123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501 |
- /* Copyright 2010 Google Inc. All Rights Reserved.
- Distributed under MIT license.
- See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
- */
- /* Entropy encoding (Huffman) utilities. */
- #include "./entropy_encode.h"
- #include <string.h> /* memset */
- #include "../common/constants.h"
- #include "../common/platform.h"
- #include <brotli/types.h>
- #if defined(__cplusplus) || defined(c_plusplus)
- extern "C" {
- #endif
- BROTLI_BOOL BrotliSetDepth(
- int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) {
- int stack[16];
- int level = 0;
- int p = p0;
- BROTLI_DCHECK(max_depth <= 15);
- stack[0] = -1;
- while (BROTLI_TRUE) {
- if (pool[p].index_left_ >= 0) {
- level++;
- if (level > max_depth) return BROTLI_FALSE;
- stack[level] = pool[p].index_right_or_value_;
- p = pool[p].index_left_;
- continue;
- } else {
- depth[pool[p].index_right_or_value_] = (uint8_t)level;
- }
- while (level >= 0 && stack[level] == -1) level--;
- if (level < 0) return BROTLI_TRUE;
- p = stack[level];
- stack[level] = -1;
- }
- }
- /* Sort the root nodes, least popular first. */
- static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
- const HuffmanTree* v0, const HuffmanTree* v1) {
- if (v0->total_count_ != v1->total_count_) {
- return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
- }
- return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_);
- }
- /* This function will create a Huffman tree.
- The catch here is that the tree cannot be arbitrarily deep.
- Brotli specifies a maximum depth of 15 bits for "code trees"
- and 7 bits for "code length code trees."
- count_limit is the value that is to be faked as the minimum value
- and this minimum value is raised until the tree matches the
- maximum length requirement.
- This algorithm is not of excellent performance for very long data blocks,
- especially when population counts are longer than 2**tree_limit, but
- we are not planning to use this with extremely long blocks.
- See http://en.wikipedia.org/wiki/Huffman_coding */
- void BrotliCreateHuffmanTree(const uint32_t* data,
- const size_t length,
- const int tree_limit,
- HuffmanTree* tree,
- uint8_t* depth) {
- uint32_t count_limit;
- HuffmanTree sentinel;
- InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
- /* For block sizes below 64 kB, we never need to do a second iteration
- of this loop. Probably all of our block sizes will be smaller than
- that, so this loop is mostly of academic interest. If we actually
- would need this, we would be better off with the Katajainen algorithm. */
- for (count_limit = 1; ; count_limit *= 2) {
- size_t n = 0;
- size_t i;
- size_t j;
- size_t k;
- for (i = length; i != 0;) {
- --i;
- if (data[i]) {
- const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit);
- InitHuffmanTree(&tree[n++], count, -1, (int16_t)i);
- }
- }
- if (n == 1) {
- depth[tree[0].index_right_or_value_] = 1; /* Only one element. */
- break;
- }
- SortHuffmanTreeItems(tree, n, SortHuffmanTree);
- /* The nodes are:
- [0, n): the sorted leaf nodes that we start with.
- [n]: we add a sentinel here.
- [n + 1, 2n): new parent nodes are added here, starting from
- (n+1). These are naturally in ascending order.
- [2n]: we add a sentinel at the end as well.
- There will be (2n+1) elements at the end. */
- tree[n] = sentinel;
- tree[n + 1] = sentinel;
- i = 0; /* Points to the next leaf node. */
- j = n + 1; /* Points to the next non-leaf node. */
- for (k = n - 1; k != 0; --k) {
- size_t left, right;
- if (tree[i].total_count_ <= tree[j].total_count_) {
- left = i;
- ++i;
- } else {
- left = j;
- ++j;
- }
- if (tree[i].total_count_ <= tree[j].total_count_) {
- right = i;
- ++i;
- } else {
- right = j;
- ++j;
- }
- {
- /* The sentinel node becomes the parent node. */
- size_t j_end = 2 * n - k;
- tree[j_end].total_count_ =
- tree[left].total_count_ + tree[right].total_count_;
- tree[j_end].index_left_ = (int16_t)left;
- tree[j_end].index_right_or_value_ = (int16_t)right;
- /* Add back the last sentinel node. */
- tree[j_end + 1] = sentinel;
- }
- }
- if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) {
- /* We need to pack the Huffman tree in tree_limit bits. If this was not
- successful, add fake entities to the lowest values and retry. */
- break;
- }
- }
- }
- static void Reverse(uint8_t* v, size_t start, size_t end) {
- --end;
- while (start < end) {
- uint8_t tmp = v[start];
- v[start] = v[end];
- v[end] = tmp;
- ++start;
- --end;
- }
- }
- static void BrotliWriteHuffmanTreeRepetitions(
- const uint8_t previous_value,
- const uint8_t value,
- size_t repetitions,
- size_t* tree_size,
- uint8_t* tree,
- uint8_t* extra_bits_data) {
- BROTLI_DCHECK(repetitions > 0);
- if (previous_value != value) {
- tree[*tree_size] = value;
- extra_bits_data[*tree_size] = 0;
- ++(*tree_size);
- --repetitions;
- }
- if (repetitions == 7) {
- tree[*tree_size] = value;
- extra_bits_data[*tree_size] = 0;
- ++(*tree_size);
- --repetitions;
- }
- if (repetitions < 3) {
- size_t i;
- for (i = 0; i < repetitions; ++i) {
- tree[*tree_size] = value;
- extra_bits_data[*tree_size] = 0;
- ++(*tree_size);
- }
- } else {
- size_t start = *tree_size;
- repetitions -= 3;
- while (BROTLI_TRUE) {
- tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH;
- extra_bits_data[*tree_size] = repetitions & 0x3;
- ++(*tree_size);
- repetitions >>= 2;
- if (repetitions == 0) {
- break;
- }
- --repetitions;
- }
- Reverse(tree, start, *tree_size);
- Reverse(extra_bits_data, start, *tree_size);
- }
- }
- static void BrotliWriteHuffmanTreeRepetitionsZeros(
- size_t repetitions,
- size_t* tree_size,
- uint8_t* tree,
- uint8_t* extra_bits_data) {
- if (repetitions == 11) {
- tree[*tree_size] = 0;
- extra_bits_data[*tree_size] = 0;
- ++(*tree_size);
- --repetitions;
- }
- if (repetitions < 3) {
- size_t i;
- for (i = 0; i < repetitions; ++i) {
- tree[*tree_size] = 0;
- extra_bits_data[*tree_size] = 0;
- ++(*tree_size);
- }
- } else {
- size_t start = *tree_size;
- repetitions -= 3;
- while (BROTLI_TRUE) {
- tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH;
- extra_bits_data[*tree_size] = repetitions & 0x7;
- ++(*tree_size);
- repetitions >>= 3;
- if (repetitions == 0) {
- break;
- }
- --repetitions;
- }
- Reverse(tree, start, *tree_size);
- Reverse(extra_bits_data, start, *tree_size);
- }
- }
- void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts,
- uint8_t* good_for_rle) {
- size_t nonzero_count = 0;
- size_t stride;
- size_t limit;
- size_t sum;
- const size_t streak_limit = 1240;
- /* Let's make the Huffman code more compatible with RLE encoding. */
- size_t i;
- for (i = 0; i < length; i++) {
- if (counts[i]) {
- ++nonzero_count;
- }
- }
- if (nonzero_count < 16) {
- return;
- }
- while (length != 0 && counts[length - 1] == 0) {
- --length;
- }
- if (length == 0) {
- return; /* All zeros. */
- }
- /* Now counts[0..length - 1] does not have trailing zeros. */
- {
- size_t nonzeros = 0;
- uint32_t smallest_nonzero = 1 << 30;
- for (i = 0; i < length; ++i) {
- if (counts[i] != 0) {
- ++nonzeros;
- if (smallest_nonzero > counts[i]) {
- smallest_nonzero = counts[i];
- }
- }
- }
- if (nonzeros < 5) {
- /* Small histogram will model it well. */
- return;
- }
- if (smallest_nonzero < 4) {
- size_t zeros = length - nonzeros;
- if (zeros < 6) {
- for (i = 1; i < length - 1; ++i) {
- if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
- counts[i] = 1;
- }
- }
- }
- }
- if (nonzeros < 28) {
- return;
- }
- }
- /* 2) Let's mark all population counts that already can be encoded
- with an RLE code. */
- memset(good_for_rle, 0, length);
- {
- /* Let's not spoil any of the existing good RLE codes.
- Mark any seq of 0's that is longer as 5 as a good_for_rle.
- Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
- uint32_t symbol = counts[0];
- size_t step = 0;
- for (i = 0; i <= length; ++i) {
- if (i == length || counts[i] != symbol) {
- if ((symbol == 0 && step >= 5) ||
- (symbol != 0 && step >= 7)) {
- size_t k;
- for (k = 0; k < step; ++k) {
- good_for_rle[i - k - 1] = 1;
- }
- }
- step = 1;
- if (i != length) {
- symbol = counts[i];
- }
- } else {
- ++step;
- }
- }
- }
- /* 3) Let's replace those population counts that lead to more RLE codes.
- Math here is in 24.8 fixed point representation. */
- stride = 0;
- limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
- sum = 0;
- for (i = 0; i <= length; ++i) {
- if (i == length || good_for_rle[i] ||
- (i != 0 && good_for_rle[i - 1]) ||
- (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
- if (stride >= 4 || (stride >= 3 && sum == 0)) {
- size_t k;
- /* The stride must end, collapse what we have, if we have enough (4). */
- size_t count = (sum + stride / 2) / stride;
- if (count == 0) {
- count = 1;
- }
- if (sum == 0) {
- /* Don't make an all zeros stride to be upgraded to ones. */
- count = 0;
- }
- for (k = 0; k < stride; ++k) {
- /* We don't want to change value at counts[i],
- that is already belonging to the next stride. Thus - 1. */
- counts[i - k - 1] = (uint32_t)count;
- }
- }
- stride = 0;
- sum = 0;
- if (i < length - 2) {
- /* All interesting strides have a count of at least 4, */
- /* at least when non-zeros. */
- limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
- } else if (i < length) {
- limit = 256 * counts[i];
- } else {
- limit = 0;
- }
- }
- ++stride;
- if (i != length) {
- sum += counts[i];
- if (stride >= 4) {
- limit = (256 * sum + stride / 2) / stride;
- }
- if (stride == 4) {
- limit += 120;
- }
- }
- }
- }
- static void DecideOverRleUse(const uint8_t* depth, const size_t length,
- BROTLI_BOOL* use_rle_for_non_zero,
- BROTLI_BOOL* use_rle_for_zero) {
- size_t total_reps_zero = 0;
- size_t total_reps_non_zero = 0;
- size_t count_reps_zero = 1;
- size_t count_reps_non_zero = 1;
- size_t i;
- for (i = 0; i < length;) {
- const uint8_t value = depth[i];
- size_t reps = 1;
- size_t k;
- for (k = i + 1; k < length && depth[k] == value; ++k) {
- ++reps;
- }
- if (reps >= 3 && value == 0) {
- total_reps_zero += reps;
- ++count_reps_zero;
- }
- if (reps >= 4 && value != 0) {
- total_reps_non_zero += reps;
- ++count_reps_non_zero;
- }
- i += reps;
- }
- *use_rle_for_non_zero =
- TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2);
- *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2);
- }
- void BrotliWriteHuffmanTree(const uint8_t* depth,
- size_t length,
- size_t* tree_size,
- uint8_t* tree,
- uint8_t* extra_bits_data) {
- uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH;
- size_t i;
- BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE;
- BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE;
- /* Throw away trailing zeros. */
- size_t new_length = length;
- for (i = 0; i < length; ++i) {
- if (depth[length - i - 1] == 0) {
- --new_length;
- } else {
- break;
- }
- }
- /* First gather statistics on if it is a good idea to do RLE. */
- if (length > 50) {
- /* Find RLE coding for longer codes.
- Shorter codes seem not to benefit from RLE. */
- DecideOverRleUse(depth, new_length,
- &use_rle_for_non_zero, &use_rle_for_zero);
- }
- /* Actual RLE coding. */
- for (i = 0; i < new_length;) {
- const uint8_t value = depth[i];
- size_t reps = 1;
- if ((value != 0 && use_rle_for_non_zero) ||
- (value == 0 && use_rle_for_zero)) {
- size_t k;
- for (k = i + 1; k < new_length && depth[k] == value; ++k) {
- ++reps;
- }
- }
- if (value == 0) {
- BrotliWriteHuffmanTreeRepetitionsZeros(
- reps, tree_size, tree, extra_bits_data);
- } else {
- BrotliWriteHuffmanTreeRepetitions(previous_value,
- value, reps, tree_size,
- tree, extra_bits_data);
- previous_value = value;
- }
- i += reps;
- }
- }
- static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) {
- static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */
- 0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
- 0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F
- };
- size_t retval = kLut[bits & 0x0F];
- size_t i;
- for (i = 4; i < num_bits; i += 4) {
- retval <<= 4;
- bits = (uint16_t)(bits >> 4);
- retval |= kLut[bits & 0x0F];
- }
- retval >>= ((0 - num_bits) & 0x03);
- return (uint16_t)retval;
- }
- /* 0..15 are values for bits */
- #define MAX_HUFFMAN_BITS 16
- void BrotliConvertBitDepthsToSymbols(const uint8_t* depth,
- size_t len,
- uint16_t* bits) {
- /* In Brotli, all bit depths are [1..15]
- 0 bit depth means that the symbol does not exist. */
- uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 };
- uint16_t next_code[MAX_HUFFMAN_BITS];
- size_t i;
- int code = 0;
- for (i = 0; i < len; ++i) {
- ++bl_count[depth[i]];
- }
- bl_count[0] = 0;
- next_code[0] = 0;
- for (i = 1; i < MAX_HUFFMAN_BITS; ++i) {
- code = (code + bl_count[i - 1]) << 1;
- next_code[i] = (uint16_t)code;
- }
- for (i = 0; i < len; ++i) {
- if (depth[i]) {
- bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++);
- }
- }
- }
- #if defined(__cplusplus) || defined(c_plusplus)
- } /* extern "C" */
- #endif
|