123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- /* zher.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int zher_(char *uplo, integer *n, doublereal *alpha,
- doublecomplex *x, integer *incx, doublecomplex *a, integer *lda)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1;
- doublecomplex z__1, z__2;
- /* Builtin functions */
- void d_cnjg(doublecomplex *, doublecomplex *);
- /* Local variables */
- integer i__, j, ix, jx, kx, info;
- doublecomplex temp;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* ZHER performs the hermitian rank 1 operation */
- /* A := alpha*x*conjg( x' ) + A, */
- /* where alpha is a real scalar, x is an n element vector and A is an */
- /* n by n hermitian matrix. */
- /* Arguments */
- /* ========== */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the upper or lower */
- /* triangular part of the array A is to be referenced as */
- /* follows: */
- /* UPLO = 'U' or 'u' Only the upper triangular part of A */
- /* is to be referenced. */
- /* UPLO = 'L' or 'l' Only the lower triangular part of A */
- /* is to be referenced. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the order of the matrix A. */
- /* N must be at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - DOUBLE PRECISION. */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* X - COMPLEX*16 array of dimension at least */
- /* ( 1 + ( n - 1 )*abs( INCX ) ). */
- /* Before entry, the incremented array X must contain the n */
- /* element vector x. */
- /* Unchanged on exit. */
- /* INCX - INTEGER. */
- /* On entry, INCX specifies the increment for the elements of */
- /* X. INCX must not be zero. */
- /* Unchanged on exit. */
- /* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
- /* Before entry with UPLO = 'U' or 'u', the leading n by n */
- /* upper triangular part of the array A must contain the upper */
- /* triangular part of the hermitian matrix and the strictly */
- /* lower triangular part of A is not referenced. On exit, the */
- /* upper triangular part of the array A is overwritten by the */
- /* upper triangular part of the updated matrix. */
- /* Before entry with UPLO = 'L' or 'l', the leading n by n */
- /* lower triangular part of the array A must contain the lower */
- /* triangular part of the hermitian matrix and the strictly */
- /* upper triangular part of A is not referenced. On exit, the */
- /* lower triangular part of the array A is overwritten by the */
- /* lower triangular part of the updated matrix. */
- /* Note that the imaginary parts of the diagonal elements need */
- /* not be set, they are assumed to be zero, and on exit they */
- /* are set to zero. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. LDA must be at least */
- /* max( 1, n ). */
- /* Unchanged on exit. */
- /* Level 2 Blas routine. */
- /* -- Written on 22-October-1986. */
- /* Jack Dongarra, Argonne National Lab. */
- /* Jeremy Du Croz, Nag Central Office. */
- /* Sven Hammarling, Nag Central Office. */
- /* Richard Hanson, Sandia National Labs. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --x;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- } else if (*lda < max(1,*n)) {
- info = 7;
- }
- if (info != 0) {
- xerbla_("ZHER ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*n == 0 || *alpha == 0.) {
- return 0;
- }
- /* Set the start point in X if the increment is not unity. */
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
- /* Start the operations. In this version the elements of A are */
- /* accessed sequentially with one pass through the triangular part */
- /* of A. */
- if (lsame_(uplo, "U")) {
- /* Form A when A is stored in upper triangle. */
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- d_cnjg(&z__2, &x[j]);
- z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- z__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i +
- z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L10: */
- }
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = j;
- z__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__1.i =
- x[i__4].r * temp.i + x[i__4].i * temp.r;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- /* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- d_cnjg(&z__2, &x[jx]);
- z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix = kx;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = ix;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- z__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i +
- z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- ix += *incx;
- /* L30: */
- }
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = jx;
- z__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__1.i =
- x[i__4].r * temp.i + x[i__4].i * temp.r;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- jx += *incx;
- /* L40: */
- }
- }
- } else {
- /* Form A when A is stored in lower triangle. */
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- d_cnjg(&z__2, &x[j]);
- z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = j;
- z__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__1.i =
- temp.r * x[i__4].i + temp.i * x[i__4].r;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = i__;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- z__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i +
- z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L50: */
- }
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- /* L60: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- d_cnjg(&z__2, &x[jx]);
- z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- i__4 = jx;
- z__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__1.i =
- temp.r * x[i__4].i + temp.i * x[i__4].r;
- d__1 = a[i__3].r + z__1.r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- ix = jx;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- ix += *incx;
- i__3 = i__ + j * a_dim1;
- i__4 = i__ + j * a_dim1;
- i__5 = ix;
- z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- z__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i +
- z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L70: */
- }
- } else {
- i__2 = j + j * a_dim1;
- i__3 = j + j * a_dim1;
- d__1 = a[i__3].r;
- a[i__2].r = d__1, a[i__2].i = 0.;
- }
- jx += *incx;
- /* L80: */
- }
- }
- }
- return 0;
- /* End of ZHER . */
- } /* zher_ */
|