123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions performs analyses on basic blocks, and instructions
- // contained within basic blocks.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_CFG_H
- #define LLVM_ANALYSIS_CFG_H
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include <utility>
- namespace llvm {
- class BasicBlock;
- class DominatorTree;
- class Function;
- class Instruction;
- class LoopInfo;
- template <typename T> class SmallVectorImpl;
- /// Analyze the specified function to find all of the loop backedges in the
- /// function and return them. This is a relatively cheap (compared to
- /// computing dominators and loop info) analysis.
- ///
- /// The output is added to Result, as pairs of <from,to> edge info.
- void FindFunctionBackedges(
- const Function &F,
- SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
- Result);
- /// Search for the specified successor of basic block BB and return its position
- /// in the terminator instruction's list of successors. It is an error to call
- /// this with a block that is not a successor.
- unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ);
- /// Return true if the specified edge is a critical edge. Critical edges are
- /// edges from a block with multiple successors to a block with multiple
- /// predecessors.
- ///
- bool isCriticalEdge(const Instruction *TI, unsigned SuccNum,
- bool AllowIdenticalEdges = false);
- bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ,
- bool AllowIdenticalEdges = false);
- /// Determine whether instruction 'To' is reachable from 'From', without passing
- /// through any blocks in ExclusionSet, returning true if uncertain.
- ///
- /// Determine whether there is a path from From to To within a single function.
- /// Returns false only if we can prove that once 'From' has been executed then
- /// 'To' can not be executed. Conservatively returns true.
- ///
- /// This function is linear with respect to the number of blocks in the CFG,
- /// walking down successors from From to reach To, with a fixed threshold.
- /// Using DT or LI allows us to answer more quickly. LI reduces the cost of
- /// an entire loop of any number of blocks to be the same as the cost of a
- /// single block. DT reduces the cost by allowing the search to terminate when
- /// we find a block that dominates the block containing 'To'. DT is most useful
- /// on branchy code but not loops, and LI is most useful on code with loops but
- /// does not help on branchy code outside loops.
- bool isPotentiallyReachable(
- const Instruction *From, const Instruction *To,
- const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
- const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
- /// Determine whether block 'To' is reachable from 'From', returning
- /// true if uncertain.
- ///
- /// Determine whether there is a path from From to To within a single function.
- /// Returns false only if we can prove that once 'From' has been reached then
- /// 'To' can not be executed. Conservatively returns true.
- bool isPotentiallyReachable(
- const BasicBlock *From, const BasicBlock *To,
- const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
- const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
- /// Determine whether there is at least one path from a block in
- /// 'Worklist' to 'StopBB' without passing through any blocks in
- /// 'ExclusionSet', returning true if uncertain.
- ///
- /// Determine whether there is a path from at least one block in Worklist to
- /// StopBB within a single function without passing through any of the blocks
- /// in 'ExclusionSet'. Returns false only if we can prove that once any block
- /// in 'Worklist' has been reached then 'StopBB' can not be executed.
- /// Conservatively returns true.
- bool isPotentiallyReachableFromMany(
- SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
- const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
- const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
- /// Return true if the control flow in \p RPOTraversal is irreducible.
- ///
- /// This is a generic implementation to detect CFG irreducibility based on loop
- /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop,
- /// Function, MachineFunction, etc.) by providing an RPO traversal (\p
- /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility
- /// function is only recommended when loop info analysis is available. If loop
- /// info analysis isn't available, please, don't compute it explicitly for this
- /// purpose. There are more efficient ways to detect CFG irreducibility that
- /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's
- /// algorithm).
- ///
- /// Requirements:
- /// 1) GraphTraits must be implemented for NodeT type. It is used to access
- /// NodeT successors.
- // 2) \p RPOTraversal must be a valid reverse post-order traversal of the
- /// target CFG with begin()/end() iterator interfaces.
- /// 3) \p LI must be a valid LoopInfoBase that contains up-to-date loop
- /// analysis information of the CFG.
- ///
- /// This algorithm uses the information about reducible loop back-edges already
- /// computed in \p LI. When a back-edge is found during the RPO traversal, the
- /// algorithm checks whether the back-edge is one of the reducible back-edges in
- /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG
- /// below (canonical irreducible graph) loop info won't contain any loop, so the
- /// algorithm will return that the CFG is irreducible when checking the B <-
- /// -> C back-edge.
- ///
- /// (A->B, A->C, B->C, C->B, C->D)
- /// A
- /// / \
- /// B<- ->C
- /// |
- /// D
- ///
- template <class NodeT, class RPOTraversalT, class LoopInfoT,
- class GT = GraphTraits<NodeT>>
- bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) {
- /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge
- /// according to LI. I.e., check if there exists a loop that contains Src and
- /// where Dst is the loop header.
- auto isProperBackedge = [&](NodeT Src, NodeT Dst) {
- for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) {
- if (Lp->getHeader() == Dst)
- return true;
- }
- return false;
- };
- SmallPtrSet<NodeT, 32> Visited;
- for (NodeT Node : RPOTraversal) {
- Visited.insert(Node);
- for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) {
- // Succ hasn't been visited yet
- if (!Visited.count(Succ))
- continue;
- // We already visited Succ, thus Node->Succ must be a backedge. Check that
- // the head matches what we have in the loop information. Otherwise, we
- // have an irreducible graph.
- if (!isProperBackedge(Node, Succ))
- return true;
- }
- }
- return false;
- }
- } // End llvm namespace
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|