123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- //===-- Operator.cpp - Implement the LLVM operators -----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the non-inline methods for the LLVM Operator classes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "ConstantsContext.h"
- namespace llvm {
- bool Operator::hasPoisonGeneratingFlags() const {
- switch (getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::Shl: {
- auto *OBO = cast<OverflowingBinaryOperator>(this);
- return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::AShr:
- case Instruction::LShr:
- return cast<PossiblyExactOperator>(this)->isExact();
- case Instruction::GetElementPtr: {
- auto *GEP = cast<GEPOperator>(this);
- // Note: inrange exists on constexpr only
- return GEP->isInBounds() || GEP->getInRangeIndex() != None;
- }
- default:
- if (const auto *FP = dyn_cast<FPMathOperator>(this))
- return FP->hasNoNaNs() || FP->hasNoInfs();
- return false;
- }
- }
- Type *GEPOperator::getSourceElementType() const {
- if (auto *I = dyn_cast<GetElementPtrInst>(this))
- return I->getSourceElementType();
- return cast<GetElementPtrConstantExpr>(this)->getSourceElementType();
- }
- Type *GEPOperator::getResultElementType() const {
- if (auto *I = dyn_cast<GetElementPtrInst>(this))
- return I->getResultElementType();
- return cast<GetElementPtrConstantExpr>(this)->getResultElementType();
- }
- Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const {
- /// compute the worse possible offset for every level of the GEP et accumulate
- /// the minimum alignment into Result.
- Align Result = Align(llvm::Value::MaximumAlignment);
- for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
- GTI != GTE; ++GTI) {
- int64_t Offset = 1;
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- const StructLayout *SL = DL.getStructLayout(STy);
- Offset = SL->getElementOffset(OpC->getZExtValue());
- } else {
- assert(GTI.isSequential() && "should be sequencial");
- /// If the index isn't know we take 1 because it is the index that will
- /// give the worse alignment of the offset.
- int64_t ElemCount = 1;
- if (OpC)
- ElemCount = OpC->getZExtValue();
- Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount;
- }
- Result = Align(MinAlign(Offset, Result.value()));
- }
- return Result;
- }
- bool GEPOperator::accumulateConstantOffset(
- const DataLayout &DL, APInt &Offset,
- function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
- assert(Offset.getBitWidth() ==
- DL.getIndexSizeInBits(getPointerAddressSpace()) &&
- "The offset bit width does not match DL specification.");
- SmallVector<const Value *> Index(llvm::drop_begin(operand_values()));
- return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index,
- DL, Offset, ExternalAnalysis);
- }
- bool GEPOperator::accumulateConstantOffset(
- Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL,
- APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) {
- bool UsedExternalAnalysis = false;
- auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool {
- Index = Index.sextOrTrunc(Offset.getBitWidth());
- APInt IndexedSize = APInt(Offset.getBitWidth(), Size);
- // For array or vector indices, scale the index by the size of the type.
- if (!UsedExternalAnalysis) {
- Offset += Index * IndexedSize;
- } else {
- // External Analysis can return a result higher/lower than the value
- // represents. We need to detect overflow/underflow.
- bool Overflow = false;
- APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow);
- if (Overflow)
- return false;
- Offset = Offset.sadd_ov(OffsetPlus, Overflow);
- if (Overflow)
- return false;
- }
- return true;
- };
- auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin(
- SourceType, Index.begin());
- auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end());
- for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) {
- // Scalable vectors are multiplied by a runtime constant.
- bool ScalableType = false;
- if (isa<ScalableVectorType>(GTI.getIndexedType()))
- ScalableType = true;
- Value *V = GTI.getOperand();
- StructType *STy = GTI.getStructTypeOrNull();
- // Handle ConstantInt if possible.
- if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
- if (ConstOffset->isZero())
- continue;
- // if the type is scalable and the constant is not zero (vscale * n * 0 =
- // 0) bailout.
- if (ScalableType)
- return false;
- // Handle a struct index, which adds its field offset to the pointer.
- if (STy) {
- unsigned ElementIdx = ConstOffset->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
- // Element offset is in bytes.
- if (!AccumulateOffset(
- APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)),
- 1))
- return false;
- continue;
- }
- if (!AccumulateOffset(ConstOffset->getValue(),
- DL.getTypeAllocSize(GTI.getIndexedType())))
- return false;
- continue;
- }
- // The operand is not constant, check if an external analysis was provided.
- // External analsis is not applicable to a struct type.
- if (!ExternalAnalysis || STy || ScalableType)
- return false;
- APInt AnalysisIndex;
- if (!ExternalAnalysis(*V, AnalysisIndex))
- return false;
- UsedExternalAnalysis = true;
- if (!AccumulateOffset(AnalysisIndex,
- DL.getTypeAllocSize(GTI.getIndexedType())))
- return false;
- }
- return true;
- }
- bool GEPOperator::collectOffset(
- const DataLayout &DL, unsigned BitWidth,
- MapVector<Value *, APInt> &VariableOffsets,
- APInt &ConstantOffset) const {
- assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) &&
- "The offset bit width does not match DL specification.");
- auto CollectConstantOffset = [&](APInt Index, uint64_t Size) {
- Index = Index.sextOrTrunc(BitWidth);
- APInt IndexedSize = APInt(BitWidth, Size);
- ConstantOffset += Index * IndexedSize;
- };
- for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
- GTI != GTE; ++GTI) {
- // Scalable vectors are multiplied by a runtime constant.
- bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType());
- Value *V = GTI.getOperand();
- StructType *STy = GTI.getStructTypeOrNull();
- // Handle ConstantInt if possible.
- if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
- if (ConstOffset->isZero())
- continue;
- // If the type is scalable and the constant is not zero (vscale * n * 0 =
- // 0) bailout.
- // TODO: If the runtime value is accessible at any point before DWARF
- // emission, then we could potentially keep a forward reference to it
- // in the debug value to be filled in later.
- if (ScalableType)
- return false;
- // Handle a struct index, which adds its field offset to the pointer.
- if (STy) {
- unsigned ElementIdx = ConstOffset->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
- // Element offset is in bytes.
- CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)),
- 1);
- continue;
- }
- CollectConstantOffset(ConstOffset->getValue(),
- DL.getTypeAllocSize(GTI.getIndexedType()));
- continue;
- }
- if (STy || ScalableType)
- return false;
- APInt IndexedSize =
- APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
- // Insert an initial offset of 0 for V iff none exists already, then
- // increment the offset by IndexedSize.
- if (!IndexedSize.isZero()) {
- VariableOffsets.insert({V, APInt(BitWidth, 0)});
- VariableOffsets[V] += IndexedSize;
- }
- }
- return true;
- }
- void FastMathFlags::print(raw_ostream &O) const {
- if (all())
- O << " fast";
- else {
- if (allowReassoc())
- O << " reassoc";
- if (noNaNs())
- O << " nnan";
- if (noInfs())
- O << " ninf";
- if (noSignedZeros())
- O << " nsz";
- if (allowReciprocal())
- O << " arcp";
- if (allowContract())
- O << " contract";
- if (approxFunc())
- O << " afn";
- }
- }
- } // namespace llvm
|