123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762 |
- //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the ARM addressing mode implementation stuff.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
- #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/bit.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- namespace llvm {
- /// ARM_AM - ARM Addressing Mode Stuff
- namespace ARM_AM {
- enum ShiftOpc {
- no_shift = 0,
- asr,
- lsl,
- lsr,
- ror,
- rrx,
- uxtw
- };
- enum AddrOpc {
- sub = 0,
- add
- };
- inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
- inline const char *getShiftOpcStr(ShiftOpc Op) {
- switch (Op) {
- default: llvm_unreachable("Unknown shift opc!");
- case ARM_AM::asr: return "asr";
- case ARM_AM::lsl: return "lsl";
- case ARM_AM::lsr: return "lsr";
- case ARM_AM::ror: return "ror";
- case ARM_AM::rrx: return "rrx";
- case ARM_AM::uxtw: return "uxtw";
- }
- }
- inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
- switch (Op) {
- default: llvm_unreachable("Unknown shift opc!");
- case ARM_AM::asr: return 2;
- case ARM_AM::lsl: return 0;
- case ARM_AM::lsr: return 1;
- case ARM_AM::ror: return 3;
- }
- }
- enum AMSubMode {
- bad_am_submode = 0,
- ia,
- ib,
- da,
- db
- };
- inline const char *getAMSubModeStr(AMSubMode Mode) {
- switch (Mode) {
- default: llvm_unreachable("Unknown addressing sub-mode!");
- case ARM_AM::ia: return "ia";
- case ARM_AM::ib: return "ib";
- case ARM_AM::da: return "da";
- case ARM_AM::db: return "db";
- }
- }
- /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
- ///
- inline unsigned rotr32(unsigned Val, unsigned Amt) {
- assert(Amt < 32 && "Invalid rotate amount");
- return (Val >> Amt) | (Val << ((32-Amt)&31));
- }
- /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
- ///
- inline unsigned rotl32(unsigned Val, unsigned Amt) {
- assert(Amt < 32 && "Invalid rotate amount");
- return (Val << Amt) | (Val >> ((32-Amt)&31));
- }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #1: shift_operand with registers
- //===--------------------------------------------------------------------===//
- //
- // This 'addressing mode' is used for arithmetic instructions. It can
- // represent things like:
- // reg
- // reg [asr|lsl|lsr|ror|rrx] reg
- // reg [asr|lsl|lsr|ror|rrx] imm
- //
- // This is stored three operands [rega, regb, opc]. The first is the base
- // reg, the second is the shift amount (or reg0 if not present or imm). The
- // third operand encodes the shift opcode and the imm if a reg isn't present.
- //
- inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
- return ShOp | (Imm << 3);
- }
- inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
- inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
- /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
- /// the 8-bit imm value.
- inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
- /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
- /// the rotate amount.
- inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
- /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
- /// computing the rotate amount to use. If this immediate value cannot be
- /// handled with a single shifter-op, determine a good rotate amount that will
- /// take a maximal chunk of bits out of the immediate.
- inline unsigned getSOImmValRotate(unsigned Imm) {
- // 8-bit (or less) immediates are trivially shifter_operands with a rotate
- // of zero.
- if ((Imm & ~255U) == 0) return 0;
- // Use CTZ to compute the rotate amount.
- unsigned TZ = countTrailingZeros(Imm);
- // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
- // not 9.
- unsigned RotAmt = TZ & ~1;
- // If we can handle this spread, return it.
- if ((rotr32(Imm, RotAmt) & ~255U) == 0)
- return (32-RotAmt)&31; // HW rotates right, not left.
- // For values like 0xF000000F, we should ignore the low 6 bits, then
- // retry the hunt.
- if (Imm & 63U) {
- unsigned TZ2 = countTrailingZeros(Imm & ~63U);
- unsigned RotAmt2 = TZ2 & ~1;
- if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
- return (32-RotAmt2)&31; // HW rotates right, not left.
- }
- // Otherwise, we have no way to cover this span of bits with a single
- // shifter_op immediate. Return a chunk of bits that will be useful to
- // handle.
- return (32-RotAmt)&31; // HW rotates right, not left.
- }
- /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
- /// into an shifter_operand immediate operand, return the 12-bit encoding for
- /// it. If not, return -1.
- inline int getSOImmVal(unsigned Arg) {
- // 8-bit (or less) immediates are trivially shifter_operands with a rotate
- // of zero.
- if ((Arg & ~255U) == 0) return Arg;
- unsigned RotAmt = getSOImmValRotate(Arg);
- // If this cannot be handled with a single shifter_op, bail out.
- if (rotr32(~255U, RotAmt) & Arg)
- return -1;
- // Encode this correctly.
- return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
- }
- /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
- /// or'ing together two SOImmVal's.
- inline bool isSOImmTwoPartVal(unsigned V) {
- // If this can be handled with a single shifter_op, bail out.
- V = rotr32(~255U, getSOImmValRotate(V)) & V;
- if (V == 0)
- return false;
- // If this can be handled with two shifter_op's, accept.
- V = rotr32(~255U, getSOImmValRotate(V)) & V;
- return V == 0;
- }
- /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
- /// return the first chunk of it.
- inline unsigned getSOImmTwoPartFirst(unsigned V) {
- return rotr32(255U, getSOImmValRotate(V)) & V;
- }
- /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
- /// return the second chunk of it.
- inline unsigned getSOImmTwoPartSecond(unsigned V) {
- // Mask out the first hunk.
- V = rotr32(~255U, getSOImmValRotate(V)) & V;
- // Take what's left.
- assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
- return V;
- }
- /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained
- /// by two SOImmVal, that -V = First + Second.
- /// "R+V" can be optimized to (sub (sub R, First), Second).
- /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second).
- inline bool isSOImmTwoPartValNeg(unsigned V) {
- unsigned First;
- if (!isSOImmTwoPartVal(-V))
- return false;
- // Return false if ~(-First) is not a SoImmval.
- First = getSOImmTwoPartFirst(-V);
- First = ~(-First);
- return !(rotr32(~255U, getSOImmValRotate(First)) & First);
- }
- /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
- /// by a left shift. Returns the shift amount to use.
- inline unsigned getThumbImmValShift(unsigned Imm) {
- // 8-bit (or less) immediates are trivially immediate operand with a shift
- // of zero.
- if ((Imm & ~255U) == 0) return 0;
- // Use CTZ to compute the shift amount.
- return countTrailingZeros(Imm);
- }
- /// isThumbImmShiftedVal - Return true if the specified value can be obtained
- /// by left shifting a 8-bit immediate.
- inline bool isThumbImmShiftedVal(unsigned V) {
- // If this can be handled with
- V = (~255U << getThumbImmValShift(V)) & V;
- return V == 0;
- }
- /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
- /// by a left shift. Returns the shift amount to use.
- inline unsigned getThumbImm16ValShift(unsigned Imm) {
- // 16-bit (or less) immediates are trivially immediate operand with a shift
- // of zero.
- if ((Imm & ~65535U) == 0) return 0;
- // Use CTZ to compute the shift amount.
- return countTrailingZeros(Imm);
- }
- /// isThumbImm16ShiftedVal - Return true if the specified value can be
- /// obtained by left shifting a 16-bit immediate.
- inline bool isThumbImm16ShiftedVal(unsigned V) {
- // If this can be handled with
- V = (~65535U << getThumbImm16ValShift(V)) & V;
- return V == 0;
- }
- /// getThumbImmNonShiftedVal - If V is a value that satisfies
- /// isThumbImmShiftedVal, return the non-shiftd value.
- inline unsigned getThumbImmNonShiftedVal(unsigned V) {
- return V >> getThumbImmValShift(V);
- }
- /// getT2SOImmValSplat - Return the 12-bit encoded representation
- /// if the specified value can be obtained by splatting the low 8 bits
- /// into every other byte or every byte of a 32-bit value. i.e.,
- /// 00000000 00000000 00000000 abcdefgh control = 0
- /// 00000000 abcdefgh 00000000 abcdefgh control = 1
- /// abcdefgh 00000000 abcdefgh 00000000 control = 2
- /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
- /// Return -1 if none of the above apply.
- /// See ARM Reference Manual A6.3.2.
- inline int getT2SOImmValSplatVal(unsigned V) {
- unsigned u, Vs, Imm;
- // control = 0
- if ((V & 0xffffff00) == 0)
- return V;
- // If the value is zeroes in the first byte, just shift those off
- Vs = ((V & 0xff) == 0) ? V >> 8 : V;
- // Any passing value only has 8 bits of payload, splatted across the word
- Imm = Vs & 0xff;
- // Likewise, any passing values have the payload splatted into the 3rd byte
- u = Imm | (Imm << 16);
- // control = 1 or 2
- if (Vs == u)
- return (((Vs == V) ? 1 : 2) << 8) | Imm;
- // control = 3
- if (Vs == (u | (u << 8)))
- return (3 << 8) | Imm;
- return -1;
- }
- /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
- /// specified value is a rotated 8-bit value. Return -1 if no rotation
- /// encoding is possible.
- /// See ARM Reference Manual A6.3.2.
- inline int getT2SOImmValRotateVal(unsigned V) {
- unsigned RotAmt = countLeadingZeros(V);
- if (RotAmt >= 24)
- return -1;
- // If 'Arg' can be handled with a single shifter_op return the value.
- if ((rotr32(0xff000000U, RotAmt) & V) == V)
- return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
- return -1;
- }
- /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
- /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
- /// encoding for it. If not, return -1.
- /// See ARM Reference Manual A6.3.2.
- inline int getT2SOImmVal(unsigned Arg) {
- // If 'Arg' is an 8-bit splat, then get the encoded value.
- int Splat = getT2SOImmValSplatVal(Arg);
- if (Splat != -1)
- return Splat;
- // If 'Arg' can be handled with a single shifter_op return the value.
- int Rot = getT2SOImmValRotateVal(Arg);
- if (Rot != -1)
- return Rot;
- return -1;
- }
- inline unsigned getT2SOImmValRotate(unsigned V) {
- if ((V & ~255U) == 0) return 0;
- // Use CTZ to compute the rotate amount.
- unsigned RotAmt = countTrailingZeros(V);
- return (32 - RotAmt) & 31;
- }
- inline bool isT2SOImmTwoPartVal(unsigned Imm) {
- unsigned V = Imm;
- // Passing values can be any combination of splat values and shifter
- // values. If this can be handled with a single shifter or splat, bail
- // out. Those should be handled directly, not with a two-part val.
- if (getT2SOImmValSplatVal(V) != -1)
- return false;
- V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
- if (V == 0)
- return false;
- // If this can be handled as an immediate, accept.
- if (getT2SOImmVal(V) != -1) return true;
- // Likewise, try masking out a splat value first.
- V = Imm;
- if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
- V &= ~0xff00ff00U;
- else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
- V &= ~0x00ff00ffU;
- // If what's left can be handled as an immediate, accept.
- if (getT2SOImmVal(V) != -1) return true;
- // Otherwise, do not accept.
- return false;
- }
- inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
- assert (isT2SOImmTwoPartVal(Imm) &&
- "Immedate cannot be encoded as two part immediate!");
- // Try a shifter operand as one part
- unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
- // If the rest is encodable as an immediate, then return it.
- if (getT2SOImmVal(V) != -1) return V;
- // Try masking out a splat value first.
- if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
- return Imm & 0xff00ff00U;
- // The other splat is all that's left as an option.
- assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
- return Imm & 0x00ff00ffU;
- }
- inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
- // Mask out the first hunk
- Imm ^= getT2SOImmTwoPartFirst(Imm);
- // Return what's left
- assert (getT2SOImmVal(Imm) != -1 &&
- "Unable to encode second part of T2 two part SO immediate");
- return Imm;
- }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #2
- //===--------------------------------------------------------------------===//
- //
- // This is used for most simple load/store instructions.
- //
- // addrmode2 := reg +/- reg shop imm
- // addrmode2 := reg +/- imm12
- //
- // The first operand is always a Reg. The second operand is a reg if in
- // reg/reg form, otherwise it's reg#0. The third field encodes the operation
- // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
- // fourth operand 16-17 encodes the index mode.
- //
- // If this addressing mode is a frame index (before prolog/epilog insertion
- // and code rewriting), this operand will have the form: FI#, reg0, <offs>
- // with no shift amount for the frame offset.
- //
- inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
- unsigned IdxMode = 0) {
- assert(Imm12 < (1 << 12) && "Imm too large!");
- bool isSub = Opc == sub;
- return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
- }
- inline unsigned getAM2Offset(unsigned AM2Opc) {
- return AM2Opc & ((1 << 12)-1);
- }
- inline AddrOpc getAM2Op(unsigned AM2Opc) {
- return ((AM2Opc >> 12) & 1) ? sub : add;
- }
- inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
- return (ShiftOpc)((AM2Opc >> 13) & 7);
- }
- inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #3
- //===--------------------------------------------------------------------===//
- //
- // This is used for sign-extending loads, and load/store-pair instructions.
- //
- // addrmode3 := reg +/- reg
- // addrmode3 := reg +/- imm8
- //
- // The first operand is always a Reg. The second operand is a reg if in
- // reg/reg form, otherwise it's reg#0. The third field encodes the operation
- // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
- // index mode.
- /// getAM3Opc - This function encodes the addrmode3 opc field.
- inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
- unsigned IdxMode = 0) {
- bool isSub = Opc == sub;
- return ((int)isSub << 8) | Offset | (IdxMode << 9);
- }
- inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
- inline AddrOpc getAM3Op(unsigned AM3Opc) {
- return ((AM3Opc >> 8) & 1) ? sub : add;
- }
- inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #4
- //===--------------------------------------------------------------------===//
- //
- // This is used for load / store multiple instructions.
- //
- // addrmode4 := reg, <mode>
- //
- // The four modes are:
- // IA - Increment after
- // IB - Increment before
- // DA - Decrement after
- // DB - Decrement before
- // For VFP instructions, only the IA and DB modes are valid.
- inline AMSubMode getAM4SubMode(unsigned Mode) {
- return (AMSubMode)(Mode & 0x7);
- }
- inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #5
- //===--------------------------------------------------------------------===//
- //
- // This is used for coprocessor instructions, such as FP load/stores.
- //
- // addrmode5 := reg +/- imm8*4
- //
- // The first operand is always a Reg. The second operand encodes the
- // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
- /// getAM5Opc - This function encodes the addrmode5 opc field.
- inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
- bool isSub = Opc == sub;
- return ((int)isSub << 8) | Offset;
- }
- inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
- inline AddrOpc getAM5Op(unsigned AM5Opc) {
- return ((AM5Opc >> 8) & 1) ? sub : add;
- }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #5 FP16
- //===--------------------------------------------------------------------===//
- //
- // This is used for coprocessor instructions, such as 16-bit FP load/stores.
- //
- // addrmode5fp16 := reg +/- imm8*2
- //
- // The first operand is always a Reg. The second operand encodes the
- // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
- /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
- inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
- bool isSub = Opc == sub;
- return ((int)isSub << 8) | Offset;
- }
- inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
- return AM5Opc & 0xFF;
- }
- inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
- return ((AM5Opc >> 8) & 1) ? sub : add;
- }
- //===--------------------------------------------------------------------===//
- // Addressing Mode #6
- //===--------------------------------------------------------------------===//
- //
- // This is used for NEON load / store instructions.
- //
- // addrmode6 := reg with optional alignment
- //
- // This is stored in two operands [regaddr, align]. The first is the
- // address register. The second operand is the value of the alignment
- // specifier in bytes or zero if no explicit alignment.
- // Valid alignments depend on the specific instruction.
- //===--------------------------------------------------------------------===//
- // NEON/MVE Modified Immediates
- //===--------------------------------------------------------------------===//
- //
- // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
- // vector operand, where a small immediate encoded in the instruction
- // specifies a full NEON vector value. These modified immediates are
- // represented here as encoded integers. The low 8 bits hold the immediate
- // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
- // the "Cmode" field of the instruction. The interfaces below treat the
- // Op and Cmode values as a single 5-bit value.
- inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
- return (OpCmode << 8) | Val;
- }
- inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
- return (ModImm >> 8) & 0x1f;
- }
- inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
- /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
- /// element value and the element size in bits. (If the element size is
- /// smaller than the vector, it is splatted into all the elements.)
- inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
- unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
- unsigned Imm8 = getVMOVModImmVal(ModImm);
- uint64_t Val = 0;
- if (OpCmode == 0xe) {
- // 8-bit vector elements
- Val = Imm8;
- EltBits = 8;
- } else if ((OpCmode & 0xc) == 0x8) {
- // 16-bit vector elements
- unsigned ByteNum = (OpCmode & 0x6) >> 1;
- Val = Imm8 << (8 * ByteNum);
- EltBits = 16;
- } else if ((OpCmode & 0x8) == 0) {
- // 32-bit vector elements, zero with one byte set
- unsigned ByteNum = (OpCmode & 0x6) >> 1;
- Val = Imm8 << (8 * ByteNum);
- EltBits = 32;
- } else if ((OpCmode & 0xe) == 0xc) {
- // 32-bit vector elements, one byte with low bits set
- unsigned ByteNum = 1 + (OpCmode & 0x1);
- Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
- EltBits = 32;
- } else if (OpCmode == 0x1e) {
- // 64-bit vector elements
- for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
- if ((ModImm >> ByteNum) & 1)
- Val |= (uint64_t)0xff << (8 * ByteNum);
- }
- EltBits = 64;
- } else {
- llvm_unreachable("Unsupported VMOV immediate");
- }
- return Val;
- }
- // Generic validation for single-byte immediate (0X00, 00X0, etc).
- inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
- assert(Size >= 1 && Size <= 4 && "Invalid size");
- unsigned count = 0;
- for (unsigned i = 0; i < Size; ++i) {
- if (Value & 0xff) count++;
- Value >>= 8;
- }
- return count == 1;
- }
- /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
- inline bool isNEONi16splat(unsigned Value) {
- if (Value > 0xffff)
- return false;
- // i16 value with set bits only in one byte X0 or 0X.
- return Value == 0 || isNEONBytesplat(Value, 2);
- }
- // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
- inline unsigned encodeNEONi16splat(unsigned Value) {
- assert(isNEONi16splat(Value) && "Invalid NEON splat value");
- if (Value >= 0x100)
- Value = (Value >> 8) | 0xa00;
- else
- Value |= 0x800;
- return Value;
- }
- /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
- inline bool isNEONi32splat(unsigned Value) {
- // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
- return Value == 0 || isNEONBytesplat(Value, 4);
- }
- /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
- inline unsigned encodeNEONi32splat(unsigned Value) {
- assert(isNEONi32splat(Value) && "Invalid NEON splat value");
- if (Value >= 0x100 && Value <= 0xff00)
- Value = (Value >> 8) | 0x200;
- else if (Value > 0xffff && Value <= 0xff0000)
- Value = (Value >> 16) | 0x400;
- else if (Value > 0xffffff)
- Value = (Value >> 24) | 0x600;
- return Value;
- }
- //===--------------------------------------------------------------------===//
- // Floating-point Immediates
- //
- inline float getFPImmFloat(unsigned Imm) {
- // We expect an 8-bit binary encoding of a floating-point number here.
- uint8_t Sign = (Imm >> 7) & 0x1;
- uint8_t Exp = (Imm >> 4) & 0x7;
- uint8_t Mantissa = Imm & 0xf;
- // 8-bit FP IEEE Float Encoding
- // abcd efgh aBbbbbbc defgh000 00000000 00000000
- //
- // where B = NOT(b);
- uint32_t I = 0;
- I |= Sign << 31;
- I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
- I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
- I |= (Exp & 0x3) << 23;
- I |= Mantissa << 19;
- return bit_cast<float>(I);
- }
- /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
- /// floating-point value. If the value cannot be represented as an 8-bit
- /// floating-point value, then return -1.
- inline int getFP16Imm(const APInt &Imm) {
- uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
- int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
- int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0x3f)
- return -1;
- Mantissa >>= 6;
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
- }
- inline int getFP16Imm(const APFloat &FPImm) {
- return getFP16Imm(FPImm.bitcastToAPInt());
- }
- /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding
- /// for it. Otherwise return -1 like getFP16Imm.
- inline int getFP32FP16Imm(const APInt &Imm) {
- if (Imm.getActiveBits() > 16)
- return -1;
- return ARM_AM::getFP16Imm(Imm.trunc(16));
- }
- inline int getFP32FP16Imm(const APFloat &FPImm) {
- return getFP32FP16Imm(FPImm.bitcastToAPInt());
- }
- /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
- /// floating-point value. If the value cannot be represented as an 8-bit
- /// floating-point value, then return -1.
- inline int getFP32Imm(const APInt &Imm) {
- uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
- int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
- int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0x7ffff)
- return -1;
- Mantissa >>= 19;
- if ((Mantissa & 0xf) != Mantissa)
- return -1;
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
- }
- inline int getFP32Imm(const APFloat &FPImm) {
- return getFP32Imm(FPImm.bitcastToAPInt());
- }
- /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
- /// floating-point value. If the value cannot be represented as an 8-bit
- /// floating-point value, then return -1.
- inline int getFP64Imm(const APInt &Imm) {
- uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
- int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
- uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
- // We can handle 4 bits of mantissa.
- // mantissa = (16+UInt(e:f:g:h))/16.
- if (Mantissa & 0xffffffffffffULL)
- return -1;
- Mantissa >>= 48;
- if ((Mantissa & 0xf) != Mantissa)
- return -1;
- // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
- if (Exp < -3 || Exp > 4)
- return -1;
- Exp = ((Exp+3) & 0x7) ^ 4;
- return ((int)Sign << 7) | (Exp << 4) | Mantissa;
- }
- inline int getFP64Imm(const APFloat &FPImm) {
- return getFP64Imm(FPImm.bitcastToAPInt());
- }
- } // end namespace ARM_AM
- } // end namespace llvm
- #endif
|