123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
- #define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
- // absl::gaussian_distribution implements the Ziggurat algorithm
- // for generating random gaussian numbers.
- //
- // Implementation based on "The Ziggurat Method for Generating Random Variables"
- // by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/
- //
- #include <cmath>
- #include <cstdint>
- #include <istream>
- #include <limits>
- #include <type_traits>
- #include "absl/base/config.h"
- #include "absl/random/internal/fast_uniform_bits.h"
- #include "absl/random/internal/generate_real.h"
- #include "absl/random/internal/iostream_state_saver.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- // absl::gaussian_distribution_base implements the underlying ziggurat algorithm
- // using the ziggurat tables generated by the gaussian_distribution_gentables
- // binary.
- //
- // The specific algorithm has some of the improvements suggested by the
- // 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples",
- // Jurgen A Doornik. (https://www.doornik.com/research/ziggurat.pdf)
- class ABSL_DLL gaussian_distribution_base {
- public:
- template <typename URBG>
- inline double zignor(URBG& g); // NOLINT(runtime/references)
- private:
- friend class TableGenerator;
- template <typename URBG>
- inline double zignor_fallback(URBG& g, // NOLINT(runtime/references)
- bool neg);
- // Constants used for the gaussian distribution.
- static constexpr double kR = 3.442619855899; // Start of the tail.
- static constexpr double kRInv = 0.29047645161474317; // ~= (1.0 / kR) .
- static constexpr double kV = 9.91256303526217e-3;
- static constexpr uint64_t kMask = 0x07f;
- // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area
- // points on one-half of the normal distribution, where the pdf function,
- // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1.
- //
- // These tables are just over 2kb in size; larger tables might improve the
- // distributions, but also lead to more cache pollution.
- //
- // x = {3.71308, 3.44261, 3.22308, ..., 0}
- // f = {0.00101, 0.00266, 0.00554, ..., 1}
- struct Tables {
- double x[kMask + 2];
- double f[kMask + 2];
- };
- static const Tables zg_;
- random_internal::FastUniformBits<uint64_t> fast_u64_;
- };
- } // namespace random_internal
- // absl::gaussian_distribution:
- // Generates a number conforming to a Gaussian distribution.
- template <typename RealType = double>
- class gaussian_distribution : random_internal::gaussian_distribution_base {
- public:
- using result_type = RealType;
- class param_type {
- public:
- using distribution_type = gaussian_distribution;
- explicit param_type(result_type mean = 0, result_type stddev = 1)
- : mean_(mean), stddev_(stddev) {}
- // Returns the mean distribution parameter. The mean specifies the location
- // of the peak. The default value is 0.0.
- result_type mean() const { return mean_; }
- // Returns the deviation distribution parameter. The default value is 1.0.
- result_type stddev() const { return stddev_; }
- friend bool operator==(const param_type& a, const param_type& b) {
- return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;
- }
- friend bool operator!=(const param_type& a, const param_type& b) {
- return !(a == b);
- }
- private:
- result_type mean_;
- result_type stddev_;
- static_assert(
- std::is_floating_point<RealType>::value,
- "Class-template absl::gaussian_distribution<> must be parameterized "
- "using a floating-point type.");
- };
- gaussian_distribution() : gaussian_distribution(0) {}
- explicit gaussian_distribution(result_type mean, result_type stddev = 1)
- : param_(mean, stddev) {}
- explicit gaussian_distribution(const param_type& p) : param_(p) {}
- void reset() {}
- // Generating functions
- template <typename URBG>
- result_type operator()(URBG& g) { // NOLINT(runtime/references)
- return (*this)(g, param_);
- }
- template <typename URBG>
- result_type operator()(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
- param_type param() const { return param_; }
- void param(const param_type& p) { param_ = p; }
- result_type(min)() const {
- return -std::numeric_limits<result_type>::infinity();
- }
- result_type(max)() const {
- return std::numeric_limits<result_type>::infinity();
- }
- result_type mean() const { return param_.mean(); }
- result_type stddev() const { return param_.stddev(); }
- friend bool operator==(const gaussian_distribution& a,
- const gaussian_distribution& b) {
- return a.param_ == b.param_;
- }
- friend bool operator!=(const gaussian_distribution& a,
- const gaussian_distribution& b) {
- return a.param_ != b.param_;
- }
- private:
- param_type param_;
- };
- // --------------------------------------------------------------------------
- // Implementation details only below
- // --------------------------------------------------------------------------
- template <typename RealType>
- template <typename URBG>
- typename gaussian_distribution<RealType>::result_type
- gaussian_distribution<RealType>::operator()(
- URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));
- }
- template <typename CharT, typename Traits, typename RealType>
- std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
- const gaussian_distribution<RealType>& x) {
- auto saver = random_internal::make_ostream_state_saver(os);
- os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
- os << x.mean() << os.fill() << x.stddev();
- return os;
- }
- template <typename CharT, typename Traits, typename RealType>
- std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
- gaussian_distribution<RealType>& x) { // NOLINT(runtime/references)
- using result_type = typename gaussian_distribution<RealType>::result_type;
- using param_type = typename gaussian_distribution<RealType>::param_type;
- auto saver = random_internal::make_istream_state_saver(is);
- auto mean = random_internal::read_floating_point<result_type>(is);
- if (is.fail()) return is;
- auto stddev = random_internal::read_floating_point<result_type>(is);
- if (!is.fail()) {
- x.param(param_type(mean, stddev));
- }
- return is;
- }
- namespace random_internal {
- template <typename URBG>
- inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
- using random_internal::GeneratePositiveTag;
- using random_internal::GenerateRealFromBits;
- // This fallback path happens approximately 0.05% of the time.
- double x, y;
- do {
- // kRInv = 1/r, U(0, 1)
- x = kRInv *
- std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(
- fast_u64_(g)));
- y = -std::log(
- GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));
- } while ((y + y) < (x * x));
- return neg ? (x - kR) : (kR - x);
- }
- template <typename URBG>
- inline double gaussian_distribution_base::zignor(
- URBG& g) { // NOLINT(runtime/references)
- using random_internal::GeneratePositiveTag;
- using random_internal::GenerateRealFromBits;
- using random_internal::GenerateSignedTag;
- while (true) {
- // We use a single uint64_t to generate both a double and a strip.
- // These bits are unused when the generated double is > 1/2^5.
- // This may introduce some bias from the duplicated low bits of small
- // values (those smaller than 1/2^5, which all end up on the left tail).
- uint64_t bits = fast_u64_(g);
- int i = static_cast<int>(bits & kMask); // pick a random strip
- double j = GenerateRealFromBits<double, GenerateSignedTag, false>(
- bits); // U(-1, 1)
- const double x = j * zg_.x[i];
- // Retangular box. Handles >97% of all cases.
- // For any given box, this handles between 75% and 99% of values.
- // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5%
- if (std::abs(x) < zg_.x[i + 1]) {
- return x;
- }
- // i == 0: Base box. Sample using a ratio of uniforms.
- if (i == 0) {
- // This path happens about 0.05% of the time.
- return zignor_fallback(g, j < 0);
- }
- // i > 0: Wedge samples using precomputed values.
- double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(
- fast_u64_(g)); // U(0, 1)
- if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
- std::exp(-0.5 * x * x)) {
- return x;
- }
- // The wedge was missed; reject the value and try again.
- }
- }
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
|