123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements an abstract sparse conditional propagation algorithm,
- // modeled after SCCP, but with a customizable lattice function.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
- #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/Support/Debug.h"
- #include <set>
- #define DEBUG_TYPE "sparseprop"
- namespace llvm {
- /// A template for translating between LLVM Values and LatticeKeys. Clients must
- /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
- template <class LatticeKey> struct LatticeKeyInfo {
- // static inline Value *getValueFromLatticeKey(LatticeKey Key);
- // static inline LatticeKey getLatticeKeyFromValue(Value *V);
- };
- template <class LatticeKey, class LatticeVal,
- class KeyInfo = LatticeKeyInfo<LatticeKey>>
- class SparseSolver;
- /// AbstractLatticeFunction - This class is implemented by the dataflow instance
- /// to specify what the lattice values are and how they handle merges etc. This
- /// gives the client the power to compute lattice values from instructions,
- /// constants, etc. The current requirement is that lattice values must be
- /// copyable. At the moment, nothing tries to avoid copying. Additionally,
- /// lattice keys must be able to be used as keys of a mapping data structure.
- /// Internally, the generic solver currently uses a DenseMap to map lattice keys
- /// to lattice values. If the lattice key is a non-standard type, a
- /// specialization of DenseMapInfo must be provided.
- template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
- private:
- LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
- public:
- AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
- LatticeVal untrackedVal) {
- UndefVal = undefVal;
- OverdefinedVal = overdefinedVal;
- UntrackedVal = untrackedVal;
- }
- virtual ~AbstractLatticeFunction() = default;
- LatticeVal getUndefVal() const { return UndefVal; }
- LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
- LatticeVal getUntrackedVal() const { return UntrackedVal; }
- /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
- /// to the analysis (i.e., it would always return UntrackedVal), this
- /// function can return true to avoid pointless work.
- virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
- /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
- /// given LatticeKey.
- virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
- return getOverdefinedVal();
- }
- /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
- /// one that the we want to handle through ComputeInstructionState.
- virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
- /// MergeValues - Compute and return the merge of the two specified lattice
- /// values. Merging should only move one direction down the lattice to
- /// guarantee convergence (toward overdefined).
- virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
- return getOverdefinedVal(); // always safe, never useful.
- }
- /// ComputeInstructionState - Compute the LatticeKeys that change as a result
- /// of executing instruction \p I. Their associated LatticeVals are store in
- /// \p ChangedValues.
- virtual void
- ComputeInstructionState(Instruction &I,
- DenseMap<LatticeKey, LatticeVal> &ChangedValues,
- SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
- /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
- virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
- /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
- virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
- /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
- /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
- /// returned value must have the same type. This function is used by the
- /// generic solver in attempting to resolve branch and switch conditions.
- virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
- return nullptr;
- }
- };
- /// SparseSolver - This class is a general purpose solver for Sparse Conditional
- /// Propagation with a programmable lattice function.
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- class SparseSolver {
- /// LatticeFunc - This is the object that knows the lattice and how to
- /// compute transfer functions.
- AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
- /// ValueState - Holds the LatticeVals associated with LatticeKeys.
- DenseMap<LatticeKey, LatticeVal> ValueState;
- /// BBExecutable - Holds the basic blocks that are executable.
- SmallPtrSet<BasicBlock *, 16> BBExecutable;
- /// ValueWorkList - Holds values that should be processed.
- SmallVector<Value *, 64> ValueWorkList;
- /// BBWorkList - Holds basic blocks that should be processed.
- SmallVector<BasicBlock *, 64> BBWorkList;
- using Edge = std::pair<BasicBlock *, BasicBlock *>;
- /// KnownFeasibleEdges - Entries in this set are edges which have already had
- /// PHI nodes retriggered.
- std::set<Edge> KnownFeasibleEdges;
- public:
- explicit SparseSolver(
- AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
- : LatticeFunc(Lattice) {}
- SparseSolver(const SparseSolver &) = delete;
- SparseSolver &operator=(const SparseSolver &) = delete;
- /// Solve - Solve for constants and executable blocks.
- void Solve();
- void Print(raw_ostream &OS) const;
- /// getExistingValueState - Return the LatticeVal object corresponding to the
- /// given value from the ValueState map. If the value is not in the map,
- /// UntrackedVal is returned, unlike the getValueState method.
- LatticeVal getExistingValueState(LatticeKey Key) const {
- auto I = ValueState.find(Key);
- return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
- }
- /// getValueState - Return the LatticeVal object corresponding to the given
- /// value from the ValueState map. If the value is not in the map, its state
- /// is initialized.
- LatticeVal getValueState(LatticeKey Key);
- /// isEdgeFeasible - Return true if the control flow edge from the 'From'
- /// basic block to the 'To' basic block is currently feasible. If
- /// AggressiveUndef is true, then this treats values with unknown lattice
- /// values as undefined. This is generally only useful when solving the
- /// lattice, not when querying it.
- bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
- bool AggressiveUndef = false);
- /// isBlockExecutable - Return true if there are any known feasible
- /// edges into the basic block. This is generally only useful when
- /// querying the lattice.
- bool isBlockExecutable(BasicBlock *BB) const {
- return BBExecutable.count(BB);
- }
- /// MarkBlockExecutable - This method can be used by clients to mark all of
- /// the blocks that are known to be intrinsically live in the processed unit.
- void MarkBlockExecutable(BasicBlock *BB);
- private:
- /// UpdateState - When the state of some LatticeKey is potentially updated to
- /// the given LatticeVal, this function notices and adds the LLVM value
- /// corresponding the key to the work list, if needed.
- void UpdateState(LatticeKey Key, LatticeVal LV);
- /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
- /// work list if it is not already executable.
- void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
- /// getFeasibleSuccessors - Return a vector of booleans to indicate which
- /// successors are reachable from a given terminator instruction.
- void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
- bool AggressiveUndef);
- void visitInst(Instruction &I);
- void visitPHINode(PHINode &I);
- void visitTerminator(Instruction &TI);
- };
- //===----------------------------------------------------------------------===//
- // AbstractLatticeFunction Implementation
- //===----------------------------------------------------------------------===//
- template <class LatticeKey, class LatticeVal>
- void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
- LatticeVal V, raw_ostream &OS) {
- if (V == UndefVal)
- OS << "undefined";
- else if (V == OverdefinedVal)
- OS << "overdefined";
- else if (V == UntrackedVal)
- OS << "untracked";
- else
- OS << "unknown lattice value";
- }
- template <class LatticeKey, class LatticeVal>
- void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
- LatticeKey Key, raw_ostream &OS) {
- OS << "unknown lattice key";
- }
- //===----------------------------------------------------------------------===//
- // SparseSolver Implementation
- //===----------------------------------------------------------------------===//
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- LatticeVal
- SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
- auto I = ValueState.find(Key);
- if (I != ValueState.end())
- return I->second; // Common case, in the map
- if (LatticeFunc->IsUntrackedValue(Key))
- return LatticeFunc->getUntrackedVal();
- LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
- // If this value is untracked, don't add it to the map.
- if (LV == LatticeFunc->getUntrackedVal())
- return LV;
- return ValueState[Key] = std::move(LV);
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
- LatticeVal LV) {
- auto I = ValueState.find(Key);
- if (I != ValueState.end() && I->second == LV)
- return; // No change.
- // Update the state of the given LatticeKey and add its corresponding LLVM
- // value to the work list.
- ValueState[Key] = std::move(LV);
- if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
- ValueWorkList.push_back(V);
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
- BasicBlock *BB) {
- if (!BBExecutable.insert(BB).second)
- return;
- LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
- BBWorkList.push_back(BB); // Add the block to the work list!
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
- BasicBlock *Source, BasicBlock *Dest) {
- if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
- return; // This edge is already known to be executable!
- LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
- << " -> " << Dest->getName() << "\n");
- if (BBExecutable.count(Dest)) {
- // The destination is already executable, but we just made an edge
- // feasible that wasn't before. Revisit the PHI nodes in the block
- // because they have potentially new operands.
- for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
- visitPHINode(*cast<PHINode>(I));
- } else {
- MarkBlockExecutable(Dest);
- }
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
- Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
- Succs.resize(TI.getNumSuccessors());
- if (TI.getNumSuccessors() == 0)
- return;
- if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
- if (BI->isUnconditional()) {
- Succs[0] = true;
- return;
- }
- LatticeVal BCValue;
- if (AggressiveUndef)
- BCValue =
- getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
- else
- BCValue = getExistingValueState(
- KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
- if (BCValue == LatticeFunc->getOverdefinedVal() ||
- BCValue == LatticeFunc->getUntrackedVal()) {
- // Overdefined condition variables can branch either way.
- Succs[0] = Succs[1] = true;
- return;
- }
- // If undefined, neither is feasible yet.
- if (BCValue == LatticeFunc->getUndefVal())
- return;
- Constant *C =
- dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
- std::move(BCValue), BI->getCondition()->getType()));
- if (!C || !isa<ConstantInt>(C)) {
- // Non-constant values can go either way.
- Succs[0] = Succs[1] = true;
- return;
- }
- // Constant condition variables mean the branch can only go a single way
- Succs[C->isNullValue()] = true;
- return;
- }
- if (!isa<SwitchInst>(TI)) {
- // Unknown termintor, assume all successors are feasible.
- Succs.assign(Succs.size(), true);
- return;
- }
- SwitchInst &SI = cast<SwitchInst>(TI);
- LatticeVal SCValue;
- if (AggressiveUndef)
- SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
- else
- SCValue = getExistingValueState(
- KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
- if (SCValue == LatticeFunc->getOverdefinedVal() ||
- SCValue == LatticeFunc->getUntrackedVal()) {
- // All destinations are executable!
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- // If undefined, neither is feasible yet.
- if (SCValue == LatticeFunc->getUndefVal())
- return;
- Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
- std::move(SCValue), SI.getCondition()->getType()));
- if (!C || !isa<ConstantInt>(C)) {
- // All destinations are executable!
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
- Succs[Case.getSuccessorIndex()] = true;
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
- BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
- SmallVector<bool, 16> SuccFeasible;
- Instruction *TI = From->getTerminator();
- getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (TI->getSuccessor(i) == To && SuccFeasible[i])
- return true;
- return false;
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
- Instruction &TI) {
- SmallVector<bool, 16> SuccFeasible;
- getFeasibleSuccessors(TI, SuccFeasible, true);
- BasicBlock *BB = TI.getParent();
- // Mark all feasible successors executable...
- for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
- if (SuccFeasible[i])
- markEdgeExecutable(BB, TI.getSuccessor(i));
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
- // The lattice function may store more information on a PHINode than could be
- // computed from its incoming values. For example, SSI form stores its sigma
- // functions as PHINodes with a single incoming value.
- if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
- DenseMap<LatticeKey, LatticeVal> ChangedValues;
- LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
- for (auto &ChangedValue : ChangedValues)
- if (ChangedValue.second != LatticeFunc->getUntrackedVal())
- UpdateState(std::move(ChangedValue.first),
- std::move(ChangedValue.second));
- return;
- }
- LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
- LatticeVal PNIV = getValueState(Key);
- LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
- // If this value is already overdefined (common) just return.
- if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
- return; // Quick exit
- // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
- // and slow us down a lot. Just mark them overdefined.
- if (PN.getNumIncomingValues() > 64) {
- UpdateState(Key, Overdefined);
- return;
- }
- // Look at all of the executable operands of the PHI node. If any of them
- // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
- // transfer function to give us the merge of the incoming values.
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- // If the edge is not yet known to be feasible, it doesn't impact the PHI.
- if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
- continue;
- // Merge in this value.
- LatticeVal OpVal =
- getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
- if (OpVal != PNIV)
- PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
- if (PNIV == Overdefined)
- break; // Rest of input values don't matter.
- }
- // Update the PHI with the compute value, which is the merge of the inputs.
- UpdateState(Key, PNIV);
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
- // PHIs are handled by the propagation logic, they are never passed into the
- // transfer functions.
- if (PHINode *PN = dyn_cast<PHINode>(&I))
- return visitPHINode(*PN);
- // Otherwise, ask the transfer function what the result is. If this is
- // something that we care about, remember it.
- DenseMap<LatticeKey, LatticeVal> ChangedValues;
- LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
- for (auto &ChangedValue : ChangedValues)
- if (ChangedValue.second != LatticeFunc->getUntrackedVal())
- UpdateState(ChangedValue.first, ChangedValue.second);
- if (I.isTerminator())
- visitTerminator(I);
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
- // Process the work lists until they are empty!
- while (!BBWorkList.empty() || !ValueWorkList.empty()) {
- // Process the value work list.
- while (!ValueWorkList.empty()) {
- Value *V = ValueWorkList.pop_back_val();
- LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
- // "V" got into the work list because it made a transition. See if any
- // users are both live and in need of updating.
- for (User *U : V->users())
- if (Instruction *Inst = dyn_cast<Instruction>(U))
- if (BBExecutable.count(Inst->getParent())) // Inst is executable?
- visitInst(*Inst);
- }
- // Process the basic block work list.
- while (!BBWorkList.empty()) {
- BasicBlock *BB = BBWorkList.pop_back_val();
- LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
- // Notify all instructions in this basic block that they are newly
- // executable.
- for (Instruction &I : *BB)
- visitInst(I);
- }
- }
- }
- template <class LatticeKey, class LatticeVal, class KeyInfo>
- void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
- raw_ostream &OS) const {
- if (ValueState.empty())
- return;
- LatticeKey Key;
- LatticeVal LV;
- OS << "ValueState:\n";
- for (auto &Entry : ValueState) {
- std::tie(Key, LV) = Entry;
- if (LV == LatticeFunc->getUntrackedVal())
- continue;
- OS << "\t";
- LatticeFunc->PrintLatticeVal(LV, OS);
- OS << ": ";
- LatticeFunc->PrintLatticeKey(Key, OS);
- OS << "\n";
- }
- }
- } // end namespace llvm
- #undef DEBUG_TYPE
- #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|