the minimum signed value.
- return Op1;
- }
- }
- // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
- // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
- Value *X = nullptr, *Y = nullptr, *Z = Op1;
- if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
- // See if "V === Y - Z" simplifies.
- if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1))
- // It does! Now see if "X + V" simplifies.
- if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // See if "V === X - Z" simplifies.
- if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
- // It does! Now see if "Y + V" simplifies.
- if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- }
- // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
- // For example, X - (X + 1) -> -1
- X = Op0;
- if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
- // See if "V === X - Y" simplifies.
- if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
- // It does! Now see if "V - Z" simplifies.
- if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // See if "V === X - Z" simplifies.
- if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
- // It does! Now see if "V - Y" simplifies.
- if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- }
- // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
- // For example, X - (X - Y) -> Y.
- Z = Op0;
- if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
- // See if "V === Z - X" simplifies.
- if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1))
- // It does! Now see if "V + Y" simplifies.
- if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
- if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
- match(Op1, m_Trunc(m_Value(Y))))
- if (X->getType() == Y->getType())
- // See if "V === X - Y" simplifies.
- if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
- // It does! Now see if "trunc V" simplifies.
- if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(),
- Q, MaxRecurse - 1))
- // It does, return the simplified "trunc V".
- return W;
- // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
- if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y))))
- if (Constant *Result = computePointerDifference(Q.DL, X, Y))
- return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
- // i1 sub -> xor.
- if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
- if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
- return V;
- // Threading Sub over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A - select(cond, B, C)" means evaluating
- // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
- if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q) {
- return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
- }
- /// Given operands for a Mul, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
- return C;
- // X * poison -> poison
- if (isa<PoisonValue>(Op1))
- return Op1;
- // X * undef -> 0
- // X * 0 -> 0
- if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
- return Constant::getNullValue(Op0->getType());
- // X * 1 -> X
- if (match(Op1, m_One()))
- return Op0;
- // (X / Y) * Y -> X if the division is exact.
- Value *X = nullptr;
- if (Q.IIQ.UseInstrInfo &&
- (match(Op0,
- m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
- match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
- return X;
- if (Op0->getType()->isIntOrIntVectorTy(1)) {
- // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not
- // representable). All other cases reduce to 0, so just return 0.
- if (IsNSW)
- return ConstantInt::getNullValue(Op0->getType());
- // Treat "mul i1" as "and i1".
- if (MaxRecurse)
- if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1))
- return V;
- }
- // Try some generic simplifications for associative operations.
- if (Value *V =
- simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
- return V;
- // Mul distributes over Add. Try some generic simplifications based on this.
- if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
- Instruction::Add, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V =
- threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V =
- threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q) {
- return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
- }
- /// Check for common or similar folds of integer division or integer remainder.
- /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
- static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
- Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
- bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
- Type *Ty = Op0->getType();
- // X / undef -> poison
- // X % undef -> poison
- if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1))
- return PoisonValue::get(Ty);
- // X / 0 -> poison
- // X % 0 -> poison
- // We don't need to preserve faults!
- if (match(Op1, m_Zero()))
- return PoisonValue::get(Ty);
- // If any element of a constant divisor fixed width vector is zero or undef
- // the behavior is undefined and we can fold the whole op to poison.
- auto *Op1C = dyn_cast<Constant>(Op1);
- auto *VTy = dyn_cast<FixedVectorType>(Ty);
- if (Op1C && VTy) {
- unsigned NumElts = VTy->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = Op1C->getAggregateElement(i);
- if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
- return PoisonValue::get(Ty);
- }
- }
- // poison / X -> poison
- // poison % X -> poison
- if (isa<PoisonValue>(Op0))
- return Op0;
- // undef / X -> 0
- // undef % X -> 0
- if (Q.isUndefValue(Op0))
- return Constant::getNullValue(Ty);
- // 0 / X -> 0
- // 0 % X -> 0
- if (match(Op0, m_Zero()))
- return Constant::getNullValue(Op0->getType());
- // X / X -> 1
- // X % X -> 0
- if (Op0 == Op1)
- return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
- // X / 1 -> X
- // X % 1 -> 0
- // If this is a boolean op (single-bit element type), we can't have
- // division-by-zero or remainder-by-zero, so assume the divisor is 1.
- // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
- Value *X;
- if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
- (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return IsDiv ? Op0 : Constant::getNullValue(Ty);
- // If X * Y does not overflow, then:
- // X * Y / Y -> X
- // X * Y % Y -> 0
- if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
- auto *Mul = cast<OverflowingBinaryOperator>(Op0);
- // The multiplication can't overflow if it is defined not to, or if
- // X == A / Y for some A.
- if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
- (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
- (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
- (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
- return IsDiv ? X : Constant::getNullValue(Op0->getType());
- }
- }
- if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// Given a predicate and two operands, return true if the comparison is true.
- /// This is a helper for div/rem simplification where we return some other value
- /// when we can prove a relationship between the operands.
- static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
- Constant *C = dyn_cast_or_null<Constant>(V);
- return (C && C->isAllOnesValue());
- }
- /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
- /// to simplify X % Y to X.
- static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
- unsigned MaxRecurse, bool IsSigned) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return false;
- if (IsSigned) {
- // |X| / |Y| --> 0
- //
- // We require that 1 operand is a simple constant. That could be extended to
- // 2 variables if we computed the sign bit for each.
- //
- // Make sure that a constant is not the minimum signed value because taking
- // the abs() of that is undefined.
- Type *Ty = X->getType();
- const APInt *C;
- if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
- // Is the variable divisor magnitude always greater than the constant
- // dividend magnitude?
- // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
- Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
- Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
- if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
- isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
- return true;
- }
- if (match(Y, m_APInt(C))) {
- // Special-case: we can't take the abs() of a minimum signed value. If
- // that's the divisor, then all we have to do is prove that the dividend
- // is also not the minimum signed value.
- if (C->isMinSignedValue())
- return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
- // Is the variable dividend magnitude always less than the constant
- // divisor magnitude?
- // |X| < |C| --> X > -abs(C) and X < abs(C)
- Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
- Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
- if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
- isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
- return true;
- }
- return false;
- }
- // IsSigned == false.
- // Is the unsigned dividend known to be less than a constant divisor?
- // TODO: Convert this (and above) to range analysis
- // ("computeConstantRangeIncludingKnownBits")?
- const APInt *C;
- if (match(Y, m_APInt(C)) &&
- computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT).getMaxValue().ult(*C))
- return true;
- // Try again for any divisor:
- // Is the dividend unsigned less than the divisor?
- return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
- }
- /// These are simplifications common to SDiv and UDiv.
- static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- bool IsExact, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
- return C;
- if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If this is an exact divide by a constant, then the dividend (Op0) must have
- // at least as many trailing zeros as the divisor to divide evenly. If it has
- // less trailing zeros, then the result must be poison.
- const APInt *DivC;
- if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countTrailingZeros()) {
- KnownBits KnownOp0 = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (KnownOp0.countMaxTrailingZeros() < DivC->countTrailingZeros())
- return PoisonValue::get(Op0->getType());
- }
- bool IsSigned = Opcode == Instruction::SDiv;
- // (X rem Y) / Y -> 0
- if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
- (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
- return Constant::getNullValue(Op0->getType());
- // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
- ConstantInt *C1, *C2;
- if (!IsSigned && match(Op0, m_UDiv(m_Value(), m_ConstantInt(C1))) &&
- match(Op1, m_ConstantInt(C2))) {
- bool Overflow;
- (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
- if (Overflow)
- return Constant::getNullValue(Op0->getType());
- }
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
- return Constant::getNullValue(Op0->getType());
- return nullptr;
- }
- /// These are simplifications common to SRem and URem.
- static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
- return C;
- if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // (X % Y) % Y -> X % Y
- if ((Opcode == Instruction::SRem &&
- match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
- (Opcode == Instruction::URem &&
- match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
- return Op0;
- // (X << Y) % X -> 0
- if (Q.IIQ.UseInstrInfo &&
- ((Opcode == Instruction::SRem &&
- match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
- (Opcode == Instruction::URem &&
- match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
- return Constant::getNullValue(Op0->getType());
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If X / Y == 0, then X % Y == X.
- if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
- return Op0;
- return nullptr;
- }
- /// Given operands for an SDiv, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- // If two operands are negated and no signed overflow, return -1.
- if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
- return Constant::getAllOnesValue(Op0->getType());
- return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
- }
- Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q) {
- return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
- }
- /// Given operands for a UDiv, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
- }
- Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q) {
- return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
- }
- /// Given operands for an SRem, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // If the divisor is 0, the result is undefined, so assume the divisor is -1.
- // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
- Value *X;
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return ConstantInt::getNullValue(Op0->getType());
- // If the two operands are negated, return 0.
- if (isKnownNegation(Op0, Op1))
- return ConstantInt::getNullValue(Op0->getType());
- return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
- }
- Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit);
- }
- /// Given operands for a URem, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
- }
- Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit);
- }
- /// Returns true if a shift by \c Amount always yields poison.
- static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
- Constant *C = dyn_cast<Constant>(Amount);
- if (!C)
- return false;
- // X shift by undef -> poison because it may shift by the bitwidth.
- if (Q.isUndefValue(C))
- return true;
- // Shifting by the bitwidth or more is poison. This covers scalars and
- // fixed/scalable vectors with splat constants.
- const APInt *AmountC;
- if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth()))
- return true;
- // Try harder for fixed-length vectors:
- // If all lanes of a vector shift are poison, the whole shift is poison.
- if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
- for (unsigned I = 0,
- E = cast<FixedVectorType>(C->getType())->getNumElements();
- I != E; ++I)
- if (!isPoisonShift(C->getAggregateElement(I), Q))
- return false;
- return true;
- }
- return false;
- }
- /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
- Value *Op1, bool IsNSW, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
- return C;
- // poison shift by X -> poison
- if (isa<PoisonValue>(Op0))
- return Op0;
- // 0 shift by X -> 0
- if (match(Op0, m_Zero()))
- return Constant::getNullValue(Op0->getType());
- // X shift by 0 -> X
- // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
- // would be poison.
- Value *X;
- if (match(Op1, m_Zero()) ||
- (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return Op0;
- // Fold undefined shifts.
- if (isPoisonShift(Op1, Q))
- return PoisonValue::get(Op0->getType());
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If any bits in the shift amount make that value greater than or equal to
- // the number of bits in the type, the shift is undefined.
- KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
- return PoisonValue::get(Op0->getType());
- // If all valid bits in the shift amount are known zero, the first operand is
- // unchanged.
- unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
- if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
- return Op0;
- // Check for nsw shl leading to a poison value.
- if (IsNSW) {
- assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
- KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
- if (KnownVal.Zero.isSignBitSet())
- KnownShl.Zero.setSignBit();
- if (KnownVal.One.isSignBitSet())
- KnownShl.One.setSignBit();
- if (KnownShl.hasConflict())
- return PoisonValue::get(Op0->getType());
- }
- return nullptr;
- }
- /// Given operands for an Shl, LShr or AShr, see if we can
- /// fold the result. If not, this returns null.
- static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
- Value *Op1, bool IsExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V =
- simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
- return V;
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // undef >> X -> 0
- // undef >> X -> undef (if it's exact)
- if (Q.isUndefValue(Op0))
- return IsExact ? Op0 : Constant::getNullValue(Op0->getType());
- // The low bit cannot be shifted out of an exact shift if it is set.
- // TODO: Generalize by counting trailing zeros (see fold for exact division).
- if (IsExact) {
- KnownBits Op0Known =
- computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
- if (Op0Known.One[0])
- return Op0;
- }
- return nullptr;
- }
- /// Given operands for an Shl, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V =
- simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
- return V;
- // undef << X -> 0
- // undef << X -> undef if (if it's NSW/NUW)
- if (Q.isUndefValue(Op0))
- return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Op0->getType());
- // (X >> A) << A -> X
- Value *X;
- if (Q.IIQ.UseInstrInfo &&
- match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
- return X;
- // shl nuw i8 C, %x -> C iff C has sign bit set.
- if (IsNUW && match(Op0, m_Negative()))
- return Op0;
- // NOTE: could use computeKnownBits() / LazyValueInfo,
- // but the cost-benefit analysis suggests it isn't worth it.
- return nullptr;
- }
- Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q) {
- return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
- }
- /// Given operands for an LShr, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q,
- MaxRecurse))
- return V;
- // (X << A) >> A -> X
- Value *X;
- if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
- return X;
- // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
- // We can return X as we do in the above case since OR alters no bits in X.
- // SimplifyDemandedBits in InstCombine can do more general optimization for
- // bit manipulation. This pattern aims to provide opportunities for other
- // optimizers by supporting a simple but common case in InstSimplify.
- Value *Y;
- const APInt *ShRAmt, *ShLAmt;
- if (match(Op1, m_APInt(ShRAmt)) &&
- match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
- *ShRAmt == *ShLAmt) {
- const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- const unsigned EffWidthY = YKnown.countMaxActiveBits();
- if (ShRAmt->uge(EffWidthY))
- return X;
- }
- return nullptr;
- }
- Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q) {
- return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
- }
- /// Given operands for an AShr, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q,
- MaxRecurse))
- return V;
- // -1 >>a X --> -1
- // (-1 << X) a>> X --> -1
- // Do not return Op0 because it may contain undef elements if it's a vector.
- if (match(Op0, m_AllOnes()) ||
- match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
- return Constant::getAllOnesValue(Op0->getType());
- // (X << A) >> A -> X
- Value *X;
- if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
- return X;
- // Arithmetic shifting an all-sign-bit value is a no-op.
- unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (NumSignBits == Op0->getType()->getScalarSizeInBits())
- return Op0;
- return nullptr;
- }
- Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
- const SimplifyQuery &Q) {
- return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
- }
- /// Commuted variants are assumed to be handled by calling this function again
- /// with the parameters swapped.
- static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
- ICmpInst *UnsignedICmp, bool IsAnd,
- const SimplifyQuery &Q) {
- Value *X, *Y;
- ICmpInst::Predicate EqPred;
- if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
- !ICmpInst::isEquality(EqPred))
- return nullptr;
- ICmpInst::Predicate UnsignedPred;
- Value *A, *B;
- // Y = (A - B);
- if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
- if (match(UnsignedICmp,
- m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
- ICmpInst::isUnsigned(UnsignedPred)) {
- // A >=/<= B || (A - B) != 0 <--> true
- if ((UnsignedPred == ICmpInst::ICMP_UGE ||
- UnsignedPred == ICmpInst::ICMP_ULE) &&
- EqPred == ICmpInst::ICMP_NE && !IsAnd)
- return ConstantInt::getTrue(UnsignedICmp->getType());
- // A </> B && (A - B) == 0 <--> false
- if ((UnsignedPred == ICmpInst::ICMP_ULT ||
- UnsignedPred == ICmpInst::ICMP_UGT) &&
- EqPred == ICmpInst::ICMP_EQ && IsAnd)
- return ConstantInt::getFalse(UnsignedICmp->getType());
- // A </> B && (A - B) != 0 <--> A </> B
- // A </> B || (A - B) != 0 <--> (A - B) != 0
- if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
- UnsignedPred == ICmpInst::ICMP_UGT))
- return IsAnd ? UnsignedICmp : ZeroICmp;
- // A <=/>= B && (A - B) == 0 <--> (A - B) == 0
- // A <=/>= B || (A - B) == 0 <--> A <=/>= B
- if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
- UnsignedPred == ICmpInst::ICMP_UGE))
- return IsAnd ? ZeroICmp : UnsignedICmp;
- }
- // Given Y = (A - B)
- // Y >= A && Y != 0 --> Y >= A iff B != 0
- // Y < A || Y == 0 --> Y < A iff B != 0
- if (match(UnsignedICmp,
- m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
- if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
- EqPred == ICmpInst::ICMP_NE &&
- isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
- return UnsignedICmp;
- if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
- EqPred == ICmpInst::ICMP_EQ &&
- isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
- return UnsignedICmp;
- }
- }
- if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
- ICmpInst::isUnsigned(UnsignedPred))
- ;
- else if (match(UnsignedICmp,
- m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
- ICmpInst::isUnsigned(UnsignedPred))
- UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
- else
- return nullptr;
- // X > Y && Y == 0 --> Y == 0 iff X != 0
- // X > Y || Y == 0 --> X > Y iff X != 0
- if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
- isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
- return IsAnd ? ZeroICmp : UnsignedICmp;
- // X <= Y && Y != 0 --> X <= Y iff X != 0
- // X <= Y || Y != 0 --> Y != 0 iff X != 0
- if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
- isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
- return IsAnd ? UnsignedICmp : ZeroICmp;
- // The transforms below here are expected to be handled more generally with
- // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
- // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
- // these are candidates for removal.
- // X < Y && Y != 0 --> X < Y
- // X < Y || Y != 0 --> Y != 0
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
- return IsAnd ? UnsignedICmp : ZeroICmp;
- // X >= Y && Y == 0 --> Y == 0
- // X >= Y || Y == 0 --> X >= Y
- if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
- return IsAnd ? ZeroICmp : UnsignedICmp;
- // X < Y && Y == 0 --> false
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
- IsAnd)
- return getFalse(UnsignedICmp->getType());
- // X >= Y || Y != 0 --> true
- if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
- !IsAnd)
- return getTrue(UnsignedICmp->getType());
- return nullptr;
- }
- /// Test if a pair of compares with a shared operand and 2 constants has an
- /// empty set intersection, full set union, or if one compare is a superset of
- /// the other.
- static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
- if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
- return nullptr;
- const APInt *C0, *C1;
- if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
- !match(Cmp1->getOperand(1), m_APInt(C1)))
- return nullptr;
- auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
- auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
- // For and-of-compares, check if the intersection is empty:
- // (icmp X, C0) && (icmp X, C1) --> empty set --> false
- if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
- return getFalse(Cmp0->getType());
- // For or-of-compares, check if the union is full:
- // (icmp X, C0) || (icmp X, C1) --> full set --> true
- if (!IsAnd && Range0.unionWith(Range1).isFullSet())
- return getTrue(Cmp0->getType());
- // Is one range a superset of the other?
- // If this is and-of-compares, take the smaller set:
- // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
- // If this is or-of-compares, take the larger set:
- // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
- if (Range0.contains(Range1))
- return IsAnd ? Cmp1 : Cmp0;
- if (Range1.contains(Range0))
- return IsAnd ? Cmp0 : Cmp1;
- return nullptr;
- }
- static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
- if (!match(Cmp0->getOperand(1), m_Zero()) ||
- !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
- return nullptr;
- if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
- return nullptr;
- // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
- Value *X = Cmp0->getOperand(0);
- Value *Y = Cmp1->getOperand(0);
- // If one of the compares is a masked version of a (not) null check, then
- // that compare implies the other, so we eliminate the other. Optionally, look
- // through a pointer-to-int cast to match a null check of a pointer type.
- // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
- // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
- // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
- // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
- if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
- match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
- return Cmp1;
- // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
- // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
- // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
- // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
- if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
- match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
- return Cmp0;
- return nullptr;
- }
- static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
- const InstrInfoQuery &IIQ) {
- // (icmp (add V, C0), C1) & (icmp V, C0)
- ICmpInst::Predicate Pred0, Pred1;
- const APInt *C0, *C1;
- Value *V;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
- return nullptr;
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
- return nullptr;
- auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
- if (AddInst->getOperand(1) != Op1->getOperand(1))
- return nullptr;
- Type *ITy = Op0->getType();
- bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
- bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
- const APInt Delta = *C1 - *C0;
- if (C0->isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
- return getFalse(ITy);
- if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
- return getFalse(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
- return getFalse(ITy);
- if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
- return getFalse(ITy);
- }
- }
- if (C0->getBoolValue() && IsNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- }
- return nullptr;
- }
- /// Try to eliminate compares with signed or unsigned min/max constants.
- static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- // Canonicalize an equality compare as Cmp0.
- if (Cmp1->isEquality())
- std::swap(Cmp0, Cmp1);
- if (!Cmp0->isEquality())
- return nullptr;
- // The non-equality compare must include a common operand (X). Canonicalize
- // the common operand as operand 0 (the predicate is swapped if the common
- // operand was operand 1).
- ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
- Value *X = Cmp0->getOperand(0);
- ICmpInst::Predicate Pred1;
- bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
- if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
- return nullptr;
- if (ICmpInst::isEquality(Pred1))
- return nullptr;
- // The equality compare must be against a constant. Flip bits if we matched
- // a bitwise not. Convert a null pointer constant to an integer zero value.
- APInt MinMaxC;
- const APInt *C;
- if (match(Cmp0->getOperand(1), m_APInt(C)))
- MinMaxC = HasNotOp ? ~*C : *C;
- else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
- MinMaxC = APInt::getZero(8);
- else
- return nullptr;
- // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
- if (!IsAnd) {
- Pred0 = ICmpInst::getInversePredicate(Pred0);
- Pred1 = ICmpInst::getInversePredicate(Pred1);
- }
- // Normalize to unsigned compare and unsigned min/max value.
- // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
- if (ICmpInst::isSigned(Pred1)) {
- Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
- MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
- }
- // (X != MAX) && (X < Y) --> X < Y
- // (X == MAX) || (X >= Y) --> X >= Y
- if (MinMaxC.isMaxValue())
- if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
- return Cmp1;
- // (X != MIN) && (X > Y) --> X > Y
- // (X == MIN) || (X <= Y) --> X <= Y
- if (MinMaxC.isMinValue())
- if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
- return Cmp1;
- return nullptr;
- }
- /// Try to simplify and/or of icmp with ctpop intrinsic.
- static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- ICmpInst::Predicate Pred0, Pred1;
- Value *X;
- const APInt *C;
- if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
- m_APInt(C))) ||
- !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero())
- return nullptr;
- // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0
- if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE)
- return Cmp1;
- // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0
- if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ)
- return Cmp1;
- return nullptr;
- }
- static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
- const SimplifyQuery &Q) {
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
- return X;
- if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true))
- return X;
- if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
- return X;
- if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
- return X;
- return nullptr;
- }
- static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
- const InstrInfoQuery &IIQ) {
- // (icmp (add V, C0), C1) | (icmp V, C0)
- ICmpInst::Predicate Pred0, Pred1;
- const APInt *C0, *C1;
- Value *V;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
- return nullptr;
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
- return nullptr;
- auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
- if (AddInst->getOperand(1) != Op1->getOperand(1))
- return nullptr;
- Type *ITy = Op0->getType();
- bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
- bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
- const APInt Delta = *C1 - *C0;
- if (C0->isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
- return getTrue(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
- return getTrue(ITy);
- }
- }
- if (C0->getBoolValue() && IsNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- return nullptr;
- }
- static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
- const SimplifyQuery &Q) {
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
- return X;
- if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false))
- return X;
- if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false))
- return X;
- if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
- return X;
- if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
- return X;
- return nullptr;
- }
- static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS,
- FCmpInst *RHS, bool IsAnd) {
- Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
- Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
- if (LHS0->getType() != RHS0->getType())
- return nullptr;
- FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
- (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
- // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
- // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
- // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
- // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
- // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
- // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
- // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
- // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
- if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
- (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
- return RHS;
- // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
- // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
- // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
- // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
- // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
- // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
- // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
- // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
- if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
- (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
- return LHS;
- }
- return nullptr;
- }
- static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0,
- Value *Op1, bool IsAnd) {
- // Look through casts of the 'and' operands to find compares.
- auto *Cast0 = dyn_cast<CastInst>(Op0);
- auto *Cast1 = dyn_cast<CastInst>(Op1);
- if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
- Cast0->getSrcTy() == Cast1->getSrcTy()) {
- Op0 = Cast0->getOperand(0);
- Op1 = Cast1->getOperand(0);
- }
- Value *V = nullptr;
- auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
- auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
- if (ICmp0 && ICmp1)
- V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
- : simplifyOrOfICmps(ICmp0, ICmp1, Q);
- auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
- auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
- if (FCmp0 && FCmp1)
- V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
- if (!V)
- return nullptr;
- if (!Cast0)
- return V;
- // If we looked through casts, we can only handle a constant simplification
- // because we are not allowed to create a cast instruction here.
- if (auto *C = dyn_cast<Constant>(V))
- return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
- return nullptr;
- }
- /// Given a bitwise logic op, check if the operands are add/sub with a common
- /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
- static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
- Instruction::BinaryOps Opcode) {
- assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
- assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
- Value *X;
- Constant *C1, *C2;
- if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
- match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
- (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
- match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
- if (ConstantExpr::getNot(C1) == C2) {
- // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
- // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
- // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
- Type *Ty = Op0->getType();
- return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
- : ConstantInt::getAllOnesValue(Ty);
- }
- }
- return nullptr;
- }
- /// Given operands for an And, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
- return C;
- // X & poison -> poison
- if (isa<PoisonValue>(Op1))
- return Op1;
- // X & undef -> 0
- if (Q.isUndefValue(Op1))
- return Constant::getNullValue(Op0->getType());
- // X & X = X
- if (Op0 == Op1)
- return Op0;
- // X & 0 = 0
- if (match(Op1, m_Zero()))
- return Constant::getNullValue(Op0->getType());
- // X & -1 = X
- if (match(Op1, m_AllOnes()))
- return Op0;
- // A & ~A = ~A & A = 0
- if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getNullValue(Op0->getType());
- // (A | ?) & A = A
- if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
- return Op1;
- // A & (A | ?) = A
- if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
- return Op0;
- // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
- Value *X, *Y;
- if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
- match(Op1, m_c_Or(m_Deferred(X), m_Deferred(Y))))
- return X;
- if (match(Op1, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
- match(Op0, m_c_Or(m_Deferred(X), m_Deferred(Y))))
- return X;
- if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
- return V;
- // A mask that only clears known zeros of a shifted value is a no-op.
- const APInt *Mask;
- const APInt *ShAmt;
- if (match(Op1, m_APInt(Mask))) {
- // If all bits in the inverted and shifted mask are clear:
- // and (shl X, ShAmt), Mask --> shl X, ShAmt
- if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
- (~(*Mask)).lshr(*ShAmt).isZero())
- return Op0;
- // If all bits in the inverted and shifted mask are clear:
- // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
- if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
- (~(*Mask)).shl(*ShAmt).isZero())
- return Op0;
- }
- // If we have a multiplication overflow check that is being 'and'ed with a
- // check that one of the multipliers is not zero, we can omit the 'and', and
- // only keep the overflow check.
- if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
- return Op1;
- if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
- return Op0;
- // A & (-A) = A if A is a power of two or zero.
- if (match(Op0, m_Neg(m_Specific(Op1))) ||
- match(Op1, m_Neg(m_Specific(Op0)))) {
- if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
- Q.DT))
- return Op0;
- if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
- Q.DT))
- return Op1;
- }
- // This is a similar pattern used for checking if a value is a power-of-2:
- // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
- // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
- if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
- isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
- return Constant::getNullValue(Op1->getType());
- if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
- isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
- return Constant::getNullValue(Op0->getType());
- if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
- return V;
- // Try some generic simplifications for associative operations.
- if (Value *V =
- simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse))
- return V;
- // And distributes over Or. Try some generic simplifications based on this.
- if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
- Instruction::Or, Q, MaxRecurse))
- return V;
- // And distributes over Xor. Try some generic simplifications based on this.
- if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
- Instruction::Xor, Q, MaxRecurse))
- return V;
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
- if (Op0->getType()->isIntOrIntVectorTy(1)) {
- // A & (A && B) -> A && B
- if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
- return Op1;
- else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
- return Op0;
- }
- // If the operation is with the result of a select instruction, check
- // whether operating on either branch of the select always yields the same
- // value.
- if (Value *V =
- threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse))
- return V;
- }
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V =
- threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse))
- return V;
- // Assuming the effective width of Y is not larger than A, i.e. all bits
- // from X and Y are disjoint in (X << A) | Y,
- // if the mask of this AND op covers all bits of X or Y, while it covers
- // no bits from the other, we can bypass this AND op. E.g.,
- // ((X << A) | Y) & Mask -> Y,
- // if Mask = ((1 << effective_width_of(Y)) - 1)
- // ((X << A) | Y) & Mask -> X << A,
- // if Mask = ((1 << effective_width_of(X)) - 1) << A
- // SimplifyDemandedBits in InstCombine can optimize the general case.
- // This pattern aims to help other passes for a common case.
- Value *XShifted;
- if (match(Op1, m_APInt(Mask)) &&
- match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
- m_Value(XShifted)),
- m_Value(Y)))) {
- const unsigned Width = Op0->getType()->getScalarSizeInBits();
- const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
- const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- const unsigned EffWidthY = YKnown.countMaxActiveBits();
- if (EffWidthY <= ShftCnt) {
- const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- const unsigned EffWidthX = XKnown.countMaxActiveBits();
- const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
- const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
- // If the mask is extracting all bits from X or Y as is, we can skip
- // this AND op.
- if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
- return Y;
- if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
- return XShifted;
- }
- }
- // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
- // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
- BinaryOperator *Or;
- if (match(Op0, m_c_Xor(m_Value(X),
- m_CombineAnd(m_BinOp(Or),
- m_c_Or(m_Deferred(X), m_Value(Y))))) &&
- match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
- return Constant::getNullValue(Op0->getType());
- if (Op0->getType()->isIntOrIntVectorTy(1)) {
- if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) {
- // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1.
- if (*Implied == true)
- return Op0;
- // If Op0 is true implies Op1 is false, then they are not true together.
- if (*Implied == false)
- return ConstantInt::getFalse(Op0->getType());
- }
- if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) {
- // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0.
- if (*Implied)
- return Op1;
- // If Op1 is true implies Op0 is false, then they are not true together.
- if (!*Implied)
- return ConstantInt::getFalse(Op1->getType());
- }
- }
- if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit);
- }
- // TODO: Many of these folds could use LogicalAnd/LogicalOr.
- static Value *simplifyOrLogic(Value *X, Value *Y) {
- assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
- Type *Ty = X->getType();
- // X | ~X --> -1
- if (match(Y, m_Not(m_Specific(X))))
- return ConstantInt::getAllOnesValue(Ty);
- // X | ~(X & ?) = -1
- if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
- return ConstantInt::getAllOnesValue(Ty);
- // X | (X & ?) --> X
- if (match(Y, m_c_And(m_Specific(X), m_Value())))
- return X;
- Value *A, *B;
- // (A ^ B) | (A | B) --> A | B
- // (A ^ B) | (B | A) --> B | A
- if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
- match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
- return Y;
- // ~(A ^ B) | (A | B) --> -1
- // ~(A ^ B) | (B | A) --> -1
- if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
- match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
- return ConstantInt::getAllOnesValue(Ty);
- // (A & ~B) | (A ^ B) --> A ^ B
- // (~B & A) | (A ^ B) --> A ^ B
- // (A & ~B) | (B ^ A) --> B ^ A
- // (~B & A) | (B ^ A) --> B ^ A
- if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
- return Y;
- // (~A ^ B) | (A & B) --> ~A ^ B
- // (B ^ ~A) | (A & B) --> B ^ ~A
- // (~A ^ B) | (B & A) --> ~A ^ B
- // (B ^ ~A) | (B & A) --> B ^ ~A
- if (match(X, m_c_Xor(m_NotForbidUndef(m_Value(A)), m_Value(B))) &&
- match(Y, m_c_And(m_Specific(A), m_Specific(B))))
- return X;
- // (~A | B) | (A ^ B) --> -1
- // (~A | B) | (B ^ A) --> -1
- // (B | ~A) | (A ^ B) --> -1
- // (B | ~A) | (B ^ A) --> -1
- if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
- match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
- return ConstantInt::getAllOnesValue(Ty);
- // (~A & B) | ~(A | B) --> ~A
- // (~A & B) | ~(B | A) --> ~A
- // (B & ~A) | ~(A | B) --> ~A
- // (B & ~A) | ~(B | A) --> ~A
- Value *NotA;
- if (match(X,
- m_c_And(m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
- m_Value(B))) &&
- match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
- return NotA;
- // The same is true of Logical And
- // TODO: This could share the logic of the version above if there was a
- // version of LogicalAnd that allowed more than just i1 types.
- if (match(X, m_c_LogicalAnd(
- m_CombineAnd(m_Value(NotA), m_NotForbidUndef(m_Value(A))),
- m_Value(B))) &&
- match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B)))))
- return NotA;
- // ~(A ^ B) | (A & B) --> ~(A ^ B)
- // ~(A ^ B) | (B & A) --> ~(A ^ B)
- Value *NotAB;
- if (match(X, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A), m_Value(B))),
- m_Value(NotAB))) &&
- match(Y, m_c_And(m_Specific(A), m_Specific(B))))
- return NotAB;
- // ~(A & B) | (A ^ B) --> ~(A & B)
- // ~(A & B) | (B ^ A) --> ~(A & B)
- if (match(X, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A), m_Value(B))),
- m_Value(NotAB))) &&
- match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
- return NotAB;
- return nullptr;
- }
- /// Given operands for an Or, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
- return C;
- // X | poison -> poison
- if (isa<PoisonValue>(Op1))
- return Op1;
- // X | undef -> -1
- // X | -1 = -1
- // Do not return Op1 because it may contain undef elements if it's a vector.
- if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
- return Constant::getAllOnesValue(Op0->getType());
- // X | X = X
- // X | 0 = X
- if (Op0 == Op1 || match(Op1, m_Zero()))
- return Op0;
- if (Value *R = simplifyOrLogic(Op0, Op1))
- return R;
- if (Value *R = simplifyOrLogic(Op1, Op0))
- return R;
- if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
- return V;
- // Rotated -1 is still -1:
- // (-1 << X) | (-1 >> (C - X)) --> -1
- // (-1 >> X) | (-1 << (C - X)) --> -1
- // ...with C <= bitwidth (and commuted variants).
- Value *X, *Y;
- if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
- match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
- (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
- match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
- const APInt *C;
- if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
- match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
- C->ule(X->getType()->getScalarSizeInBits())) {
- return ConstantInt::getAllOnesValue(X->getType());
- }
- }
- // A funnel shift (rotate) can be decomposed into simpler shifts. See if we
- // are mixing in another shift that is redundant with the funnel shift.
- // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
- // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y
- if (match(Op0,
- m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
- match(Op1, m_Shl(m_Specific(X), m_Specific(Y))))
- return Op0;
- if (match(Op1,
- m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
- match(Op0, m_Shl(m_Specific(X), m_Specific(Y))))
- return Op1;
- // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y
- // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y
- if (match(Op0,
- m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
- match(Op1, m_LShr(m_Specific(X), m_Specific(Y))))
- return Op0;
- if (match(Op1,
- m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
- match(Op0, m_LShr(m_Specific(X), m_Specific(Y))))
- return Op1;
- if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
- return V;
- // If we have a multiplication overflow check that is being 'and'ed with a
- // check that one of the multipliers is not zero, we can omit the 'and', and
- // only keep the overflow check.
- if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
- return Op1;
- if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
- return Op0;
- // Try some generic simplifications for associative operations.
- if (Value *V =
- simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse))
- return V;
- // Or distributes over And. Try some generic simplifications based on this.
- if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
- Instruction::And, Q, MaxRecurse))
- return V;
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
- if (Op0->getType()->isIntOrIntVectorTy(1)) {
- // A | (A || B) -> A || B
- if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
- return Op1;
- else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
- return Op0;
- }
- // If the operation is with the result of a select instruction, check
- // whether operating on either branch of the select always yields the same
- // value.
- if (Value *V =
- threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse))
- return V;
- }
- // (A & C1)|(B & C2)
- Value *A, *B;
- const APInt *C1, *C2;
- if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
- match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
- if (*C1 == ~*C2) {
- // (A & C1)|(B & C2)
- // If we have: ((V + N) & C1) | (V & C2)
- // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
- // replace with V+N.
- Value *N;
- if (C2->isMask() && // C2 == 0+1+
- match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
- // Add commutes, try both ways.
- if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return A;
- }
- // Or commutes, try both ways.
- if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
- // Add commutes, try both ways.
- if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return B;
- }
- }
- }
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
- return V;
- if (Op0->getType()->isIntOrIntVectorTy(1)) {
- if (std::optional<bool> Implied =
- isImpliedCondition(Op0, Op1, Q.DL, false)) {
- // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0.
- if (*Implied == false)
- return Op0;
- // If Op0 is false implies Op1 is true, then at least one is always true.
- if (*Implied == true)
- return ConstantInt::getTrue(Op0->getType());
- }
- if (std::optional<bool> Implied =
- isImpliedCondition(Op1, Op0, Q.DL, false)) {
- // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1.
- if (*Implied == false)
- return Op1;
- // If Op1 is false implies Op0 is true, then at least one is always true.
- if (*Implied == true)
- return ConstantInt::getTrue(Op1->getType());
- }
- }
- if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit);
- }
- /// Given operands for a Xor, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
- return C;
- // X ^ poison -> poison
- if (isa<PoisonValue>(Op1))
- return Op1;
- // A ^ undef -> undef
- if (Q.isUndefValue(Op1))
- return Op1;
- // A ^ 0 = A
- if (match(Op1, m_Zero()))
- return Op0;
- // A ^ A = 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // A ^ ~A = ~A ^ A = -1
- if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
- auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
- Value *A, *B;
- // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
- if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
- match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
- return A;
- // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
- // The 'not' op must contain a complete -1 operand (no undef elements for
- // vector) for the transform to be safe.
- Value *NotA;
- if (match(X,
- m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A)), m_Value(NotA)),
- m_Value(B))) &&
- match(Y, m_c_And(m_Specific(A), m_Specific(B))))
- return NotA;
- return nullptr;
- };
- if (Value *R = foldAndOrNot(Op0, Op1))
- return R;
- if (Value *R = foldAndOrNot(Op1, Op0))
- return R;
- if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
- return V;
- // Try some generic simplifications for associative operations.
- if (Value *V =
- simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
- return V;
- // Threading Xor over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A ^ select(cond, B, C)" means evaluating
- // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
- if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit);
- }
- static Type *getCompareTy(Value *Op) {
- return CmpInst::makeCmpResultType(Op->getType());
- }
- /// Rummage around inside V looking for something equivalent to the comparison
- /// "LHS Pred RHS". Return such a value if found, otherwise return null.
- /// Helper function for analyzing max/min idioms.
- static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
- Value *LHS, Value *RHS) {
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return nullptr;
- CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
- if (!Cmp)
- return nullptr;
- Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
- if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
- return Cmp;
- if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
- LHS == CmpRHS && RHS == CmpLHS)
- return Cmp;
- return nullptr;
- }
- /// Return true if the underlying object (storage) must be disjoint from
- /// storage returned by any noalias return call.
- static bool isAllocDisjoint(const Value *V) {
- // For allocas, we consider only static ones (dynamic
- // allocas might be transformed into calls to malloc not simultaneously
- // live with the compared-to allocation). For globals, we exclude symbols
- // that might be resolve lazily to symbols in another dynamically-loaded
- // library (and, thus, could be malloc'ed by the implementation).
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
- return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
- GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
- !GV->isThreadLocal();
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
- return false;
- }
- /// Return true if V1 and V2 are each the base of some distict storage region
- /// [V, object_size(V)] which do not overlap. Note that zero sized regions
- /// *are* possible, and that zero sized regions do not overlap with any other.
- static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) {
- // Global variables always exist, so they always exist during the lifetime
- // of each other and all allocas. Global variables themselves usually have
- // non-overlapping storage, but since their addresses are constants, the
- // case involving two globals does not reach here and is instead handled in
- // constant folding.
- //
- // Two different allocas usually have different addresses...
- //
- // However, if there's an @llvm.stackrestore dynamically in between two
- // allocas, they may have the same address. It's tempting to reduce the
- // scope of the problem by only looking at *static* allocas here. That would
- // cover the majority of allocas while significantly reducing the likelihood
- // of having an @llvm.stackrestore pop up in the middle. However, it's not
- // actually impossible for an @llvm.stackrestore to pop up in the middle of
- // an entry block. Also, if we have a block that's not attached to a
- // function, we can't tell if it's "static" under the current definition.
- // Theoretically, this problem could be fixed by creating a new kind of
- // instruction kind specifically for static allocas. Such a new instruction
- // could be required to be at the top of the entry block, thus preventing it
- // from being subject to a @llvm.stackrestore. Instcombine could even
- // convert regular allocas into these special allocas. It'd be nifty.
- // However, until then, this problem remains open.
- //
- // So, we'll assume that two non-empty allocas have different addresses
- // for now.
- auto isByValArg = [](const Value *V) {
- const Argument *A = dyn_cast<Argument>(V);
- return A && A->hasByValAttr();
- };
- // Byval args are backed by store which does not overlap with each other,
- // allocas, or globals.
- if (isByValArg(V1))
- return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2);
- if (isByValArg(V2))
- return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1);
- return isa<AllocaInst>(V1) &&
- (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2));
- }
- // A significant optimization not implemented here is assuming that alloca
- // addresses are not equal to incoming argument values. They don't *alias*,
- // as we say, but that doesn't mean they aren't equal, so we take a
- // conservative approach.
- //
- // This is inspired in part by C++11 5.10p1:
- // "Two pointers of the same type compare equal if and only if they are both
- // null, both point to the same function, or both represent the same
- // address."
- //
- // This is pretty permissive.
- //
- // It's also partly due to C11 6.5.9p6:
- // "Two pointers compare equal if and only if both are null pointers, both are
- // pointers to the same object (including a pointer to an object and a
- // subobject at its beginning) or function, both are pointers to one past the
- // last element of the same array object, or one is a pointer to one past the
- // end of one array object and the other is a pointer to the start of a
- // different array object that happens to immediately follow the first array
- // object in the address space.)
- //
- // C11's version is more restrictive, however there's no reason why an argument
- // couldn't be a one-past-the-end value for a stack object in the caller and be
- // equal to the beginning of a stack object in the callee.
- //
- // If the C and C++ standards are ever made sufficiently restrictive in this
- // area, it may be possible to update LLVM's semantics accordingly and reinstate
- // this optimization.
- static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q) {
- const DataLayout &DL = Q.DL;
- const TargetLibraryInfo *TLI = Q.TLI;
- const DominatorTree *DT = Q.DT;
- const Instruction *CxtI = Q.CxtI;
- const InstrInfoQuery &IIQ = Q.IIQ;
- // First, skip past any trivial no-ops.
- LHS = LHS->stripPointerCasts();
- RHS = RHS->stripPointerCasts();
- // A non-null pointer is not equal to a null pointer.
- if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
- llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
- IIQ.UseInstrInfo))
- return ConstantInt::get(getCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred));
- // We can only fold certain predicates on pointer comparisons.
- switch (Pred) {
- default:
- return nullptr;
- // Equality comparisons are easy to fold.
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_NE:
- break;
- // We can only handle unsigned relational comparisons because 'inbounds' on
- // a GEP only protects against unsigned wrapping.
- case CmpInst::ICMP_UGT:
- case CmpInst::ICMP_UGE:
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- // However, we have to switch them to their signed variants to handle
- // negative indices from the base pointer.
- Pred = ICmpInst::getSignedPredicate(Pred);
- break;
- }
- // Strip off any constant offsets so that we can reason about them.
- // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
- // here and compare base addresses like AliasAnalysis does, however there are
- // numerous hazards. AliasAnalysis and its utilities rely on special rules
- // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
- // doesn't need to guarantee pointer inequality when it says NoAlias.
- // Even if an non-inbounds GEP occurs along the path we can still optimize
- // equality comparisons concerning the result.
- bool AllowNonInbounds = ICmpInst::isEquality(Pred);
- APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS, AllowNonInbounds);
- APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS, AllowNonInbounds);
- // If LHS and RHS are related via constant offsets to the same base
- // value, we can replace it with an icmp which just compares the offsets.
- if (LHS == RHS)
- return ConstantInt::get(getCompareTy(LHS),
- ICmpInst::compare(LHSOffset, RHSOffset, Pred));
- // Various optimizations for (in)equality comparisons.
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
- // Different non-empty allocations that exist at the same time have
- // different addresses (if the program can tell). If the offsets are
- // within the bounds of their allocations (and not one-past-the-end!
- // so we can't use inbounds!), and their allocations aren't the same,
- // the pointers are not equal.
- if (haveNonOverlappingStorage(LHS, RHS)) {
- uint64_t LHSSize, RHSSize;
- ObjectSizeOpts Opts;
- Opts.EvalMode = ObjectSizeOpts::Mode::Min;
- auto *F = [](Value *V) -> Function * {
- if (auto *I = dyn_cast<Instruction>(V))
- return I->getFunction();
- if (auto *A = dyn_cast<Argument>(V))
- return A->getParent();
- return nullptr;
- }(LHS);
- Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true;
- if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
- getObjectSize(RHS, RHSSize, DL, TLI, Opts) &&
- !LHSOffset.isNegative() && !RHSOffset.isNegative() &&
- LHSOffset.ult(LHSSize) && RHSOffset.ult(RHSSize)) {
- return ConstantInt::get(getCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- }
- }
- // If one side of the equality comparison must come from a noalias call
- // (meaning a system memory allocation function), and the other side must
- // come from a pointer that cannot overlap with dynamically-allocated
- // memory within the lifetime of the current function (allocas, byval
- // arguments, globals), then determine the comparison result here.
- SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
- getUnderlyingObjects(LHS, LHSUObjs);
- getUnderlyingObjects(RHS, RHSUObjs);
- // Is the set of underlying objects all noalias calls?
- auto IsNAC = [](ArrayRef<const Value *> Objects) {
- return all_of(Objects, isNoAliasCall);
- };
- // Is the set of underlying objects all things which must be disjoint from
- // noalias calls. We assume that indexing from such disjoint storage
- // into the heap is undefined, and thus offsets can be safely ignored.
- auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
- return all_of(Objects, ::isAllocDisjoint);
- };
- if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
- (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
- return ConstantInt::get(getCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- // Fold comparisons for non-escaping pointer even if the allocation call
- // cannot be elided. We cannot fold malloc comparison to null. Also, the
- // dynamic allocation call could be either of the operands. Note that
- // the other operand can not be based on the alloc - if it were, then
- // the cmp itself would be a capture.
- Value *MI = nullptr;
- if (isAllocLikeFn(LHS, TLI) &&
- llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
- MI = LHS;
- else if (isAllocLikeFn(RHS, TLI) &&
- llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
- MI = RHS;
- // FIXME: We should also fold the compare when the pointer escapes, but the
- // compare dominates the pointer escape
- if (MI && !PointerMayBeCaptured(MI, true, true))
- return ConstantInt::get(getCompareTy(LHS),
- CmpInst::isFalseWhenEqual(Pred));
- }
- // Otherwise, fail.
- return nullptr;
- }
- /// Fold an icmp when its operands have i1 scalar type.
- static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q) {
- Type *ITy = getCompareTy(LHS); // The return type.
- Type *OpTy = LHS->getType(); // The operand type.
- if (!OpTy->isIntOrIntVectorTy(1))
- return nullptr;
- // A boolean compared to true/false can be reduced in 14 out of the 20
- // (10 predicates * 2 constants) possible combinations. The other
- // 6 cases require a 'not' of the LHS.
- auto ExtractNotLHS = [](Value *V) -> Value * {
- Value *X;
- if (match(V, m_Not(m_Value(X))))
- return X;
- return nullptr;
- };
- if (match(RHS, m_Zero())) {
- switch (Pred) {
- case CmpInst::ICMP_NE: // X != 0 -> X
- case CmpInst::ICMP_UGT: // X >u 0 -> X
- case CmpInst::ICMP_SLT: // X <s 0 -> X
- return LHS;
- case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X
- case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
- case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
- if (Value *X = ExtractNotLHS(LHS))
- return X;
- break;
- case CmpInst::ICMP_ULT: // X <u 0 -> false
- case CmpInst::ICMP_SGT: // X >s 0 -> false
- return getFalse(ITy);
- case CmpInst::ICMP_UGE: // X >=u 0 -> true
- case CmpInst::ICMP_SLE: // X <=s 0 -> true
- return getTrue(ITy);
- default:
- break;
- }
- } else if (match(RHS, m_One())) {
- switch (Pred) {
- case CmpInst::ICMP_EQ: // X == 1 -> X
- case CmpInst::ICMP_UGE: // X >=u 1 -> X
- case CmpInst::ICMP_SLE: // X <=s -1 -> X
- return LHS;
- case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X
- case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X
- case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X
- if (Value *X = ExtractNotLHS(LHS))
- return X;
- break;
- case CmpInst::ICMP_UGT: // X >u 1 -> false
- case CmpInst::ICMP_SLT: // X <s -1 -> false
- return getFalse(ITy);
- case CmpInst::ICMP_ULE: // X <=u 1 -> true
- case CmpInst::ICMP_SGE: // X >=s -1 -> true
- return getTrue(ITy);
- default:
- break;
- }
- }
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_UGE:
- if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SGE:
- /// For signed comparison, the values for an i1 are 0 and -1
- /// respectively. This maps into a truth table of:
- /// LHS | RHS | LHS >=s RHS | LHS implies RHS
- /// 0 | 0 | 1 (0 >= 0) | 1
- /// 0 | 1 | 1 (0 >= -1) | 1
- /// 1 | 0 | 0 (-1 >= 0) | 0
- /// 1 | 1 | 1 (-1 >= -1) | 1
- if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_ULE:
- if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SLE:
- /// SLE follows the same logic as SGE with the LHS and RHS swapped.
- if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
- return getTrue(ITy);
- break;
- }
- return nullptr;
- }
- /// Try hard to fold icmp with zero RHS because this is a common case.
- static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q) {
- if (!match(RHS, m_Zero()))
- return nullptr;
- Type *ITy = getCompareTy(LHS); // The return type.
- switch (Pred) {
- default:
- llvm_unreachable("Unknown ICmp predicate!");
- case ICmpInst::ICMP_ULT:
- return getFalse(ITy);
- case ICmpInst::ICMP_UGE:
- return getTrue(ITy);
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_ULE:
- if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
- return getFalse(ITy);
- break;
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGT:
- if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SLT: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getTrue(ITy);
- if (LHSKnown.isNonNegative())
- return getFalse(ITy);
- break;
- }
- case ICmpInst::ICMP_SLE: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getTrue(ITy);
- if (LHSKnown.isNonNegative() &&
- isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getFalse(ITy);
- break;
- }
- case ICmpInst::ICMP_SGE: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getFalse(ITy);
- if (LHSKnown.isNonNegative())
- return getTrue(ITy);
- break;
- }
- case ICmpInst::ICMP_SGT: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getFalse(ITy);
- if (LHSKnown.isNonNegative() &&
- isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getTrue(ITy);
- break;
- }
- }
- return nullptr;
- }
- static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const InstrInfoQuery &IIQ) {
- Type *ITy = getCompareTy(RHS); // The return type.
- Value *X;
- // Sign-bit checks can be optimized to true/false after unsigned
- // floating-point casts:
- // icmp slt (bitcast (uitofp X)), 0 --> false
- // icmp sgt (bitcast (uitofp X)), -1 --> true
- if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
- if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
- return ConstantInt::getFalse(ITy);
- if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
- return ConstantInt::getTrue(ITy);
- }
- const APInt *C;
- if (!match(RHS, m_APIntAllowUndef(C)))
- return nullptr;
- // Rule out tautological comparisons (eg., ult 0 or uge 0).
- ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
- if (RHS_CR.isEmptySet())
- return ConstantInt::getFalse(ITy);
- if (RHS_CR.isFullSet())
- return ConstantInt::getTrue(ITy);
- ConstantRange LHS_CR =
- computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
- if (!LHS_CR.isFullSet()) {
- if (RHS_CR.contains(LHS_CR))
- return ConstantInt::getTrue(ITy);
- if (RHS_CR.inverse().contains(LHS_CR))
- return ConstantInt::getFalse(ITy);
- }
- // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC)
- // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
- const APInt *MulC;
- if (ICmpInst::isEquality(Pred) &&
- ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
- *MulC != 0 && C->urem(*MulC) != 0) ||
- (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
- *MulC != 0 && C->srem(*MulC) != 0)))
- return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
- return nullptr;
- }
- static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred,
- BinaryOperator *LBO, Value *RHS,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- Type *ITy = getCompareTy(RHS); // The return type.
- Value *Y = nullptr;
- // icmp pred (or X, Y), X
- if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
- if (Pred == ICmpInst::ICMP_ULT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_UGE)
- return getTrue(ITy);
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
- KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (RHSKnown.isNonNegative() && YKnown.isNegative())
- return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
- if (RHSKnown.isNegative() || YKnown.isNonNegative())
- return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
- }
- }
- // icmp pred (and X, Y), X
- if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- // icmp pred (urem X, Y), Y
- if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: {
- KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (!Known.isNonNegative())
- break;
- [[fallthrough]];
- }
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return getFalse(ITy);
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: {
- KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (!Known.isNonNegative())
- break;
- [[fallthrough]];
- }
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return getTrue(ITy);
- }
- }
- // icmp pred (urem X, Y), X
- if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- }
- // x >>u y <=u x --> true.
- // x >>u y >u x --> false.
- // x udiv y <=u x --> true.
- // x udiv y >u x --> false.
- if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
- match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
- // icmp pred (X op Y), X
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- // If x is nonzero:
- // x >>u C <u x --> true for C != 0.
- // x >>u C != x --> true for C != 0.
- // x >>u C >=u x --> false for C != 0.
- // x >>u C == x --> false for C != 0.
- // x udiv C <u x --> true for C != 1.
- // x udiv C != x --> true for C != 1.
- // x udiv C >=u x --> false for C != 1.
- // x udiv C == x --> false for C != 1.
- // TODO: allow non-constant shift amount/divisor
- const APInt *C;
- if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
- (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
- if (isKnownNonZero(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) {
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGE:
- return getFalse(ITy);
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- return getTrue(ITy);
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_ULE:
- // UGT/ULE are handled by the more general case just above
- llvm_unreachable("Unexpected UGT/ULE, should have been handled");
- }
- }
- }
- // (x*C1)/C2 <= x for C1 <= C2.
- // This holds even if the multiplication overflows: Assume that x != 0 and
- // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
- // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
- //
- // Additionally, either the multiplication and division might be represented
- // as shifts:
- // (x*C1)>>C2 <= x for C1 < 2**C2.
- // (x<<C1)/C2 <= x for 2**C1 < C2.
- const APInt *C1, *C2;
- if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
- C1->ule(*C2)) ||
- (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
- C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
- (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
- (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- // (sub C, X) == X, C is odd --> false
- // (sub C, X) != X, C is odd --> true
- if (match(LBO, m_Sub(m_APIntAllowUndef(C), m_Specific(RHS))) &&
- (*C & 1) == 1 && ICmpInst::isEquality(Pred))
- return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy);
- return nullptr;
- }
- // If only one of the icmp's operands has NSW flags, try to prove that:
- //
- // icmp slt (x + C1), (x +nsw C2)
- //
- // is equivalent to:
- //
- // icmp slt C1, C2
- //
- // which is true if x + C2 has the NSW flags set and:
- // *) C1 < C2 && C1 >= 0, or
- // *) C2 < C1 && C1 <= 0.
- //
- static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
- // TODO: only support icmp slt for now.
- if (Pred != CmpInst::ICMP_SLT)
- return false;
- // Canonicalize nsw add as RHS.
- if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
- std::swap(LHS, RHS);
- if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
- return false;
- Value *X;
- const APInt *C1, *C2;
- if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
- !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
- return false;
- return (C1->slt(*C2) && C1->isNonNegative()) ||
- (C2->slt(*C1) && C1->isNonPositive());
- }
- /// TODO: A large part of this logic is duplicated in InstCombine's
- /// foldICmpBinOp(). We should be able to share that and avoid the code
- /// duplication.
- static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
- if (MaxRecurse && (LBO || RBO)) {
- // Analyze the case when either LHS or RHS is an add instruction.
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
- bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
- if (LBO && LBO->getOpcode() == Instruction::Add) {
- A = LBO->getOperand(0);
- B = LBO->getOperand(1);
- NoLHSWrapProblem =
- ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) &&
- Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
- (CmpInst::isSigned(Pred) &&
- Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
- }
- if (RBO && RBO->getOpcode() == Instruction::Add) {
- C = RBO->getOperand(0);
- D = RBO->getOperand(1);
- NoRHSWrapProblem =
- ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) &&
- Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
- (CmpInst::isSigned(Pred) &&
- Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
- }
- // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
- if ((A == RHS || B == RHS) && NoLHSWrapProblem)
- if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A,
- Constant::getNullValue(RHS->getType()), Q,
- MaxRecurse - 1))
- return V;
- // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
- if ((C == LHS || D == LHS) && NoRHSWrapProblem)
- if (Value *V =
- simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
- C == LHS ? D : C, Q, MaxRecurse - 1))
- return V;
- // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
- bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
- trySimplifyICmpWithAdds(Pred, LHS, RHS);
- if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
- // Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y, *Z;
- if (A == C) {
- // C + B == C + D -> B == D
- Y = B;
- Z = D;
- } else if (A == D) {
- // D + B == C + D -> B == C
- Y = B;
- Z = C;
- } else if (B == C) {
- // A + C == C + D -> A == D
- Y = A;
- Z = D;
- } else {
- assert(B == D);
- // A + D == C + D -> A == C
- Y = A;
- Z = C;
- }
- if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
- return V;
- }
- }
- if (LBO)
- if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
- return V;
- if (RBO)
- if (Value *V = simplifyICmpWithBinOpOnLHS(
- ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
- return V;
- // 0 - (zext X) pred C
- if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
- const APInt *C;
- if (match(RHS, m_APInt(C))) {
- if (C->isStrictlyPositive()) {
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(getCompareTy(RHS));
- if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(getCompareTy(RHS));
- }
- if (C->isNonNegative()) {
- if (Pred == ICmpInst::ICMP_SLE)
- return ConstantInt::getTrue(getCompareTy(RHS));
- if (Pred == ICmpInst::ICMP_SGT)
- return ConstantInt::getFalse(getCompareTy(RHS));
- }
- }
- }
- // If C2 is a power-of-2 and C is not:
- // (C2 << X) == C --> false
- // (C2 << X) != C --> true
- const APInt *C;
- if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
- match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
- // C2 << X can equal zero in some circumstances.
- // This simplification might be unsafe if C is zero.
- //
- // We know it is safe if:
- // - The shift is nsw. We can't shift out the one bit.
- // - The shift is nuw. We can't shift out the one bit.
- // - C2 is one.
- // - C isn't zero.
- if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
- Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
- match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
- if (Pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(getCompareTy(RHS));
- if (Pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(getCompareTy(RHS));
- }
- }
- // TODO: This is overly constrained. LHS can be any power-of-2.
- // (1 << X) >u 0x8000 --> false
- // (1 << X) <=u 0x8000 --> true
- if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
- if (Pred == ICmpInst::ICMP_UGT)
- return ConstantInt::getFalse(getCompareTy(RHS));
- if (Pred == ICmpInst::ICMP_ULE)
- return ConstantInt::getTrue(getCompareTy(RHS));
- }
- if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
- LBO->getOperand(1) == RBO->getOperand(1)) {
- switch (LBO->getOpcode()) {
- default:
- break;
- case Instruction::UDiv:
- case Instruction::LShr:
- if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
- !Q.IIQ.isExact(RBO))
- break;
- if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- case Instruction::SDiv:
- if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
- !Q.IIQ.isExact(RBO))
- break;
- if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- case Instruction::AShr:
- if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
- break;
- if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- case Instruction::Shl: {
- bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
- bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
- if (!NUW && !NSW)
- break;
- if (!NSW && ICmpInst::isSigned(Pred))
- break;
- if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- }
- }
- }
- return nullptr;
- }
- /// simplify integer comparisons where at least one operand of the compare
- /// matches an integer min/max idiom.
- static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- Type *ITy = getCompareTy(LHS); // The return type.
- Value *A, *B;
- CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
- CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
- // Signed variants on "max(a,b)>=a -> true".
- if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // smax(A, B) pred A.
- EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
- // We analyze this as smax(A, B) pred A.
- P = Pred;
- } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred smax(A, B).
- EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
- // We analyze this as smax(A, B) swapped-pred A.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
- (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // smin(A, B) pred A.
- EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
- // We analyze this as smax(-A, -B) swapped-pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred smin(A, B).
- EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
- // We analyze this as smax(-A, -B) pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = Pred;
- }
- if (P != CmpInst::BAD_ICMP_PREDICATE) {
- // Cases correspond to "max(A, B) p A".
- switch (P) {
- default:
- break;
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_SLE:
- // Equivalent to "A EqP B". This may be the same as the condition tested
- // in the max/min; if so, we can just return that.
- if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
- return V;
- if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
- return V;
- // Otherwise, see if "A EqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_SGT: {
- CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
- // Equivalent to "A InvEqP B". This may be the same as the condition
- // tested in the max/min; if so, we can just return that.
- if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
- return V;
- if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
- return V;
- // Otherwise, see if "A InvEqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- }
- case CmpInst::ICMP_SGE:
- // Always true.
- return getTrue(ITy);
- case CmpInst::ICMP_SLT:
- // Always false.
- return getFalse(ITy);
- }
- }
- // Unsigned variants on "max(a,b)>=a -> true".
- P = CmpInst::BAD_ICMP_PREDICATE;
- if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // umax(A, B) pred A.
- EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
- // We analyze this as umax(A, B) pred A.
- P = Pred;
- } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred umax(A, B).
- EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
- // We analyze this as umax(A, B) swapped-pred A.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
- (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // umin(A, B) pred A.
- EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
- // We analyze this as umax(-A, -B) swapped-pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred umin(A, B).
- EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
- // We analyze this as umax(-A, -B) pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = Pred;
- }
- if (P != CmpInst::BAD_ICMP_PREDICATE) {
- // Cases correspond to "max(A, B) p A".
- switch (P) {
- default:
- break;
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_ULE:
- // Equivalent to "A EqP B". This may be the same as the condition tested
- // in the max/min; if so, we can just return that.
- if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
- return V;
- if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
- return V;
- // Otherwise, see if "A EqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_UGT: {
- CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
- // Equivalent to "A InvEqP B". This may be the same as the condition
- // tested in the max/min; if so, we can just return that.
- if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
- return V;
- if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
- return V;
- // Otherwise, see if "A InvEqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- }
- case CmpInst::ICMP_UGE:
- return getTrue(ITy);
- case CmpInst::ICMP_ULT:
- return getFalse(ITy);
- }
- }
- // Comparing 1 each of min/max with a common operand?
- // Canonicalize min operand to RHS.
- if (match(LHS, m_UMin(m_Value(), m_Value())) ||
- match(LHS, m_SMin(m_Value(), m_Value()))) {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- Value *C, *D;
- if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
- match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // smax(A, B) >=s smin(A, D) --> true
- if (Pred == CmpInst::ICMP_SGE)
- return getTrue(ITy);
- // smax(A, B) <s smin(A, D) --> false
- if (Pred == CmpInst::ICMP_SLT)
- return getFalse(ITy);
- } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
- match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // umax(A, B) >=u umin(A, D) --> true
- if (Pred == CmpInst::ICMP_UGE)
- return getTrue(ITy);
- // umax(A, B) <u umin(A, D) --> false
- if (Pred == CmpInst::ICMP_ULT)
- return getFalse(ITy);
- }
- return nullptr;
- }
- static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- // Gracefully handle instructions that have not been inserted yet.
- if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
- return nullptr;
- for (Value *AssumeBaseOp : {LHS, RHS}) {
- for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
- if (!AssumeVH)
- continue;
- CallInst *Assume = cast<CallInst>(AssumeVH);
- if (std::optional<bool> Imp = isImpliedCondition(
- Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL))
- if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
- return ConstantInt::get(getCompareTy(LHS), *Imp);
- }
- }
- return nullptr;
- }
- /// Given operands for an ICmpInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
- assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
- // If we have a constant, make sure it is on the RHS.
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
- Type *ITy = getCompareTy(LHS); // The return type.
- // icmp poison, X -> poison
- if (isa<PoisonValue>(RHS))
- return PoisonValue::get(ITy);
- // For EQ and NE, we can always pick a value for the undef to make the
- // predicate pass or fail, so we can return undef.
- // Matches behavior in llvm::ConstantFoldCompareInstruction.
- if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
- return UndefValue::get(ITy);
- // icmp X, X -> true/false
- // icmp X, undef -> true/false because undef could be X.
- if (LHS == RHS || Q.isUndefValue(RHS))
- return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
- if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
- return V;
- // TODO: Sink/common this with other potentially expensive calls that use
- // ValueTracking? See comment below for isKnownNonEqual().
- if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
- return V;
- if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
- return V;
- // If both operands have range metadata, use the metadata
- // to simplify the comparison.
- if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
- auto RHS_Instr = cast<Instruction>(RHS);
- auto LHS_Instr = cast<Instruction>(LHS);
- if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
- Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
- auto RHS_CR = getConstantRangeFromMetadata(
- *RHS_Instr->getMetadata(LLVMContext::MD_range));
- auto LHS_CR = getConstantRangeFromMetadata(
- *LHS_Instr->getMetadata(LLVMContext::MD_range));
- if (LHS_CR.icmp(Pred, RHS_CR))
- return ConstantInt::getTrue(RHS->getContext());
- if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
- return ConstantInt::getFalse(RHS->getContext());
- }
- }
- // Compare of cast, for example (zext X) != 0 -> X != 0
- if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
- Instruction *LI = cast<CastInst>(LHS);
- Value *SrcOp = LI->getOperand(0);
- Type *SrcTy = SrcOp->getType();
- Type *DstTy = LI->getType();
- // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
- // if the integer type is the same size as the pointer type.
- if (MaxRecurse && isa<PtrToIntInst>(LI) &&
- Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // Transfer the cast to the constant.
- if (Value *V = simplifyICmpInst(Pred, SrcOp,
- ConstantExpr::getIntToPtr(RHSC, SrcTy),
- Q, MaxRecurse - 1))
- return V;
- } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
- if (RI->getOperand(0)->getType() == SrcTy)
- // Compare without the cast.
- if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
- MaxRecurse - 1))
- return V;
- }
- }
- if (isa<ZExtInst>(LHS)) {
- // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
- // same type.
- if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
- if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
- // Compare X and Y. Note that signed predicates become unsigned.
- if (Value *V =
- simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp,
- RI->getOperand(0), Q, MaxRecurse - 1))
- return V;
- }
- // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
- else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
- if (SrcOp == RI->getOperand(0)) {
- if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
- return ConstantInt::getTrue(ITy);
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
- return ConstantInt::getFalse(ITy);
- }
- }
- // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
- // too. If not, then try to deduce the result of the comparison.
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DstTy.
- Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
- // If the re-extended constant didn't change then this is effectively
- // also a case of comparing two zero-extended values.
- if (RExt == CI && MaxRecurse)
- if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
- SrcOp, Trunc, Q, MaxRecurse - 1))
- return V;
- // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
- // there. Use this to work out the result of the comparison.
- if (RExt != CI) {
- switch (Pred) {
- default:
- llvm_unreachable("Unknown ICmp predicate!");
- // LHS <u RHS.
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return ConstantInt::getTrue(CI->getContext());
- // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
- // is non-negative then LHS <s RHS.
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return CI->getValue().isNegative()
- ? ConstantInt::getTrue(CI->getContext())
- : ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return CI->getValue().isNegative()
- ? ConstantInt::getFalse(CI->getContext())
- : ConstantInt::getTrue(CI->getContext());
- }
- }
- }
- }
- if (isa<SExtInst>(LHS)) {
- // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
- // same type.
- if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
- if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
- // Compare X and Y. Note that the predicate does not change.
- if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
- MaxRecurse - 1))
- return V;
- }
- // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
- else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
- if (SrcOp == RI->getOperand(0)) {
- if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
- return ConstantInt::getTrue(ITy);
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
- return ConstantInt::getFalse(ITy);
- }
- }
- // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
- // too. If not, then try to deduce the result of the comparison.
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DstTy.
- Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
- // If the re-extended constant didn't change then this is effectively
- // also a case of comparing two sign-extended values.
- if (RExt == CI && MaxRecurse)
- if (Value *V =
- simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1))
- return V;
- // Otherwise the upper bits of LHS are all equal, while RHS has varying
- // bits there. Use this to work out the result of the comparison.
- if (RExt != CI) {
- switch (Pred) {
- default:
- llvm_unreachable("Unknown ICmp predicate!");
- case ICmpInst::ICMP_EQ:
- return ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_NE:
- return ConstantInt::getTrue(CI->getContext());
- // If RHS is non-negative then LHS <s RHS. If RHS is negative then
- // LHS >s RHS.
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return CI->getValue().isNegative()
- ? ConstantInt::getTrue(CI->getContext())
- : ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return CI->getValue().isNegative()
- ? ConstantInt::getFalse(CI->getContext())
- : ConstantInt::getTrue(CI->getContext());
- // If LHS is non-negative then LHS <u RHS. If LHS is negative then
- // LHS >u RHS.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- // Comparison is true iff the LHS <s 0.
- if (MaxRecurse)
- if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
- Constant::getNullValue(SrcTy), Q,
- MaxRecurse - 1))
- return V;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- // Comparison is true iff the LHS >=s 0.
- if (MaxRecurse)
- if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
- Constant::getNullValue(SrcTy), Q,
- MaxRecurse - 1))
- return V;
- break;
- }
- }
- }
- }
- }
- // icmp eq|ne X, Y -> false|true if X != Y
- // This is potentially expensive, and we have already computedKnownBits for
- // compares with 0 above here, so only try this for a non-zero compare.
- if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
- isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
- return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
- }
- if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
- return V;
- // Simplify comparisons of related pointers using a powerful, recursive
- // GEP-walk when we have target data available..
- if (LHS->getType()->isPointerTy())
- if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
- return C;
- if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
- if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
- if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
- Q.DL.getTypeSizeInBits(CLHS->getType()) &&
- Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
- Q.DL.getTypeSizeInBits(CRHS->getType()))
- if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
- CRHS->getPointerOperand(), Q))
- return C;
- // If the comparison is with the result of a select instruction, check whether
- // comparing with either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- // If the comparison is with the result of a phi instruction, check whether
- // doing the compare with each incoming phi value yields a common result.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
- }
- /// Given operands for an FCmpInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
- assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI,
- Q.CxtI);
- // If we have a constant, make sure it is on the RHS.
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- // Fold trivial predicates.
- Type *RetTy = getCompareTy(LHS);
- if (Pred == FCmpInst::FCMP_FALSE)
- return getFalse(RetTy);
- if (Pred == FCmpInst::FCMP_TRUE)
- return getTrue(RetTy);
- // Fold (un)ordered comparison if we can determine there are no NaNs.
- if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
- if (FMF.noNaNs() ||
- (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
- return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
- // NaN is unordered; NaN is not ordered.
- assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
- "Comparison must be either ordered or unordered");
- if (match(RHS, m_NaN()))
- return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
- // fcmp pred x, poison and fcmp pred poison, x
- // fold to poison
- if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
- return PoisonValue::get(RetTy);
- // fcmp pred x, undef and fcmp pred undef, x
- // fold to true if unordered, false if ordered
- if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
- // Choosing NaN for the undef will always make unordered comparison succeed
- // and ordered comparison fail.
- return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
- }
- // fcmp x,x -> true/false. Not all compares are foldable.
- if (LHS == RHS) {
- if (CmpInst::isTrueWhenEqual(Pred))
- return getTrue(RetTy);
- if (CmpInst::isFalseWhenEqual(Pred))
- return getFalse(RetTy);
- }
- // Handle fcmp with constant RHS.
- // TODO: Use match with a specific FP value, so these work with vectors with
- // undef lanes.
- const APFloat *C;
- if (match(RHS, m_APFloat(C))) {
- // Check whether the constant is an infinity.
- if (C->isInfinity()) {
- if (C->isNegative()) {
- switch (Pred) {
- case FCmpInst::FCMP_OLT:
- // No value is ordered and less than negative infinity.
- return getFalse(RetTy);
- case FCmpInst::FCMP_UGE:
- // All values are unordered with or at least negative infinity.
- return getTrue(RetTy);
- default:
- break;
- }
- } else {
- switch (Pred) {
- case FCmpInst::FCMP_OGT:
- // No value is ordered and greater than infinity.
- return getFalse(RetTy);
- case FCmpInst::FCMP_ULE:
- // All values are unordered with and at most infinity.
- return getTrue(RetTy);
- default:
- break;
- }
- }
- // LHS == Inf
- if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
- return getFalse(RetTy);
- // LHS != Inf
- if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
- return getTrue(RetTy);
- // LHS == Inf || LHS == NaN
- if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
- isKnownNeverNaN(LHS, Q.TLI))
- return getFalse(RetTy);
- // LHS != Inf && LHS != NaN
- if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
- isKnownNeverNaN(LHS, Q.TLI))
- return getTrue(RetTy);
- }
- if (C->isNegative() && !C->isNegZero()) {
- assert(!C->isNaN() && "Unexpected NaN constant!");
- // TODO: We can catch more cases by using a range check rather than
- // relying on CannotBeOrderedLessThanZero.
- switch (Pred) {
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_UNE:
- // (X >= 0) implies (X > C) when (C < 0)
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getTrue(RetTy);
- break;
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_OLE:
- case FCmpInst::FCMP_OLT:
- // (X >= 0) implies !(X < C) when (C < 0)
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getFalse(RetTy);
- break;
- default:
- break;
- }
- }
- // Check comparison of [minnum/maxnum with constant] with other constant.
- const APFloat *C2;
- if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
- *C2 < *C) ||
- (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
- *C2 > *C)) {
- bool IsMaxNum =
- cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
- // The ordered relationship and minnum/maxnum guarantee that we do not
- // have NaN constants, so ordered/unordered preds are handled the same.
- switch (Pred) {
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_UEQ:
- // minnum(X, LesserC) == C --> false
- // maxnum(X, GreaterC) == C --> false
- return getFalse(RetTy);
- case FCmpInst::FCMP_ONE:
- case FCmpInst::FCMP_UNE:
- // minnum(X, LesserC) != C --> true
- // maxnum(X, GreaterC) != C --> true
- return getTrue(RetTy);
- case FCmpInst::FCMP_OGE:
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OGT:
- case FCmpInst::FCMP_UGT:
- // minnum(X, LesserC) >= C --> false
- // minnum(X, LesserC) > C --> false
- // maxnum(X, GreaterC) >= C --> true
- // maxnum(X, GreaterC) > C --> true
- return ConstantInt::get(RetTy, IsMaxNum);
- case FCmpInst::FCMP_OLE:
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_OLT:
- case FCmpInst::FCMP_ULT:
- // minnum(X, LesserC) <= C --> true
- // minnum(X, LesserC) < C --> true
- // maxnum(X, GreaterC) <= C --> false
- // maxnum(X, GreaterC) < C --> false
- return ConstantInt::get(RetTy, !IsMaxNum);
- default:
- // TRUE/FALSE/ORD/UNO should be handled before this.
- llvm_unreachable("Unexpected fcmp predicate");
- }
- }
- }
- if (match(RHS, m_AnyZeroFP())) {
- switch (Pred) {
- case FCmpInst::FCMP_OGE:
- case FCmpInst::FCMP_ULT:
- // Positive or zero X >= 0.0 --> true
- // Positive or zero X < 0.0 --> false
- if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
- CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
- break;
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OLT:
- // Positive or zero or nan X >= 0.0 --> true
- // Positive or zero or nan X < 0.0 --> false
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
- break;
- default:
- break;
- }
- }
- // If the comparison is with the result of a select instruction, check whether
- // comparing with either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- // If the comparison is with the result of a phi instruction, check whether
- // doing the compare with each incoming phi value yields a common result.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const SimplifyQuery &Q) {
- return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
- }
- static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const SimplifyQuery &Q,
- bool AllowRefinement,
- unsigned MaxRecurse) {
- // Trivial replacement.
- if (V == Op)
- return RepOp;
- // We cannot replace a constant, and shouldn't even try.
- if (isa<Constant>(Op))
- return nullptr;
- auto *I = dyn_cast<Instruction>(V);
- if (!I || !is_contained(I->operands(), Op))
- return nullptr;
- if (Op->getType()->isVectorTy()) {
- // For vector types, the simplification must hold per-lane, so forbid
- // potentially cross-lane operations like shufflevector.
- assert(I->getType()->isVectorTy() && "Vector type mismatch");
- if (isa<ShuffleVectorInst>(I) || isa<CallBase>(I))
- return nullptr;
- }
- // Replace Op with RepOp in instruction operands.
- SmallVector<Value *, 8> NewOps(I->getNumOperands());
- transform(I->operands(), NewOps.begin(),
- [&](Value *V) { return V == Op ? RepOp : V; });
- if (!AllowRefinement) {
- // General InstSimplify functions may refine the result, e.g. by returning
- // a constant for a potentially poison value. To avoid this, implement only
- // a few non-refining but profitable transforms here.
- if (auto *BO = dyn_cast<BinaryOperator>(I)) {
- unsigned Opcode = BO->getOpcode();
- // id op x -> x, x op id -> x
- if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
- return NewOps[1];
- if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
- /* RHS */ true))
- return NewOps[0];
- // x & x -> x, x | x -> x
- if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
- NewOps[0] == NewOps[1])
- return NewOps[0];
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- // getelementptr x, 0 -> x
- if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
- !GEP->isInBounds())
- return NewOps[0];
- }
- } else if (MaxRecurse) {
- // The simplification queries below may return the original value. Consider:
- // %div = udiv i32 %arg, %arg2
- // %mul = mul nsw i32 %div, %arg2
- // %cmp = icmp eq i32 %mul, %arg
- // %sel = select i1 %cmp, i32 %div, i32 undef
- // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
- // simplifies back to %arg. This can only happen because %mul does not
- // dominate %div. To ensure a consistent return value contract, we make sure
- // that this case returns nullptr as well.
- auto PreventSelfSimplify = [V](Value *Simplified) {
- return Simplified != V ? Simplified : nullptr;
- };
- if (auto *B = dyn_cast<BinaryOperator>(I))
- return PreventSelfSimplify(simplifyBinOp(B->getOpcode(), NewOps[0],
- NewOps[1], Q, MaxRecurse - 1));
- if (CmpInst *C = dyn_cast<CmpInst>(I))
- return PreventSelfSimplify(simplifyCmpInst(C->getPredicate(), NewOps[0],
- NewOps[1], Q, MaxRecurse - 1));
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
- return PreventSelfSimplify(simplifyGEPInst(
- GEP->getSourceElementType(), NewOps[0], ArrayRef(NewOps).slice(1),
- GEP->isInBounds(), Q, MaxRecurse - 1));
- if (isa<SelectInst>(I))
- return PreventSelfSimplify(simplifySelectInst(
- NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1));
- // TODO: We could hand off more cases to instsimplify here.
- }
- // If all operands are constant after substituting Op for RepOp then we can
- // constant fold the instruction.
- SmallVector<Constant *, 8> ConstOps;
- for (Value *NewOp : NewOps) {
- if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
- ConstOps.push_back(ConstOp);
- else
- return nullptr;
- }
- // Consider:
- // %cmp = icmp eq i32 %x, 2147483647
- // %add = add nsw i32 %x, 1
- // %sel = select i1 %cmp, i32 -2147483648, i32 %add
- //
- // We can't replace %sel with %add unless we strip away the flags (which
- // will be done in InstCombine).
- // TODO: This may be unsound, because it only catches some forms of
- // refinement.
- if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
- return nullptr;
- return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
- }
- Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const SimplifyQuery &Q,
- bool AllowRefinement) {
- return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
- RecursionLimit);
- }
- /// Try to simplify a select instruction when its condition operand is an
- /// integer comparison where one operand of the compare is a constant.
- static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
- const APInt *Y, bool TrueWhenUnset) {
- const APInt *C;
- // (X & Y) == 0 ? X & ~Y : X --> X
- // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
- if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
- *Y == ~*C)
- return TrueWhenUnset ? FalseVal : TrueVal;
- // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
- // (X & Y) != 0 ? X : X & ~Y --> X
- if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
- *Y == ~*C)
- return TrueWhenUnset ? FalseVal : TrueVal;
- if (Y->isPowerOf2()) {
- // (X & Y) == 0 ? X | Y : X --> X | Y
- // (X & Y) != 0 ? X | Y : X --> X
- if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
- *Y == *C)
- return TrueWhenUnset ? TrueVal : FalseVal;
- // (X & Y) == 0 ? X : X | Y --> X
- // (X & Y) != 0 ? X : X | Y --> X | Y
- if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
- *Y == *C)
- return TrueWhenUnset ? TrueVal : FalseVal;
- }
- return nullptr;
- }
- static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS,
- ICmpInst::Predicate Pred, Value *TVal,
- Value *FVal) {
- // Canonicalize common cmp+sel operand as CmpLHS.
- if (CmpRHS == TVal || CmpRHS == FVal) {
- std::swap(CmpLHS, CmpRHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- // Canonicalize common cmp+sel operand as TVal.
- if (CmpLHS == FVal) {
- std::swap(TVal, FVal);
- Pred = ICmpInst::getInversePredicate(Pred);
- }
- // A vector select may be shuffling together elements that are equivalent
- // based on the max/min/select relationship.
- Value *X = CmpLHS, *Y = CmpRHS;
- bool PeekedThroughSelectShuffle = false;
- auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal);
- if (Shuf && Shuf->isSelect()) {
- if (Shuf->getOperand(0) == Y)
- FVal = Shuf->getOperand(1);
- else if (Shuf->getOperand(1) == Y)
- FVal = Shuf->getOperand(0);
- else
- return nullptr;
- PeekedThroughSelectShuffle = true;
- }
- // (X pred Y) ? X : max/min(X, Y)
- auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal);
- if (!MMI || TVal != X ||
- !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y))))
- return nullptr;
- // (X > Y) ? X : max(X, Y) --> max(X, Y)
- // (X >= Y) ? X : max(X, Y) --> max(X, Y)
- // (X < Y) ? X : min(X, Y) --> min(X, Y)
- // (X <= Y) ? X : min(X, Y) --> min(X, Y)
- //
- // The equivalence allows a vector select (shuffle) of max/min and Y. Ex:
- // (X > Y) ? X : (Z ? max(X, Y) : Y)
- // If Z is true, this reduces as above, and if Z is false:
- // (X > Y) ? X : Y --> max(X, Y)
- ICmpInst::Predicate MMPred = MMI->getPredicate();
- if (MMPred == CmpInst::getStrictPredicate(Pred))
- return MMI;
- // Other transforms are not valid with a shuffle.
- if (PeekedThroughSelectShuffle)
- return nullptr;
- // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y)
- if (Pred == CmpInst::ICMP_EQ)
- return MMI;
- // (X != Y) ? X : max/min(X, Y) --> X
- if (Pred == CmpInst::ICMP_NE)
- return X;
- // (X < Y) ? X : max(X, Y) --> X
- // (X <= Y) ? X : max(X, Y) --> X
- // (X > Y) ? X : min(X, Y) --> X
- // (X >= Y) ? X : min(X, Y) --> X
- ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred);
- if (MMPred == CmpInst::getStrictPredicate(InvPred))
- return X;
- return nullptr;
- }
- /// An alternative way to test if a bit is set or not uses sgt/slt instead of
- /// eq/ne.
- static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
- ICmpInst::Predicate Pred,
- Value *TrueVal, Value *FalseVal) {
- Value *X;
- APInt Mask;
- if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
- return nullptr;
- return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
- Pred == ICmpInst::ICMP_EQ);
- }
- /// Try to simplify a select instruction when its condition operand is an
- /// integer comparison.
- static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
- Value *FalseVal,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- ICmpInst::Predicate Pred;
- Value *CmpLHS, *CmpRHS;
- if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
- return nullptr;
- if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
- return V;
- // Canonicalize ne to eq predicate.
- if (Pred == ICmpInst::ICMP_NE) {
- Pred = ICmpInst::ICMP_EQ;
- std::swap(TrueVal, FalseVal);
- }
- // Check for integer min/max with a limit constant:
- // X > MIN_INT ? X : MIN_INT --> X
- // X < MAX_INT ? X : MAX_INT --> X
- if (TrueVal->getType()->isIntOrIntVectorTy()) {
- Value *X, *Y;
- SelectPatternFlavor SPF =
- matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
- X, Y)
- .Flavor;
- if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
- APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
- X->getType()->getScalarSizeInBits());
- if (match(Y, m_SpecificInt(LimitC)))
- return X;
- }
- }
- if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
- Value *X;
- const APInt *Y;
- if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
- if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
- /*TrueWhenUnset=*/true))
- return V;
- // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
- Value *ShAmt;
- auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
- m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
- // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
- // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
- if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
- return X;
- // Test for a zero-shift-guard-op around rotates. These are used to
- // avoid UB from oversized shifts in raw IR rotate patterns, but the
- // intrinsics do not have that problem.
- // We do not allow this transform for the general funnel shift case because
- // that would not preserve the poison safety of the original code.
- auto isRotate =
- m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
- m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
- // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
- // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
- if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
- Pred == ICmpInst::ICMP_EQ)
- return FalseVal;
- // X == 0 ? abs(X) : -abs(X) --> -abs(X)
- // X == 0 ? -abs(X) : abs(X) --> abs(X)
- if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
- match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
- return FalseVal;
- if (match(TrueVal,
- m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
- match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
- return FalseVal;
- }
- // Check for other compares that behave like bit test.
- if (Value *V =
- simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
- return V;
- // If we have a scalar equality comparison, then we know the value in one of
- // the arms of the select. See if substituting this value into the arm and
- // simplifying the result yields the same value as the other arm.
- if (Pred == ICmpInst::ICMP_EQ) {
- if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
- /* AllowRefinement */ false,
- MaxRecurse) == TrueVal ||
- simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
- /* AllowRefinement */ false,
- MaxRecurse) == TrueVal)
- return FalseVal;
- if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
- /* AllowRefinement */ true,
- MaxRecurse) == FalseVal ||
- simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
- /* AllowRefinement */ true,
- MaxRecurse) == FalseVal)
- return FalseVal;
- }
- return nullptr;
- }
- /// Try to simplify a select instruction when its condition operand is a
- /// floating-point comparison.
- static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
- const SimplifyQuery &Q) {
- FCmpInst::Predicate Pred;
- if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
- !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
- return nullptr;
- // This transform is safe if we do not have (do not care about) -0.0 or if
- // at least one operand is known to not be -0.0. Otherwise, the select can
- // change the sign of a zero operand.
- bool HasNoSignedZeros =
- Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros();
- const APFloat *C;
- if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
- (match(F, m_APFloat(C)) && C->isNonZero())) {
- // (T == F) ? T : F --> F
- // (F == T) ? T : F --> F
- if (Pred == FCmpInst::FCMP_OEQ)
- return F;
- // (T != F) ? T : F --> T
- // (F != T) ? T : F --> T
- if (Pred == FCmpInst::FCMP_UNE)
- return T;
- }
- return nullptr;
- }
- /// Given operands for a SelectInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (auto *CondC = dyn_cast<Constant>(Cond)) {
- if (auto *TrueC = dyn_cast<Constant>(TrueVal))
- if (auto *FalseC = dyn_cast<Constant>(FalseVal))
- return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
- // select poison, X, Y -> poison
- if (isa<PoisonValue>(CondC))
- return PoisonValue::get(TrueVal->getType());
- // select undef, X, Y -> X or Y
- if (Q.isUndefValue(CondC))
- return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
- // select true, X, Y --> X
- // select false, X, Y --> Y
- // For vectors, allow undef/poison elements in the condition to match the
- // defined elements, so we can eliminate the select.
- if (match(CondC, m_One()))
- return TrueVal;
- if (match(CondC, m_Zero()))
- return FalseVal;
- }
- assert(Cond->getType()->isIntOrIntVectorTy(1) &&
- "Select must have bool or bool vector condition");
- assert(TrueVal->getType() == FalseVal->getType() &&
- "Select must have same types for true/false ops");
- if (Cond->getType() == TrueVal->getType()) {
- // select i1 Cond, i1 true, i1 false --> i1 Cond
- if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
- return Cond;
- // (X && Y) ? X : Y --> Y (commuted 2 ways)
- if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal))))
- return FalseVal;
- // (X || Y) ? X : Y --> X (commuted 2 ways)
- if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal))))
- return TrueVal;
- // (X || Y) ? false : X --> false (commuted 2 ways)
- if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) &&
- match(TrueVal, m_ZeroInt()))
- return ConstantInt::getFalse(Cond->getType());
- // Match patterns that end in logical-and.
- if (match(FalseVal, m_ZeroInt())) {
- // !(X || Y) && X --> false (commuted 2 ways)
- if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value()))))
- return ConstantInt::getFalse(Cond->getType());
- // (X || Y) && Y --> Y (commuted 2 ways)
- if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value())))
- return TrueVal;
- // Y && (X || Y) --> Y (commuted 2 ways)
- if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value())))
- return Cond;
- // (X || Y) && (X || !Y) --> X (commuted 8 ways)
- Value *X, *Y;
- if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
- match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
- return X;
- if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
- match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
- return X;
- }
- // Match patterns that end in logical-or.
- if (match(TrueVal, m_One())) {
- // (X && Y) || Y --> Y (commuted 2 ways)
- if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))
- return FalseVal;
- // Y || (X && Y) --> Y (commuted 2 ways)
- if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value())))
- return Cond;
- }
- }
- // select ?, X, X -> X
- if (TrueVal == FalseVal)
- return TrueVal;
- if (Cond == TrueVal) {
- // select i1 X, i1 X, i1 false --> X (logical-and)
- if (match(FalseVal, m_ZeroInt()))
- return Cond;
- // select i1 X, i1 X, i1 true --> true
- if (match(FalseVal, m_One()))
- return ConstantInt::getTrue(Cond->getType());
- }
- if (Cond == FalseVal) {
- // select i1 X, i1 true, i1 X --> X (logical-or)
- if (match(TrueVal, m_One()))
- return Cond;
- // select i1 X, i1 false, i1 X --> false
- if (match(TrueVal, m_ZeroInt()))
- return ConstantInt::getFalse(Cond->getType());
- }
- // If the true or false value is poison, we can fold to the other value.
- // If the true or false value is undef, we can fold to the other value as
- // long as the other value isn't poison.
- // select ?, poison, X -> X
- // select ?, undef, X -> X
- if (isa<PoisonValue>(TrueVal) ||
- (Q.isUndefValue(TrueVal) &&
- isGuaranteedNotToBePoison(FalseVal, Q.AC, Q.CxtI, Q.DT)))
- return FalseVal;
- // select ?, X, poison -> X
- // select ?, X, undef -> X
- if (isa<PoisonValue>(FalseVal) ||
- (Q.isUndefValue(FalseVal) &&
- isGuaranteedNotToBePoison(TrueVal, Q.AC, Q.CxtI, Q.DT)))
- return TrueVal;
- // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
- Constant *TrueC, *FalseC;
- if (isa<FixedVectorType>(TrueVal->getType()) &&
- match(TrueVal, m_Constant(TrueC)) &&
- match(FalseVal, m_Constant(FalseC))) {
- unsigned NumElts =
- cast<FixedVectorType>(TrueC->getType())->getNumElements();
- SmallVector<Constant *, 16> NewC;
- for (unsigned i = 0; i != NumElts; ++i) {
- // Bail out on incomplete vector constants.
- Constant *TEltC = TrueC->getAggregateElement(i);
- Constant *FEltC = FalseC->getAggregateElement(i);
- if (!TEltC || !FEltC)
- break;
- // If the elements match (undef or not), that value is the result. If only
- // one element is undef, choose the defined element as the safe result.
- if (TEltC == FEltC)
- NewC.push_back(TEltC);
- else if (isa<PoisonValue>(TEltC) ||
- (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
- NewC.push_back(FEltC);
- else if (isa<PoisonValue>(FEltC) ||
- (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
- NewC.push_back(TEltC);
- else
- break;
- }
- if (NewC.size() == NumElts)
- return ConstantVector::get(NewC);
- }
- if (Value *V =
- simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
- return V;
- if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
- return V;
- if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
- return V;
- std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
- if (Imp)
- return *Imp ? TrueVal : FalseVal;
- return nullptr;
- }
- Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const SimplifyQuery &Q) {
- return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
- }
- /// Given operands for an GetElementPtrInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr,
- ArrayRef<Value *> Indices, bool InBounds,
- const SimplifyQuery &Q, unsigned) {
- // The type of the GEP pointer operand.
- unsigned AS =
- cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
- // getelementptr P -> P.
- if (Indices.empty())
- return Ptr;
- // Compute the (pointer) type returned by the GEP instruction.
- Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
- Type *GEPTy = PointerType::get(LastType, AS);
- if (VectorType *VT = dyn_cast<VectorType>(Ptr->getType()))
- GEPTy = VectorType::get(GEPTy, VT->getElementCount());
- else {
- for (Value *Op : Indices) {
- // If one of the operands is a vector, the result type is a vector of
- // pointers. All vector operands must have the same number of elements.
- if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
- GEPTy = VectorType::get(GEPTy, VT->getElementCount());
- break;
- }
- }
- }
- // For opaque pointers an all-zero GEP is a no-op. For typed pointers,
- // it may be equivalent to a bitcast.
- if (Ptr->getType()->getScalarType()->isOpaquePointerTy() &&
- Ptr->getType() == GEPTy &&
- all_of(Indices, [](const auto *V) { return match(V, m_Zero()); }))
- return Ptr;
- // getelementptr poison, idx -> poison
- // getelementptr baseptr, poison -> poison
- if (isa<PoisonValue>(Ptr) ||
- any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
- return PoisonValue::get(GEPTy);
- if (Q.isUndefValue(Ptr))
- // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
- return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
- bool IsScalableVec =
- isa<ScalableVectorType>(SrcTy) || any_of(Indices, [](const Value *V) {
- return isa<ScalableVectorType>(V->getType());
- });
- if (Indices.size() == 1) {
- // getelementptr P, 0 -> P.
- if (match(Indices[0], m_Zero()) && Ptr->getType() == GEPTy)
- return Ptr;
- Type *Ty = SrcTy;
- if (!IsScalableVec && Ty->isSized()) {
- Value *P;
- uint64_t C;
- uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
- // getelementptr P, N -> P if P points to a type of zero size.
- if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
- return Ptr;
- // The following transforms are only safe if the ptrtoint cast
- // doesn't truncate the pointers.
- if (Indices[0]->getType()->getScalarSizeInBits() ==
- Q.DL.getPointerSizeInBits(AS)) {
- auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
- return P->getType() == GEPTy &&
- getUnderlyingObject(P) == getUnderlyingObject(Ptr);
- };
- // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
- if (TyAllocSize == 1 &&
- match(Indices[0],
- m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
- CanSimplify())
- return P;
- // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
- // size 1 << C.
- if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
- m_PtrToInt(m_Specific(Ptr))),
- m_ConstantInt(C))) &&
- TyAllocSize == 1ULL << C && CanSimplify())
- return P;
- // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
- // size C.
- if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
- m_PtrToInt(m_Specific(Ptr))),
- m_SpecificInt(TyAllocSize))) &&
- CanSimplify())
- return P;
- }
- }
- }
- if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
- all_of(Indices.drop_back(1),
- [](Value *Idx) { return match(Idx, m_Zero()); })) {
- unsigned IdxWidth =
- Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
- if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
- APInt BasePtrOffset(IdxWidth, 0);
- Value *StrippedBasePtr =
- Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
- // Avoid creating inttoptr of zero here: While LLVMs treatment of
- // inttoptr is generally conservative, this particular case is folded to
- // a null pointer, which will have incorrect provenance.
- // gep (gep V, C), (sub 0, V) -> C
- if (match(Indices.back(),
- m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
- !BasePtrOffset.isZero()) {
- auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
- return ConstantExpr::getIntToPtr(CI, GEPTy);
- }
- // gep (gep V, C), (xor V, -1) -> C-1
- if (match(Indices.back(),
- m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
- !BasePtrOffset.isOne()) {
- auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
- return ConstantExpr::getIntToPtr(CI, GEPTy);
- }
- }
- }
- // Check to see if this is constant foldable.
- if (!isa<Constant>(Ptr) ||
- !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
- return nullptr;
- auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices,
- InBounds);
- return ConstantFoldConstant(CE, Q.DL);
- }
- Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
- bool InBounds, const SimplifyQuery &Q) {
- return ::simplifyGEPInst(SrcTy, Ptr, Indices, InBounds, Q, RecursionLimit);
- }
- /// Given operands for an InsertValueInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs,
- const SimplifyQuery &Q, unsigned) {
- if (Constant *CAgg = dyn_cast<Constant>(Agg))
- if (Constant *CVal = dyn_cast<Constant>(Val))
- return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
- // insertvalue x, poison, n -> x
- // insertvalue x, undef, n -> x if x cannot be poison
- if (isa<PoisonValue>(Val) ||
- (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg)))
- return Agg;
- // insertvalue x, (extractvalue y, n), n
- if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
- if (EV->getAggregateOperand()->getType() == Agg->getType() &&
- EV->getIndices() == Idxs) {
- // insertvalue undef, (extractvalue y, n), n -> y
- if (Q.isUndefValue(Agg))
- return EV->getAggregateOperand();
- // insertvalue y, (extractvalue y, n), n -> y
- if (Agg == EV->getAggregateOperand())
- return Agg;
- }
- return nullptr;
- }
- Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs,
- const SimplifyQuery &Q) {
- return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
- }
- Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
- const SimplifyQuery &Q) {
- // Try to constant fold.
- auto *VecC = dyn_cast<Constant>(Vec);
- auto *ValC = dyn_cast<Constant>(Val);
- auto *IdxC = dyn_cast<Constant>(Idx);
- if (VecC && ValC && IdxC)
- return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
- // For fixed-length vector, fold into poison if index is out of bounds.
- if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
- if (isa<FixedVectorType>(Vec->getType()) &&
- CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
- return PoisonValue::get(Vec->getType());
- }
- // If index is undef, it might be out of bounds (see above case)
- if (Q.isUndefValue(Idx))
- return PoisonValue::get(Vec->getType());
- // If the scalar is poison, or it is undef and there is no risk of
- // propagating poison from the vector value, simplify to the vector value.
- if (isa<PoisonValue>(Val) ||
- (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
- return Vec;
- // If we are extracting a value from a vector, then inserting it into the same
- // place, that's the input vector:
- // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
- if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
- return Vec;
- return nullptr;
- }
- /// Given operands for an ExtractValueInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const SimplifyQuery &, unsigned) {
- if (auto *CAgg = dyn_cast<Constant>(Agg))
- return ConstantFoldExtractValueInstruction(CAgg, Idxs);
- // extractvalue x, (insertvalue y, elt, n), n -> elt
- unsigned NumIdxs = Idxs.size();
- for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
- IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
- ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
- unsigned NumInsertValueIdxs = InsertValueIdxs.size();
- unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
- if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
- Idxs.slice(0, NumCommonIdxs)) {
- if (NumIdxs == NumInsertValueIdxs)
- return IVI->getInsertedValueOperand();
- break;
- }
- }
- return nullptr;
- }
- Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const SimplifyQuery &Q) {
- return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
- }
- /// Given operands for an ExtractElementInst, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyExtractElementInst(Value *Vec, Value *Idx,
- const SimplifyQuery &Q, unsigned) {
- auto *VecVTy = cast<VectorType>(Vec->getType());
- if (auto *CVec = dyn_cast<Constant>(Vec)) {
- if (auto *CIdx = dyn_cast<Constant>(Idx))
- return ConstantExpr::getExtractElement(CVec, CIdx);
- if (Q.isUndefValue(Vec))
- return UndefValue::get(VecVTy->getElementType());
- }
- // An undef extract index can be arbitrarily chosen to be an out-of-range
- // index value, which would result in the instruction being poison.
- if (Q.isUndefValue(Idx))
- return PoisonValue::get(VecVTy->getElementType());
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
- // For fixed-length vector, fold into undef if index is out of bounds.
- unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
- if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
- return PoisonValue::get(VecVTy->getElementType());
- // Handle case where an element is extracted from a splat.
- if (IdxC->getValue().ult(MinNumElts))
- if (auto *Splat = getSplatValue(Vec))
- return Splat;
- if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
- return Elt;
- } else {
- // extractelt x, (insertelt y, elt, n), n -> elt
- // If the possibly-variable indices are trivially known to be equal
- // (because they are the same operand) then use the value that was
- // inserted directly.
- auto *IE = dyn_cast<InsertElementInst>(Vec);
- if (IE && IE->getOperand(2) == Idx)
- return IE->getOperand(1);
- // The index is not relevant if our vector is a splat.
- if (Value *Splat = getSplatValue(Vec))
- return Splat;
- }
- return nullptr;
- }
- Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx,
- const SimplifyQuery &Q) {
- return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
- }
- /// See if we can fold the given phi. If not, returns null.
- static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
- const SimplifyQuery &Q) {
- // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
- // here, because the PHI we may succeed simplifying to was not
- // def-reachable from the original PHI!
- // If all of the PHI's incoming values are the same then replace the PHI node
- // with the common value.
- Value *CommonValue = nullptr;
- bool HasUndefInput = false;
- for (Value *Incoming : IncomingValues) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PN)
- continue;
- if (Q.isUndefValue(Incoming)) {
- // Remember that we saw an undef value, but otherwise ignore them.
- HasUndefInput = true;
- continue;
- }
- if (CommonValue && Incoming != CommonValue)
- return nullptr; // Not the same, bail out.
- CommonValue = Incoming;
- }
- // If CommonValue is null then all of the incoming values were either undef or
- // equal to the phi node itself.
- if (!CommonValue)
- return UndefValue::get(PN->getType());
- if (HasUndefInput) {
- // If we have a PHI node like phi(X, undef, X), where X is defined by some
- // instruction, we cannot return X as the result of the PHI node unless it
- // dominates the PHI block.
- return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
- }
- return CommonValue;
- }
- static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (auto *C = dyn_cast<Constant>(Op))
- return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
- if (auto *CI = dyn_cast<CastInst>(Op)) {
- auto *Src = CI->getOperand(0);
- Type *SrcTy = Src->getType();
- Type *MidTy = CI->getType();
- Type *DstTy = Ty;
- if (Src->getType() == Ty) {
- auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
- auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
- Type *SrcIntPtrTy =
- SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy =
- MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy =
- DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
- if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
- SrcIntPtrTy, MidIntPtrTy,
- DstIntPtrTy) == Instruction::BitCast)
- return Src;
- }
- }
- // bitcast x -> x
- if (CastOpc == Instruction::BitCast)
- if (Op->getType() == Ty)
- return Op;
- return nullptr;
- }
- Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
- const SimplifyQuery &Q) {
- return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
- }
- /// For the given destination element of a shuffle, peek through shuffles to
- /// match a root vector source operand that contains that element in the same
- /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
- static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
- int MaskVal, Value *RootVec,
- unsigned MaxRecurse) {
- if (!MaxRecurse--)
- return nullptr;
- // Bail out if any mask value is undefined. That kind of shuffle may be
- // simplified further based on demanded bits or other folds.
- if (MaskVal == -1)
- return nullptr;
- // The mask value chooses which source operand we need to look at next.
- int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
- int RootElt = MaskVal;
- Value *SourceOp = Op0;
- if (MaskVal >= InVecNumElts) {
- RootElt = MaskVal - InVecNumElts;
- SourceOp = Op1;
- }
- // If the source operand is a shuffle itself, look through it to find the
- // matching root vector.
- if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
- return foldIdentityShuffles(
- DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
- SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
- }
- // TODO: Look through bitcasts? What if the bitcast changes the vector element
- // size?
- // The source operand is not a shuffle. Initialize the root vector value for
- // this shuffle if that has not been done yet.
- if (!RootVec)
- RootVec = SourceOp;
- // Give up as soon as a source operand does not match the existing root value.
- if (RootVec != SourceOp)
- return nullptr;
- // The element must be coming from the same lane in the source vector
- // (although it may have crossed lanes in intermediate shuffles).
- if (RootElt != DestElt)
- return nullptr;
- return RootVec;
- }
- static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1,
- ArrayRef<int> Mask, Type *RetTy,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
- return UndefValue::get(RetTy);
- auto *InVecTy = cast<VectorType>(Op0->getType());
- unsigned MaskNumElts = Mask.size();
- ElementCount InVecEltCount = InVecTy->getElementCount();
- bool Scalable = InVecEltCount.isScalable();
- SmallVector<int, 32> Indices;
- Indices.assign(Mask.begin(), Mask.end());
- // Canonicalization: If mask does not select elements from an input vector,
- // replace that input vector with poison.
- if (!Scalable) {
- bool MaskSelects0 = false, MaskSelects1 = false;
- unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- if (Indices[i] == -1)
- continue;
- if ((unsigned)Indices[i] < InVecNumElts)
- MaskSelects0 = true;
- else
- MaskSelects1 = true;
- }
- if (!MaskSelects0)
- Op0 = PoisonValue::get(InVecTy);
- if (!MaskSelects1)
- Op1 = PoisonValue::get(InVecTy);
- }
- auto *Op0Const = dyn_cast<Constant>(Op0);
- auto *Op1Const = dyn_cast<Constant>(Op1);
- // If all operands are constant, constant fold the shuffle. This
- // transformation depends on the value of the mask which is not known at
- // compile time for scalable vectors
- if (Op0Const && Op1Const)
- return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
- // Canonicalization: if only one input vector is constant, it shall be the
- // second one. This transformation depends on the value of the mask which
- // is not known at compile time for scalable vectors
- if (!Scalable && Op0Const && !Op1Const) {
- std::swap(Op0, Op1);
- ShuffleVectorInst::commuteShuffleMask(Indices,
- InVecEltCount.getKnownMinValue());
- }
- // A splat of an inserted scalar constant becomes a vector constant:
- // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
- // NOTE: We may have commuted above, so analyze the updated Indices, not the
- // original mask constant.
- // NOTE: This transformation depends on the value of the mask which is not
- // known at compile time for scalable vectors
- Constant *C;
- ConstantInt *IndexC;
- if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
- m_ConstantInt(IndexC)))) {
- // Match a splat shuffle mask of the insert index allowing undef elements.
- int InsertIndex = IndexC->getZExtValue();
- if (all_of(Indices, [InsertIndex](int MaskElt) {
- return MaskElt == InsertIndex || MaskElt == -1;
- })) {
- assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
- // Shuffle mask undefs become undefined constant result elements.
- SmallVector<Constant *, 16> VecC(MaskNumElts, C);
- for (unsigned i = 0; i != MaskNumElts; ++i)
- if (Indices[i] == -1)
- VecC[i] = UndefValue::get(C->getType());
- return ConstantVector::get(VecC);
- }
- }
- // A shuffle of a splat is always the splat itself. Legal if the shuffle's
- // value type is same as the input vectors' type.
- if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
- if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
- all_equal(OpShuf->getShuffleMask()))
- return Op0;
- // All remaining transformation depend on the value of the mask, which is
- // not known at compile time for scalable vectors.
- if (Scalable)
- return nullptr;
- // Don't fold a shuffle with undef mask elements. This may get folded in a
- // better way using demanded bits or other analysis.
- // TODO: Should we allow this?
- if (is_contained(Indices, -1))
- return nullptr;
- // Check if every element of this shuffle can be mapped back to the
- // corresponding element of a single root vector. If so, we don't need this
- // shuffle. This handles simple identity shuffles as well as chains of
- // shuffles that may widen/narrow and/or move elements across lanes and back.
- Value *RootVec = nullptr;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- // Note that recursion is limited for each vector element, so if any element
- // exceeds the limit, this will fail to simplify.
- RootVec =
- foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
- // We can't replace a widening/narrowing shuffle with one of its operands.
- if (!RootVec || RootVec->getType() != RetTy)
- return nullptr;
- }
- return RootVec;
- }
- /// Given operands for a ShuffleVectorInst, fold the result or return null.
- Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1,
- ArrayRef<int> Mask, Type *RetTy,
- const SimplifyQuery &Q) {
- return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
- }
- static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op,
- const SimplifyQuery &Q) {
- if (auto *C = dyn_cast<Constant>(Op))
- return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
- return nullptr;
- }
- /// Given the operand for an FNeg, see if we can fold the result. If not, this
- /// returns null.
- static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
- return C;
- Value *X;
- // fneg (fneg X) ==> X
- if (match(Op, m_FNeg(m_Value(X))))
- return X;
- return nullptr;
- }
- Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
- }
- /// Try to propagate existing NaN values when possible. If not, replace the
- /// constant or elements in the constant with a canonical NaN.
- static Constant *propagateNaN(Constant *In) {
- if (auto *VecTy = dyn_cast<FixedVectorType>(In->getType())) {
- unsigned NumElts = VecTy->getNumElements();
- SmallVector<Constant *, 32> NewC(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *EltC = In->getAggregateElement(i);
- // Poison and existing NaN elements propagate.
- // Replace unknown or undef elements with canonical NaN.
- if (EltC && (isa<PoisonValue>(EltC) || EltC->isNaN()))
- NewC[i] = EltC;
- else
- NewC[i] = (ConstantFP::getNaN(VecTy->getElementType()));
- }
- return ConstantVector::get(NewC);
- }
- // It is not a fixed vector, but not a simple NaN either?
- if (!In->isNaN())
- return ConstantFP::getNaN(In->getType());
- // Propagate the existing NaN constant when possible.
- // TODO: Should we quiet a signaling NaN?
- return In;
- }
- /// Perform folds that are common to any floating-point operation. This implies
- /// transforms based on poison/undef/NaN because the operation itself makes no
- /// difference to the result.
- static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- // Poison is independent of anything else. It always propagates from an
- // operand to a math result.
- if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
- return PoisonValue::get(Ops[0]->getType());
- for (Value *V : Ops) {
- bool IsNan = match(V, m_NaN());
- bool IsInf = match(V, m_Inf());
- bool IsUndef = Q.isUndefValue(V);
- // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
- // (an undef operand can be chosen to be Nan/Inf), then the result of
- // this operation is poison.
- if (FMF.noNaNs() && (IsNan || IsUndef))
- return PoisonValue::get(V->getType());
- if (FMF.noInfs() && (IsInf || IsUndef))
- return PoisonValue::get(V->getType());
- if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
- // Undef does not propagate because undef means that all bits can take on
- // any value. If this is undef * NaN for example, then the result values
- // (at least the exponent bits) are limited. Assume the undef is a
- // canonical NaN and propagate that.
- if (IsUndef)
- return ConstantFP::getNaN(V->getType());
- if (IsNan)
- return propagateNaN(cast<Constant>(V));
- } else if (ExBehavior != fp::ebStrict) {
- if (IsNan)
- return propagateNaN(cast<Constant>(V));
- }
- }
- return nullptr;
- }
- /// Given operands for an FAdd, see if we can fold the result. If not, this
- /// returns null.
- static Value *
- simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse,
- fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
- RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
- if (isDefaultFPEnvironment(ExBehavior, Rounding))
- if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
- return C;
- if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
- return C;
- // fadd X, -0 ==> X
- // With strict/constrained FP, we have these possible edge cases that do
- // not simplify to Op0:
- // fadd SNaN, -0.0 --> QNaN
- // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
- if (canIgnoreSNaN(ExBehavior, FMF) &&
- (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
- FMF.noSignedZeros()))
- if (match(Op1, m_NegZeroFP()))
- return Op0;
- // fadd X, 0 ==> X, when we know X is not -0
- if (canIgnoreSNaN(ExBehavior, FMF))
- if (match(Op1, m_PosZeroFP()) &&
- (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
- return Op0;
- if (!isDefaultFPEnvironment(ExBehavior, Rounding))
- return nullptr;
- if (FMF.noNaNs()) {
- // With nnan: X + {+/-}Inf --> {+/-}Inf
- if (match(Op1, m_Inf()))
- return Op1;
- // With nnan: -X + X --> 0.0 (and commuted variant)
- // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
- // Negative zeros are allowed because we always end up with positive zero:
- // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
- // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
- // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
- // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
- if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
- match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
- return ConstantFP::getNullValue(Op0->getType());
- if (match(Op0, m_FNeg(m_Specific(Op1))) ||
- match(Op1, m_FNeg(m_Specific(Op0))))
- return ConstantFP::getNullValue(Op0->getType());
- }
- // (X - Y) + Y --> X
- // Y + (X - Y) --> X
- Value *X;
- if (FMF.noSignedZeros() && FMF.allowReassoc() &&
- (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
- match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
- return X;
- return nullptr;
- }
- /// Given operands for an FSub, see if we can fold the result. If not, this
- /// returns null.
- static Value *
- simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse,
- fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
- RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
- if (isDefaultFPEnvironment(ExBehavior, Rounding))
- if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
- return C;
- if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
- return C;
- // fsub X, +0 ==> X
- if (canIgnoreSNaN(ExBehavior, FMF) &&
- (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
- FMF.noSignedZeros()))
- if (match(Op1, m_PosZeroFP()))
- return Op0;
- // fsub X, -0 ==> X, when we know X is not -0
- if (canIgnoreSNaN(ExBehavior, FMF))
- if (match(Op1, m_NegZeroFP()) &&
- (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
- return Op0;
- // fsub -0.0, (fsub -0.0, X) ==> X
- // fsub -0.0, (fneg X) ==> X
- Value *X;
- if (canIgnoreSNaN(ExBehavior, FMF))
- if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X))))
- return X;
- // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
- // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
- if (canIgnoreSNaN(ExBehavior, FMF))
- if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
- (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
- match(Op1, m_FNeg(m_Value(X)))))
- return X;
- if (!isDefaultFPEnvironment(ExBehavior, Rounding))
- return nullptr;
- if (FMF.noNaNs()) {
- // fsub nnan x, x ==> 0.0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // With nnan: {+/-}Inf - X --> {+/-}Inf
- if (match(Op0, m_Inf()))
- return Op0;
- // With nnan: X - {+/-}Inf --> {-/+}Inf
- if (match(Op1, m_Inf()))
- return foldConstant(Instruction::FNeg, Op1, Q);
- }
- // Y - (Y - X) --> X
- // (X + Y) - Y --> X
- if (FMF.noSignedZeros() && FMF.allowReassoc() &&
- (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
- match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
- return X;
- return nullptr;
- }
- static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
- return C;
- if (!isDefaultFPEnvironment(ExBehavior, Rounding))
- return nullptr;
- // Canonicalize special constants as operand 1.
- if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP()))
- std::swap(Op0, Op1);
- // X * 1.0 --> X
- if (match(Op1, m_FPOne()))
- return Op0;
- if (match(Op1, m_AnyZeroFP())) {
- // X * 0.0 --> 0.0 (with nnan and nsz)
- if (FMF.noNaNs() && FMF.noSignedZeros())
- return ConstantFP::getNullValue(Op0->getType());
- // +normal number * (-)0.0 --> (-)0.0
- if (isKnownNeverInfinity(Op0, Q.TLI) && isKnownNeverNaN(Op0, Q.TLI) &&
- SignBitMustBeZero(Op0, Q.TLI))
- return Op1;
- }
- // sqrt(X) * sqrt(X) --> X, if we can:
- // 1. Remove the intermediate rounding (reassociate).
- // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
- // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
- Value *X;
- if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() &&
- FMF.noNaNs() && FMF.noSignedZeros())
- return X;
- return nullptr;
- }
- /// Given the operands for an FMul, see if we can fold the result
- static Value *
- simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse,
- fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
- RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
- if (isDefaultFPEnvironment(ExBehavior, Rounding))
- if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
- return C;
- // Now apply simplifications that do not require rounding.
- return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
- }
- Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
- Rounding);
- }
- Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
- Rounding);
- }
- Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
- Rounding);
- }
- Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
- Rounding);
- }
- static Value *
- simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned,
- fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
- RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
- if (isDefaultFPEnvironment(ExBehavior, Rounding))
- if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
- return C;
- if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
- return C;
- if (!isDefaultFPEnvironment(ExBehavior, Rounding))
- return nullptr;
- // X / 1.0 -> X
- if (match(Op1, m_FPOne()))
- return Op0;
- // 0 / X -> 0
- // Requires that NaNs are off (X could be zero) and signed zeroes are
- // ignored (X could be positive or negative, so the output sign is unknown).
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
- return ConstantFP::getNullValue(Op0->getType());
- if (FMF.noNaNs()) {
- // X / X -> 1.0 is legal when NaNs are ignored.
- // We can ignore infinities because INF/INF is NaN.
- if (Op0 == Op1)
- return ConstantFP::get(Op0->getType(), 1.0);
- // (X * Y) / Y --> X if we can reassociate to the above form.
- Value *X;
- if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
- return X;
- // -X / X -> -1.0 and
- // X / -X -> -1.0 are legal when NaNs are ignored.
- // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
- if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
- match(Op1, m_FNegNSZ(m_Specific(Op0))))
- return ConstantFP::get(Op0->getType(), -1.0);
- // nnan ninf X / [-]0.0 -> poison
- if (FMF.noInfs() && match(Op1, m_AnyZeroFP()))
- return PoisonValue::get(Op1->getType());
- }
- return nullptr;
- }
- Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
- Rounding);
- }
- static Value *
- simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned,
- fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
- RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
- if (isDefaultFPEnvironment(ExBehavior, Rounding))
- if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
- return C;
- if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
- return C;
- if (!isDefaultFPEnvironment(ExBehavior, Rounding))
- return nullptr;
- // Unlike fdiv, the result of frem always matches the sign of the dividend.
- // The constant match may include undef elements in a vector, so return a full
- // zero constant as the result.
- if (FMF.noNaNs()) {
- // +0 % X -> 0
- if (match(Op0, m_PosZeroFP()))
- return ConstantFP::getNullValue(Op0->getType());
- // -0 % X -> -0
- if (match(Op0, m_NegZeroFP()))
- return ConstantFP::getNegativeZero(Op0->getType());
- }
- return nullptr;
- }
- Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q,
- fp::ExceptionBehavior ExBehavior,
- RoundingMode Rounding) {
- return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
- Rounding);
- }
- //=== Helper functions for higher up the class hierarchy.
- /// Given the operand for a UnaryOperator, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::FNeg:
- return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
- default:
- llvm_unreachable("Unexpected opcode");
- }
- }
- /// Given the operand for a UnaryOperator, see if we can fold the result.
- /// If not, this returns null.
- /// Try to use FastMathFlags when folding the result.
- static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
- const FastMathFlags &FMF, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::FNeg:
- return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
- default:
- return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
- }
- }
- Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
- return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
- }
- Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
- }
- /// Given operands for a BinaryOperator, see if we can fold the result.
- /// If not, this returns null.
- static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::Add:
- return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
- MaxRecurse);
- case Instruction::Sub:
- return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
- MaxRecurse);
- case Instruction::Mul:
- return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
- MaxRecurse);
- case Instruction::SDiv:
- return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
- case Instruction::UDiv:
- return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
- case Instruction::SRem:
- return simplifySRemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::URem:
- return simplifyURemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Shl:
- return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
- MaxRecurse);
- case Instruction::LShr:
- return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
- case Instruction::AShr:
- return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
- case Instruction::And:
- return simplifyAndInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Or:
- return simplifyOrInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Xor:
- return simplifyXorInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::FAdd:
- return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FSub:
- return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FMul:
- return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FDiv:
- return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FRem:
- return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- default:
- llvm_unreachable("Unexpected opcode");
- }
- }
- /// Given operands for a BinaryOperator, see if we can fold the result.
- /// If not, this returns null.
- /// Try to use FastMathFlags when folding the result.
- static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const FastMathFlags &FMF, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::FAdd:
- return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FSub:
- return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FMul:
- return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FDiv:
- return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
- default:
- return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
- }
- }
- Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
- }
- Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- FastMathFlags FMF, const SimplifyQuery &Q) {
- return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
- }
- /// Given operands for a CmpInst, see if we can fold the result.
- static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
- return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
- return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- }
- Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
- }
- static bool isIdempotent(Intrinsic::ID ID) {
- switch (ID) {
- default:
- return false;
- // Unary idempotent: f(f(x)) = f(x)
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::canonicalize:
- case Intrinsic::arithmetic_fence:
- return true;
- }
- }
- /// Return true if the intrinsic rounds a floating-point value to an integral
- /// floating-point value (not an integer type).
- static bool removesFPFraction(Intrinsic::ID ID) {
- switch (ID) {
- default:
- return false;
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- return true;
- }
- }
- static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset,
- const DataLayout &DL) {
- GlobalValue *PtrSym;
- APInt PtrOffset;
- if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
- return nullptr;
- Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
- Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
- Type *Int32PtrTy = Int32Ty->getPointerTo();
- Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
- auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
- if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
- return nullptr;
- uint64_t OffsetInt = OffsetConstInt->getSExtValue();
- if (OffsetInt % 4 != 0)
- return nullptr;
- Constant *C = ConstantExpr::getGetElementPtr(
- Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
- ConstantInt::get(Int64Ty, OffsetInt / 4));
- Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
- if (!Loaded)
- return nullptr;
- auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
- if (!LoadedCE)
- return nullptr;
- if (LoadedCE->getOpcode() == Instruction::Trunc) {
- LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
- if (!LoadedCE)
- return nullptr;
- }
- if (LoadedCE->getOpcode() != Instruction::Sub)
- return nullptr;
- auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
- if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
- return nullptr;
- auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
- Constant *LoadedRHS = LoadedCE->getOperand(1);
- GlobalValue *LoadedRHSSym;
- APInt LoadedRHSOffset;
- if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
- DL) ||
- PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
- return nullptr;
- return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
- }
- static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
- const SimplifyQuery &Q) {
- // Idempotent functions return the same result when called repeatedly.
- Intrinsic::ID IID = F->getIntrinsicID();
- if (isIdempotent(IID))
- if (auto *II = dyn_cast<IntrinsicInst>(Op0))
- if (II->getIntrinsicID() == IID)
- return II;
- if (removesFPFraction(IID)) {
- // Converting from int or calling a rounding function always results in a
- // finite integral number or infinity. For those inputs, rounding functions
- // always return the same value, so the (2nd) rounding is eliminated. Ex:
- // floor (sitofp x) -> sitofp x
- // round (ceil x) -> ceil x
- auto *II = dyn_cast<IntrinsicInst>(Op0);
- if ((II && removesFPFraction(II->getIntrinsicID())) ||
- match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
- return Op0;
- }
- Value *X;
- switch (IID) {
- case Intrinsic::fabs:
- if (SignBitMustBeZero(Op0, Q.TLI))
- return Op0;
- break;
- case Intrinsic::bswap:
- // bswap(bswap(x)) -> x
- if (match(Op0, m_BSwap(m_Value(X))))
- return X;
- break;
- case Intrinsic::bitreverse:
- // bitreverse(bitreverse(x)) -> x
- if (match(Op0, m_BitReverse(m_Value(X))))
- return X;
- break;
- case Intrinsic::ctpop: {
- // ctpop(X) -> 1 iff X is non-zero power of 2.
- if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI,
- Q.DT))
- return ConstantInt::get(Op0->getType(), 1);
- // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
- // ctpop(and X, 1) --> and X, 1
- unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
- if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
- Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return Op0;
- break;
- }
- case Intrinsic::exp:
- // exp(log(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X))))
- return X;
- break;
- case Intrinsic::exp2:
- // exp2(log2(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X))))
- return X;
- break;
- case Intrinsic::log:
- // log(exp(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))))
- return X;
- break;
- case Intrinsic::log2:
- // log2(exp2(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
- match(Op0,
- m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X)))))
- return X;
- break;
- case Intrinsic::log10:
- // log10(pow(10.0, x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))
- return X;
- break;
- case Intrinsic::experimental_vector_reverse:
- // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
- if (match(Op0, m_VecReverse(m_Value(X))))
- return X;
- // experimental.vector.reverse(splat(X)) -> splat(X)
- if (isSplatValue(Op0))
- return Op0;
- break;
- default:
- break;
- }
- return nullptr;
- }
- /// Given a min/max intrinsic, see if it can be removed based on having an
- /// operand that is another min/max intrinsic with shared operand(s). The caller
- /// is expected to swap the operand arguments to handle commutation.
- static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
- Value *X, *Y;
- if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
- return nullptr;
- auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
- if (!MM0)
- return nullptr;
- Intrinsic::ID IID0 = MM0->getIntrinsicID();
- if (Op1 == X || Op1 == Y ||
- match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
- // max (max X, Y), X --> max X, Y
- if (IID0 == IID)
- return MM0;
- // max (min X, Y), X --> X
- if (IID0 == getInverseMinMaxIntrinsic(IID))
- return Op1;
- }
- return nullptr;
- }
- static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
- const SimplifyQuery &Q) {
- Intrinsic::ID IID = F->getIntrinsicID();
- Type *ReturnType = F->getReturnType();
- unsigned BitWidth = ReturnType->getScalarSizeInBits();
- switch (IID) {
- case Intrinsic::abs:
- // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
- // It is always ok to pick the earlier abs. We'll just lose nsw if its only
- // on the outer abs.
- if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
- return Op0;
- break;
- case Intrinsic::cttz: {
- Value *X;
- if (match(Op0, m_Shl(m_One(), m_Value(X))))
- return X;
- break;
- }
- case Intrinsic::ctlz: {
- Value *X;
- if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
- return X;
- if (match(Op0, m_AShr(m_Negative(), m_Value())))
- return Constant::getNullValue(ReturnType);
- break;
- }
- case Intrinsic::smax:
- case Intrinsic::smin:
- case Intrinsic::umax:
- case Intrinsic::umin: {
- // If the arguments are the same, this is a no-op.
- if (Op0 == Op1)
- return Op0;
- // Canonicalize immediate constant operand as Op1.
- if (match(Op0, m_ImmConstant()))
- std::swap(Op0, Op1);
- // Assume undef is the limit value.
- if (Q.isUndefValue(Op1))
- return ConstantInt::get(
- ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
- const APInt *C;
- if (match(Op1, m_APIntAllowUndef(C))) {
- // Clamp to limit value. For example:
- // umax(i8 %x, i8 255) --> 255
- if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
- return ConstantInt::get(ReturnType, *C);
- // If the constant op is the opposite of the limit value, the other must
- // be larger/smaller or equal. For example:
- // umin(i8 %x, i8 255) --> %x
- if (*C == MinMaxIntrinsic::getSaturationPoint(
- getInverseMinMaxIntrinsic(IID), BitWidth))
- return Op0;
- // Remove nested call if constant operands allow it. Example:
- // max (max X, 7), 5 -> max X, 7
- auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
- if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
- // TODO: loosen undef/splat restrictions for vector constants.
- Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
- const APInt *InnerC;
- if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
- ICmpInst::compare(*InnerC, *C,
- ICmpInst::getNonStrictPredicate(
- MinMaxIntrinsic::getPredicate(IID))))
- return Op0;
- }
- }
- if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
- return V;
- if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
- return V;
- ICmpInst::Predicate Pred =
- ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
- if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
- return Op0;
- if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
- return Op1;
- if (std::optional<bool> Imp =
- isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
- return *Imp ? Op0 : Op1;
- if (std::optional<bool> Imp =
- isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
- return *Imp ? Op1 : Op0;
- break;
- }
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- // X - X -> { 0, false }
- // X - undef -> { 0, false }
- // undef - X -> { 0, false }
- if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
- return Constant::getNullValue(ReturnType);
- break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- // X + undef -> { -1, false }
- // undef + x -> { -1, false }
- if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
- return ConstantStruct::get(
- cast<StructType>(ReturnType),
- {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
- Constant::getNullValue(ReturnType->getStructElementType(1))});
- }
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- // 0 * X -> { 0, false }
- // X * 0 -> { 0, false }
- if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
- return Constant::getNullValue(ReturnType);
- // undef * X -> { 0, false }
- // X * undef -> { 0, false }
- if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
- return Constant::getNullValue(ReturnType);
- break;
- case Intrinsic::uadd_sat:
- // sat(MAX + X) -> MAX
- // sat(X + MAX) -> MAX
- if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
- return Constant::getAllOnesValue(ReturnType);
- [[fallthrough]];
- case Intrinsic::sadd_sat:
- // sat(X + undef) -> -1
- // sat(undef + X) -> -1
- // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
- // For signed: Assume undef is ~X, in which case X + ~X = -1.
- if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
- return Constant::getAllOnesValue(ReturnType);
- // X + 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // 0 + X -> X
- if (match(Op0, m_Zero()))
- return Op1;
- break;
- case Intrinsic::usub_sat:
- // sat(0 - X) -> 0, sat(X - MAX) -> 0
- if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
- return Constant::getNullValue(ReturnType);
- [[fallthrough]];
- case Intrinsic::ssub_sat:
- // X - X -> 0, X - undef -> 0, undef - X -> 0
- if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
- return Constant::getNullValue(ReturnType);
- // X - 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- break;
- case Intrinsic::load_relative:
- if (auto *C0 = dyn_cast<Constant>(Op0))
- if (auto *C1 = dyn_cast<Constant>(Op1))
- return simplifyRelativeLoad(C0, C1, Q.DL);
- break;
- case Intrinsic::powi:
- if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
- // powi(x, 0) -> 1.0
- if (Power->isZero())
- return ConstantFP::get(Op0->getType(), 1.0);
- // powi(x, 1) -> x
- if (Power->isOne())
- return Op0;
- }
- break;
- case Intrinsic::copysign:
- // copysign X, X --> X
- if (Op0 == Op1)
- return Op0;
- // copysign -X, X --> X
- // copysign X, -X --> -X
- if (match(Op0, m_FNeg(m_Specific(Op1))) ||
- match(Op1, m_FNeg(m_Specific(Op0))))
- return Op1;
- break;
- case Intrinsic::is_fpclass: {
- if (isa<PoisonValue>(Op0))
- return PoisonValue::get(ReturnType);
- uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue();
- // If all tests are made, it doesn't matter what the value is.
- if ((Mask & fcAllFlags) == fcAllFlags)
- return ConstantInt::get(ReturnType, true);
- if ((Mask & fcAllFlags) == 0)
- return ConstantInt::get(ReturnType, false);
- if (Q.isUndefValue(Op0))
- return UndefValue::get(ReturnType);
- break;
- }
- case Intrinsic::maxnum:
- case Intrinsic::minnum:
- case Intrinsic::maximum:
- case Intrinsic::minimum: {
- // If the arguments are the same, this is a no-op.
- if (Op0 == Op1)
- return Op0;
- // Canonicalize constant operand as Op1.
- if (isa<Constant>(Op0))
- std::swap(Op0, Op1);
- // If an argument is undef, return the other argument.
- if (Q.isUndefValue(Op1))
- return Op0;
- bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
- bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
- // minnum(X, nan) -> X
- // maxnum(X, nan) -> X
- // minimum(X, nan) -> nan
- // maximum(X, nan) -> nan
- if (match(Op1, m_NaN()))
- return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
- // In the following folds, inf can be replaced with the largest finite
- // float, if the ninf flag is set.
- const APFloat *C;
- if (match(Op1, m_APFloat(C)) &&
- (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
- // minnum(X, -inf) -> -inf
- // maxnum(X, +inf) -> +inf
- // minimum(X, -inf) -> -inf if nnan
- // maximum(X, +inf) -> +inf if nnan
- if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
- return ConstantFP::get(ReturnType, *C);
- // minnum(X, +inf) -> X if nnan
- // maxnum(X, -inf) -> X if nnan
- // minimum(X, +inf) -> X
- // maximum(X, -inf) -> X
- if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
- return Op0;
- }
- // Min/max of the same operation with common operand:
- // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
- if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
- if (M0->getIntrinsicID() == IID &&
- (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
- return Op0;
- if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
- if (M1->getIntrinsicID() == IID &&
- (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
- return Op1;
- break;
- }
- case Intrinsic::vector_extract: {
- Type *ReturnType = F->getReturnType();
- // (extract_vector (insert_vector _, X, 0), 0) -> X
- unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
- Value *X = nullptr;
- if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X),
- m_Zero())) &&
- IdxN == 0 && X->getType() == ReturnType)
- return X;
- break;
- }
- default:
- break;
- }
- return nullptr;
- }
- static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
- unsigned NumOperands = Call->arg_size();
- Function *F = cast<Function>(Call->getCalledFunction());
- Intrinsic::ID IID = F->getIntrinsicID();
- // Most of the intrinsics with no operands have some kind of side effect.
- // Don't simplify.
- if (!NumOperands) {
- switch (IID) {
- case Intrinsic::vscale: {
- // Call may not be inserted into the IR yet at point of calling simplify.
- if (!Call->getParent() || !Call->getParent()->getParent())
- return nullptr;
- auto Attr = Call->getFunction()->getFnAttribute(Attribute::VScaleRange);
- if (!Attr.isValid())
- return nullptr;
- unsigned VScaleMin = Attr.getVScaleRangeMin();
- std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
- if (VScaleMax && VScaleMin == VScaleMax)
- return ConstantInt::get(F->getReturnType(), VScaleMin);
- return nullptr;
- }
- default:
- return nullptr;
- }
- }
- if (NumOperands == 1)
- return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
- if (NumOperands == 2)
- return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
- Call->getArgOperand(1), Q);
- // Handle intrinsics with 3 or more arguments.
- switch (IID) {
- case Intrinsic::masked_load:
- case Intrinsic::masked_gather: {
- Value *MaskArg = Call->getArgOperand(2);
- Value *PassthruArg = Call->getArgOperand(3);
- // If the mask is all zeros or undef, the "passthru" argument is the result.
- if (maskIsAllZeroOrUndef(MaskArg))
- return PassthruArg;
- return nullptr;
- }
- case Intrinsic::fshl:
- case Intrinsic::fshr: {
- Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
- *ShAmtArg = Call->getArgOperand(2);
- // If both operands are undef, the result is undef.
- if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
- return UndefValue::get(F->getReturnType());
- // If shift amount is undef, assume it is zero.
- if (Q.isUndefValue(ShAmtArg))
- return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
- const APInt *ShAmtC;
- if (match(ShAmtArg, m_APInt(ShAmtC))) {
- // If there's effectively no shift, return the 1st arg or 2nd arg.
- APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
- if (ShAmtC->urem(BitWidth).isZero())
- return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
- }
- // Rotating zero by anything is zero.
- if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
- return ConstantInt::getNullValue(F->getReturnType());
- // Rotating -1 by anything is -1.
- if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
- return ConstantInt::getAllOnesValue(F->getReturnType());
- return nullptr;
- }
- case Intrinsic::experimental_constrained_fma: {
- Value *Op0 = Call->getArgOperand(0);
- Value *Op1 = Call->getArgOperand(1);
- Value *Op2 = Call->getArgOperand(2);
- auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
- if (Value *V =
- simplifyFPOp({Op0, Op1, Op2}, {}, Q, *FPI->getExceptionBehavior(),
- *FPI->getRoundingMode()))
- return V;
- return nullptr;
- }
- case Intrinsic::fma:
- case Intrinsic::fmuladd: {
- Value *Op0 = Call->getArgOperand(0);
- Value *Op1 = Call->getArgOperand(1);
- Value *Op2 = Call->getArgOperand(2);
- if (Value *V = simplifyFPOp({Op0, Op1, Op2}, {}, Q, fp::ebIgnore,
- RoundingMode::NearestTiesToEven))
- return V;
- return nullptr;
- }
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat: {
- Value *Op0 = Call->getArgOperand(0);
- Value *Op1 = Call->getArgOperand(1);
- Value *Op2 = Call->getArgOperand(2);
- Type *ReturnType = F->getReturnType();
- // Canonicalize constant operand as Op1 (ConstantFolding handles the case
- // when both Op0 and Op1 are constant so we do not care about that special
- // case here).
- if (isa<Constant>(Op0))
- std::swap(Op0, Op1);
- // X * 0 -> 0
- if (match(Op1, m_Zero()))
- return Constant::getNullValue(ReturnType);
- // X * undef -> 0
- if (Q.isUndefValue(Op1))
- return Constant::getNullValue(ReturnType);
- // X * (1 << Scale) -> X
- APInt ScaledOne =
- APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
- cast<ConstantInt>(Op2)->getZExtValue());
- if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
- return Op0;
- return nullptr;
- }
- case Intrinsic::vector_insert: {
- Value *Vec = Call->getArgOperand(0);
- Value *SubVec = Call->getArgOperand(1);
- Value *Idx = Call->getArgOperand(2);
- Type *ReturnType = F->getReturnType();
- // (insert_vector Y, (extract_vector X, 0), 0) -> X
- // where: Y is X, or Y is undef
- unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
- Value *X = nullptr;
- if (match(SubVec,
- m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) &&
- (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
- X->getType() == ReturnType)
- return X;
- return nullptr;
- }
- case Intrinsic::experimental_constrained_fadd: {
- auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
- return simplifyFAddInst(
- FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
- Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
- }
- case Intrinsic::experimental_constrained_fsub: {
- auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
- return simplifyFSubInst(
- FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
- Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
- }
- case Intrinsic::experimental_constrained_fmul: {
- auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
- return simplifyFMulInst(
- FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
- Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
- }
- case Intrinsic::experimental_constrained_fdiv: {
- auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
- return simplifyFDivInst(
- FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
- Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
- }
- case Intrinsic::experimental_constrained_frem: {
- auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
- return simplifyFRemInst(
- FPI->getArgOperand(0), FPI->getArgOperand(1), FPI->getFastMathFlags(),
- Q, *FPI->getExceptionBehavior(), *FPI->getRoundingMode());
- }
- default:
- return nullptr;
- }
- }
- static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
- auto *F = dyn_cast<Function>(Call->getCalledOperand());
- if (!F || !canConstantFoldCallTo(Call, F))
- return nullptr;
- SmallVector<Constant *, 4> ConstantArgs;
- unsigned NumArgs = Call->arg_size();
- ConstantArgs.reserve(NumArgs);
- for (auto &Arg : Call->args()) {
- Constant *C = dyn_cast<Constant>(&Arg);
- if (!C) {
- if (isa<MetadataAsValue>(Arg.get()))
- continue;
- return nullptr;
- }
- ConstantArgs.push_back(C);
- }
- return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
- }
- Value *llvm::simplifyCall(CallBase *Call, const SimplifyQuery &Q) {
- // musttail calls can only be simplified if they are also DCEd.
- // As we can't guarantee this here, don't simplify them.
- if (Call->isMustTailCall())
- return nullptr;
- // call undef -> poison
- // call null -> poison
- Value *Callee = Call->getCalledOperand();
- if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
- return PoisonValue::get(Call->getType());
- if (Value *V = tryConstantFoldCall(Call, Q))
- return V;
- auto *F = dyn_cast<Function>(Callee);
- if (F && F->isIntrinsic())
- if (Value *Ret = simplifyIntrinsic(Call, Q))
- return Ret;
- return nullptr;
- }
- Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) {
- assert(isa<ConstrainedFPIntrinsic>(Call));
- if (Value *V = tryConstantFoldCall(Call, Q))
- return V;
- if (Value *Ret = simplifyIntrinsic(Call, Q))
- return Ret;
- return nullptr;
- }
- /// Given operands for a Freeze, see if we can fold the result.
- static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
- // Use a utility function defined in ValueTracking.
- if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
- return Op0;
- // We have room for improvement.
- return nullptr;
- }
- Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
- return ::simplifyFreezeInst(Op0, Q);
- }
- static Value *simplifyLoadInst(LoadInst *LI, Value *PtrOp,
- const SimplifyQuery &Q) {
- if (LI->isVolatile())
- return nullptr;
- APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
- auto *PtrOpC = dyn_cast<Constant>(PtrOp);
- // Try to convert operand into a constant by stripping offsets while looking
- // through invariant.group intrinsics. Don't bother if the underlying object
- // is not constant, as calculating GEP offsets is expensive.
- if (!PtrOpC && isa<Constant>(getUnderlyingObject(PtrOp))) {
- PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
- Q.DL, Offset, /* AllowNonInbounts */ true,
- /* AllowInvariantGroup */ true);
- // Index size may have changed due to address space casts.
- Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
- PtrOpC = dyn_cast<Constant>(PtrOp);
- }
- if (PtrOpC)
- return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Offset, Q.DL);
- return nullptr;
- }
- /// See if we can compute a simplified version of this instruction.
- /// If not, this returns null.
- static Value *simplifyInstructionWithOperands(Instruction *I,
- ArrayRef<Value *> NewOps,
- const SimplifyQuery &SQ,
- OptimizationRemarkEmitter *ORE) {
- const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
- switch (I->getOpcode()) {
- default:
- if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
- SmallVector<Constant *, 8> NewConstOps(NewOps.size());
- transform(NewOps, NewConstOps.begin(),
- [](Value *V) { return cast<Constant>(V); });
- return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
- }
- return nullptr;
- case Instruction::FNeg:
- return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q);
- case Instruction::FAdd:
- return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
- case Instruction::Add:
- return simplifyAddInst(NewOps[0], NewOps[1],
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- case Instruction::FSub:
- return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
- case Instruction::Sub:
- return simplifySubInst(NewOps[0], NewOps[1],
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- case Instruction::FMul:
- return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
- case Instruction::Mul:
- return simplifyMulInst(NewOps[0], NewOps[1],
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- case Instruction::SDiv:
- return simplifySDivInst(NewOps[0], NewOps[1],
- Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
- case Instruction::UDiv:
- return simplifyUDivInst(NewOps[0], NewOps[1],
- Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
- case Instruction::FDiv:
- return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
- case Instruction::SRem:
- return simplifySRemInst(NewOps[0], NewOps[1], Q);
- case Instruction::URem:
- return simplifyURemInst(NewOps[0], NewOps[1], Q);
- case Instruction::FRem:
- return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q);
- case Instruction::Shl:
- return simplifyShlInst(NewOps[0], NewOps[1],
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- case Instruction::LShr:
- return simplifyLShrInst(NewOps[0], NewOps[1],
- Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
- case Instruction::AShr:
- return simplifyAShrInst(NewOps[0], NewOps[1],
- Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
- case Instruction::And:
- return simplifyAndInst(NewOps[0], NewOps[1], Q);
- case Instruction::Or:
- return simplifyOrInst(NewOps[0], NewOps[1], Q);
- case Instruction::Xor:
- return simplifyXorInst(NewOps[0], NewOps[1], Q);
- case Instruction::ICmp:
- return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
- NewOps[1], Q);
- case Instruction::FCmp:
- return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
- NewOps[1], I->getFastMathFlags(), Q);
- case Instruction::Select:
- return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q);
- break;
- case Instruction::GetElementPtr: {
- auto *GEPI = cast<GetElementPtrInst>(I);
- return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
- ArrayRef(NewOps).slice(1), GEPI->isInBounds(), Q);
- }
- case Instruction::InsertValue: {
- InsertValueInst *IV = cast<InsertValueInst>(I);
- return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q);
- }
- case Instruction::InsertElement:
- return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
- case Instruction::ExtractValue: {
- auto *EVI = cast<ExtractValueInst>(I);
- return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q);
- }
- case Instruction::ExtractElement:
- return simplifyExtractElementInst(NewOps[0], NewOps[1], Q);
- case Instruction::ShuffleVector: {
- auto *SVI = cast<ShuffleVectorInst>(I);
- return simplifyShuffleVectorInst(NewOps[0], NewOps[1],
- SVI->getShuffleMask(), SVI->getType(), Q);
- }
- case Instruction::PHI:
- return simplifyPHINode(cast<PHINode>(I), NewOps, Q);
- case Instruction::Call:
- // TODO: Use NewOps
- return simplifyCall(cast<CallInst>(I), Q);
- case Instruction::Freeze:
- return llvm::simplifyFreezeInst(NewOps[0], Q);
- #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
- #include "llvm/IR/Instruction.def"
- #undef HANDLE_CAST_INST
- return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q);
- case Instruction::Alloca:
- // No simplifications for Alloca and it can't be constant folded.
- return nullptr;
- case Instruction::Load:
- return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
- }
- }
- Value *llvm::simplifyInstructionWithOperands(Instruction *I,
- ArrayRef<Value *> NewOps,
- const SimplifyQuery &SQ,
- OptimizationRemarkEmitter *ORE) {
- assert(NewOps.size() == I->getNumOperands() &&
- "Number of operands should match the instruction!");
- return ::simplifyInstructionWithOperands(I, NewOps, SQ, ORE);
- }
- Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
- OptimizationRemarkEmitter *ORE) {
- SmallVector<Value *, 8> Ops(I->operands());
- Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, ORE);
- /// If called on unreachable code, the instruction may simplify to itself.
- /// Make life easier for users by detecting that case here, and returning a
- /// safe value instead.
- return Result == I ? UndefValue::get(I->getType()) : Result;
- }
- /// Implementation of recursive simplification through an instruction's
- /// uses.
- ///
- /// This is the common implementation of the recursive simplification routines.
- /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
- /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
- /// instructions to process and attempt to simplify it using
- /// InstructionSimplify. Recursively visited users which could not be
- /// simplified themselves are to the optional UnsimplifiedUsers set for
- /// further processing by the caller.
- ///
- /// This routine returns 'true' only when *it* simplifies something. The passed
- /// in simplified value does not count toward this.
- static bool replaceAndRecursivelySimplifyImpl(
- Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
- bool Simplified = false;
- SmallSetVector<Instruction *, 8> Worklist;
- const DataLayout &DL = I->getModule()->getDataLayout();
- // If we have an explicit value to collapse to, do that round of the
- // simplification loop by hand initially.
- if (SimpleV) {
- for (User *U : I->users())
- if (U != I)
- Worklist.insert(cast<Instruction>(U));
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
- // Gracefully handle edge cases where the instruction is not wired into any
- // parent block.
- if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
- !I->mayHaveSideEffects())
- I->eraseFromParent();
- } else {
- Worklist.insert(I);
- }
- // Note that we must test the size on each iteration, the worklist can grow.
- for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
- I = Worklist[Idx];
- // See if this instruction simplifies.
- SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC});
- if (!SimpleV) {
- if (UnsimplifiedUsers)
- UnsimplifiedUsers->insert(I);
- continue;
- }
- Simplified = true;
- // Stash away all the uses of the old instruction so we can check them for
- // recursive simplifications after a RAUW. This is cheaper than checking all
- // uses of To on the recursive step in most cases.
- for (User *U : I->users())
- Worklist.insert(cast<Instruction>(U));
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
- // Gracefully handle edge cases where the instruction is not wired into any
- // parent block.
- if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
- !I->mayHaveSideEffects())
- I->eraseFromParent();
- }
- return Simplified;
- }
- bool llvm::replaceAndRecursivelySimplify(
- Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
- assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
- assert(SimpleV && "Must provide a simplified value.");
- return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
- UnsimplifiedUsers);
- }
- namespace llvm {
- const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
- auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
- auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
- auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
- return {F.getParent()->getDataLayout(), TLI, DT, AC};
- }
- const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
- const DataLayout &DL) {
- return {DL, &AR.TLI, &AR.DT, &AR.AC};
- }
- template <class T, class... TArgs>
- const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
- Function &F) {
- auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
- auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
- auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
- return {F.getParent()->getDataLayout(), TLI, DT, AC};
- }
- template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
- Function &);
- } // namespace llvm
- void InstSimplifyFolder::anchor() {}
|