123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- //===-- ParallelSnippetGenerator.cpp ----------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "ParallelSnippetGenerator.h"
- #include "BenchmarkRunner.h"
- #include "MCInstrDescView.h"
- #include "Target.h"
- // FIXME: Load constants into registers (e.g. with fld1) to not break
- // instructions like x87.
- // Ideally we would like the only limitation on executing instructions to be the
- // availability of the CPU resources (e.g. execution ports) needed to execute
- // them, instead of the availability of their data dependencies.
- // To achieve that, one approach is to generate instructions that do not have
- // data dependencies between them.
- //
- // For some instructions, this is trivial:
- // mov rax, qword ptr [rsi]
- // mov rax, qword ptr [rsi]
- // mov rax, qword ptr [rsi]
- // mov rax, qword ptr [rsi]
- // For the above snippet, haswell just renames rax four times and executes the
- // four instructions two at a time on P23 and P0126.
- //
- // For some instructions, we just need to make sure that the source is
- // different from the destination. For example, IDIV8r reads from GPR and
- // writes to AX. We just need to ensure that the Var is assigned a
- // register which is different from AX:
- // idiv bx
- // idiv bx
- // idiv bx
- // idiv bx
- // The above snippet will be able to fully saturate the ports, while the same
- // with ax would issue one uop every `latency(IDIV8r)` cycles.
- //
- // Some instructions make this harder because they both read and write from
- // the same register:
- // inc rax
- // inc rax
- // inc rax
- // inc rax
- // This has a data dependency from each instruction to the next, limit the
- // number of instructions that can be issued in parallel.
- // It turns out that this is not a big issue on recent Intel CPUs because they
- // have heuristics to balance port pressure. In the snippet above, subsequent
- // instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
- // might end up executing them all on P0 (just because they can), or try
- // avoiding P5 because it's usually under high pressure from vector
- // instructions.
- // This issue is even more important for high-latency instructions because
- // they increase the idle time of the CPU, e.g. :
- // imul rax, rbx
- // imul rax, rbx
- // imul rax, rbx
- // imul rax, rbx
- //
- // To avoid that, we do the renaming statically by generating as many
- // independent exclusive assignments as possible (until all possible registers
- // are exhausted) e.g.:
- // imul rax, rbx
- // imul rcx, rbx
- // imul rdx, rbx
- // imul r8, rbx
- //
- // Some instruction even make the above static renaming impossible because
- // they implicitly read and write from the same operand, e.g. ADC16rr reads
- // and writes from EFLAGS.
- // In that case we just use a greedy register assignment and hope for the
- // best.
- namespace llvm {
- namespace exegesis {
- static SmallVector<const Variable *, 8>
- getVariablesWithTiedOperands(const Instruction &Instr) {
- SmallVector<const Variable *, 8> Result;
- for (const auto &Var : Instr.Variables)
- if (Var.hasTiedOperands())
- Result.push_back(&Var);
- return Result;
- }
- ParallelSnippetGenerator::~ParallelSnippetGenerator() = default;
- void ParallelSnippetGenerator::instantiateMemoryOperands(
- const unsigned ScratchSpacePointerInReg,
- std::vector<InstructionTemplate> &Instructions) const {
- if (ScratchSpacePointerInReg == 0)
- return; // no memory operands.
- const auto &ET = State.getExegesisTarget();
- const unsigned MemStep = ET.getMaxMemoryAccessSize();
- const size_t OriginalInstructionsSize = Instructions.size();
- size_t I = 0;
- for (InstructionTemplate &IT : Instructions) {
- ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
- ++I;
- }
- while (Instructions.size() < kMinNumDifferentAddresses) {
- InstructionTemplate IT = Instructions[I % OriginalInstructionsSize];
- ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
- ++I;
- Instructions.push_back(std::move(IT));
- }
- assert(I * MemStep < BenchmarkRunner::ScratchSpace::kSize &&
- "not enough scratch space");
- }
- static std::vector<InstructionTemplate> generateSnippetUsingStaticRenaming(
- const LLVMState &State, const InstructionTemplate &IT,
- const ArrayRef<const Variable *> TiedVariables,
- const BitVector &ForbiddenRegisters) {
- std::vector<InstructionTemplate> Instructions;
- // Assign registers to variables in a round-robin manner. This is simple but
- // ensures that the most register-constrained variable does not get starved.
- std::vector<BitVector> PossibleRegsForVar;
- for (const Variable *Var : TiedVariables) {
- assert(Var);
- const Operand &Op = IT.getInstr().getPrimaryOperand(*Var);
- assert(Op.isReg());
- BitVector PossibleRegs = Op.getRegisterAliasing().sourceBits();
- remove(PossibleRegs, ForbiddenRegisters);
- PossibleRegsForVar.push_back(std::move(PossibleRegs));
- }
- SmallVector<int, 2> Iterators(TiedVariables.size(), 0);
- while (true) {
- InstructionTemplate TmpIT = IT;
- // Find a possible register for each variable in turn, marking the
- // register as taken.
- for (size_t VarId = 0; VarId < TiedVariables.size(); ++VarId) {
- const int NextPossibleReg =
- PossibleRegsForVar[VarId].find_next(Iterators[VarId]);
- if (NextPossibleReg <= 0) {
- return Instructions;
- }
- TmpIT.getValueFor(*TiedVariables[VarId]) =
- MCOperand::createReg(NextPossibleReg);
- // Bump iterator.
- Iterators[VarId] = NextPossibleReg;
- // Prevent other variables from using the register.
- for (BitVector &OtherPossibleRegs : PossibleRegsForVar) {
- OtherPossibleRegs.reset(NextPossibleReg);
- }
- }
- Instructions.push_back(std::move(TmpIT));
- }
- }
- Expected<std::vector<CodeTemplate>>
- ParallelSnippetGenerator::generateCodeTemplates(
- InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
- const Instruction &Instr = Variant.getInstr();
- CodeTemplate CT;
- CT.ScratchSpacePointerInReg =
- Instr.hasMemoryOperands()
- ? State.getExegesisTarget().getScratchMemoryRegister(
- State.getTargetMachine().getTargetTriple())
- : 0;
- const AliasingConfigurations SelfAliasing(Instr, Instr);
- if (SelfAliasing.empty()) {
- CT.Info = "instruction is parallel, repeating a random one.";
- CT.Instructions.push_back(std::move(Variant));
- instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
- return getSingleton(std::move(CT));
- }
- if (SelfAliasing.hasImplicitAliasing()) {
- CT.Info = "instruction is serial, repeating a random one.";
- CT.Instructions.push_back(std::move(Variant));
- instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
- return getSingleton(std::move(CT));
- }
- const auto TiedVariables = getVariablesWithTiedOperands(Instr);
- if (!TiedVariables.empty()) {
- CT.Info = "instruction has tied variables, using static renaming.";
- CT.Instructions = generateSnippetUsingStaticRenaming(
- State, Variant, TiedVariables, ForbiddenRegisters);
- instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
- return getSingleton(std::move(CT));
- }
- // No tied variables, we pick random values for defs.
- // We don't want to accidentally serialize the instruction,
- // so we must be sure that we don't pick a def that is an implicit use,
- // or a use that is an implicit def, so record implicit regs now.
- BitVector ImplicitUses(State.getRegInfo().getNumRegs());
- BitVector ImplicitDefs(State.getRegInfo().getNumRegs());
- for (const auto &Op : Instr.Operands) {
- if (Op.isReg() && Op.isImplicit() && !Op.isMemory()) {
- assert(Op.isImplicitReg() && "Not an implicit register operand?");
- if (Op.isUse())
- ImplicitUses.set(Op.getImplicitReg());
- else {
- assert(Op.isDef() && "Not a use and not a def?");
- ImplicitDefs.set(Op.getImplicitReg());
- }
- }
- }
- const auto ImplicitUseAliases =
- getAliasedBits(State.getRegInfo(), ImplicitUses);
- const auto ImplicitDefAliases =
- getAliasedBits(State.getRegInfo(), ImplicitDefs);
- BitVector Defs(State.getRegInfo().getNumRegs());
- for (const auto &Op : Instr.Operands) {
- if (Op.isReg() && Op.isExplicit() && Op.isDef() && !Op.isMemory()) {
- auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
- // Do not use forbidden registers and regs that are implicitly used.
- // Note that we don't try to avoid using implicit defs explicitly.
- remove(PossibleRegisters, ForbiddenRegisters);
- remove(PossibleRegisters, ImplicitUseAliases);
- if (!PossibleRegisters.any())
- return make_error<StringError>(
- Twine("no available registers:\ncandidates:\n")
- .concat(debugString(State.getRegInfo(),
- Op.getRegisterAliasing().sourceBits()))
- .concat("\nforbidden:\n")
- .concat(debugString(State.getRegInfo(), ForbiddenRegisters))
- .concat("\nimplicit use:\n")
- .concat(debugString(State.getRegInfo(), ImplicitUseAliases)),
- inconvertibleErrorCode());
- const auto RandomReg = randomBit(PossibleRegisters);
- Defs.set(RandomReg);
- Variant.getValueFor(Op) = MCOperand::createReg(RandomReg);
- }
- }
- // And pick random use values that are not reserved and don't alias with defs.
- // Note that we don't try to avoid using implicit uses explicitly.
- const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs);
- for (const auto &Op : Instr.Operands) {
- if (Op.isReg() && Op.isExplicit() && Op.isUse() && !Op.isMemory()) {
- auto PossibleRegisters = Op.getRegisterAliasing().sourceBits();
- remove(PossibleRegisters, ForbiddenRegisters);
- remove(PossibleRegisters, DefAliases);
- remove(PossibleRegisters, ImplicitDefAliases);
- assert(PossibleRegisters.any() && "No register left to choose from");
- const auto RandomReg = randomBit(PossibleRegisters);
- Variant.getValueFor(Op) = MCOperand::createReg(RandomReg);
- }
- }
- CT.Info =
- "instruction has no tied variables picking Uses different from defs";
- CT.Instructions.push_back(std::move(Variant));
- instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
- return getSingleton(std::move(CT));
- }
- constexpr const size_t ParallelSnippetGenerator::kMinNumDifferentAddresses;
- } // namespace exegesis
- } // namespace llvm
|