123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802 |
- /*
- * jidctint-neon.c - accurate integer IDCT (Arm Neon)
- *
- * Copyright (C) 2020, Arm Limited. All Rights Reserved.
- * Copyright (C) 2020, D. R. Commander. All Rights Reserved.
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #define JPEG_INTERNALS
- #include "jconfigint.h"
- #include "../../jinclude.h"
- #include "../../jpeglib.h"
- #include "../../jsimd.h"
- #include "../../jdct.h"
- #include "../../jsimddct.h"
- #include "../jsimd.h"
- #include "align.h"
- #include "neon-compat.h"
- #include <arm_neon.h>
- #define CONST_BITS 13
- #define PASS1_BITS 2
- #define DESCALE_P1 (CONST_BITS - PASS1_BITS)
- #define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3)
- /* The computation of the inverse DCT requires the use of constants known at
- * compile time. Scaled integer constants are used to avoid floating-point
- * arithmetic:
- * 0.298631336 = 2446 * 2^-13
- * 0.390180644 = 3196 * 2^-13
- * 0.541196100 = 4433 * 2^-13
- * 0.765366865 = 6270 * 2^-13
- * 0.899976223 = 7373 * 2^-13
- * 1.175875602 = 9633 * 2^-13
- * 1.501321110 = 12299 * 2^-13
- * 1.847759065 = 15137 * 2^-13
- * 1.961570560 = 16069 * 2^-13
- * 2.053119869 = 16819 * 2^-13
- * 2.562915447 = 20995 * 2^-13
- * 3.072711026 = 25172 * 2^-13
- */
- #define F_0_298 2446
- #define F_0_390 3196
- #define F_0_541 4433
- #define F_0_765 6270
- #define F_0_899 7373
- #define F_1_175 9633
- #define F_1_501 12299
- #define F_1_847 15137
- #define F_1_961 16069
- #define F_2_053 16819
- #define F_2_562 20995
- #define F_3_072 25172
- #define F_1_175_MINUS_1_961 (F_1_175 - F_1_961)
- #define F_1_175_MINUS_0_390 (F_1_175 - F_0_390)
- #define F_0_541_MINUS_1_847 (F_0_541 - F_1_847)
- #define F_3_072_MINUS_2_562 (F_3_072 - F_2_562)
- #define F_0_298_MINUS_0_899 (F_0_298 - F_0_899)
- #define F_1_501_MINUS_0_899 (F_1_501 - F_0_899)
- #define F_2_053_MINUS_2_562 (F_2_053 - F_2_562)
- #define F_0_541_PLUS_0_765 (F_0_541 + F_0_765)
- ALIGN(16) static const int16_t jsimd_idct_islow_neon_consts[] = {
- F_0_899, F_0_541,
- F_2_562, F_0_298_MINUS_0_899,
- F_1_501_MINUS_0_899, F_2_053_MINUS_2_562,
- F_0_541_PLUS_0_765, F_1_175,
- F_1_175_MINUS_0_390, F_0_541_MINUS_1_847,
- F_3_072_MINUS_2_562, F_1_175_MINUS_1_961,
- 0, 0, 0, 0
- };
- /* Forward declaration of regular and sparse IDCT helper functions */
- static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0,
- int16x4_t row1,
- int16x4_t row2,
- int16x4_t row3,
- int16x4_t row4,
- int16x4_t row5,
- int16x4_t row6,
- int16x4_t row7,
- int16x4_t quant_row0,
- int16x4_t quant_row1,
- int16x4_t quant_row2,
- int16x4_t quant_row3,
- int16x4_t quant_row4,
- int16x4_t quant_row5,
- int16x4_t quant_row6,
- int16x4_t quant_row7,
- int16_t *workspace_1,
- int16_t *workspace_2);
- static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0,
- int16x4_t row1,
- int16x4_t row2,
- int16x4_t row3,
- int16x4_t quant_row0,
- int16x4_t quant_row1,
- int16x4_t quant_row2,
- int16x4_t quant_row3,
- int16_t *workspace_1,
- int16_t *workspace_2);
- static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace,
- JSAMPARRAY output_buf,
- JDIMENSION output_col,
- unsigned buf_offset);
- static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace,
- JSAMPARRAY output_buf,
- JDIMENSION output_col,
- unsigned buf_offset);
- /* Perform dequantization and inverse DCT on one block of coefficients. For
- * reference, the C implementation (jpeg_idct_slow()) can be found in
- * jidctint.c.
- *
- * Optimization techniques used for fast data access:
- *
- * In each pass, the inverse DCT is computed for the left and right 4x8 halves
- * of the DCT block. This avoids spilling due to register pressure, and the
- * increased granularity allows for an optimized calculation depending on the
- * values of the DCT coefficients. Between passes, intermediate data is stored
- * in 4x8 workspace buffers.
- *
- * Transposing the 8x8 DCT block after each pass can be achieved by transposing
- * each of the four 4x4 quadrants and swapping quadrants 1 and 2 (refer to the
- * diagram below.) Swapping quadrants is cheap, since the second pass can just
- * swap the workspace buffer pointers.
- *
- * +-------+-------+ +-------+-------+
- * | | | | | |
- * | 0 | 1 | | 0 | 2 |
- * | | | transpose | | |
- * +-------+-------+ ------> +-------+-------+
- * | | | | | |
- * | 2 | 3 | | 1 | 3 |
- * | | | | | |
- * +-------+-------+ +-------+-------+
- *
- * Optimization techniques used to accelerate the inverse DCT calculation:
- *
- * In a DCT coefficient block, the coefficients are increasingly likely to be 0
- * as you move diagonally from top left to bottom right. If whole rows of
- * coefficients are 0, then the inverse DCT calculation can be simplified. On
- * the first pass of the inverse DCT, we test for three special cases before
- * defaulting to a full "regular" inverse DCT:
- *
- * 1) Coefficients in rows 4-7 are all zero. In this case, we perform a
- * "sparse" simplified inverse DCT on rows 0-3.
- * 2) AC coefficients (rows 1-7) are all zero. In this case, the inverse DCT
- * result is equal to the dequantized DC coefficients.
- * 3) AC and DC coefficients are all zero. In this case, the inverse DCT
- * result is all zero. For the left 4x8 half, this is handled identically
- * to Case 2 above. For the right 4x8 half, we do no work and signal that
- * the "sparse" algorithm is required for the second pass.
- *
- * In the second pass, only a single special case is tested: whether the AC and
- * DC coefficients were all zero in the right 4x8 block during the first pass
- * (refer to Case 3 above.) If this is the case, then a "sparse" variant of
- * the second pass is performed for both the left and right halves of the DCT
- * block. (The transposition after the first pass means that the right 4x8
- * block during the first pass becomes rows 4-7 during the second pass.)
- */
- void jsimd_idct_islow_neon(void *dct_table, JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
- {
- ISLOW_MULT_TYPE *quantptr = dct_table;
- int16_t workspace_l[8 * DCTSIZE / 2];
- int16_t workspace_r[8 * DCTSIZE / 2];
- /* Compute IDCT first pass on left 4x8 coefficient block. */
- /* Load DCT coefficients in left 4x8 block. */
- int16x4_t row0 = vld1_s16(coef_block + 0 * DCTSIZE);
- int16x4_t row1 = vld1_s16(coef_block + 1 * DCTSIZE);
- int16x4_t row2 = vld1_s16(coef_block + 2 * DCTSIZE);
- int16x4_t row3 = vld1_s16(coef_block + 3 * DCTSIZE);
- int16x4_t row4 = vld1_s16(coef_block + 4 * DCTSIZE);
- int16x4_t row5 = vld1_s16(coef_block + 5 * DCTSIZE);
- int16x4_t row6 = vld1_s16(coef_block + 6 * DCTSIZE);
- int16x4_t row7 = vld1_s16(coef_block + 7 * DCTSIZE);
- /* Load quantization table for left 4x8 block. */
- int16x4_t quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE);
- int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
- int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
- int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
- int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
- int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
- int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
- int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
- /* Construct bitmap to test if DCT coefficients in left 4x8 block are 0. */
- int16x4_t bitmap = vorr_s16(row7, row6);
- bitmap = vorr_s16(bitmap, row5);
- bitmap = vorr_s16(bitmap, row4);
- int64_t bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
- if (bitmap_rows_4567 == 0) {
- bitmap = vorr_s16(bitmap, row3);
- bitmap = vorr_s16(bitmap, row2);
- bitmap = vorr_s16(bitmap, row1);
- int64_t left_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
- if (left_ac_bitmap == 0) {
- int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS);
- int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } };
- /* Store 4x4 blocks to workspace, transposing in the process. */
- vst4_s16(workspace_l, quadrant);
- vst4_s16(workspace_r, quadrant);
- } else {
- jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0,
- quant_row1, quant_row2, quant_row3,
- workspace_l, workspace_r);
- }
- } else {
- jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5,
- row6, row7, quant_row0, quant_row1,
- quant_row2, quant_row3, quant_row4,
- quant_row5, quant_row6, quant_row7,
- workspace_l, workspace_r);
- }
- /* Compute IDCT first pass on right 4x8 coefficient block. */
- /* Load DCT coefficients in right 4x8 block. */
- row0 = vld1_s16(coef_block + 0 * DCTSIZE + 4);
- row1 = vld1_s16(coef_block + 1 * DCTSIZE + 4);
- row2 = vld1_s16(coef_block + 2 * DCTSIZE + 4);
- row3 = vld1_s16(coef_block + 3 * DCTSIZE + 4);
- row4 = vld1_s16(coef_block + 4 * DCTSIZE + 4);
- row5 = vld1_s16(coef_block + 5 * DCTSIZE + 4);
- row6 = vld1_s16(coef_block + 6 * DCTSIZE + 4);
- row7 = vld1_s16(coef_block + 7 * DCTSIZE + 4);
- /* Load quantization table for right 4x8 block. */
- quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE + 4);
- quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
- quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
- quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
- quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
- quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
- quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
- quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
- /* Construct bitmap to test if DCT coefficients in right 4x8 block are 0. */
- bitmap = vorr_s16(row7, row6);
- bitmap = vorr_s16(bitmap, row5);
- bitmap = vorr_s16(bitmap, row4);
- bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
- bitmap = vorr_s16(bitmap, row3);
- bitmap = vorr_s16(bitmap, row2);
- bitmap = vorr_s16(bitmap, row1);
- int64_t right_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
- /* If this remains non-zero, a "regular" second pass will be performed. */
- int64_t right_ac_dc_bitmap = 1;
- if (right_ac_bitmap == 0) {
- bitmap = vorr_s16(bitmap, row0);
- right_ac_dc_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
- if (right_ac_dc_bitmap != 0) {
- int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS);
- int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } };
- /* Store 4x4 blocks to workspace, transposing in the process. */
- vst4_s16(workspace_l + 4 * DCTSIZE / 2, quadrant);
- vst4_s16(workspace_r + 4 * DCTSIZE / 2, quadrant);
- }
- } else {
- if (bitmap_rows_4567 == 0) {
- jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0,
- quant_row1, quant_row2, quant_row3,
- workspace_l + 4 * DCTSIZE / 2,
- workspace_r + 4 * DCTSIZE / 2);
- } else {
- jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5,
- row6, row7, quant_row0, quant_row1,
- quant_row2, quant_row3, quant_row4,
- quant_row5, quant_row6, quant_row7,
- workspace_l + 4 * DCTSIZE / 2,
- workspace_r + 4 * DCTSIZE / 2);
- }
- }
- /* Second pass: compute IDCT on rows in workspace. */
- /* If all coefficients in right 4x8 block are 0, use "sparse" second pass. */
- if (right_ac_dc_bitmap == 0) {
- jsimd_idct_islow_pass2_sparse(workspace_l, output_buf, output_col, 0);
- jsimd_idct_islow_pass2_sparse(workspace_r, output_buf, output_col, 4);
- } else {
- jsimd_idct_islow_pass2_regular(workspace_l, output_buf, output_col, 0);
- jsimd_idct_islow_pass2_regular(workspace_r, output_buf, output_col, 4);
- }
- }
- /* Perform dequantization and the first pass of the accurate inverse DCT on a
- * 4x8 block of coefficients. (To process the full 8x8 DCT block, this
- * function-- or some other optimized variant-- needs to be called for both the
- * left and right 4x8 blocks.)
- *
- * This "regular" version assumes that no optimization can be made to the IDCT
- * calculation, since no useful set of AC coefficients is all 0.
- *
- * The original C implementation of the accurate IDCT (jpeg_idct_slow()) can be
- * found in jidctint.c. Algorithmic changes made here are documented inline.
- */
- static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0,
- int16x4_t row1,
- int16x4_t row2,
- int16x4_t row3,
- int16x4_t row4,
- int16x4_t row5,
- int16x4_t row6,
- int16x4_t row7,
- int16x4_t quant_row0,
- int16x4_t quant_row1,
- int16x4_t quant_row2,
- int16x4_t quant_row3,
- int16x4_t quant_row4,
- int16x4_t quant_row5,
- int16x4_t quant_row6,
- int16x4_t quant_row7,
- int16_t *workspace_1,
- int16_t *workspace_2)
- {
- /* Load constants for IDCT computation. */
- #ifdef HAVE_VLD1_S16_X3
- const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
- #else
- const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
- const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
- const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
- const int16x4x3_t consts = { { consts1, consts2, consts3 } };
- #endif
- /* Even part */
- int16x4_t z2_s16 = vmul_s16(row2, quant_row2);
- int16x4_t z3_s16 = vmul_s16(row6, quant_row6);
- int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
- int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
- tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1);
- tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1);
- z2_s16 = vmul_s16(row0, quant_row0);
- z3_s16 = vmul_s16(row4, quant_row4);
- int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS);
- int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS);
- int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
- int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
- int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
- int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
- /* Odd part */
- int16x4_t tmp0_s16 = vmul_s16(row7, quant_row7);
- int16x4_t tmp1_s16 = vmul_s16(row5, quant_row5);
- int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3);
- int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1);
- z3_s16 = vadd_s16(tmp0_s16, tmp2_s16);
- int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16);
- /* Implementation as per jpeg_idct_islow() in jidctint.c:
- * z5 = (z3 + z4) * 1.175875602;
- * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
- * z3 += z5; z4 += z5;
- *
- * This implementation:
- * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
- * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
- */
- int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
- int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
- z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
- z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
- /* Implementation as per jpeg_idct_islow() in jidctint.c:
- * z1 = tmp0 + tmp3; z2 = tmp1 + tmp2;
- * tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869;
- * tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110;
- * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
- * tmp0 += z1 + z3; tmp1 += z2 + z4;
- * tmp2 += z2 + z3; tmp3 += z1 + z4;
- *
- * This implementation:
- * tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
- * tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
- * tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
- * tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
- * tmp0 += z3; tmp1 += z4;
- * tmp2 += z3; tmp3 += z4;
- */
- tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3);
- tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1);
- tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2);
- tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0);
- tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0);
- tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2);
- tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2);
- tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0);
- tmp0 = vaddq_s32(tmp0, z3);
- tmp1 = vaddq_s32(tmp1, z4);
- tmp2 = vaddq_s32(tmp2, z3);
- tmp3 = vaddq_s32(tmp3, z4);
- /* Final output stage: descale and narrow to 16-bit. */
- int16x4x4_t rows_0123 = { {
- vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1),
- vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1),
- vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1),
- vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1)
- } };
- int16x4x4_t rows_4567 = { {
- vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1),
- vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1),
- vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1),
- vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1)
- } };
- /* Store 4x4 blocks to the intermediate workspace, ready for the second pass.
- * (VST4 transposes the blocks. We need to operate on rows in the next
- * pass.)
- */
- vst4_s16(workspace_1, rows_0123);
- vst4_s16(workspace_2, rows_4567);
- }
- /* Perform dequantization and the first pass of the accurate inverse DCT on a
- * 4x8 block of coefficients.
- *
- * This "sparse" version assumes that the AC coefficients in rows 4-7 are all
- * 0. This simplifies the IDCT calculation, accelerating overall performance.
- */
- static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0,
- int16x4_t row1,
- int16x4_t row2,
- int16x4_t row3,
- int16x4_t quant_row0,
- int16x4_t quant_row1,
- int16x4_t quant_row2,
- int16x4_t quant_row3,
- int16_t *workspace_1,
- int16_t *workspace_2)
- {
- /* Load constants for IDCT computation. */
- #ifdef HAVE_VLD1_S16_X3
- const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
- #else
- const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
- const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
- const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
- const int16x4x3_t consts = { { consts1, consts2, consts3 } };
- #endif
- /* Even part (z3 is all 0) */
- int16x4_t z2_s16 = vmul_s16(row2, quant_row2);
- int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
- int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
- z2_s16 = vmul_s16(row0, quant_row0);
- int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS);
- int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS);
- int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
- int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
- int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
- int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
- /* Odd part (tmp0 and tmp1 are both all 0) */
- int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3);
- int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1);
- int16x4_t z3_s16 = tmp2_s16;
- int16x4_t z4_s16 = tmp3_s16;
- int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
- int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
- z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
- z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
- tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0);
- tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2);
- tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2);
- tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0);
- /* Final output stage: descale and narrow to 16-bit. */
- int16x4x4_t rows_0123 = { {
- vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1),
- vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1),
- vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1),
- vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1)
- } };
- int16x4x4_t rows_4567 = { {
- vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1),
- vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1),
- vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1),
- vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1)
- } };
- /* Store 4x4 blocks to the intermediate workspace, ready for the second pass.
- * (VST4 transposes the blocks. We need to operate on rows in the next
- * pass.)
- */
- vst4_s16(workspace_1, rows_0123);
- vst4_s16(workspace_2, rows_4567);
- }
- /* Perform the second pass of the accurate inverse DCT on a 4x8 block of
- * coefficients. (To process the full 8x8 DCT block, this function-- or some
- * other optimized variant-- needs to be called for both the right and left 4x8
- * blocks.)
- *
- * This "regular" version assumes that no optimization can be made to the IDCT
- * calculation, since no useful set of coefficient values are all 0 after the
- * first pass.
- *
- * Again, the original C implementation of the accurate IDCT (jpeg_idct_slow())
- * can be found in jidctint.c. Algorithmic changes made here are documented
- * inline.
- */
- static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace,
- JSAMPARRAY output_buf,
- JDIMENSION output_col,
- unsigned buf_offset)
- {
- /* Load constants for IDCT computation. */
- #ifdef HAVE_VLD1_S16_X3
- const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
- #else
- const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
- const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
- const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
- const int16x4x3_t consts = { { consts1, consts2, consts3 } };
- #endif
- /* Even part */
- int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2);
- int16x4_t z3_s16 = vld1_s16(workspace + 6 * DCTSIZE / 2);
- int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
- int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
- tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1);
- tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1);
- z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2);
- z3_s16 = vld1_s16(workspace + 4 * DCTSIZE / 2);
- int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS);
- int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS);
- int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
- int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
- int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
- int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
- /* Odd part */
- int16x4_t tmp0_s16 = vld1_s16(workspace + 7 * DCTSIZE / 2);
- int16x4_t tmp1_s16 = vld1_s16(workspace + 5 * DCTSIZE / 2);
- int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2);
- int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2);
- z3_s16 = vadd_s16(tmp0_s16, tmp2_s16);
- int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16);
- /* Implementation as per jpeg_idct_islow() in jidctint.c:
- * z5 = (z3 + z4) * 1.175875602;
- * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
- * z3 += z5; z4 += z5;
- *
- * This implementation:
- * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
- * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
- */
- int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
- int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
- z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
- z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
- /* Implementation as per jpeg_idct_islow() in jidctint.c:
- * z1 = tmp0 + tmp3; z2 = tmp1 + tmp2;
- * tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869;
- * tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110;
- * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
- * tmp0 += z1 + z3; tmp1 += z2 + z4;
- * tmp2 += z2 + z3; tmp3 += z1 + z4;
- *
- * This implementation:
- * tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
- * tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
- * tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
- * tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
- * tmp0 += z3; tmp1 += z4;
- * tmp2 += z3; tmp3 += z4;
- */
- tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3);
- tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1);
- tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2);
- tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0);
- tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0);
- tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2);
- tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2);
- tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0);
- tmp0 = vaddq_s32(tmp0, z3);
- tmp1 = vaddq_s32(tmp1, z4);
- tmp2 = vaddq_s32(tmp2, z3);
- tmp3 = vaddq_s32(tmp3, z4);
- /* Final output stage: descale and narrow to 16-bit. */
- int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3),
- vaddhn_s32(tmp12, tmp1));
- int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2),
- vaddhn_s32(tmp13, tmp0));
- int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0),
- vsubhn_s32(tmp11, tmp2));
- int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1),
- vsubhn_s32(tmp10, tmp3));
- /* Descale and narrow to 8-bit. */
- int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16);
- int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16);
- int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16);
- int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16);
- /* Clamp to range [0-255]. */
- uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8),
- vdup_n_u8(CENTERJSAMPLE));
- uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8),
- vdup_n_u8(CENTERJSAMPLE));
- uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8),
- vdup_n_u8(CENTERJSAMPLE));
- uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8),
- vdup_n_u8(CENTERJSAMPLE));
- /* Transpose 4x8 block and store to memory. (Zipping adjacent columns
- * together allows us to store 16-bit elements.)
- */
- uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8);
- uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8);
- uint16x4x4_t cols_01_23_45_67 = { {
- vreinterpret_u16_u8(cols_01_23.val[0]),
- vreinterpret_u16_u8(cols_01_23.val[1]),
- vreinterpret_u16_u8(cols_45_67.val[0]),
- vreinterpret_u16_u8(cols_45_67.val[1])
- } };
- JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col;
- JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col;
- JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col;
- JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col;
- /* VST4 of 16-bit elements completes the transpose. */
- vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0);
- vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1);
- vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2);
- vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3);
- }
- /* Performs the second pass of the accurate inverse DCT on a 4x8 block
- * of coefficients.
- *
- * This "sparse" version assumes that the coefficient values (after the first
- * pass) in rows 4-7 are all 0. This simplifies the IDCT calculation,
- * accelerating overall performance.
- */
- static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace,
- JSAMPARRAY output_buf,
- JDIMENSION output_col,
- unsigned buf_offset)
- {
- /* Load constants for IDCT computation. */
- #ifdef HAVE_VLD1_S16_X3
- const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
- #else
- const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
- const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
- const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
- const int16x4x3_t consts = { { consts1, consts2, consts3 } };
- #endif
- /* Even part (z3 is all 0) */
- int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2);
- int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
- int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
- z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2);
- int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS);
- int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS);
- int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
- int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
- int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
- int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
- /* Odd part (tmp0 and tmp1 are both all 0) */
- int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2);
- int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2);
- int16x4_t z3_s16 = tmp2_s16;
- int16x4_t z4_s16 = tmp3_s16;
- int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
- z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
- int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
- z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
- tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0);
- tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2);
- tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2);
- tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0);
- /* Final output stage: descale and narrow to 16-bit. */
- int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3),
- vaddhn_s32(tmp12, tmp1));
- int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2),
- vaddhn_s32(tmp13, tmp0));
- int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0),
- vsubhn_s32(tmp11, tmp2));
- int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1),
- vsubhn_s32(tmp10, tmp3));
- /* Descale and narrow to 8-bit. */
- int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16);
- int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16);
- int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16);
- int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16);
- /* Clamp to range [0-255]. */
- uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8),
- vdup_n_u8(CENTERJSAMPLE));
- uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8),
- vdup_n_u8(CENTERJSAMPLE));
- uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8),
- vdup_n_u8(CENTERJSAMPLE));
- uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8),
- vdup_n_u8(CENTERJSAMPLE));
- /* Transpose 4x8 block and store to memory. (Zipping adjacent columns
- * together allows us to store 16-bit elements.)
- */
- uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8);
- uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8);
- uint16x4x4_t cols_01_23_45_67 = { {
- vreinterpret_u16_u8(cols_01_23.val[0]),
- vreinterpret_u16_u8(cols_01_23.val[1]),
- vreinterpret_u16_u8(cols_45_67.val[0]),
- vreinterpret_u16_u8(cols_45_67.val[1])
- } };
- JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col;
- JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col;
- JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col;
- JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col;
- /* VST4 of 16-bit elements completes the transpose. */
- vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0);
- vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1);
- vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2);
- vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3);
- }
|