12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464 |
- //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines routines for folding instructions into constants.
- //
- // Also, to supplement the basic IR ConstantExpr simplifications,
- // this file defines some additional folding routines that can make use of
- // DataLayout information. These functions cannot go in IR due to library
- // dependency issues.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Analysis/TargetFolder.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/Config/config.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantFold.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsAArch64.h"
- #include "llvm/IR/IntrinsicsAMDGPU.h"
- #include "llvm/IR/IntrinsicsARM.h"
- #include "llvm/IR/IntrinsicsWebAssembly.h"
- #include "llvm/IR/IntrinsicsX86.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- #include <cerrno>
- #include <cfenv>
- #include <cmath>
- #include <cstdint>
- using namespace llvm;
- namespace {
- //===----------------------------------------------------------------------===//
- // Constant Folding internal helper functions
- //===----------------------------------------------------------------------===//
- static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
- Constant *C, Type *SrcEltTy,
- unsigned NumSrcElts,
- const DataLayout &DL) {
- // Now that we know that the input value is a vector of integers, just shift
- // and insert them into our result.
- unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- Constant *Element;
- if (DL.isLittleEndian())
- Element = C->getAggregateElement(NumSrcElts - i - 1);
- else
- Element = C->getAggregateElement(i);
- if (Element && isa<UndefValue>(Element)) {
- Result <<= BitShift;
- continue;
- }
- auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
- if (!ElementCI)
- return ConstantExpr::getBitCast(C, DestTy);
- Result <<= BitShift;
- Result |= ElementCI->getValue().zext(Result.getBitWidth());
- }
- return nullptr;
- }
- /// Constant fold bitcast, symbolically evaluating it with DataLayout.
- /// This always returns a non-null constant, but it may be a
- /// ConstantExpr if unfoldable.
- Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
- assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
- "Invalid constantexpr bitcast!");
- // Catch the obvious splat cases.
- if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
- return Res;
- if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
- // Handle a vector->scalar integer/fp cast.
- if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
- unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
- Type *SrcEltTy = VTy->getElementType();
- // If the vector is a vector of floating point, convert it to vector of int
- // to simplify things.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- auto *SrcIVTy = FixedVectorType::get(
- IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- }
- APInt Result(DL.getTypeSizeInBits(DestTy), 0);
- if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
- SrcEltTy, NumSrcElts, DL))
- return CE;
- if (isa<IntegerType>(DestTy))
- return ConstantInt::get(DestTy, Result);
- APFloat FP(DestTy->getFltSemantics(), Result);
- return ConstantFP::get(DestTy->getContext(), FP);
- }
- }
- // The code below only handles casts to vectors currently.
- auto *DestVTy = dyn_cast<VectorType>(DestTy);
- if (!DestVTy)
- return ConstantExpr::getBitCast(C, DestTy);
- // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
- // vector so the code below can handle it uniformly.
- if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
- Constant *Ops = C; // don't take the address of C!
- return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
- }
- // If this is a bitcast from constant vector -> vector, fold it.
- if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
- return ConstantExpr::getBitCast(C, DestTy);
- // If the element types match, IR can fold it.
- unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
- unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
- if (NumDstElt == NumSrcElt)
- return ConstantExpr::getBitCast(C, DestTy);
- Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
- Type *DstEltTy = DestVTy->getElementType();
- // Otherwise, we're changing the number of elements in a vector, which
- // requires endianness information to do the right thing. For example,
- // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- // folds to (little endian):
- // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
- // and to (big endian):
- // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
- // First thing is first. We only want to think about integer here, so if
- // we have something in FP form, recast it as integer.
- if (DstEltTy->isFloatingPointTy()) {
- // Fold to an vector of integers with same size as our FP type.
- unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- auto *DestIVTy = FixedVectorType::get(
- IntegerType::get(C->getContext(), FPWidth), NumDstElt);
- // Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, DL);
- // Finally, IR can handle this now that #elts line up.
- return ConstantExpr::getBitCast(C, DestTy);
- }
- // Okay, we know the destination is integer, if the input is FP, convert
- // it to integer first.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- auto *SrcIVTy = FixedVectorType::get(
- IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- // If IR wasn't able to fold it, bail out.
- if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
- !isa<ConstantDataVector>(C))
- return C;
- }
- // Now we know that the input and output vectors are both integer vectors
- // of the same size, and that their #elements is not the same. Do the
- // conversion here, which depends on whether the input or output has
- // more elements.
- bool isLittleEndian = DL.isLittleEndian();
- SmallVector<Constant*, 32> Result;
- if (NumDstElt < NumSrcElt) {
- // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
- Constant *Zero = Constant::getNullValue(DstEltTy);
- unsigned Ratio = NumSrcElt/NumDstElt;
- unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
- unsigned SrcElt = 0;
- for (unsigned i = 0; i != NumDstElt; ++i) {
- // Build each element of the result.
- Constant *Elt = Zero;
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- Constant *Src = C->getAggregateElement(SrcElt++);
- if (Src && isa<UndefValue>(Src))
- Src = Constant::getNullValue(
- cast<VectorType>(C->getType())->getElementType());
- else
- Src = dyn_cast_or_null<ConstantInt>(Src);
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
- // Zero extend the element to the right size.
- Src = ConstantExpr::getZExt(Src, Elt->getType());
- // Shift it to the right place, depending on endianness.
- Src = ConstantExpr::getShl(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
- // Mix it in.
- Elt = ConstantExpr::getOr(Elt, Src);
- }
- Result.push_back(Elt);
- }
- return ConstantVector::get(Result);
- }
- // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
- // Loop over each source value, expanding into multiple results.
- for (unsigned i = 0; i != NumSrcElt; ++i) {
- auto *Element = C->getAggregateElement(i);
- if (!Element) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
- if (isa<UndefValue>(Element)) {
- // Correctly Propagate undef values.
- Result.append(Ratio, UndefValue::get(DstEltTy));
- continue;
- }
- auto *Src = dyn_cast<ConstantInt>(Element);
- if (!Src)
- return ConstantExpr::getBitCast(C, DestTy);
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- // Shift the piece of the value into the right place, depending on
- // endianness.
- Constant *Elt = ConstantExpr::getLShr(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- // Truncate the element to an integer with the same pointer size and
- // convert the element back to a pointer using a inttoptr.
- if (DstEltTy->isPointerTy()) {
- IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
- Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
- Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
- continue;
- }
- // Truncate and remember this piece.
- Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
- }
- }
- return ConstantVector::get(Result);
- }
- } // end anonymous namespace
- /// If this constant is a constant offset from a global, return the global and
- /// the constant. Because of constantexprs, this function is recursive.
- bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- APInt &Offset, const DataLayout &DL,
- DSOLocalEquivalent **DSOEquiv) {
- if (DSOEquiv)
- *DSOEquiv = nullptr;
- // Trivial case, constant is the global.
- if ((GV = dyn_cast<GlobalValue>(C))) {
- unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
- Offset = APInt(BitWidth, 0);
- return true;
- }
- if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
- if (DSOEquiv)
- *DSOEquiv = FoundDSOEquiv;
- GV = FoundDSOEquiv->getGlobalValue();
- unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
- Offset = APInt(BitWidth, 0);
- return true;
- }
- // Otherwise, if this isn't a constant expr, bail out.
- auto *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return false;
- // Look through ptr->int and ptr->ptr casts.
- if (CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::BitCast)
- return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
- DSOEquiv);
- // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- auto *GEP = dyn_cast<GEPOperator>(CE);
- if (!GEP)
- return false;
- unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
- APInt TmpOffset(BitWidth, 0);
- // If the base isn't a global+constant, we aren't either.
- if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
- DSOEquiv))
- return false;
- // Otherwise, add any offset that our operands provide.
- if (!GEP->accumulateConstantOffset(DL, TmpOffset))
- return false;
- Offset = TmpOffset;
- return true;
- }
- Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
- const DataLayout &DL) {
- do {
- Type *SrcTy = C->getType();
- if (SrcTy == DestTy)
- return C;
- TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
- TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
- if (!TypeSize::isKnownGE(SrcSize, DestSize))
- return nullptr;
- // Catch the obvious splat cases (since all-zeros can coerce non-integral
- // pointers legally).
- if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
- return Res;
- // If the type sizes are the same and a cast is legal, just directly
- // cast the constant.
- // But be careful not to coerce non-integral pointers illegally.
- if (SrcSize == DestSize &&
- DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
- DL.isNonIntegralPointerType(DestTy->getScalarType())) {
- Instruction::CastOps Cast = Instruction::BitCast;
- // If we are going from a pointer to int or vice versa, we spell the cast
- // differently.
- if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
- Cast = Instruction::IntToPtr;
- else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
- Cast = Instruction::PtrToInt;
- if (CastInst::castIsValid(Cast, C, DestTy))
- return ConstantExpr::getCast(Cast, C, DestTy);
- }
- // If this isn't an aggregate type, there is nothing we can do to drill down
- // and find a bitcastable constant.
- if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
- return nullptr;
- // We're simulating a load through a pointer that was bitcast to point to
- // a different type, so we can try to walk down through the initial
- // elements of an aggregate to see if some part of the aggregate is
- // castable to implement the "load" semantic model.
- if (SrcTy->isStructTy()) {
- // Struct types might have leading zero-length elements like [0 x i32],
- // which are certainly not what we are looking for, so skip them.
- unsigned Elem = 0;
- Constant *ElemC;
- do {
- ElemC = C->getAggregateElement(Elem++);
- } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
- C = ElemC;
- } else {
- // For non-byte-sized vector elements, the first element is not
- // necessarily located at the vector base address.
- if (auto *VT = dyn_cast<VectorType>(SrcTy))
- if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
- return nullptr;
- C = C->getAggregateElement(0u);
- }
- } while (C);
- return nullptr;
- }
- namespace {
- /// Recursive helper to read bits out of global. C is the constant being copied
- /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
- /// results into and BytesLeft is the number of bytes left in
- /// the CurPtr buffer. DL is the DataLayout.
- bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
- unsigned BytesLeft, const DataLayout &DL) {
- assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
- "Out of range access");
- // If this element is zero or undefined, we can just return since *CurPtr is
- // zero initialized.
- if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
- return true;
- if (auto *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getBitWidth() > 64 ||
- (CI->getBitWidth() & 7) != 0)
- return false;
- uint64_t Val = CI->getZExtValue();
- unsigned IntBytes = unsigned(CI->getBitWidth()/8);
- for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
- int n = ByteOffset;
- if (!DL.isLittleEndian())
- n = IntBytes - n - 1;
- CurPtr[i] = (unsigned char)(Val >> (n * 8));
- ++ByteOffset;
- }
- return true;
- }
- if (auto *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->getType()->isDoubleTy()) {
- C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- if (CFP->getType()->isFloatTy()){
- C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- if (CFP->getType()->isHalfTy()){
- C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- return false;
- }
- if (auto *CS = dyn_cast<ConstantStruct>(C)) {
- const StructLayout *SL = DL.getStructLayout(CS->getType());
- unsigned Index = SL->getElementContainingOffset(ByteOffset);
- uint64_t CurEltOffset = SL->getElementOffset(Index);
- ByteOffset -= CurEltOffset;
- while (true) {
- // If the element access is to the element itself and not to tail padding,
- // read the bytes from the element.
- uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
- if (ByteOffset < EltSize &&
- !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
- BytesLeft, DL))
- return false;
- ++Index;
- // Check to see if we read from the last struct element, if so we're done.
- if (Index == CS->getType()->getNumElements())
- return true;
- // If we read all of the bytes we needed from this element we're done.
- uint64_t NextEltOffset = SL->getElementOffset(Index);
- if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
- return true;
- // Move to the next element of the struct.
- CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
- BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
- ByteOffset = 0;
- CurEltOffset = NextEltOffset;
- }
- // not reached.
- }
- if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
- isa<ConstantDataSequential>(C)) {
- uint64_t NumElts;
- Type *EltTy;
- if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
- NumElts = AT->getNumElements();
- EltTy = AT->getElementType();
- } else {
- NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
- EltTy = cast<FixedVectorType>(C->getType())->getElementType();
- }
- uint64_t EltSize = DL.getTypeAllocSize(EltTy);
- uint64_t Index = ByteOffset / EltSize;
- uint64_t Offset = ByteOffset - Index * EltSize;
- for (; Index != NumElts; ++Index) {
- if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
- BytesLeft, DL))
- return false;
- uint64_t BytesWritten = EltSize - Offset;
- assert(BytesWritten <= EltSize && "Not indexing into this element?");
- if (BytesWritten >= BytesLeft)
- return true;
- Offset = 0;
- BytesLeft -= BytesWritten;
- CurPtr += BytesWritten;
- }
- return true;
- }
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr &&
- CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
- return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
- BytesLeft, DL);
- }
- }
- // Otherwise, unknown initializer type.
- return false;
- }
- Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
- int64_t Offset, const DataLayout &DL) {
- // Bail out early. Not expect to load from scalable global variable.
- if (isa<ScalableVectorType>(LoadTy))
- return nullptr;
- auto *IntType = dyn_cast<IntegerType>(LoadTy);
- // If this isn't an integer load we can't fold it directly.
- if (!IntType) {
- // If this is a non-integer load, we can try folding it as an int load and
- // then bitcast the result. This can be useful for union cases. Note
- // that address spaces don't matter here since we're not going to result in
- // an actual new load.
- if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
- !LoadTy->isVectorTy())
- return nullptr;
- Type *MapTy = Type::getIntNTy(C->getContext(),
- DL.getTypeSizeInBits(LoadTy).getFixedValue());
- if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
- if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
- !LoadTy->isX86_AMXTy())
- // Materializing a zero can be done trivially without a bitcast
- return Constant::getNullValue(LoadTy);
- Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
- Res = FoldBitCast(Res, CastTy, DL);
- if (LoadTy->isPtrOrPtrVectorTy()) {
- // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
- if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
- !LoadTy->isX86_AMXTy())
- return Constant::getNullValue(LoadTy);
- if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
- // Be careful not to replace a load of an addrspace value with an inttoptr here
- return nullptr;
- Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
- }
- return Res;
- }
- return nullptr;
- }
- unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
- if (BytesLoaded > 32 || BytesLoaded == 0)
- return nullptr;
- // If we're not accessing anything in this constant, the result is undefined.
- if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
- return PoisonValue::get(IntType);
- // TODO: We should be able to support scalable types.
- TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
- if (InitializerSize.isScalable())
- return nullptr;
- // If we're not accessing anything in this constant, the result is undefined.
- if (Offset >= (int64_t)InitializerSize.getFixedValue())
- return PoisonValue::get(IntType);
- unsigned char RawBytes[32] = {0};
- unsigned char *CurPtr = RawBytes;
- unsigned BytesLeft = BytesLoaded;
- // If we're loading off the beginning of the global, some bytes may be valid.
- if (Offset < 0) {
- CurPtr += -Offset;
- BytesLeft += Offset;
- Offset = 0;
- }
- if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
- return nullptr;
- APInt ResultVal = APInt(IntType->getBitWidth(), 0);
- if (DL.isLittleEndian()) {
- ResultVal = RawBytes[BytesLoaded - 1];
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[BytesLoaded - 1 - i];
- }
- } else {
- ResultVal = RawBytes[0];
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[i];
- }
- }
- return ConstantInt::get(IntType->getContext(), ResultVal);
- }
- } // anonymous namespace
- // If GV is a constant with an initializer read its representation starting
- // at Offset and return it as a constant array of unsigned char. Otherwise
- // return null.
- Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
- uint64_t Offset) {
- if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
- return nullptr;
- const DataLayout &DL = GV->getParent()->getDataLayout();
- Constant *Init = const_cast<Constant *>(GV->getInitializer());
- TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
- if (InitSize < Offset)
- return nullptr;
- uint64_t NBytes = InitSize - Offset;
- if (NBytes > UINT16_MAX)
- // Bail for large initializers in excess of 64K to avoid allocating
- // too much memory.
- // Offset is assumed to be less than or equal than InitSize (this
- // is enforced in ReadDataFromGlobal).
- return nullptr;
- SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
- unsigned char *CurPtr = RawBytes.data();
- if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
- return nullptr;
- return ConstantDataArray::get(GV->getContext(), RawBytes);
- }
- /// If this Offset points exactly to the start of an aggregate element, return
- /// that element, otherwise return nullptr.
- Constant *getConstantAtOffset(Constant *Base, APInt Offset,
- const DataLayout &DL) {
- if (Offset.isZero())
- return Base;
- if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
- return nullptr;
- Type *ElemTy = Base->getType();
- SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
- if (!Offset.isZero() || !Indices[0].isZero())
- return nullptr;
- Constant *C = Base;
- for (const APInt &Index : drop_begin(Indices)) {
- if (Index.isNegative() || Index.getActiveBits() >= 32)
- return nullptr;
- C = C->getAggregateElement(Index.getZExtValue());
- if (!C)
- return nullptr;
- }
- return C;
- }
- Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
- const APInt &Offset,
- const DataLayout &DL) {
- if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
- if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
- return Result;
- // Explicitly check for out-of-bounds access, so we return poison even if the
- // constant is a uniform value.
- TypeSize Size = DL.getTypeAllocSize(C->getType());
- if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
- return PoisonValue::get(Ty);
- // Try an offset-independent fold of a uniform value.
- if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
- return Result;
- // Try hard to fold loads from bitcasted strange and non-type-safe things.
- if (Offset.getMinSignedBits() <= 64)
- if (Constant *Result =
- FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
- return Result;
- return nullptr;
- }
- Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
- const DataLayout &DL) {
- return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
- }
- Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
- APInt Offset,
- const DataLayout &DL) {
- C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
- DL, Offset, /* AllowNonInbounds */ true));
- if (auto *GV = dyn_cast<GlobalVariable>(C))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
- Offset, DL))
- return Result;
- // If this load comes from anywhere in a uniform constant global, the value
- // is always the same, regardless of the loaded offset.
- if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
- if (Constant *Res =
- ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
- return Res;
- }
- }
- return nullptr;
- }
- Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
- const DataLayout &DL) {
- APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
- return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
- }
- Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
- if (isa<PoisonValue>(C))
- return PoisonValue::get(Ty);
- if (isa<UndefValue>(C))
- return UndefValue::get(Ty);
- if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
- return Constant::getNullValue(Ty);
- if (C->isAllOnesValue() &&
- (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
- return Constant::getAllOnesValue(Ty);
- return nullptr;
- }
- namespace {
- /// One of Op0/Op1 is a constant expression.
- /// Attempt to symbolically evaluate the result of a binary operator merging
- /// these together. If target data info is available, it is provided as DL,
- /// otherwise DL is null.
- Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
- const DataLayout &DL) {
- // SROA
- // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
- // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
- // bits.
- if (Opc == Instruction::And) {
- KnownBits Known0 = computeKnownBits(Op0, DL);
- KnownBits Known1 = computeKnownBits(Op1, DL);
- if ((Known1.One | Known0.Zero).isAllOnes()) {
- // All the bits of Op0 that the 'and' could be masking are already zero.
- return Op0;
- }
- if ((Known0.One | Known1.Zero).isAllOnes()) {
- // All the bits of Op1 that the 'and' could be masking are already zero.
- return Op1;
- }
- Known0 &= Known1;
- if (Known0.isConstant())
- return ConstantInt::get(Op0->getType(), Known0.getConstant());
- }
- // If the constant expr is something like &A[123] - &A[4].f, fold this into a
- // constant. This happens frequently when iterating over a global array.
- if (Opc == Instruction::Sub) {
- GlobalValue *GV1, *GV2;
- APInt Offs1, Offs2;
- if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
- if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
- unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
- // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
- // PtrToInt may change the bitwidth so we have convert to the right size
- // first.
- return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
- Offs2.zextOrTrunc(OpSize));
- }
- }
- return nullptr;
- }
- /// If array indices are not pointer-sized integers, explicitly cast them so
- /// that they aren't implicitly casted by the getelementptr.
- Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
- Type *ResultTy, std::optional<unsigned> InRangeIndex,
- const DataLayout &DL, const TargetLibraryInfo *TLI) {
- Type *IntIdxTy = DL.getIndexType(ResultTy);
- Type *IntIdxScalarTy = IntIdxTy->getScalarType();
- bool Any = false;
- SmallVector<Constant*, 32> NewIdxs;
- for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
- if ((i == 1 ||
- !isa<StructType>(GetElementPtrInst::getIndexedType(
- SrcElemTy, Ops.slice(1, i - 1)))) &&
- Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
- Any = true;
- Type *NewType = Ops[i]->getType()->isVectorTy()
- ? IntIdxTy
- : IntIdxScalarTy;
- NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
- true,
- NewType,
- true),
- Ops[i], NewType));
- } else
- NewIdxs.push_back(Ops[i]);
- }
- if (!Any)
- return nullptr;
- Constant *C = ConstantExpr::getGetElementPtr(
- SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
- return ConstantFoldConstant(C, DL, TLI);
- }
- /// Strip the pointer casts, but preserve the address space information.
- Constant *StripPtrCastKeepAS(Constant *Ptr) {
- assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
- auto *OldPtrTy = cast<PointerType>(Ptr->getType());
- Ptr = cast<Constant>(Ptr->stripPointerCasts());
- auto *NewPtrTy = cast<PointerType>(Ptr->getType());
- // Preserve the address space number of the pointer.
- if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
- Ptr = ConstantExpr::getPointerCast(
- Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
- OldPtrTy->getAddressSpace()));
- }
- return Ptr;
- }
- /// If we can symbolically evaluate the GEP constant expression, do so.
- Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- const GEPOperator *InnermostGEP = GEP;
- bool InBounds = GEP->isInBounds();
- Type *SrcElemTy = GEP->getSourceElementType();
- Type *ResElemTy = GEP->getResultElementType();
- Type *ResTy = GEP->getType();
- if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
- return nullptr;
- if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
- GEP->getInRangeIndex(), DL, TLI))
- return C;
- Constant *Ptr = Ops[0];
- if (!Ptr->getType()->isPointerTy())
- return nullptr;
- Type *IntIdxTy = DL.getIndexType(Ptr->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- if (!isa<ConstantInt>(Ops[i]))
- return nullptr;
- unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
- APInt Offset = APInt(
- BitWidth,
- DL.getIndexedOffsetInType(
- SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
- Ptr = StripPtrCastKeepAS(Ptr);
- // If this is a GEP of a GEP, fold it all into a single GEP.
- while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
- InnermostGEP = GEP;
- InBounds &= GEP->isInBounds();
- SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
- // Do not try the incorporate the sub-GEP if some index is not a number.
- bool AllConstantInt = true;
- for (Value *NestedOp : NestedOps)
- if (!isa<ConstantInt>(NestedOp)) {
- AllConstantInt = false;
- break;
- }
- if (!AllConstantInt)
- break;
- Ptr = cast<Constant>(GEP->getOperand(0));
- SrcElemTy = GEP->getSourceElementType();
- Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
- Ptr = StripPtrCastKeepAS(Ptr);
- }
- // If the base value for this address is a literal integer value, fold the
- // getelementptr to the resulting integer value casted to the pointer type.
- APInt BasePtr(BitWidth, 0);
- if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
- BasePtr = Base->getValue().zextOrTrunc(BitWidth);
- }
- }
- auto *PTy = cast<PointerType>(Ptr->getType());
- if ((Ptr->isNullValue() || BasePtr != 0) &&
- !DL.isNonIntegralPointerType(PTy)) {
- Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
- return ConstantExpr::getIntToPtr(C, ResTy);
- }
- // Otherwise form a regular getelementptr. Recompute the indices so that
- // we eliminate over-indexing of the notional static type array bounds.
- // This makes it easy to determine if the getelementptr is "inbounds".
- // Also, this helps GlobalOpt do SROA on GlobalVariables.
- // For GEPs of GlobalValues, use the value type even for opaque pointers.
- // Otherwise use an i8 GEP.
- if (auto *GV = dyn_cast<GlobalValue>(Ptr))
- SrcElemTy = GV->getValueType();
- else if (!PTy->isOpaque())
- SrcElemTy = PTy->getNonOpaquePointerElementType();
- else
- SrcElemTy = Type::getInt8Ty(Ptr->getContext());
- if (!SrcElemTy->isSized())
- return nullptr;
- Type *ElemTy = SrcElemTy;
- SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
- if (Offset != 0)
- return nullptr;
- // Try to add additional zero indices to reach the desired result element
- // type.
- // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
- // we'll have to insert a bitcast anyway?
- while (ElemTy != ResElemTy) {
- Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
- if (!NextTy)
- break;
- Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
- ElemTy = NextTy;
- }
- SmallVector<Constant *, 32> NewIdxs;
- for (const APInt &Index : Indices)
- NewIdxs.push_back(ConstantInt::get(
- Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
- // Preserve the inrange index from the innermost GEP if possible. We must
- // have calculated the same indices up to and including the inrange index.
- std::optional<unsigned> InRangeIndex;
- if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
- if (SrcElemTy == InnermostGEP->getSourceElementType() &&
- NewIdxs.size() > *LastIRIndex) {
- InRangeIndex = LastIRIndex;
- for (unsigned I = 0; I <= *LastIRIndex; ++I)
- if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
- return nullptr;
- }
- // Create a GEP.
- Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
- InBounds, InRangeIndex);
- assert(
- cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
- "Computed GetElementPtr has unexpected type!");
- // If we ended up indexing a member with a type that doesn't match
- // the type of what the original indices indexed, add a cast.
- if (C->getType() != ResTy)
- C = FoldBitCast(C, ResTy, DL);
- return C;
- }
- /// Attempt to constant fold an instruction with the
- /// specified opcode and operands. If successful, the constant result is
- /// returned, if not, null is returned. Note that this function can fail when
- /// attempting to fold instructions like loads and stores, which have no
- /// constant expression form.
- Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- Type *DestTy = InstOrCE->getType();
- if (Instruction::isUnaryOp(Opcode))
- return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
- if (Instruction::isBinaryOp(Opcode)) {
- switch (Opcode) {
- default:
- break;
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- // Handle floating point instructions separately to account for denormals
- // TODO: If a constant expression is being folded rather than an
- // instruction, denormals will not be flushed/treated as zero
- if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
- return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
- }
- }
- return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
- }
- if (Instruction::isCast(Opcode))
- return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
- if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
- if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
- return C;
- return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
- Ops.slice(1), GEP->isInBounds(),
- GEP->getInRangeIndex());
- }
- if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
- if (CE->isCompare())
- return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
- DL, TLI);
- return CE->getWithOperands(Ops);
- }
- switch (Opcode) {
- default: return nullptr;
- case Instruction::ICmp:
- case Instruction::FCmp: {
- auto *C = cast<CmpInst>(InstOrCE);
- return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
- DL, TLI, C);
- }
- case Instruction::Freeze:
- return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
- case Instruction::Call:
- if (auto *F = dyn_cast<Function>(Ops.back())) {
- const auto *Call = cast<CallBase>(InstOrCE);
- if (canConstantFoldCallTo(Call, F))
- return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
- }
- return nullptr;
- case Instruction::Select:
- return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
- case Instruction::ExtractValue:
- return ConstantFoldExtractValueInstruction(
- Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
- case Instruction::InsertElement:
- return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
- case Instruction::InsertValue:
- return ConstantFoldInsertValueInstruction(
- Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
- case Instruction::ShuffleVector:
- return ConstantExpr::getShuffleVector(
- Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
- case Instruction::Load: {
- const auto *LI = dyn_cast<LoadInst>(InstOrCE);
- if (LI->isVolatile())
- return nullptr;
- return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
- }
- }
- }
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // Constant Folding public APIs
- //===----------------------------------------------------------------------===//
- namespace {
- Constant *
- ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- SmallDenseMap<Constant *, Constant *> &FoldedOps) {
- if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
- return const_cast<Constant *>(C);
- SmallVector<Constant *, 8> Ops;
- for (const Use &OldU : C->operands()) {
- Constant *OldC = cast<Constant>(&OldU);
- Constant *NewC = OldC;
- // Recursively fold the ConstantExpr's operands. If we have already folded
- // a ConstantExpr, we don't have to process it again.
- if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
- auto It = FoldedOps.find(OldC);
- if (It == FoldedOps.end()) {
- NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
- FoldedOps.insert({OldC, NewC});
- } else {
- NewC = It->second;
- }
- }
- Ops.push_back(NewC);
- }
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (Constant *Res =
- ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
- return Res;
- return const_cast<Constant *>(C);
- }
- assert(isa<ConstantVector>(C));
- return ConstantVector::get(Ops);
- }
- } // end anonymous namespace
- Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Handle PHI nodes quickly here...
- if (auto *PN = dyn_cast<PHINode>(I)) {
- Constant *CommonValue = nullptr;
- SmallDenseMap<Constant *, Constant *> FoldedOps;
- for (Value *Incoming : PN->incoming_values()) {
- // If the incoming value is undef then skip it. Note that while we could
- // skip the value if it is equal to the phi node itself we choose not to
- // because that would break the rule that constant folding only applies if
- // all operands are constants.
- if (isa<UndefValue>(Incoming))
- continue;
- // If the incoming value is not a constant, then give up.
- auto *C = dyn_cast<Constant>(Incoming);
- if (!C)
- return nullptr;
- // Fold the PHI's operands.
- C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
- // If the incoming value is a different constant to
- // the one we saw previously, then give up.
- if (CommonValue && C != CommonValue)
- return nullptr;
- CommonValue = C;
- }
- // If we reach here, all incoming values are the same constant or undef.
- return CommonValue ? CommonValue : UndefValue::get(PN->getType());
- }
- // Scan the operand list, checking to see if they are all constants, if so,
- // hand off to ConstantFoldInstOperandsImpl.
- if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
- return nullptr;
- SmallDenseMap<Constant *, Constant *> FoldedOps;
- SmallVector<Constant *, 8> Ops;
- for (const Use &OpU : I->operands()) {
- auto *Op = cast<Constant>(&OpU);
- // Fold the Instruction's operands.
- Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
- Ops.push_back(Op);
- }
- return ConstantFoldInstOperands(I, Ops, DL, TLI);
- }
- Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- SmallDenseMap<Constant *, Constant *> FoldedOps;
- return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
- }
- Constant *llvm::ConstantFoldInstOperands(Instruction *I,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
- }
- Constant *llvm::ConstantFoldCompareInstOperands(
- unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const Instruction *I) {
- CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
- // fold: icmp (inttoptr x), null -> icmp x, 0
- // fold: icmp null, (inttoptr x) -> icmp 0, x
- // fold: icmp (ptrtoint x), 0 -> icmp x, null
- // fold: icmp 0, (ptrtoint x) -> icmp null, x
- // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
- // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
- //
- // FIXME: The following comment is out of data and the DataLayout is here now.
- // ConstantExpr::getCompare cannot do this, because it doesn't have DL
- // around to know if bit truncation is happening.
- if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
- if (Ops1->isNullValue()) {
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
- }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
- if (CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
- }
- }
- }
- if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
- if (CE0->getOpcode() == CE1->getOpcode()) {
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
- IntPtrTy, false);
- return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
- }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
- if (CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
- return ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
- }
- }
- }
- }
- // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
- // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
- if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
- CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
- Constant *LHS = ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(0), Ops1, DL, TLI);
- Constant *RHS = ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(1), Ops1, DL, TLI);
- unsigned OpC =
- Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
- }
- // Convert pointer comparison (base+offset1) pred (base+offset2) into
- // offset1 pred offset2, for the case where the offset is inbounds. This
- // only works for equality and unsigned comparison, as inbounds permits
- // crossing the sign boundary. However, the offset comparison itself is
- // signed.
- if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
- unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
- APInt Offset0(IndexWidth, 0);
- Value *Stripped0 =
- Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
- APInt Offset1(IndexWidth, 0);
- Value *Stripped1 =
- Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
- if (Stripped0 == Stripped1)
- return ConstantExpr::getCompare(
- ICmpInst::getSignedPredicate(Predicate),
- ConstantInt::get(CE0->getContext(), Offset0),
- ConstantInt::get(CE0->getContext(), Offset1));
- }
- } else if (isa<ConstantExpr>(Ops1)) {
- // If RHS is a constant expression, but the left side isn't, swap the
- // operands and try again.
- Predicate = ICmpInst::getSwappedPredicate(Predicate);
- return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
- }
- // Flush any denormal constant float input according to denormal handling
- // mode.
- Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
- Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
- return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
- }
- Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
- const DataLayout &DL) {
- assert(Instruction::isUnaryOp(Opcode));
- return ConstantFoldUnaryInstruction(Opcode, Op);
- }
- Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
- Constant *RHS,
- const DataLayout &DL) {
- assert(Instruction::isBinaryOp(Opcode));
- if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
- if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
- return C;
- if (ConstantExpr::isDesirableBinOp(Opcode))
- return ConstantExpr::get(Opcode, LHS, RHS);
- return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
- }
- Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
- bool IsOutput) {
- if (!I || !I->getParent() || !I->getFunction())
- return Operand;
- ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
- if (!CFP)
- return Operand;
- const APFloat &APF = CFP->getValueAPF();
- Type *Ty = CFP->getType();
- DenormalMode DenormMode =
- I->getFunction()->getDenormalMode(Ty->getFltSemantics());
- DenormalMode::DenormalModeKind Mode =
- IsOutput ? DenormMode.Output : DenormMode.Input;
- switch (Mode) {
- default:
- llvm_unreachable("unknown denormal mode");
- return Operand;
- case DenormalMode::IEEE:
- return Operand;
- case DenormalMode::PreserveSign:
- if (APF.isDenormal()) {
- return ConstantFP::get(
- Ty->getContext(),
- APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
- }
- return Operand;
- case DenormalMode::PositiveZero:
- if (APF.isDenormal()) {
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(Ty->getFltSemantics(), false));
- }
- return Operand;
- }
- return Operand;
- }
- Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
- Constant *RHS, const DataLayout &DL,
- const Instruction *I) {
- if (Instruction::isBinaryOp(Opcode)) {
- // Flush denormal inputs if needed.
- Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
- Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
- // Calculate constant result.
- Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
- if (!C)
- return nullptr;
- // Flush denormal output if needed.
- return FlushFPConstant(C, I, /* IsOutput */ true);
- }
- // If instruction lacks a parent/function and the denormal mode cannot be
- // determined, use the default (IEEE).
- return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
- }
- Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
- Type *DestTy, const DataLayout &DL) {
- assert(Instruction::isCast(Opcode));
- switch (Opcode) {
- default:
- llvm_unreachable("Missing case");
- case Instruction::PtrToInt:
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- Constant *FoldedValue = nullptr;
- // If the input is a inttoptr, eliminate the pair. This requires knowing
- // the width of a pointer, so it can't be done in ConstantExpr::getCast.
- if (CE->getOpcode() == Instruction::IntToPtr) {
- // zext/trunc the inttoptr to pointer size.
- FoldedValue = ConstantExpr::getIntegerCast(
- CE->getOperand(0), DL.getIntPtrType(CE->getType()),
- /*IsSigned=*/false);
- } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
- // If we have GEP, we can perform the following folds:
- // (ptrtoint (gep null, x)) -> x
- // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
- unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
- APInt BaseOffset(BitWidth, 0);
- auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
- DL, BaseOffset, /*AllowNonInbounds=*/true));
- if (Base->isNullValue()) {
- FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
- } else {
- // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
- if (GEP->getNumIndices() == 1 &&
- GEP->getSourceElementType()->isIntegerTy(8)) {
- auto *Ptr = cast<Constant>(GEP->getPointerOperand());
- auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
- Type *IntIdxTy = DL.getIndexType(Ptr->getType());
- if (Sub && Sub->getType() == IntIdxTy &&
- Sub->getOpcode() == Instruction::Sub &&
- Sub->getOperand(0)->isNullValue())
- FoldedValue = ConstantExpr::getSub(
- ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
- }
- }
- }
- if (FoldedValue) {
- // Do a zext or trunc to get to the ptrtoint dest size.
- return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
- /*IsSigned=*/false);
- }
- }
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::IntToPtr:
- // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size and the address spaces are the same.
- // This requires knowing the width of a pointer, so it can't be done in
- // ConstantExpr::getCast.
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::PtrToInt) {
- Constant *SrcPtr = CE->getOperand(0);
- unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
- unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
- if (MidIntSize >= SrcPtrSize) {
- unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
- if (SrcAS == DestTy->getPointerAddressSpace())
- return FoldBitCast(CE->getOperand(0), DestTy, DL);
- }
- }
- }
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::AddrSpaceCast:
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::BitCast:
- return FoldBitCast(C, DestTy, DL);
- }
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding for Calls
- //
- bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
- if (Call->isNoBuiltin())
- return false;
- if (Call->getFunctionType() != F->getFunctionType())
- return false;
- switch (F->getIntrinsicID()) {
- // Operations that do not operate floating-point numbers and do not depend on
- // FP environment can be folded even in strictfp functions.
- case Intrinsic::bswap:
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- case Intrinsic::launder_invariant_group:
- case Intrinsic::strip_invariant_group:
- case Intrinsic::masked_load:
- case Intrinsic::get_active_lane_mask:
- case Intrinsic::abs:
- case Intrinsic::smax:
- case Intrinsic::smin:
- case Intrinsic::umax:
- case Intrinsic::umin:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::sadd_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::usub_sat:
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat:
- case Intrinsic::bitreverse:
- case Intrinsic::is_constant:
- case Intrinsic::vector_reduce_add:
- case Intrinsic::vector_reduce_mul:
- case Intrinsic::vector_reduce_and:
- case Intrinsic::vector_reduce_or:
- case Intrinsic::vector_reduce_xor:
- case Intrinsic::vector_reduce_smin:
- case Intrinsic::vector_reduce_smax:
- case Intrinsic::vector_reduce_umin:
- case Intrinsic::vector_reduce_umax:
- // Target intrinsics
- case Intrinsic::amdgcn_perm:
- case Intrinsic::arm_mve_vctp8:
- case Intrinsic::arm_mve_vctp16:
- case Intrinsic::arm_mve_vctp32:
- case Intrinsic::arm_mve_vctp64:
- case Intrinsic::aarch64_sve_convert_from_svbool:
- // WebAssembly float semantics are always known
- case Intrinsic::wasm_trunc_signed:
- case Intrinsic::wasm_trunc_unsigned:
- return true;
- // Floating point operations cannot be folded in strictfp functions in
- // general case. They can be folded if FP environment is known to compiler.
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::minimum:
- case Intrinsic::maximum:
- case Intrinsic::log:
- case Intrinsic::log2:
- case Intrinsic::log10:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::pow:
- case Intrinsic::powi:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::fptoui_sat:
- case Intrinsic::fptosi_sat:
- case Intrinsic::convert_from_fp16:
- case Intrinsic::convert_to_fp16:
- case Intrinsic::amdgcn_cos:
- case Intrinsic::amdgcn_cubeid:
- case Intrinsic::amdgcn_cubema:
- case Intrinsic::amdgcn_cubesc:
- case Intrinsic::amdgcn_cubetc:
- case Intrinsic::amdgcn_fmul_legacy:
- case Intrinsic::amdgcn_fma_legacy:
- case Intrinsic::amdgcn_fract:
- case Intrinsic::amdgcn_ldexp:
- case Intrinsic::amdgcn_sin:
- // The intrinsics below depend on rounding mode in MXCSR.
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- case Intrinsic::x86_avx512_vcvtss2si32:
- case Intrinsic::x86_avx512_vcvtss2si64:
- case Intrinsic::x86_avx512_cvttss2si:
- case Intrinsic::x86_avx512_cvttss2si64:
- case Intrinsic::x86_avx512_vcvtsd2si32:
- case Intrinsic::x86_avx512_vcvtsd2si64:
- case Intrinsic::x86_avx512_cvttsd2si:
- case Intrinsic::x86_avx512_cvttsd2si64:
- case Intrinsic::x86_avx512_vcvtss2usi32:
- case Intrinsic::x86_avx512_vcvtss2usi64:
- case Intrinsic::x86_avx512_cvttss2usi:
- case Intrinsic::x86_avx512_cvttss2usi64:
- case Intrinsic::x86_avx512_vcvtsd2usi32:
- case Intrinsic::x86_avx512_vcvtsd2usi64:
- case Intrinsic::x86_avx512_cvttsd2usi:
- case Intrinsic::x86_avx512_cvttsd2usi64:
- return !Call->isStrictFP();
- // Sign operations are actually bitwise operations, they do not raise
- // exceptions even for SNANs.
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::is_fpclass:
- // Non-constrained variants of rounding operations means default FP
- // environment, they can be folded in any case.
- case Intrinsic::ceil:
- case Intrinsic::floor:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::trunc:
- case Intrinsic::nearbyint:
- case Intrinsic::rint:
- case Intrinsic::canonicalize:
- // Constrained intrinsics can be folded if FP environment is known
- // to compiler.
- case Intrinsic::experimental_constrained_fma:
- case Intrinsic::experimental_constrained_fmuladd:
- case Intrinsic::experimental_constrained_fadd:
- case Intrinsic::experimental_constrained_fsub:
- case Intrinsic::experimental_constrained_fmul:
- case Intrinsic::experimental_constrained_fdiv:
- case Intrinsic::experimental_constrained_frem:
- case Intrinsic::experimental_constrained_ceil:
- case Intrinsic::experimental_constrained_floor:
- case Intrinsic::experimental_constrained_round:
- case Intrinsic::experimental_constrained_roundeven:
- case Intrinsic::experimental_constrained_trunc:
- case Intrinsic::experimental_constrained_nearbyint:
- case Intrinsic::experimental_constrained_rint:
- case Intrinsic::experimental_constrained_fcmp:
- case Intrinsic::experimental_constrained_fcmps:
- return true;
- default:
- return false;
- case Intrinsic::not_intrinsic: break;
- }
- if (!F->hasName() || Call->isStrictFP())
- return false;
- // In these cases, the check of the length is required. We don't want to
- // return true for a name like "cos\0blah" which strcmp would return equal to
- // "cos", but has length 8.
- StringRef Name = F->getName();
- switch (Name[0]) {
- default:
- return false;
- case 'a':
- return Name == "acos" || Name == "acosf" ||
- Name == "asin" || Name == "asinf" ||
- Name == "atan" || Name == "atanf" ||
- Name == "atan2" || Name == "atan2f";
- case 'c':
- return Name == "ceil" || Name == "ceilf" ||
- Name == "cos" || Name == "cosf" ||
- Name == "cosh" || Name == "coshf";
- case 'e':
- return Name == "exp" || Name == "expf" ||
- Name == "exp2" || Name == "exp2f";
- case 'f':
- return Name == "fabs" || Name == "fabsf" ||
- Name == "floor" || Name == "floorf" ||
- Name == "fmod" || Name == "fmodf";
- case 'l':
- return Name == "log" || Name == "logf" ||
- Name == "log2" || Name == "log2f" ||
- Name == "log10" || Name == "log10f";
- case 'n':
- return Name == "nearbyint" || Name == "nearbyintf";
- case 'p':
- return Name == "pow" || Name == "powf";
- case 'r':
- return Name == "remainder" || Name == "remainderf" ||
- Name == "rint" || Name == "rintf" ||
- Name == "round" || Name == "roundf";
- case 's':
- return Name == "sin" || Name == "sinf" ||
- Name == "sinh" || Name == "sinhf" ||
- Name == "sqrt" || Name == "sqrtf";
- case 't':
- return Name == "tan" || Name == "tanf" ||
- Name == "tanh" || Name == "tanhf" ||
- Name == "trunc" || Name == "truncf";
- case '_':
- // Check for various function names that get used for the math functions
- // when the header files are preprocessed with the macro
- // __FINITE_MATH_ONLY__ enabled.
- // The '12' here is the length of the shortest name that can match.
- // We need to check the size before looking at Name[1] and Name[2]
- // so we may as well check a limit that will eliminate mismatches.
- if (Name.size() < 12 || Name[1] != '_')
- return false;
- switch (Name[2]) {
- default:
- return false;
- case 'a':
- return Name == "__acos_finite" || Name == "__acosf_finite" ||
- Name == "__asin_finite" || Name == "__asinf_finite" ||
- Name == "__atan2_finite" || Name == "__atan2f_finite";
- case 'c':
- return Name == "__cosh_finite" || Name == "__coshf_finite";
- case 'e':
- return Name == "__exp_finite" || Name == "__expf_finite" ||
- Name == "__exp2_finite" || Name == "__exp2f_finite";
- case 'l':
- return Name == "__log_finite" || Name == "__logf_finite" ||
- Name == "__log10_finite" || Name == "__log10f_finite";
- case 'p':
- return Name == "__pow_finite" || Name == "__powf_finite";
- case 's':
- return Name == "__sinh_finite" || Name == "__sinhf_finite";
- }
- }
- }
- namespace {
- Constant *GetConstantFoldFPValue(double V, Type *Ty) {
- if (Ty->isHalfTy() || Ty->isFloatTy()) {
- APFloat APF(V);
- bool unused;
- APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
- return ConstantFP::get(Ty->getContext(), APF);
- }
- if (Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold half/float/double");
- }
- /// Clear the floating-point exception state.
- inline void llvm_fenv_clearexcept() {
- #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
- feclearexcept(FE_ALL_EXCEPT);
- #endif
- errno = 0;
- }
- /// Test if a floating-point exception was raised.
- inline bool llvm_fenv_testexcept() {
- int errno_val = errno;
- if (errno_val == ERANGE || errno_val == EDOM)
- return true;
- #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
- if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
- return true;
- #endif
- return false;
- }
- Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
- Type *Ty) {
- llvm_fenv_clearexcept();
- double Result = NativeFP(V.convertToDouble());
- if (llvm_fenv_testexcept()) {
- llvm_fenv_clearexcept();
- return nullptr;
- }
- return GetConstantFoldFPValue(Result, Ty);
- }
- Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
- const APFloat &V, const APFloat &W, Type *Ty) {
- llvm_fenv_clearexcept();
- double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
- if (llvm_fenv_testexcept()) {
- llvm_fenv_clearexcept();
- return nullptr;
- }
- return GetConstantFoldFPValue(Result, Ty);
- }
- Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
- FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
- if (!VT)
- return nullptr;
- // This isn't strictly necessary, but handle the special/common case of zero:
- // all integer reductions of a zero input produce zero.
- if (isa<ConstantAggregateZero>(Op))
- return ConstantInt::get(VT->getElementType(), 0);
- // This is the same as the underlying binops - poison propagates.
- if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
- return PoisonValue::get(VT->getElementType());
- // TODO: Handle undef.
- if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
- return nullptr;
- auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
- if (!EltC)
- return nullptr;
- APInt Acc = EltC->getValue();
- for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
- if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
- return nullptr;
- const APInt &X = EltC->getValue();
- switch (IID) {
- case Intrinsic::vector_reduce_add:
- Acc = Acc + X;
- break;
- case Intrinsic::vector_reduce_mul:
- Acc = Acc * X;
- break;
- case Intrinsic::vector_reduce_and:
- Acc = Acc & X;
- break;
- case Intrinsic::vector_reduce_or:
- Acc = Acc | X;
- break;
- case Intrinsic::vector_reduce_xor:
- Acc = Acc ^ X;
- break;
- case Intrinsic::vector_reduce_smin:
- Acc = APIntOps::smin(Acc, X);
- break;
- case Intrinsic::vector_reduce_smax:
- Acc = APIntOps::smax(Acc, X);
- break;
- case Intrinsic::vector_reduce_umin:
- Acc = APIntOps::umin(Acc, X);
- break;
- case Intrinsic::vector_reduce_umax:
- Acc = APIntOps::umax(Acc, X);
- break;
- }
- }
- return ConstantInt::get(Op->getContext(), Acc);
- }
- /// Attempt to fold an SSE floating point to integer conversion of a constant
- /// floating point. If roundTowardZero is false, the default IEEE rounding is
- /// used (toward nearest, ties to even). This matches the behavior of the
- /// non-truncating SSE instructions in the default rounding mode. The desired
- /// integer type Ty is used to select how many bits are available for the
- /// result. Returns null if the conversion cannot be performed, otherwise
- /// returns the Constant value resulting from the conversion.
- Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
- Type *Ty, bool IsSigned) {
- // All of these conversion intrinsics form an integer of at most 64bits.
- unsigned ResultWidth = Ty->getIntegerBitWidth();
- assert(ResultWidth <= 64 &&
- "Can only constant fold conversions to 64 and 32 bit ints");
- uint64_t UIntVal;
- bool isExact = false;
- APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
- : APFloat::rmNearestTiesToEven;
- APFloat::opStatus status =
- Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
- IsSigned, mode, &isExact);
- if (status != APFloat::opOK &&
- (!roundTowardZero || status != APFloat::opInexact))
- return nullptr;
- return ConstantInt::get(Ty, UIntVal, IsSigned);
- }
- double getValueAsDouble(ConstantFP *Op) {
- Type *Ty = Op->getType();
- if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
- return Op->getValueAPF().convertToDouble();
- bool unused;
- APFloat APF = Op->getValueAPF();
- APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
- return APF.convertToDouble();
- }
- static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
- if (auto *CI = dyn_cast<ConstantInt>(Op)) {
- C = &CI->getValue();
- return true;
- }
- if (isa<UndefValue>(Op)) {
- C = nullptr;
- return true;
- }
- return false;
- }
- /// Checks if the given intrinsic call, which evaluates to constant, is allowed
- /// to be folded.
- ///
- /// \param CI Constrained intrinsic call.
- /// \param St Exception flags raised during constant evaluation.
- static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
- APFloat::opStatus St) {
- std::optional<RoundingMode> ORM = CI->getRoundingMode();
- std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
- // If the operation does not change exception status flags, it is safe
- // to fold.
- if (St == APFloat::opStatus::opOK)
- return true;
- // If evaluation raised FP exception, the result can depend on rounding
- // mode. If the latter is unknown, folding is not possible.
- if (ORM && *ORM == RoundingMode::Dynamic)
- return false;
- // If FP exceptions are ignored, fold the call, even if such exception is
- // raised.
- if (EB && *EB != fp::ExceptionBehavior::ebStrict)
- return true;
- // Leave the calculation for runtime so that exception flags be correctly set
- // in hardware.
- return false;
- }
- /// Returns the rounding mode that should be used for constant evaluation.
- static RoundingMode
- getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
- std::optional<RoundingMode> ORM = CI->getRoundingMode();
- if (!ORM || *ORM == RoundingMode::Dynamic)
- // Even if the rounding mode is unknown, try evaluating the operation.
- // If it does not raise inexact exception, rounding was not applied,
- // so the result is exact and does not depend on rounding mode. Whether
- // other FP exceptions are raised, it does not depend on rounding mode.
- return RoundingMode::NearestTiesToEven;
- return *ORM;
- }
- /// Try to constant fold llvm.canonicalize for the given caller and value.
- static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
- const APFloat &Src) {
- // Zero, positive and negative, is always OK to fold.
- if (Src.isZero()) {
- // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
- return ConstantFP::get(
- CI->getContext(),
- APFloat::getZero(Src.getSemantics(), Src.isNegative()));
- }
- if (!Ty->isIEEELikeFPTy())
- return nullptr;
- // Zero is always canonical and the sign must be preserved.
- //
- // Denorms and nans may have special encodings, but it should be OK to fold a
- // totally average number.
- if (Src.isNormal() || Src.isInfinity())
- return ConstantFP::get(CI->getContext(), Src);
- if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
- DenormalMode DenormMode =
- CI->getFunction()->getDenormalMode(Src.getSemantics());
- if (DenormMode == DenormalMode::getIEEE())
- return nullptr;
- bool IsPositive =
- (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
- (DenormMode.Output == DenormalMode::PositiveZero &&
- DenormMode.Input == DenormalMode::IEEE));
- return ConstantFP::get(CI->getContext(),
- APFloat::getZero(Src.getSemantics(), !IsPositive));
- }
- return nullptr;
- }
- static Constant *ConstantFoldScalarCall1(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- assert(Operands.size() == 1 && "Wrong number of operands.");
- if (IntrinsicID == Intrinsic::is_constant) {
- // We know we have a "Constant" argument. But we want to only
- // return true for manifest constants, not those that depend on
- // constants with unknowable values, e.g. GlobalValue or BlockAddress.
- if (Operands[0]->isManifestConstant())
- return ConstantInt::getTrue(Ty->getContext());
- return nullptr;
- }
- if (isa<PoisonValue>(Operands[0])) {
- // TODO: All of these operations should probably propagate poison.
- if (IntrinsicID == Intrinsic::canonicalize)
- return PoisonValue::get(Ty);
- }
- if (isa<UndefValue>(Operands[0])) {
- // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
- // ctpop() is between 0 and bitwidth, pick 0 for undef.
- // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
- if (IntrinsicID == Intrinsic::cos ||
- IntrinsicID == Intrinsic::ctpop ||
- IntrinsicID == Intrinsic::fptoui_sat ||
- IntrinsicID == Intrinsic::fptosi_sat ||
- IntrinsicID == Intrinsic::canonicalize)
- return Constant::getNullValue(Ty);
- if (IntrinsicID == Intrinsic::bswap ||
- IntrinsicID == Intrinsic::bitreverse ||
- IntrinsicID == Intrinsic::launder_invariant_group ||
- IntrinsicID == Intrinsic::strip_invariant_group)
- return Operands[0];
- }
- if (isa<ConstantPointerNull>(Operands[0])) {
- // launder(null) == null == strip(null) iff in addrspace 0
- if (IntrinsicID == Intrinsic::launder_invariant_group ||
- IntrinsicID == Intrinsic::strip_invariant_group) {
- // If instruction is not yet put in a basic block (e.g. when cloning
- // a function during inlining), Call's caller may not be available.
- // So check Call's BB first before querying Call->getCaller.
- const Function *Caller =
- Call->getParent() ? Call->getCaller() : nullptr;
- if (Caller &&
- !NullPointerIsDefined(
- Caller, Operands[0]->getType()->getPointerAddressSpace())) {
- return Operands[0];
- }
- return nullptr;
- }
- }
- if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (IntrinsicID == Intrinsic::convert_to_fp16) {
- APFloat Val(Op->getValueAPF());
- bool lost = false;
- Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
- return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
- }
- APFloat U = Op->getValueAPF();
- if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
- IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
- bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
- if (U.isNaN())
- return nullptr;
- unsigned Width = Ty->getIntegerBitWidth();
- APSInt Int(Width, !Signed);
- bool IsExact = false;
- APFloat::opStatus Status =
- U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
- if (Status == APFloat::opOK || Status == APFloat::opInexact)
- return ConstantInt::get(Ty, Int);
- return nullptr;
- }
- if (IntrinsicID == Intrinsic::fptoui_sat ||
- IntrinsicID == Intrinsic::fptosi_sat) {
- // convertToInteger() already has the desired saturation semantics.
- APSInt Int(Ty->getIntegerBitWidth(),
- IntrinsicID == Intrinsic::fptoui_sat);
- bool IsExact;
- U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
- return ConstantInt::get(Ty, Int);
- }
- if (IntrinsicID == Intrinsic::canonicalize)
- return constantFoldCanonicalize(Ty, Call, U);
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- // Use internal versions of these intrinsics.
- if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
- U.roundToIntegral(APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::round) {
- U.roundToIntegral(APFloat::rmNearestTiesToAway);
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::roundeven) {
- U.roundToIntegral(APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::ceil) {
- U.roundToIntegral(APFloat::rmTowardPositive);
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::floor) {
- U.roundToIntegral(APFloat::rmTowardNegative);
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::trunc) {
- U.roundToIntegral(APFloat::rmTowardZero);
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::fabs) {
- U.clearSign();
- return ConstantFP::get(Ty->getContext(), U);
- }
- if (IntrinsicID == Intrinsic::amdgcn_fract) {
- // The v_fract instruction behaves like the OpenCL spec, which defines
- // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
- // there to prevent fract(-small) from returning 1.0. It returns the
- // largest positive floating-point number less than 1.0."
- APFloat FloorU(U);
- FloorU.roundToIntegral(APFloat::rmTowardNegative);
- APFloat FractU(U - FloorU);
- APFloat AlmostOne(U.getSemantics(), 1);
- AlmostOne.next(/*nextDown*/ true);
- return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
- }
- // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
- // raise FP exceptions, unless the argument is signaling NaN.
- std::optional<APFloat::roundingMode> RM;
- switch (IntrinsicID) {
- default:
- break;
- case Intrinsic::experimental_constrained_nearbyint:
- case Intrinsic::experimental_constrained_rint: {
- auto CI = cast<ConstrainedFPIntrinsic>(Call);
- RM = CI->getRoundingMode();
- if (!RM || *RM == RoundingMode::Dynamic)
- return nullptr;
- break;
- }
- case Intrinsic::experimental_constrained_round:
- RM = APFloat::rmNearestTiesToAway;
- break;
- case Intrinsic::experimental_constrained_ceil:
- RM = APFloat::rmTowardPositive;
- break;
- case Intrinsic::experimental_constrained_floor:
- RM = APFloat::rmTowardNegative;
- break;
- case Intrinsic::experimental_constrained_trunc:
- RM = APFloat::rmTowardZero;
- break;
- }
- if (RM) {
- auto CI = cast<ConstrainedFPIntrinsic>(Call);
- if (U.isFinite()) {
- APFloat::opStatus St = U.roundToIntegral(*RM);
- if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
- St == APFloat::opInexact) {
- std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
- if (EB && *EB == fp::ebStrict)
- return nullptr;
- }
- } else if (U.isSignaling()) {
- std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
- if (EB && *EB != fp::ebIgnore)
- return nullptr;
- U = APFloat::getQNaN(U.getSemantics());
- }
- return ConstantFP::get(Ty->getContext(), U);
- }
- /// We only fold functions with finite arguments. Folding NaN and inf is
- /// likely to be aborted with an exception anyway, and some host libms
- /// have known errors raising exceptions.
- if (!U.isFinite())
- return nullptr;
- /// Currently APFloat versions of these functions do not exist, so we use
- /// the host native double versions. Float versions are not called
- /// directly but for all these it is true (float)(f((double)arg)) ==
- /// f(arg). Long double not supported yet.
- const APFloat &APF = Op->getValueAPF();
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::log:
- return ConstantFoldFP(log, APF, Ty);
- case Intrinsic::log2:
- // TODO: What about hosts that lack a C99 library?
- return ConstantFoldFP(log2, APF, Ty);
- case Intrinsic::log10:
- // TODO: What about hosts that lack a C99 library?
- return ConstantFoldFP(log10, APF, Ty);
- case Intrinsic::exp:
- return ConstantFoldFP(exp, APF, Ty);
- case Intrinsic::exp2:
- // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
- return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
- case Intrinsic::sin:
- return ConstantFoldFP(sin, APF, Ty);
- case Intrinsic::cos:
- return ConstantFoldFP(cos, APF, Ty);
- case Intrinsic::sqrt:
- return ConstantFoldFP(sqrt, APF, Ty);
- case Intrinsic::amdgcn_cos:
- case Intrinsic::amdgcn_sin: {
- double V = getValueAsDouble(Op);
- if (V < -256.0 || V > 256.0)
- // The gfx8 and gfx9 architectures handle arguments outside the range
- // [-256, 256] differently. This should be a rare case so bail out
- // rather than trying to handle the difference.
- return nullptr;
- bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
- double V4 = V * 4.0;
- if (V4 == floor(V4)) {
- // Force exact results for quarter-integer inputs.
- const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
- V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
- } else {
- if (IsCos)
- V = cos(V * 2.0 * numbers::pi);
- else
- V = sin(V * 2.0 * numbers::pi);
- }
- return GetConstantFoldFPValue(V, Ty);
- }
- }
- if (!TLI)
- return nullptr;
- LibFunc Func = NotLibFunc;
- if (!TLI->getLibFunc(Name, Func))
- return nullptr;
- switch (Func) {
- default:
- break;
- case LibFunc_acos:
- case LibFunc_acosf:
- case LibFunc_acos_finite:
- case LibFunc_acosf_finite:
- if (TLI->has(Func))
- return ConstantFoldFP(acos, APF, Ty);
- break;
- case LibFunc_asin:
- case LibFunc_asinf:
- case LibFunc_asin_finite:
- case LibFunc_asinf_finite:
- if (TLI->has(Func))
- return ConstantFoldFP(asin, APF, Ty);
- break;
- case LibFunc_atan:
- case LibFunc_atanf:
- if (TLI->has(Func))
- return ConstantFoldFP(atan, APF, Ty);
- break;
- case LibFunc_ceil:
- case LibFunc_ceilf:
- if (TLI->has(Func)) {
- U.roundToIntegral(APFloat::rmTowardPositive);
- return ConstantFP::get(Ty->getContext(), U);
- }
- break;
- case LibFunc_cos:
- case LibFunc_cosf:
- if (TLI->has(Func))
- return ConstantFoldFP(cos, APF, Ty);
- break;
- case LibFunc_cosh:
- case LibFunc_coshf:
- case LibFunc_cosh_finite:
- case LibFunc_coshf_finite:
- if (TLI->has(Func))
- return ConstantFoldFP(cosh, APF, Ty);
- break;
- case LibFunc_exp:
- case LibFunc_expf:
- case LibFunc_exp_finite:
- case LibFunc_expf_finite:
- if (TLI->has(Func))
- return ConstantFoldFP(exp, APF, Ty);
- break;
- case LibFunc_exp2:
- case LibFunc_exp2f:
- case LibFunc_exp2_finite:
- case LibFunc_exp2f_finite:
- if (TLI->has(Func))
- // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
- return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
- break;
- case LibFunc_fabs:
- case LibFunc_fabsf:
- if (TLI->has(Func)) {
- U.clearSign();
- return ConstantFP::get(Ty->getContext(), U);
- }
- break;
- case LibFunc_floor:
- case LibFunc_floorf:
- if (TLI->has(Func)) {
- U.roundToIntegral(APFloat::rmTowardNegative);
- return ConstantFP::get(Ty->getContext(), U);
- }
- break;
- case LibFunc_log:
- case LibFunc_logf:
- case LibFunc_log_finite:
- case LibFunc_logf_finite:
- if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
- return ConstantFoldFP(log, APF, Ty);
- break;
- case LibFunc_log2:
- case LibFunc_log2f:
- case LibFunc_log2_finite:
- case LibFunc_log2f_finite:
- if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
- // TODO: What about hosts that lack a C99 library?
- return ConstantFoldFP(log2, APF, Ty);
- break;
- case LibFunc_log10:
- case LibFunc_log10f:
- case LibFunc_log10_finite:
- case LibFunc_log10f_finite:
- if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
- // TODO: What about hosts that lack a C99 library?
- return ConstantFoldFP(log10, APF, Ty);
- break;
- case LibFunc_nearbyint:
- case LibFunc_nearbyintf:
- case LibFunc_rint:
- case LibFunc_rintf:
- if (TLI->has(Func)) {
- U.roundToIntegral(APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), U);
- }
- break;
- case LibFunc_round:
- case LibFunc_roundf:
- if (TLI->has(Func)) {
- U.roundToIntegral(APFloat::rmNearestTiesToAway);
- return ConstantFP::get(Ty->getContext(), U);
- }
- break;
- case LibFunc_sin:
- case LibFunc_sinf:
- if (TLI->has(Func))
- return ConstantFoldFP(sin, APF, Ty);
- break;
- case LibFunc_sinh:
- case LibFunc_sinhf:
- case LibFunc_sinh_finite:
- case LibFunc_sinhf_finite:
- if (TLI->has(Func))
- return ConstantFoldFP(sinh, APF, Ty);
- break;
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- if (!APF.isNegative() && TLI->has(Func))
- return ConstantFoldFP(sqrt, APF, Ty);
- break;
- case LibFunc_tan:
- case LibFunc_tanf:
- if (TLI->has(Func))
- return ConstantFoldFP(tan, APF, Ty);
- break;
- case LibFunc_tanh:
- case LibFunc_tanhf:
- if (TLI->has(Func))
- return ConstantFoldFP(tanh, APF, Ty);
- break;
- case LibFunc_trunc:
- case LibFunc_truncf:
- if (TLI->has(Func)) {
- U.roundToIntegral(APFloat::rmTowardZero);
- return ConstantFP::get(Ty->getContext(), U);
- }
- break;
- }
- return nullptr;
- }
- if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
- switch (IntrinsicID) {
- case Intrinsic::bswap:
- return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
- case Intrinsic::ctpop:
- return ConstantInt::get(Ty, Op->getValue().countPopulation());
- case Intrinsic::bitreverse:
- return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
- case Intrinsic::convert_from_fp16: {
- APFloat Val(APFloat::IEEEhalf(), Op->getValue());
- bool lost = false;
- APFloat::opStatus status = Val.convert(
- Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
- // Conversion is always precise.
- (void)status;
- assert(status != APFloat::opInexact && !lost &&
- "Precision lost during fp16 constfolding");
- return ConstantFP::get(Ty->getContext(), Val);
- }
- default:
- return nullptr;
- }
- }
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::vector_reduce_add:
- case Intrinsic::vector_reduce_mul:
- case Intrinsic::vector_reduce_and:
- case Intrinsic::vector_reduce_or:
- case Intrinsic::vector_reduce_xor:
- case Intrinsic::vector_reduce_smin:
- case Intrinsic::vector_reduce_smax:
- case Intrinsic::vector_reduce_umin:
- case Intrinsic::vector_reduce_umax:
- if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
- return C;
- break;
- }
- // Support ConstantVector in case we have an Undef in the top.
- if (isa<ConstantVector>(Operands[0]) ||
- isa<ConstantDataVector>(Operands[0])) {
- auto *Op = cast<Constant>(Operands[0]);
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty,
- /*IsSigned*/true);
- break;
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty,
- /*IsSigned*/true);
- break;
- }
- }
- return nullptr;
- }
- static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
- const ConstrainedFPIntrinsic *Call) {
- APFloat::opStatus St = APFloat::opOK;
- auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
- FCmpInst::Predicate Cond = FCmp->getPredicate();
- if (FCmp->isSignaling()) {
- if (Op1.isNaN() || Op2.isNaN())
- St = APFloat::opInvalidOp;
- } else {
- if (Op1.isSignaling() || Op2.isSignaling())
- St = APFloat::opInvalidOp;
- }
- bool Result = FCmpInst::compare(Op1, Op2, Cond);
- if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
- return ConstantInt::get(Call->getType()->getScalarType(), Result);
- return nullptr;
- }
- static Constant *ConstantFoldScalarCall2(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- assert(Operands.size() == 2 && "Wrong number of operands.");
- if (Ty->isFloatingPointTy()) {
- // TODO: We should have undef handling for all of the FP intrinsics that
- // are attempted to be folded in this function.
- bool IsOp0Undef = isa<UndefValue>(Operands[0]);
- bool IsOp1Undef = isa<UndefValue>(Operands[1]);
- switch (IntrinsicID) {
- case Intrinsic::maxnum:
- case Intrinsic::minnum:
- case Intrinsic::maximum:
- case Intrinsic::minimum:
- // If one argument is undef, return the other argument.
- if (IsOp0Undef)
- return Operands[1];
- if (IsOp1Undef)
- return Operands[0];
- break;
- }
- }
- if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- const APFloat &Op1V = Op1->getValueAPF();
- if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (Op2->getType() != Op1->getType())
- return nullptr;
- const APFloat &Op2V = Op2->getValueAPF();
- if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
- RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
- APFloat Res = Op1V;
- APFloat::opStatus St;
- switch (IntrinsicID) {
- default:
- return nullptr;
- case Intrinsic::experimental_constrained_fadd:
- St = Res.add(Op2V, RM);
- break;
- case Intrinsic::experimental_constrained_fsub:
- St = Res.subtract(Op2V, RM);
- break;
- case Intrinsic::experimental_constrained_fmul:
- St = Res.multiply(Op2V, RM);
- break;
- case Intrinsic::experimental_constrained_fdiv:
- St = Res.divide(Op2V, RM);
- break;
- case Intrinsic::experimental_constrained_frem:
- St = Res.mod(Op2V);
- break;
- case Intrinsic::experimental_constrained_fcmp:
- case Intrinsic::experimental_constrained_fcmps:
- return evaluateCompare(Op1V, Op2V, ConstrIntr);
- }
- if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
- St))
- return ConstantFP::get(Ty->getContext(), Res);
- return nullptr;
- }
- switch (IntrinsicID) {
- default:
- break;
- case Intrinsic::copysign:
- return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
- case Intrinsic::minnum:
- return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
- case Intrinsic::maxnum:
- return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
- case Intrinsic::minimum:
- return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
- case Intrinsic::maximum:
- return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
- }
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- switch (IntrinsicID) {
- default:
- break;
- case Intrinsic::pow:
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- case Intrinsic::amdgcn_fmul_legacy:
- // The legacy behaviour is that multiplying +/- 0.0 by anything, even
- // NaN or infinity, gives +0.0.
- if (Op1V.isZero() || Op2V.isZero())
- return ConstantFP::getNullValue(Ty);
- return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
- }
- if (!TLI)
- return nullptr;
- LibFunc Func = NotLibFunc;
- if (!TLI->getLibFunc(Name, Func))
- return nullptr;
- switch (Func) {
- default:
- break;
- case LibFunc_pow:
- case LibFunc_powf:
- case LibFunc_pow_finite:
- case LibFunc_powf_finite:
- if (TLI->has(Func))
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- break;
- case LibFunc_fmod:
- case LibFunc_fmodf:
- if (TLI->has(Func)) {
- APFloat V = Op1->getValueAPF();
- if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
- return ConstantFP::get(Ty->getContext(), V);
- }
- break;
- case LibFunc_remainder:
- case LibFunc_remainderf:
- if (TLI->has(Func)) {
- APFloat V = Op1->getValueAPF();
- if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
- return ConstantFP::get(Ty->getContext(), V);
- }
- break;
- case LibFunc_atan2:
- case LibFunc_atan2f:
- // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
- // (Solaris), so we do not assume a known result for that.
- if (Op1V.isZero() && Op2V.isZero())
- return nullptr;
- [[fallthrough]];
- case LibFunc_atan2_finite:
- case LibFunc_atan2f_finite:
- if (TLI->has(Func))
- return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
- break;
- }
- } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- switch (IntrinsicID) {
- case Intrinsic::is_fpclass: {
- uint32_t Mask = Op2C->getZExtValue();
- bool Result =
- ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
- ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
- ((Mask & fcNegInf) && Op1V.isInfinity() && Op1V.isNegative()) ||
- ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
- ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
- ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
- ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
- ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
- ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
- ((Mask & fcPosInf) && Op1V.isInfinity() && !Op1V.isNegative());
- return ConstantInt::get(Ty, Result);
- }
- default:
- break;
- }
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
- return ConstantFP::get(
- Ty->getContext(),
- APFloat((float)std::pow((float)Op1V.convertToDouble(),
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
- return ConstantFP::get(
- Ty->getContext(),
- APFloat((float)std::pow((float)Op1V.convertToDouble(),
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
- return ConstantFP::get(
- Ty->getContext(),
- APFloat((double)std::pow(Op1V.convertToDouble(),
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
- // FIXME: Should flush denorms depending on FP mode, but that's ignored
- // everywhere else.
- // scalbn is equivalent to ldexp with float radix 2
- APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
- APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), Result);
- }
- }
- return nullptr;
- }
- if (Operands[0]->getType()->isIntegerTy() &&
- Operands[1]->getType()->isIntegerTy()) {
- const APInt *C0, *C1;
- if (!getConstIntOrUndef(Operands[0], C0) ||
- !getConstIntOrUndef(Operands[1], C1))
- return nullptr;
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::smax:
- case Intrinsic::smin:
- case Intrinsic::umax:
- case Intrinsic::umin:
- // This is the same as for binary ops - poison propagates.
- // TODO: Poison handling should be consolidated.
- if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
- return PoisonValue::get(Ty);
- if (!C0 && !C1)
- return UndefValue::get(Ty);
- if (!C0 || !C1)
- return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
- return ConstantInt::get(
- Ty, ICmpInst::compare(*C0, *C1,
- MinMaxIntrinsic::getPredicate(IntrinsicID))
- ? *C0
- : *C1);
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- // X - undef -> { 0, false }
- // undef - X -> { 0, false }
- if (!C0 || !C1)
- return Constant::getNullValue(Ty);
- [[fallthrough]];
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- // X + undef -> { -1, false }
- // undef + x -> { -1, false }
- if (!C0 || !C1) {
- return ConstantStruct::get(
- cast<StructType>(Ty),
- {Constant::getAllOnesValue(Ty->getStructElementType(0)),
- Constant::getNullValue(Ty->getStructElementType(1))});
- }
- [[fallthrough]];
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow: {
- // undef * X -> { 0, false }
- // X * undef -> { 0, false }
- if (!C0 || !C1)
- return Constant::getNullValue(Ty);
- APInt Res;
- bool Overflow;
- switch (IntrinsicID) {
- default: llvm_unreachable("Invalid case");
- case Intrinsic::sadd_with_overflow:
- Res = C0->sadd_ov(*C1, Overflow);
- break;
- case Intrinsic::uadd_with_overflow:
- Res = C0->uadd_ov(*C1, Overflow);
- break;
- case Intrinsic::ssub_with_overflow:
- Res = C0->ssub_ov(*C1, Overflow);
- break;
- case Intrinsic::usub_with_overflow:
- Res = C0->usub_ov(*C1, Overflow);
- break;
- case Intrinsic::smul_with_overflow:
- Res = C0->smul_ov(*C1, Overflow);
- break;
- case Intrinsic::umul_with_overflow:
- Res = C0->umul_ov(*C1, Overflow);
- break;
- }
- Constant *Ops[] = {
- ConstantInt::get(Ty->getContext(), Res),
- ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
- };
- return ConstantStruct::get(cast<StructType>(Ty), Ops);
- }
- case Intrinsic::uadd_sat:
- case Intrinsic::sadd_sat:
- // This is the same as for binary ops - poison propagates.
- // TODO: Poison handling should be consolidated.
- if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
- return PoisonValue::get(Ty);
- if (!C0 && !C1)
- return UndefValue::get(Ty);
- if (!C0 || !C1)
- return Constant::getAllOnesValue(Ty);
- if (IntrinsicID == Intrinsic::uadd_sat)
- return ConstantInt::get(Ty, C0->uadd_sat(*C1));
- else
- return ConstantInt::get(Ty, C0->sadd_sat(*C1));
- case Intrinsic::usub_sat:
- case Intrinsic::ssub_sat:
- // This is the same as for binary ops - poison propagates.
- // TODO: Poison handling should be consolidated.
- if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
- return PoisonValue::get(Ty);
- if (!C0 && !C1)
- return UndefValue::get(Ty);
- if (!C0 || !C1)
- return Constant::getNullValue(Ty);
- if (IntrinsicID == Intrinsic::usub_sat)
- return ConstantInt::get(Ty, C0->usub_sat(*C1));
- else
- return ConstantInt::get(Ty, C0->ssub_sat(*C1));
- case Intrinsic::cttz:
- case Intrinsic::ctlz:
- assert(C1 && "Must be constant int");
- // cttz(0, 1) and ctlz(0, 1) are poison.
- if (C1->isOne() && (!C0 || C0->isZero()))
- return PoisonValue::get(Ty);
- if (!C0)
- return Constant::getNullValue(Ty);
- if (IntrinsicID == Intrinsic::cttz)
- return ConstantInt::get(Ty, C0->countTrailingZeros());
- else
- return ConstantInt::get(Ty, C0->countLeadingZeros());
- case Intrinsic::abs:
- assert(C1 && "Must be constant int");
- assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
- // Undef or minimum val operand with poison min --> undef
- if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
- return UndefValue::get(Ty);
- // Undef operand with no poison min --> 0 (sign bit must be clear)
- if (!C0)
- return Constant::getNullValue(Ty);
- return ConstantInt::get(Ty, C0->abs());
- }
- return nullptr;
- }
- // Support ConstantVector in case we have an Undef in the top.
- if ((isa<ConstantVector>(Operands[0]) ||
- isa<ConstantDataVector>(Operands[0])) &&
- // Check for default rounding mode.
- // FIXME: Support other rounding modes?
- isa<ConstantInt>(Operands[1]) &&
- cast<ConstantInt>(Operands[1])->getValue() == 4) {
- auto *Op = cast<Constant>(Operands[0]);
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::x86_avx512_vcvtss2si32:
- case Intrinsic::x86_avx512_vcvtss2si64:
- case Intrinsic::x86_avx512_vcvtsd2si32:
- case Intrinsic::x86_avx512_vcvtsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty,
- /*IsSigned*/true);
- break;
- case Intrinsic::x86_avx512_vcvtss2usi32:
- case Intrinsic::x86_avx512_vcvtss2usi64:
- case Intrinsic::x86_avx512_vcvtsd2usi32:
- case Intrinsic::x86_avx512_vcvtsd2usi64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty,
- /*IsSigned*/false);
- break;
- case Intrinsic::x86_avx512_cvttss2si:
- case Intrinsic::x86_avx512_cvttss2si64:
- case Intrinsic::x86_avx512_cvttsd2si:
- case Intrinsic::x86_avx512_cvttsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty,
- /*IsSigned*/true);
- break;
- case Intrinsic::x86_avx512_cvttss2usi:
- case Intrinsic::x86_avx512_cvttss2usi64:
- case Intrinsic::x86_avx512_cvttsd2usi:
- case Intrinsic::x86_avx512_cvttsd2usi64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty,
- /*IsSigned*/false);
- break;
- }
- }
- return nullptr;
- }
- static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
- const APFloat &S0,
- const APFloat &S1,
- const APFloat &S2) {
- unsigned ID;
- const fltSemantics &Sem = S0.getSemantics();
- APFloat MA(Sem), SC(Sem), TC(Sem);
- if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
- if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
- // S2 < 0
- ID = 5;
- SC = -S0;
- } else {
- ID = 4;
- SC = S0;
- }
- MA = S2;
- TC = -S1;
- } else if (abs(S1) >= abs(S0)) {
- if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
- // S1 < 0
- ID = 3;
- TC = -S2;
- } else {
- ID = 2;
- TC = S2;
- }
- MA = S1;
- SC = S0;
- } else {
- if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
- // S0 < 0
- ID = 1;
- SC = S2;
- } else {
- ID = 0;
- SC = -S2;
- }
- MA = S0;
- TC = -S1;
- }
- switch (IntrinsicID) {
- default:
- llvm_unreachable("unhandled amdgcn cube intrinsic");
- case Intrinsic::amdgcn_cubeid:
- return APFloat(Sem, ID);
- case Intrinsic::amdgcn_cubema:
- return MA + MA;
- case Intrinsic::amdgcn_cubesc:
- return SC;
- case Intrinsic::amdgcn_cubetc:
- return TC;
- }
- }
- static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
- Type *Ty) {
- const APInt *C0, *C1, *C2;
- if (!getConstIntOrUndef(Operands[0], C0) ||
- !getConstIntOrUndef(Operands[1], C1) ||
- !getConstIntOrUndef(Operands[2], C2))
- return nullptr;
- if (!C2)
- return UndefValue::get(Ty);
- APInt Val(32, 0);
- unsigned NumUndefBytes = 0;
- for (unsigned I = 0; I < 32; I += 8) {
- unsigned Sel = C2->extractBitsAsZExtValue(8, I);
- unsigned B = 0;
- if (Sel >= 13)
- B = 0xff;
- else if (Sel == 12)
- B = 0x00;
- else {
- const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
- if (!Src)
- ++NumUndefBytes;
- else if (Sel < 8)
- B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
- else
- B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
- }
- Val.insertBits(B, I, 8);
- }
- if (NumUndefBytes == 4)
- return UndefValue::get(Ty);
- return ConstantInt::get(Ty, Val);
- }
- static Constant *ConstantFoldScalarCall3(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- assert(Operands.size() == 3 && "Wrong number of operands.");
- if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- const APFloat &C3 = Op3->getValueAPF();
- if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
- RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
- APFloat Res = C1;
- APFloat::opStatus St;
- switch (IntrinsicID) {
- default:
- return nullptr;
- case Intrinsic::experimental_constrained_fma:
- case Intrinsic::experimental_constrained_fmuladd:
- St = Res.fusedMultiplyAdd(C2, C3, RM);
- break;
- }
- if (mayFoldConstrained(
- const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
- return ConstantFP::get(Ty->getContext(), Res);
- return nullptr;
- }
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::amdgcn_fma_legacy: {
- // The legacy behaviour is that multiplying +/- 0.0 by anything, even
- // NaN or infinity, gives +0.0.
- if (C1.isZero() || C2.isZero()) {
- // It's tempting to just return C3 here, but that would give the
- // wrong result if C3 was -0.0.
- return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
- }
- [[fallthrough]];
- }
- case Intrinsic::fma:
- case Intrinsic::fmuladd: {
- APFloat V = C1;
- V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), V);
- }
- case Intrinsic::amdgcn_cubeid:
- case Intrinsic::amdgcn_cubema:
- case Intrinsic::amdgcn_cubesc:
- case Intrinsic::amdgcn_cubetc: {
- APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
- return ConstantFP::get(Ty->getContext(), V);
- }
- }
- }
- }
- }
- if (IntrinsicID == Intrinsic::smul_fix ||
- IntrinsicID == Intrinsic::smul_fix_sat) {
- // poison * C -> poison
- // C * poison -> poison
- if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
- return PoisonValue::get(Ty);
- const APInt *C0, *C1;
- if (!getConstIntOrUndef(Operands[0], C0) ||
- !getConstIntOrUndef(Operands[1], C1))
- return nullptr;
- // undef * C -> 0
- // C * undef -> 0
- if (!C0 || !C1)
- return Constant::getNullValue(Ty);
- // This code performs rounding towards negative infinity in case the result
- // cannot be represented exactly for the given scale. Targets that do care
- // about rounding should use a target hook for specifying how rounding
- // should be done, and provide their own folding to be consistent with
- // rounding. This is the same approach as used by
- // DAGTypeLegalizer::ExpandIntRes_MULFIX.
- unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
- unsigned Width = C0->getBitWidth();
- assert(Scale < Width && "Illegal scale.");
- unsigned ExtendedWidth = Width * 2;
- APInt Product =
- (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
- if (IntrinsicID == Intrinsic::smul_fix_sat) {
- APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
- APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
- Product = APIntOps::smin(Product, Max);
- Product = APIntOps::smax(Product, Min);
- }
- return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
- }
- if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
- const APInt *C0, *C1, *C2;
- if (!getConstIntOrUndef(Operands[0], C0) ||
- !getConstIntOrUndef(Operands[1], C1) ||
- !getConstIntOrUndef(Operands[2], C2))
- return nullptr;
- bool IsRight = IntrinsicID == Intrinsic::fshr;
- if (!C2)
- return Operands[IsRight ? 1 : 0];
- if (!C0 && !C1)
- return UndefValue::get(Ty);
- // The shift amount is interpreted as modulo the bitwidth. If the shift
- // amount is effectively 0, avoid UB due to oversized inverse shift below.
- unsigned BitWidth = C2->getBitWidth();
- unsigned ShAmt = C2->urem(BitWidth);
- if (!ShAmt)
- return Operands[IsRight ? 1 : 0];
- // (C0 << ShlAmt) | (C1 >> LshrAmt)
- unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
- unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
- if (!C0)
- return ConstantInt::get(Ty, C1->lshr(LshrAmt));
- if (!C1)
- return ConstantInt::get(Ty, C0->shl(ShlAmt));
- return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
- }
- if (IntrinsicID == Intrinsic::amdgcn_perm)
- return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
- return nullptr;
- }
- static Constant *ConstantFoldScalarCall(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- if (Operands.size() == 1)
- return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
- if (Operands.size() == 2)
- return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
- if (Operands.size() == 3)
- return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
- return nullptr;
- }
- static Constant *ConstantFoldFixedVectorCall(
- StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
- ArrayRef<Constant *> Operands, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const CallBase *Call) {
- SmallVector<Constant *, 4> Result(FVTy->getNumElements());
- SmallVector<Constant *, 4> Lane(Operands.size());
- Type *Ty = FVTy->getElementType();
- switch (IntrinsicID) {
- case Intrinsic::masked_load: {
- auto *SrcPtr = Operands[0];
- auto *Mask = Operands[2];
- auto *Passthru = Operands[3];
- Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
- SmallVector<Constant *, 32> NewElements;
- for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
- auto *MaskElt = Mask->getAggregateElement(I);
- if (!MaskElt)
- break;
- auto *PassthruElt = Passthru->getAggregateElement(I);
- auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
- if (isa<UndefValue>(MaskElt)) {
- if (PassthruElt)
- NewElements.push_back(PassthruElt);
- else if (VecElt)
- NewElements.push_back(VecElt);
- else
- return nullptr;
- }
- if (MaskElt->isNullValue()) {
- if (!PassthruElt)
- return nullptr;
- NewElements.push_back(PassthruElt);
- } else if (MaskElt->isOneValue()) {
- if (!VecElt)
- return nullptr;
- NewElements.push_back(VecElt);
- } else {
- return nullptr;
- }
- }
- if (NewElements.size() != FVTy->getNumElements())
- return nullptr;
- return ConstantVector::get(NewElements);
- }
- case Intrinsic::arm_mve_vctp8:
- case Intrinsic::arm_mve_vctp16:
- case Intrinsic::arm_mve_vctp32:
- case Intrinsic::arm_mve_vctp64: {
- if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
- unsigned Lanes = FVTy->getNumElements();
- uint64_t Limit = Op->getZExtValue();
- SmallVector<Constant *, 16> NCs;
- for (unsigned i = 0; i < Lanes; i++) {
- if (i < Limit)
- NCs.push_back(ConstantInt::getTrue(Ty));
- else
- NCs.push_back(ConstantInt::getFalse(Ty));
- }
- return ConstantVector::get(NCs);
- }
- return nullptr;
- }
- case Intrinsic::get_active_lane_mask: {
- auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
- auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
- if (Op0 && Op1) {
- unsigned Lanes = FVTy->getNumElements();
- uint64_t Base = Op0->getZExtValue();
- uint64_t Limit = Op1->getZExtValue();
- SmallVector<Constant *, 16> NCs;
- for (unsigned i = 0; i < Lanes; i++) {
- if (Base + i < Limit)
- NCs.push_back(ConstantInt::getTrue(Ty));
- else
- NCs.push_back(ConstantInt::getFalse(Ty));
- }
- return ConstantVector::get(NCs);
- }
- return nullptr;
- }
- default:
- break;
- }
- for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
- // Gather a column of constants.
- for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
- // Some intrinsics use a scalar type for certain arguments.
- if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
- Lane[J] = Operands[J];
- continue;
- }
- Constant *Agg = Operands[J]->getAggregateElement(I);
- if (!Agg)
- return nullptr;
- Lane[J] = Agg;
- }
- // Use the regular scalar folding to simplify this column.
- Constant *Folded =
- ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
- if (!Folded)
- return nullptr;
- Result[I] = Folded;
- }
- return ConstantVector::get(Result);
- }
- static Constant *ConstantFoldScalableVectorCall(
- StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
- ArrayRef<Constant *> Operands, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const CallBase *Call) {
- switch (IntrinsicID) {
- case Intrinsic::aarch64_sve_convert_from_svbool: {
- auto *Src = dyn_cast<Constant>(Operands[0]);
- if (!Src || !Src->isNullValue())
- break;
- return ConstantInt::getFalse(SVTy);
- }
- default:
- break;
- }
- return nullptr;
- }
- } // end anonymous namespace
- Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI) {
- if (Call->isNoBuiltin())
- return nullptr;
- if (!F->hasName())
- return nullptr;
- // If this is not an intrinsic and not recognized as a library call, bail out.
- if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
- if (!TLI)
- return nullptr;
- LibFunc LibF;
- if (!TLI->getLibFunc(*F, LibF))
- return nullptr;
- }
- StringRef Name = F->getName();
- Type *Ty = F->getReturnType();
- if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
- return ConstantFoldFixedVectorCall(
- Name, F->getIntrinsicID(), FVTy, Operands,
- F->getParent()->getDataLayout(), TLI, Call);
- if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
- return ConstantFoldScalableVectorCall(
- Name, F->getIntrinsicID(), SVTy, Operands,
- F->getParent()->getDataLayout(), TLI, Call);
- // TODO: If this is a library function, we already discovered that above,
- // so we should pass the LibFunc, not the name (and it might be better
- // still to separate intrinsic handling from libcalls).
- return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
- Call);
- }
- bool llvm::isMathLibCallNoop(const CallBase *Call,
- const TargetLibraryInfo *TLI) {
- // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
- // (and to some extent ConstantFoldScalarCall).
- if (Call->isNoBuiltin() || Call->isStrictFP())
- return false;
- Function *F = Call->getCalledFunction();
- if (!F)
- return false;
- LibFunc Func;
- if (!TLI || !TLI->getLibFunc(*F, Func))
- return false;
- if (Call->arg_size() == 1) {
- if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
- const APFloat &Op = OpC->getValueAPF();
- switch (Func) {
- case LibFunc_logl:
- case LibFunc_log:
- case LibFunc_logf:
- case LibFunc_log2l:
- case LibFunc_log2:
- case LibFunc_log2f:
- case LibFunc_log10l:
- case LibFunc_log10:
- case LibFunc_log10f:
- return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
- case LibFunc_expl:
- case LibFunc_exp:
- case LibFunc_expf:
- // FIXME: These boundaries are slightly conservative.
- if (OpC->getType()->isDoubleTy())
- return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
- if (OpC->getType()->isFloatTy())
- return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
- break;
- case LibFunc_exp2l:
- case LibFunc_exp2:
- case LibFunc_exp2f:
- // FIXME: These boundaries are slightly conservative.
- if (OpC->getType()->isDoubleTy())
- return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
- if (OpC->getType()->isFloatTy())
- return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
- break;
- case LibFunc_sinl:
- case LibFunc_sin:
- case LibFunc_sinf:
- case LibFunc_cosl:
- case LibFunc_cos:
- case LibFunc_cosf:
- return !Op.isInfinity();
- case LibFunc_tanl:
- case LibFunc_tan:
- case LibFunc_tanf: {
- // FIXME: Stop using the host math library.
- // FIXME: The computation isn't done in the right precision.
- Type *Ty = OpC->getType();
- if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
- return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
- break;
- }
- case LibFunc_atan:
- case LibFunc_atanf:
- case LibFunc_atanl:
- // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
- return true;
- case LibFunc_asinl:
- case LibFunc_asin:
- case LibFunc_asinf:
- case LibFunc_acosl:
- case LibFunc_acos:
- case LibFunc_acosf:
- return !(Op < APFloat(Op.getSemantics(), "-1") ||
- Op > APFloat(Op.getSemantics(), "1"));
- case LibFunc_sinh:
- case LibFunc_cosh:
- case LibFunc_sinhf:
- case LibFunc_coshf:
- case LibFunc_sinhl:
- case LibFunc_coshl:
- // FIXME: These boundaries are slightly conservative.
- if (OpC->getType()->isDoubleTy())
- return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
- if (OpC->getType()->isFloatTy())
- return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
- break;
- case LibFunc_sqrtl:
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- return Op.isNaN() || Op.isZero() || !Op.isNegative();
- // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
- // maybe others?
- default:
- break;
- }
- }
- }
- if (Call->arg_size() == 2) {
- ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
- ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
- if (Op0C && Op1C) {
- const APFloat &Op0 = Op0C->getValueAPF();
- const APFloat &Op1 = Op1C->getValueAPF();
- switch (Func) {
- case LibFunc_powl:
- case LibFunc_pow:
- case LibFunc_powf: {
- // FIXME: Stop using the host math library.
- // FIXME: The computation isn't done in the right precision.
- Type *Ty = Op0C->getType();
- if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
- if (Ty == Op1C->getType())
- return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
- }
- break;
- }
- case LibFunc_fmodl:
- case LibFunc_fmod:
- case LibFunc_fmodf:
- case LibFunc_remainderl:
- case LibFunc_remainder:
- case LibFunc_remainderf:
- return Op0.isNaN() || Op1.isNaN() ||
- (!Op0.isInfinity() && !Op1.isZero());
- case LibFunc_atan2:
- case LibFunc_atan2f:
- case LibFunc_atan2l:
- // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
- // GLIBC and MSVC do not appear to raise an error on those, we
- // cannot rely on that behavior. POSIX and C11 say that a domain error
- // may occur, so allow for that possibility.
- return !Op0.isZero() || !Op1.isZero();
- default:
- break;
- }
- }
- }
- return false;
- }
- void TargetFolder::anchor() {}
|