SparsePropagation.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. #pragma once
  2. #ifdef __GNUC__
  3. #pragma GCC diagnostic push
  4. #pragma GCC diagnostic ignored "-Wunused-parameter"
  5. #endif
  6. //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
  7. //
  8. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  9. // See https://llvm.org/LICENSE.txt for license information.
  10. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  11. //
  12. //===----------------------------------------------------------------------===//
  13. //
  14. // This file implements an abstract sparse conditional propagation algorithm,
  15. // modeled after SCCP, but with a customizable lattice function.
  16. //
  17. //===----------------------------------------------------------------------===//
  18. #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
  19. #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
  20. #include "llvm/ADT/SmallPtrSet.h"
  21. #include "llvm/IR/Constants.h"
  22. #include "llvm/IR/Instructions.h"
  23. #include "llvm/Support/Debug.h"
  24. #include <set>
  25. #define DEBUG_TYPE "sparseprop"
  26. namespace llvm {
  27. /// A template for translating between LLVM Values and LatticeKeys. Clients must
  28. /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
  29. template <class LatticeKey> struct LatticeKeyInfo {
  30. // static inline Value *getValueFromLatticeKey(LatticeKey Key);
  31. // static inline LatticeKey getLatticeKeyFromValue(Value *V);
  32. };
  33. template <class LatticeKey, class LatticeVal,
  34. class KeyInfo = LatticeKeyInfo<LatticeKey>>
  35. class SparseSolver;
  36. /// AbstractLatticeFunction - This class is implemented by the dataflow instance
  37. /// to specify what the lattice values are and how they handle merges etc. This
  38. /// gives the client the power to compute lattice values from instructions,
  39. /// constants, etc. The current requirement is that lattice values must be
  40. /// copyable. At the moment, nothing tries to avoid copying. Additionally,
  41. /// lattice keys must be able to be used as keys of a mapping data structure.
  42. /// Internally, the generic solver currently uses a DenseMap to map lattice keys
  43. /// to lattice values. If the lattice key is a non-standard type, a
  44. /// specialization of DenseMapInfo must be provided.
  45. template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
  46. private:
  47. LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
  48. public:
  49. AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
  50. LatticeVal untrackedVal) {
  51. UndefVal = undefVal;
  52. OverdefinedVal = overdefinedVal;
  53. UntrackedVal = untrackedVal;
  54. }
  55. virtual ~AbstractLatticeFunction() = default;
  56. LatticeVal getUndefVal() const { return UndefVal; }
  57. LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
  58. LatticeVal getUntrackedVal() const { return UntrackedVal; }
  59. /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
  60. /// to the analysis (i.e., it would always return UntrackedVal), this
  61. /// function can return true to avoid pointless work.
  62. virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
  63. /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
  64. /// given LatticeKey.
  65. virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
  66. return getOverdefinedVal();
  67. }
  68. /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
  69. /// one that the we want to handle through ComputeInstructionState.
  70. virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
  71. /// MergeValues - Compute and return the merge of the two specified lattice
  72. /// values. Merging should only move one direction down the lattice to
  73. /// guarantee convergence (toward overdefined).
  74. virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
  75. return getOverdefinedVal(); // always safe, never useful.
  76. }
  77. /// ComputeInstructionState - Compute the LatticeKeys that change as a result
  78. /// of executing instruction \p I. Their associated LatticeVals are store in
  79. /// \p ChangedValues.
  80. virtual void
  81. ComputeInstructionState(Instruction &I,
  82. DenseMap<LatticeKey, LatticeVal> &ChangedValues,
  83. SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
  84. /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
  85. virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
  86. /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
  87. virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
  88. /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
  89. /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
  90. /// returned value must have the same type. This function is used by the
  91. /// generic solver in attempting to resolve branch and switch conditions.
  92. virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
  93. return nullptr;
  94. }
  95. };
  96. /// SparseSolver - This class is a general purpose solver for Sparse Conditional
  97. /// Propagation with a programmable lattice function.
  98. template <class LatticeKey, class LatticeVal, class KeyInfo>
  99. class SparseSolver {
  100. /// LatticeFunc - This is the object that knows the lattice and how to
  101. /// compute transfer functions.
  102. AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
  103. /// ValueState - Holds the LatticeVals associated with LatticeKeys.
  104. DenseMap<LatticeKey, LatticeVal> ValueState;
  105. /// BBExecutable - Holds the basic blocks that are executable.
  106. SmallPtrSet<BasicBlock *, 16> BBExecutable;
  107. /// ValueWorkList - Holds values that should be processed.
  108. SmallVector<Value *, 64> ValueWorkList;
  109. /// BBWorkList - Holds basic blocks that should be processed.
  110. SmallVector<BasicBlock *, 64> BBWorkList;
  111. using Edge = std::pair<BasicBlock *, BasicBlock *>;
  112. /// KnownFeasibleEdges - Entries in this set are edges which have already had
  113. /// PHI nodes retriggered.
  114. std::set<Edge> KnownFeasibleEdges;
  115. public:
  116. explicit SparseSolver(
  117. AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
  118. : LatticeFunc(Lattice) {}
  119. SparseSolver(const SparseSolver &) = delete;
  120. SparseSolver &operator=(const SparseSolver &) = delete;
  121. /// Solve - Solve for constants and executable blocks.
  122. void Solve();
  123. void Print(raw_ostream &OS) const;
  124. /// getExistingValueState - Return the LatticeVal object corresponding to the
  125. /// given value from the ValueState map. If the value is not in the map,
  126. /// UntrackedVal is returned, unlike the getValueState method.
  127. LatticeVal getExistingValueState(LatticeKey Key) const {
  128. auto I = ValueState.find(Key);
  129. return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
  130. }
  131. /// getValueState - Return the LatticeVal object corresponding to the given
  132. /// value from the ValueState map. If the value is not in the map, its state
  133. /// is initialized.
  134. LatticeVal getValueState(LatticeKey Key);
  135. /// isEdgeFeasible - Return true if the control flow edge from the 'From'
  136. /// basic block to the 'To' basic block is currently feasible. If
  137. /// AggressiveUndef is true, then this treats values with unknown lattice
  138. /// values as undefined. This is generally only useful when solving the
  139. /// lattice, not when querying it.
  140. bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
  141. bool AggressiveUndef = false);
  142. /// isBlockExecutable - Return true if there are any known feasible
  143. /// edges into the basic block. This is generally only useful when
  144. /// querying the lattice.
  145. bool isBlockExecutable(BasicBlock *BB) const {
  146. return BBExecutable.count(BB);
  147. }
  148. /// MarkBlockExecutable - This method can be used by clients to mark all of
  149. /// the blocks that are known to be intrinsically live in the processed unit.
  150. void MarkBlockExecutable(BasicBlock *BB);
  151. private:
  152. /// UpdateState - When the state of some LatticeKey is potentially updated to
  153. /// the given LatticeVal, this function notices and adds the LLVM value
  154. /// corresponding the key to the work list, if needed.
  155. void UpdateState(LatticeKey Key, LatticeVal LV);
  156. /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  157. /// work list if it is not already executable.
  158. void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
  159. /// getFeasibleSuccessors - Return a vector of booleans to indicate which
  160. /// successors are reachable from a given terminator instruction.
  161. void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
  162. bool AggressiveUndef);
  163. void visitInst(Instruction &I);
  164. void visitPHINode(PHINode &I);
  165. void visitTerminator(Instruction &TI);
  166. };
  167. //===----------------------------------------------------------------------===//
  168. // AbstractLatticeFunction Implementation
  169. //===----------------------------------------------------------------------===//
  170. template <class LatticeKey, class LatticeVal>
  171. void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
  172. LatticeVal V, raw_ostream &OS) {
  173. if (V == UndefVal)
  174. OS << "undefined";
  175. else if (V == OverdefinedVal)
  176. OS << "overdefined";
  177. else if (V == UntrackedVal)
  178. OS << "untracked";
  179. else
  180. OS << "unknown lattice value";
  181. }
  182. template <class LatticeKey, class LatticeVal>
  183. void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
  184. LatticeKey Key, raw_ostream &OS) {
  185. OS << "unknown lattice key";
  186. }
  187. //===----------------------------------------------------------------------===//
  188. // SparseSolver Implementation
  189. //===----------------------------------------------------------------------===//
  190. template <class LatticeKey, class LatticeVal, class KeyInfo>
  191. LatticeVal
  192. SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
  193. auto I = ValueState.find(Key);
  194. if (I != ValueState.end())
  195. return I->second; // Common case, in the map
  196. if (LatticeFunc->IsUntrackedValue(Key))
  197. return LatticeFunc->getUntrackedVal();
  198. LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
  199. // If this value is untracked, don't add it to the map.
  200. if (LV == LatticeFunc->getUntrackedVal())
  201. return LV;
  202. return ValueState[Key] = std::move(LV);
  203. }
  204. template <class LatticeKey, class LatticeVal, class KeyInfo>
  205. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
  206. LatticeVal LV) {
  207. auto I = ValueState.find(Key);
  208. if (I != ValueState.end() && I->second == LV)
  209. return; // No change.
  210. // Update the state of the given LatticeKey and add its corresponding LLVM
  211. // value to the work list.
  212. ValueState[Key] = std::move(LV);
  213. if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
  214. ValueWorkList.push_back(V);
  215. }
  216. template <class LatticeKey, class LatticeVal, class KeyInfo>
  217. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
  218. BasicBlock *BB) {
  219. if (!BBExecutable.insert(BB).second)
  220. return;
  221. LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
  222. BBWorkList.push_back(BB); // Add the block to the work list!
  223. }
  224. template <class LatticeKey, class LatticeVal, class KeyInfo>
  225. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
  226. BasicBlock *Source, BasicBlock *Dest) {
  227. if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
  228. return; // This edge is already known to be executable!
  229. LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
  230. << " -> " << Dest->getName() << "\n");
  231. if (BBExecutable.count(Dest)) {
  232. // The destination is already executable, but we just made an edge
  233. // feasible that wasn't before. Revisit the PHI nodes in the block
  234. // because they have potentially new operands.
  235. for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
  236. visitPHINode(*cast<PHINode>(I));
  237. } else {
  238. MarkBlockExecutable(Dest);
  239. }
  240. }
  241. template <class LatticeKey, class LatticeVal, class KeyInfo>
  242. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
  243. Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
  244. Succs.resize(TI.getNumSuccessors());
  245. if (TI.getNumSuccessors() == 0)
  246. return;
  247. if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
  248. if (BI->isUnconditional()) {
  249. Succs[0] = true;
  250. return;
  251. }
  252. LatticeVal BCValue;
  253. if (AggressiveUndef)
  254. BCValue =
  255. getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
  256. else
  257. BCValue = getExistingValueState(
  258. KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
  259. if (BCValue == LatticeFunc->getOverdefinedVal() ||
  260. BCValue == LatticeFunc->getUntrackedVal()) {
  261. // Overdefined condition variables can branch either way.
  262. Succs[0] = Succs[1] = true;
  263. return;
  264. }
  265. // If undefined, neither is feasible yet.
  266. if (BCValue == LatticeFunc->getUndefVal())
  267. return;
  268. Constant *C =
  269. dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
  270. std::move(BCValue), BI->getCondition()->getType()));
  271. if (!C || !isa<ConstantInt>(C)) {
  272. // Non-constant values can go either way.
  273. Succs[0] = Succs[1] = true;
  274. return;
  275. }
  276. // Constant condition variables mean the branch can only go a single way
  277. Succs[C->isNullValue()] = true;
  278. return;
  279. }
  280. if (!isa<SwitchInst>(TI)) {
  281. // Unknown termintor, assume all successors are feasible.
  282. Succs.assign(Succs.size(), true);
  283. return;
  284. }
  285. SwitchInst &SI = cast<SwitchInst>(TI);
  286. LatticeVal SCValue;
  287. if (AggressiveUndef)
  288. SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
  289. else
  290. SCValue = getExistingValueState(
  291. KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
  292. if (SCValue == LatticeFunc->getOverdefinedVal() ||
  293. SCValue == LatticeFunc->getUntrackedVal()) {
  294. // All destinations are executable!
  295. Succs.assign(TI.getNumSuccessors(), true);
  296. return;
  297. }
  298. // If undefined, neither is feasible yet.
  299. if (SCValue == LatticeFunc->getUndefVal())
  300. return;
  301. Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
  302. std::move(SCValue), SI.getCondition()->getType()));
  303. if (!C || !isa<ConstantInt>(C)) {
  304. // All destinations are executable!
  305. Succs.assign(TI.getNumSuccessors(), true);
  306. return;
  307. }
  308. SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
  309. Succs[Case.getSuccessorIndex()] = true;
  310. }
  311. template <class LatticeKey, class LatticeVal, class KeyInfo>
  312. bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
  313. BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
  314. SmallVector<bool, 16> SuccFeasible;
  315. Instruction *TI = From->getTerminator();
  316. getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
  317. for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
  318. if (TI->getSuccessor(i) == To && SuccFeasible[i])
  319. return true;
  320. return false;
  321. }
  322. template <class LatticeKey, class LatticeVal, class KeyInfo>
  323. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
  324. Instruction &TI) {
  325. SmallVector<bool, 16> SuccFeasible;
  326. getFeasibleSuccessors(TI, SuccFeasible, true);
  327. BasicBlock *BB = TI.getParent();
  328. // Mark all feasible successors executable...
  329. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
  330. if (SuccFeasible[i])
  331. markEdgeExecutable(BB, TI.getSuccessor(i));
  332. }
  333. template <class LatticeKey, class LatticeVal, class KeyInfo>
  334. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
  335. // The lattice function may store more information on a PHINode than could be
  336. // computed from its incoming values. For example, SSI form stores its sigma
  337. // functions as PHINodes with a single incoming value.
  338. if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
  339. DenseMap<LatticeKey, LatticeVal> ChangedValues;
  340. LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
  341. for (auto &ChangedValue : ChangedValues)
  342. if (ChangedValue.second != LatticeFunc->getUntrackedVal())
  343. UpdateState(std::move(ChangedValue.first),
  344. std::move(ChangedValue.second));
  345. return;
  346. }
  347. LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
  348. LatticeVal PNIV = getValueState(Key);
  349. LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
  350. // If this value is already overdefined (common) just return.
  351. if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
  352. return; // Quick exit
  353. // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
  354. // and slow us down a lot. Just mark them overdefined.
  355. if (PN.getNumIncomingValues() > 64) {
  356. UpdateState(Key, Overdefined);
  357. return;
  358. }
  359. // Look at all of the executable operands of the PHI node. If any of them
  360. // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
  361. // transfer function to give us the merge of the incoming values.
  362. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  363. // If the edge is not yet known to be feasible, it doesn't impact the PHI.
  364. if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
  365. continue;
  366. // Merge in this value.
  367. LatticeVal OpVal =
  368. getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
  369. if (OpVal != PNIV)
  370. PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
  371. if (PNIV == Overdefined)
  372. break; // Rest of input values don't matter.
  373. }
  374. // Update the PHI with the compute value, which is the merge of the inputs.
  375. UpdateState(Key, PNIV);
  376. }
  377. template <class LatticeKey, class LatticeVal, class KeyInfo>
  378. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
  379. // PHIs are handled by the propagation logic, they are never passed into the
  380. // transfer functions.
  381. if (PHINode *PN = dyn_cast<PHINode>(&I))
  382. return visitPHINode(*PN);
  383. // Otherwise, ask the transfer function what the result is. If this is
  384. // something that we care about, remember it.
  385. DenseMap<LatticeKey, LatticeVal> ChangedValues;
  386. LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
  387. for (auto &ChangedValue : ChangedValues)
  388. if (ChangedValue.second != LatticeFunc->getUntrackedVal())
  389. UpdateState(ChangedValue.first, ChangedValue.second);
  390. if (I.isTerminator())
  391. visitTerminator(I);
  392. }
  393. template <class LatticeKey, class LatticeVal, class KeyInfo>
  394. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
  395. // Process the work lists until they are empty!
  396. while (!BBWorkList.empty() || !ValueWorkList.empty()) {
  397. // Process the value work list.
  398. while (!ValueWorkList.empty()) {
  399. Value *V = ValueWorkList.pop_back_val();
  400. LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
  401. // "V" got into the work list because it made a transition. See if any
  402. // users are both live and in need of updating.
  403. for (User *U : V->users())
  404. if (Instruction *Inst = dyn_cast<Instruction>(U))
  405. if (BBExecutable.count(Inst->getParent())) // Inst is executable?
  406. visitInst(*Inst);
  407. }
  408. // Process the basic block work list.
  409. while (!BBWorkList.empty()) {
  410. BasicBlock *BB = BBWorkList.pop_back_val();
  411. LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
  412. // Notify all instructions in this basic block that they are newly
  413. // executable.
  414. for (Instruction &I : *BB)
  415. visitInst(I);
  416. }
  417. }
  418. }
  419. template <class LatticeKey, class LatticeVal, class KeyInfo>
  420. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
  421. raw_ostream &OS) const {
  422. if (ValueState.empty())
  423. return;
  424. LatticeKey Key;
  425. LatticeVal LV;
  426. OS << "ValueState:\n";
  427. for (auto &Entry : ValueState) {
  428. std::tie(Key, LV) = Entry;
  429. if (LV == LatticeFunc->getUntrackedVal())
  430. continue;
  431. OS << "\t";
  432. LatticeFunc->PrintLatticeVal(LV, OS);
  433. OS << ": ";
  434. LatticeFunc->PrintLatticeKey(Key, OS);
  435. OS << "\n";
  436. }
  437. }
  438. } // end namespace llvm
  439. #undef DEBUG_TYPE
  440. #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
  441. #ifdef __GNUC__
  442. #pragma GCC diagnostic pop
  443. #endif