123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995 |
- namespace antlr3 {
- template< class ImplTraits, class DataType >
- ANTLR_INLINE TrieEntry<ImplTraits, DataType>::TrieEntry(const DataType& data, TrieEntry* next)
- :m_data(data)
- {
- m_next = next;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE DataType& TrieEntry<ImplTraits, DataType>::get_data()
- {
- return m_data;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE const DataType& TrieEntry<ImplTraits, DataType>::get_data() const
- {
- return m_data;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE TrieEntry<ImplTraits, DataType>* TrieEntry<ImplTraits, DataType>::get_next() const
- {
- return m_next;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE void TrieEntry<ImplTraits, DataType>::set_next( TrieEntry* next )
- {
- m_next = next;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE ANTLR_UINT32 IntTrieNode<ImplTraits, DataType>::get_bitNum() const
- {
- return m_bitNum;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE ANTLR_INTKEY IntTrieNode<ImplTraits, DataType>::get_key() const
- {
- return m_key;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE typename IntTrieNode<ImplTraits, DataType>::BucketsType* IntTrieNode<ImplTraits, DataType>::get_buckets() const
- {
- return m_buckets;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE IntTrieNode<ImplTraits, DataType>* IntTrieNode<ImplTraits, DataType>::get_leftN() const
- {
- return m_leftN;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE IntTrieNode<ImplTraits, DataType>* IntTrieNode<ImplTraits, DataType>::get_rightN() const
- {
- return m_rightN;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE void IntTrieNode<ImplTraits, DataType>::set_bitNum( ANTLR_UINT32 bitNum )
- {
- m_bitNum = bitNum;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE void IntTrieNode<ImplTraits, DataType>::set_key( ANTLR_INTKEY key )
- {
- m_key = key;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE void IntTrieNode<ImplTraits, DataType>::set_buckets( BucketsType* buckets )
- {
- m_buckets = buckets;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE void IntTrieNode<ImplTraits, DataType>::set_leftN( IntTrieNode* leftN )
- {
- m_leftN = leftN;
- }
- template< class ImplTraits, class DataType >
- ANTLR_INLINE void IntTrieNode<ImplTraits, DataType>::set_rightN( IntTrieNode* rightN )
- {
- m_rightN = rightN;
- }
- ANTLR_INLINE const ANTLR_UINT8* IntTrieBase::get_bitIndex()
- {
- static ANTLR_UINT8 bitIndex[256] =
- {
- 0, // 0 - Just for padding
- 0, // 1
- 1, 1, // 2..3
- 2, 2, 2, 2, // 4..7
- 3, 3, 3, 3, 3, 3, 3, 3, // 8+
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // 16+
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, // 32+
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 64+
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 128+
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
- };
- return bitIndex;
- }
- ANTLR_INLINE const ANTLR_UINT64* IntTrieBase::get_bitMask()
- {
- static ANTLR_UINT64 bitMask[64] =
- {
- 0x0000000000000001ULL, 0x0000000000000002ULL, 0x0000000000000004ULL, 0x0000000000000008ULL,
- 0x0000000000000010ULL, 0x0000000000000020ULL, 0x0000000000000040ULL, 0x0000000000000080ULL,
- 0x0000000000000100ULL, 0x0000000000000200ULL, 0x0000000000000400ULL, 0x0000000000000800ULL,
- 0x0000000000001000ULL, 0x0000000000002000ULL, 0x0000000000004000ULL, 0x0000000000008000ULL,
- 0x0000000000010000ULL, 0x0000000000020000ULL, 0x0000000000040000ULL, 0x0000000000080000ULL,
- 0x0000000000100000ULL, 0x0000000000200000ULL, 0x0000000000400000ULL, 0x0000000000800000ULL,
- 0x0000000001000000ULL, 0x0000000002000000ULL, 0x0000000004000000ULL, 0x0000000008000000ULL,
- 0x0000000010000000ULL, 0x0000000020000000ULL, 0x0000000040000000ULL, 0x0000000080000000ULL,
- 0x0000000100000000ULL, 0x0000000200000000ULL, 0x0000000400000000ULL, 0x0000000800000000ULL,
- 0x0000001000000000ULL, 0x0000002000000000ULL, 0x0000004000000000ULL, 0x0000008000000000ULL,
- 0x0000010000000000ULL, 0x0000020000000000ULL, 0x0000040000000000ULL, 0x0000080000000000ULL,
- 0x0000100000000000ULL, 0x0000200000000000ULL, 0x0000400000000000ULL, 0x0000800000000000ULL,
- 0x0001000000000000ULL, 0x0002000000000000ULL, 0x0004000000000000ULL, 0x0008000000000000ULL,
- 0x0010000000000000ULL, 0x0020000000000000ULL, 0x0040000000000000ULL, 0x0080000000000000ULL,
- 0x0100000000000000ULL, 0x0200000000000000ULL, 0x0400000000000000ULL, 0x0800000000000000ULL,
- 0x1000000000000000ULL, 0x2000000000000000ULL, 0x4000000000000000ULL, 0x8000000000000000ULL
- };
- return bitMask;
- }
- template< class ImplTraits, class DataType >
- IntTrie<ImplTraits, DataType>::IntTrie( ANTLR_UINT32 depth )
- {
- /* Now we need to allocate the root node. This makes it easier
- * to use the tree as we don't have to do anything special
- * for the root node.
- */
- m_root = new IntTrieNodeType;
- /* Now we seed the root node with the index being the
- * highest left most bit we want to test, which limits the
- * keys in the trie. This is the trie 'depth'. The limit for
- * this implementation is 63 (bits 0..63).
- */
- m_root->set_bitNum( depth );
- /* And as we have nothing in here yet, we set both child pointers
- * of the root node to point back to itself.
- */
- m_root->set_leftN( m_root );
- m_root->set_rightN( m_root );
- m_count = 0;
- /* Finally, note that the key for this root node is 0 because
- * we use calloc() to initialise it.
- */
- m_allowDups = false;
- m_current = NULL;
- }
- template< class ImplTraits, class DataType >
- IntTrie<ImplTraits, DataType>::~IntTrie()
- {
- /* Descend from the root and free all the nodes
- */
- delete m_root;
- /* the nodes are all gone now, so we need only free the memory
- * for the structure itself
- */
- }
- template< class ImplTraits, class DataType >
- typename IntTrie<ImplTraits, DataType>::TrieEntryType* IntTrie<ImplTraits, DataType>::get( ANTLR_INTKEY key)
- {
- IntTrieNodeType* thisNode;
- IntTrieNodeType* nextNode;
- if (m_count == 0)
- return NULL; /* Nothing in this trie yet */
- /* Starting at the root node in the trie, compare the bit index
- * of the current node with its next child node (starts left from root).
- * When the bit index of the child node is greater than the bit index of the current node
- * then by definition (as the bit index decreases as we descent the trie)
- * we have reached a 'backward' pointer. A backward pointer means we
- * have reached the only node that can be reached by the bits given us so far
- * and it must either be the key we are looking for, or if not then it
- * means the entry was not in the trie, and we return NULL. A backward pointer
- * points back in to the tree structure rather than down (deeper) within the
- * tree branches.
- */
- thisNode = m_root; /* Start at the root node */
- nextNode = thisNode->get_leftN(); /* Examine the left node from the root */
- /* While we are descending the tree nodes...
- */
- const ANTLR_UINT64* bitMask = this->get_bitMask();
- while( thisNode->get_bitNum() > nextNode->get_bitNum() )
- {
- /* Next node now becomes the new 'current' node
- */
- thisNode = nextNode;
- /* We now test the bit indicated by the bitmap in the next node
- * in the key we are searching for. The new next node is the
- * right node if that bit is set and the left node it is not.
- */
- if (key & bitMask[nextNode->get_bitNum()])
- {
- nextNode = nextNode->get_rightN(); /* 1 is right */
- }
- else
- {
- nextNode = nextNode->get_leftN(); /* 0 is left */
- }
- }
- /* Here we have reached a node where the bitMap index is lower than
- * its parent. This means it is pointing backward in the tree and
- * must therefore be a terminal node, being the only point than can
- * be reached with the bits seen so far. It is either the actual key
- * we wanted, or if that key is not in the trie it is another key
- * that is currently the only one that can be reached by those bits.
- * That situation would obviously change if the key was to be added
- * to the trie.
- *
- * Hence it only remains to test whether this is actually the key or not.
- */
- if (nextNode->get_key() == key)
- {
- /* This was the key, so return the entry pointer
- */
- return nextNode->get_buckets();
- }
- else
- {
- return NULL; /* That key is not in the trie (note that we set the pointer to -1 if no payload) */
- }
- }
- template< class ImplTraits, class DataType >
- bool IntTrie<ImplTraits, DataType>::del( ANTLR_INTKEY /*key*/)
- {
- IntTrieNodeType* p;
- p = m_root;
-
- return false;
- }
- template< class ImplTraits, class DataType >
- bool IntTrie<ImplTraits, DataType>::add( ANTLR_INTKEY key, const DataType& data )
- {
- IntTrieNodeType* thisNode;
- IntTrieNodeType* nextNode;
- IntTrieNodeType* entNode;
- ANTLR_UINT32 depth;
- TrieEntryType* newEnt;
- TrieEntryType* nextEnt;
- ANTLR_INTKEY xorKey;
- /* Cache the bit depth of this trie, which is always the highest index,
- * which is in the root node
- */
- depth = m_root->get_bitNum();
- thisNode = m_root; /* Start with the root node */
- nextNode = m_root->get_leftN(); /* And assume we start to the left */
- /* Now find the only node that can be currently reached by the bits in the
- * key we are being asked to insert.
- */
- const ANTLR_UINT64* bitMask = this->get_bitMask();
- while (thisNode->get_bitNum() > nextNode->get_bitNum() )
- {
- /* Still descending the structure, next node becomes current.
- */
- thisNode = nextNode;
- if (key & bitMask[nextNode->get_bitNum()])
- {
- /* Bit at the required index was 1, so travers the right node from here
- */
- nextNode = nextNode->get_rightN();
- }
- else
- {
- /* Bit at the required index was 0, so we traverse to the left
- */
- nextNode = nextNode->get_leftN();
- }
- }
- /* Here we have located the only node that can be reached by the
- * bits in the requested key. It could in fact be that key or the node
- * we need to use to insert the new key.
- */
- if (nextNode->get_key() == key)
- {
- /* We have located an exact match, but we will only append to the bucket chain
- * if this trie accepts duplicate keys.
- */
- if (m_allowDups ==true)
- {
- /* Yes, we are accepting duplicates
- */
- newEnt = new TrieEntryType(data, NULL);
- /* We want to be able to traverse the stored elements in the order that they were
- * added as duplicate keys. We might need to revise this opinion if we end up having many duplicate keys
- * as perhaps reverse order is just as good, so long as it is ordered.
- */
- nextEnt = nextNode->get_buckets();
- while (nextEnt->get_next() != NULL)
- {
- nextEnt = nextEnt->get_next();
- }
- nextEnt->set_next(newEnt);
- m_count++;
- return true;
- }
- else
- {
- /* We found the key is already there and we are not allowed duplicates in this
- * trie.
- */
- return false;
- }
- }
- /* Here we have discovered the only node that can be reached by the bits in the key
- * but we have found that this node is not the key we need to insert. We must find the
- * the leftmost bit by which the current key for that node and the new key we are going
- * to insert, differ. While this nested series of ifs may look a bit strange, experimentation
- * showed that it allows a machine code path that works well with predicated execution
- */
- xorKey = (key ^ nextNode->get_key() ); /* Gives 1 bits only where they differ then we find the left most 1 bit*/
- /* Most common case is a 32 bit key really
- */
- const ANTLR_UINT8* bitIndex = this->get_bitIndex();
- #ifdef ANTLR_USE_64BIT
- if (xorKey & 0xFFFFFFFF00000000)
- {
- if (xorKey & 0xFFFF000000000000)
- {
- if (xorKey & 0xFF00000000000000)
- {
- depth = 56 + bitIndex[((xorKey & 0xFF00000000000000)>>56)];
- }
- else
- {
- depth = 48 + bitIndex[((xorKey & 0x00FF000000000000)>>48)];
- }
- }
- else
- {
- if (xorKey & 0x0000FF0000000000)
- {
- depth = 40 + bitIndex[((xorKey & 0x0000FF0000000000)>>40)];
- }
- else
- {
- depth = 32 + bitIndex[((xorKey & 0x000000FF00000000)>>32)];
- }
- }
- }
- else
- #endif
- {
- if (xorKey & 0x00000000FFFF0000)
- {
- if (xorKey & 0x00000000FF000000)
- {
- depth = 24 + bitIndex[((xorKey & 0x00000000FF000000)>>24)];
- }
- else
- {
- depth = 16 + bitIndex[((xorKey & 0x0000000000FF0000)>>16)];
- }
- }
- else
- {
- if (xorKey & 0x000000000000FF00)
- {
- depth = 8 + bitIndex[((xorKey & 0x0000000000000FF00)>>8)];
- }
- else
- {
- depth = bitIndex[xorKey & 0x00000000000000FF];
- }
- }
- }
- /* We have located the leftmost differing bit, indicated by the depth variable. So, we know what
- * bit index we are to insert the new entry at. There are two cases, being where the two keys
- * differ at a bit position that is not currently part of the bit testing, where they differ on a bit
- * that is currently being skipped in the indexed comparisons, and where they differ on a bit
- * that is merely lower down in the current bit search. If the bit index went bit 4, bit 2 and they differ
- * at bit 3, then we have the "skipped" bit case. But if that chain was Bit 4, Bit 2 and they differ at bit 1
- * then we have the easy bit <pun>.
- *
- * So, set up to descend the tree again, but this time looking for the insert point
- * according to whether we skip the bit that differs or not.
- */
- thisNode = m_root;
- entNode = m_root->get_leftN();
- /* Note the slight difference in the checks here to cover both cases
- */
- while (thisNode->get_bitNum() > entNode->get_bitNum() && entNode->get_bitNum() > depth)
- {
- /* Still descending the structure, next node becomes current.
- */
- thisNode = entNode;
- if (key & bitMask[entNode->get_bitNum()])
- {
- /* Bit at the required index was 1, so traverse the right node from here
- */
- entNode = entNode->get_rightN();
- }
- else
- {
- /* Bit at the required index was 0, so we traverse to the left
- */
- entNode = entNode->get_leftN();
- }
- }
- /* We have located the correct insert point for this new key, so we need
- * to allocate our entry and insert it etc.
- */
- nextNode = new IntTrieNodeType();
- /* Build a new entry block for the new node
- */
- newEnt = new TrieEntryType(data, NULL);
- /* Install it
- */
- nextNode->set_buckets(newEnt);
- nextNode->set_key(key);
- nextNode->set_bitNum( depth );
- /* Work out the right and left pointers for this new node, which involve
- * terminating with the current found node either right or left according
- * to whether the current index bit is 1 or 0
- */
- if (key & bitMask[depth])
- {
- nextNode->set_leftN(entNode); /* Terminates at previous position */
- nextNode->set_rightN(nextNode); /* Terminates with itself */
- }
- else
- {
- nextNode->set_rightN(entNode); /* Terminates at previous position */
- nextNode->set_leftN(nextNode); /* Terminates with itself */
- }
- /* Finally, we need to change the pointers at the node we located
- * for inserting. If the key bit at its index is set then the right
- * pointer for that node becomes the newly created node, otherwise the left
- * pointer does.
- */
- if (key & bitMask[thisNode->get_bitNum()] )
- {
- thisNode->set_rightN( nextNode );
- }
- else
- {
- thisNode->set_leftN(nextNode);
- }
- /* Et voila
- */
- m_count++;
- return true;
- }
- template< class ImplTraits, class DataType >
- IntTrieNode<ImplTraits, DataType>::IntTrieNode()
- {
- m_bitNum = 0;
- m_key = 0;
- m_buckets = NULL;
- m_leftN = NULL;
- m_rightN = NULL;
- }
- template< class ImplTraits, class DataType >
- IntTrieNode<ImplTraits, DataType>::~IntTrieNode()
- {
- TrieEntryType* thisEntry;
- TrieEntryType* nextEntry;
- /* If this node has a left pointer that is not a back pointer
- * then recursively call to free this
- */
- if ( m_bitNum > m_leftN->get_bitNum())
- {
- /* We have a left node that needs descending, so do it.
- */
- delete m_leftN;
- }
- /* The left nodes from here should now be dealt with, so
- * we need to descend any right nodes that are not back pointers
- */
- if ( m_bitNum > m_rightN->get_bitNum() )
- {
- /* There are some right nodes to descend and deal with.
- */
- delete m_rightN;
- }
- /* Now all the children are dealt with, we can destroy
- * this node too
- */
- thisEntry = m_buckets;
- while (thisEntry != NULL)
- {
- nextEntry = thisEntry->get_next();
- /* Now free the data for this bucket entry
- */
- delete thisEntry;
- thisEntry = nextEntry; /* See if there are any more to free */
- }
- /* The bucket entry is now gone, so we can free the memory for
- * the entry itself.
- */
- /* And that should be it for everything under this node and itself
- */
- }
- /**
- * Allocate and initialize a new ANTLR3 topological sorter, which can be
- * used to define edges that identify numerical node indexes that depend on other
- * numerical node indexes, which can then be sorted topologically such that
- * any node is sorted after all its dependent nodes.
- *
- * Use:
- *
- * /verbatim
- pANTLR3_TOPO topo;
- topo = antlr3NewTopo();
- if (topo == NULL) { out of memory }
- topo->addEdge(topo, 3, 0); // Node 3 depends on node 0
- topo->addEdge(topo, 0, 1); // Node - depends on node 1
- topo->sortVector(topo, myVector); // Sort the vector in place (node numbers are the vector entry numbers)
- * /verbatim
- */
- template<class ImplTraits>
- Topo<ImplTraits>::Topo()
- {
- // Initialize variables
- //
- m_visited = NULL; // Don't know how big it is yet
- m_limit = 1; // No edges added yet
- m_edges = NULL; // No edges added yet
- m_sorted = NULL; // Nothing sorted at the start
- m_cycle = NULL; // No cycles at the start
- m_cycleMark = 0; // No cycles at the start
- m_hasCycle = false; // No cycle at the start
- }
- // Topological sorter
- //
- template<class ImplTraits>
- void Topo<ImplTraits>::addEdge(ANTLR_UINT32 edge, ANTLR_UINT32 dependency)
- {
- ANTLR_UINT32 i;
- ANTLR_UINT32 maxEdge;
- BitsetType* edgeDeps;
- if (edge>dependency)
- {
- maxEdge = edge;
- }
- else
- {
- maxEdge = dependency;
- }
- // We need to add an edge to says that the node indexed by 'edge' is
- // dependent on the node indexed by 'dependency'
- //
- // First see if we have enough room in the edges array to add the edge?
- //
- if ( m_edges == NULL)
- {
- // We don't have any edges yet, so create an array to hold them
- //
- m_edges = AllocPolicyType::alloc0(sizeof(BitsetType*) * (maxEdge + 1));
- // Set the limit to what we have now
- //
- m_limit = maxEdge + 1;
- }
- else if (m_limit <= maxEdge)
- {
- // WE have some edges but not enough
- //
- m_edges = AllocPolicyType::realloc(m_edges, sizeof(BitsetType*) * (maxEdge + 1));
- // Initialize the new bitmaps to ;indicate we have no edges defined yet
- //
- for (i = m_limit; i <= maxEdge; i++)
- {
- *((m_edges) + i) = NULL;
- }
- // Set the limit to what we have now
- //
- m_limit = maxEdge + 1;
- }
- // If the edge was flagged as depending on itself, then we just
- // do nothing as it means this routine was just called to add it
- // in to the list of nodes.
- //
- if (edge == dependency)
- {
- return;
- }
- // Pick up the bit map for the requested edge
- //
- edgeDeps = *((m_edges) + edge);
- if (edgeDeps == NULL)
- {
- // No edges are defined yet for this node
- //
- edgeDeps = new BitsetType(0);
- *((m_edges) + edge) = edgeDeps;
- }
- // Set the bit in the bitmap that corresponds to the requested
- // dependency.
- //
- edgeDeps->add(dependency);
- // And we are all set
- //
- return;
- }
- /**
- * Given a starting node, descend its dependent nodes (ones that it has edges
- * to) until we find one without edges. Having found a node without edges, we have
- * discovered the bottom of a depth first search, which we can then ascend, adding
- * the nodes in order from the bottom, which gives us the dependency order.
- */
- template<class ImplTraits>
- void Topo<ImplTraits>::DFS(ANTLR_UINT32 node)
- {
- BitsetType* edges;
- // Guard against a revisit and check for cycles
- //
- if (m_hasCycle == true)
- {
- return; // We don't do anything else if we found a cycle
- }
- if ( m_visited->isMember(node))
- {
- // Check to see if we found a cycle. To do this we search the
- // current cycle stack and see if we find this node already in the stack.
- //
- ANTLR_UINT32 i;
- for (i=0; i< m_cycleMark; i++)
- {
- if ( m_cycle[i] == node)
- {
- // Stop! We found a cycle in the input, so rejig the cycle
- // stack so that it only contains the cycle and set the cycle flag
- // which will tell the caller what happened
- //
- ANTLR_UINT32 l;
- for (l = i; l < m_cycleMark; l++)
- {
- m_cycle[l - i] = m_cycle[l]; // Move to zero base in the cycle list
- }
- // Recalculate the limit
- //
- m_cycleMark -= i;
- // Signal disaster
- //
- m_hasCycle = true;
- }
- }
- return;
- }
- // So far, no cycles have been found and we have not visited this node yet,
- // so this node needs to go into the cycle stack before we continue
- // then we will take it out of the stack once we have descended all its
- // dependencies.
- //
- m_cycle[m_cycleMark++] = node;
- // First flag that we have visited this node
- //
- m_visited->add(node);
- // Now, if this node has edges, then we want to ensure we visit
- // them all before we drop through and add this node into the sorted
- // list.
- //
- edges = *((m_edges) + node);
- if (edges != NULL)
- {
- // We have some edges, so visit each of the edge nodes
- // that have not already been visited.
- //
- ANTLR_UINT32 numBits; // How many bits are in the set
- ANTLR_UINT32 i;
- ANTLR_UINT32 range;
- numBits = edges->numBits();
- range = edges->size(); // Number of set bits
- // Stop if we exahust the bit list or have checked the
- // number of edges that this node refers to (so we don't
- // check bits at the end that cannot possibly be set).
- //
- for (i=0; i<= numBits && range > 0; i++)
- {
- if (edges->isMember(i))
- {
- range--; // About to check another one
- // Found an edge, make sure we visit and descend it
- //
- this->DFS(i);
- }
- }
- }
- // At this point we will have visited all the dependencies
- // of this node and they will be ordered (even if there are cycles)
- // So we just add the node into the sorted list at the
- // current index position.
- //
- m_sorted[m_limit++] = node;
- // Remove this node from the cycle list if we have not detected a cycle
- //
- if (m_hasCycle == false)
- {
- m_cycleMark--;
- }
- return;
- }
- template<class ImplTraits>
- ANTLR_UINT32* Topo<ImplTraits>::sortToArray()
- {
- ANTLR_UINT32 v;
- ANTLR_UINT32 oldLimit;
- // Guard against being called with no edges defined
- //
- if (m_edges == NULL)
- {
- return 0;
- }
- // First we need a vector to populate with enough
- // entries to accomodate the sorted list and another to accomodate
- // the maximum cycle we could detect which is all nodes such as 0->1->2->3->0
- //
- m_sorted = AllocPolicyType::alloc( m_limit * sizeof(ANTLR_UINT32) );
- m_cycle = AllocPolicyType::alloc( m_limit * sizeof(ANTLR_UINT32));
- // Next we need an empty bitset to show whether we have visited a node
- // or not. This is the bit that gives us linear time of course as we are essentially
- // dropping through the nodes in depth first order and when we get to a node that
- // has no edges, we pop back up the stack adding the nodes we traversed in reverse
- // order.
- //
- m_visited = new BitsetType(0);
- // Now traverse the nodes as if we were just going left to right, but
- // then descend each node unless it has already been visited.
- //
- oldLimit = m_limit; // Number of nodes to traverse linearly
- m_limit = 0; // Next entry in the sorted table
- for (v = 0; v < oldLimit; v++)
- {
- // If we did not already visit this node, then descend it until we
- // get a node without edges or arrive at a node we have already visited.
- //
- if (m_visited->isMember(v) == false)
- {
- // We have not visited this one so descend it
- //
- this->DFS(v);
- }
- // Break the loop if we detect a cycle as we have no need to go any
- // further
- //
- if (m_hasCycle == true)
- {
- break;
- }
- }
- // Reset the limit to the number we recorded as if we hit a
- // cycle, then limit will have stopped at the node where we
- // discovered the cycle, but in order to free the edge bitmaps
- // we need to know how many we may have allocated and traverse them all.
- //
- m_limit = oldLimit;
- // Having traversed all the nodes we were given, we
- // are guaranteed to have ordered all the nodes or detected a
- // cycle.
- //
- return m_sorted;
- }
- template<class ImplTraits>
- template<typename DataType>
- void Topo<ImplTraits>::sortVector( typename ImplTraits::template VectorType<DataType>& v )
- {
- // To sort a vector, we first perform the
- // sort to an array, then use the results to reorder the vector
- // we are given. This is just a convenience routine that allows you to
- // sort the children of a tree node into topological order before or
- // during an AST walk. This can be useful for optimizations that require
- // dag reorders and also when the input stream defines thigns that are
- // interdependent and you want to walk the list of the generated trees
- // for those things in topological order so you can ignore the interdependencies
- // at that point.
- //
- ANTLR_UINT32 i;
- // Used as a lookup index to find the current location in the vector of
- // the vector entry that was originally at position [0], [1], [2] etc
- //
- ANTLR_UINT32* vIndex;
- // Sort into an array, then we can use the array that is
- // stored in the topo
- //
- if (this->sortToArray() == 0)
- {
- return; // There were no edges
- }
- if (m_hasCycle == true)
- {
- return; // Do nothing if we detected a cycle
- }
- // Ensure that the vector we are sorting is at least as big as the
- // the input sequence we were adsked to sort. It does not matter if it is
- // bigger as thaat probably just means that nodes numbered higher than the
- // limit had no dependencies and so can be left alone.
- //
- if (m_limit > v.size() )
- {
- // We can only sort the entries that we have dude! The caller is
- // responsible for ensuring the vector is the correct one and is the
- // correct size etc.
- //
- m_limit = v.size();
- }
- // We need to know the locations of each of the entries
- // in the vector as we don't want to duplicate them in a new vector. We
- // just use an indirection table to get the vector entry for a particular sequence
- // acording to where we moved it last. Then we can just swap vector entries until
- // we are done :-)
- //
- vIndex = AllocPolicyType::alloc(m_limit * sizeof(ANTLR_UINT32));
- // Start index, each vector entry is located where you think it is
- //
- for (i = 0; i < m_limit; i++)
- {
- vIndex[i] = i;
- }
- // Now we traverse the sorted array and moved the entries of
- // the vector around according to the sort order and the indirection
- // table we just created. The index telsl us where in the vector the
- // original element entry n is now located via vIndex[n].
- //
- for (i=0; i < m_limit; i++)
- {
- ANTLR_UINT32 ind;
- // If the vector entry at i is already the one that it
- // should be, then we skip moving it of course.
- //
- if (vIndex[m_sorted[i]] == i)
- {
- continue;
- }
- // The vector entry at i, should be replaced with the
- // vector entry indicated by topo->sorted[i]. The vector entry
- // at topo->sorted[i] may have already been swapped out though, so we
- // find where it is now and move it from there to i.
- //
- ind = vIndex[m_sorted[i]];
- std::swap( v[i], v[ind] );
- // Update our index. The element at i is now the one we wanted
- // to be sorted here and the element we swapped out is now the
- // element that was at i just before we swapped it. If you are lost now
- // don't worry about it, we are just reindexing on the fly is all.
- //
- vIndex[m_sorted[i]] = i;
- vIndex[i] = ind;
- }
- // Having traversed all the entries, we have sorted the vector in place.
- //
- AllocPolicyType::free(vIndex);
- return;
- }
- template<class ImplTraits>
- Topo<ImplTraits>::~Topo()
- {
- ANTLR_UINT32 i;
- // Free the result vector
- //
- if (m_sorted != NULL)
- {
- AllocPolicyType::free(m_sorted);
- }
- // Free the visited map
- //
- if (m_visited != NULL)
- {
- delete m_visited;
- }
- // Free any edgemaps
- //
- if (m_edges != NULL)
- {
- Bitset<AllocPolicyType>* edgeList;
- for (i=0; i<m_limit; i++)
- {
- edgeList = *((m_edges) + i);
- if (edgeList != NULL)
- {
- delete edgeList;
- }
- }
- AllocPolicyType::free( m_edges );
- }
- m_edges = NULL;
-
- // Free any cycle map
- //
- if (m_cycle != NULL)
- {
- AllocPolicyType::free(m_cycle);
- }
- }
- }
|