123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828 |
- //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file is a part of ThreadSanitizer, a race detector.
- //
- // The tool is under development, for the details about previous versions see
- // http://code.google.com/p/data-race-test
- //
- // The instrumentation phase is quite simple:
- // - Insert calls to run-time library before every memory access.
- // - Optimizations may apply to avoid instrumenting some of the accesses.
- // - Insert calls at function entry/exit.
- // The rest is handled by the run-time library.
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/ProfileData/InstrProf.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Instrumentation.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/EscapeEnumerator.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ModuleUtils.h"
- using namespace llvm;
- #define DEBUG_TYPE "tsan"
- static cl::opt<bool> ClInstrumentMemoryAccesses(
- "tsan-instrument-memory-accesses", cl::init(true),
- cl::desc("Instrument memory accesses"), cl::Hidden);
- static cl::opt<bool>
- ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
- cl::desc("Instrument function entry and exit"),
- cl::Hidden);
- static cl::opt<bool> ClHandleCxxExceptions(
- "tsan-handle-cxx-exceptions", cl::init(true),
- cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
- cl::Hidden);
- static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
- cl::init(true),
- cl::desc("Instrument atomics"),
- cl::Hidden);
- static cl::opt<bool> ClInstrumentMemIntrinsics(
- "tsan-instrument-memintrinsics", cl::init(true),
- cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
- static cl::opt<bool> ClDistinguishVolatile(
- "tsan-distinguish-volatile", cl::init(false),
- cl::desc("Emit special instrumentation for accesses to volatiles"),
- cl::Hidden);
- static cl::opt<bool> ClInstrumentReadBeforeWrite(
- "tsan-instrument-read-before-write", cl::init(false),
- cl::desc("Do not eliminate read instrumentation for read-before-writes"),
- cl::Hidden);
- static cl::opt<bool> ClCompoundReadBeforeWrite(
- "tsan-compound-read-before-write", cl::init(false),
- cl::desc("Emit special compound instrumentation for reads-before-writes"),
- cl::Hidden);
- STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
- STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
- STATISTIC(NumOmittedReadsBeforeWrite,
- "Number of reads ignored due to following writes");
- STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
- STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
- STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
- STATISTIC(NumOmittedReadsFromConstantGlobals,
- "Number of reads from constant globals");
- STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
- STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
- const char kTsanModuleCtorName[] = "tsan.module_ctor";
- const char kTsanInitName[] = "__tsan_init";
- namespace {
- /// ThreadSanitizer: instrument the code in module to find races.
- ///
- /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
- /// declarations into the module if they don't exist already. Instantiating
- /// ensures the __tsan_init function is in the list of global constructors for
- /// the module.
- struct ThreadSanitizer {
- ThreadSanitizer() {
- // Check options and warn user.
- if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
- errs()
- << "warning: Option -tsan-compound-read-before-write has no effect "
- "when -tsan-instrument-read-before-write is set.\n";
- }
- }
- bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
- private:
- // Internal Instruction wrapper that contains more information about the
- // Instruction from prior analysis.
- struct InstructionInfo {
- // Instrumentation emitted for this instruction is for a compounded set of
- // read and write operations in the same basic block.
- static constexpr unsigned kCompoundRW = (1U << 0);
- explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
- Instruction *Inst;
- unsigned Flags = 0;
- };
- void initialize(Module &M, const TargetLibraryInfo &TLI);
- bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
- bool instrumentAtomic(Instruction *I, const DataLayout &DL);
- bool instrumentMemIntrinsic(Instruction *I);
- void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
- SmallVectorImpl<InstructionInfo> &All,
- const DataLayout &DL);
- bool addrPointsToConstantData(Value *Addr);
- int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
- void InsertRuntimeIgnores(Function &F);
- Type *IntptrTy;
- FunctionCallee TsanFuncEntry;
- FunctionCallee TsanFuncExit;
- FunctionCallee TsanIgnoreBegin;
- FunctionCallee TsanIgnoreEnd;
- // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
- static const size_t kNumberOfAccessSizes = 5;
- FunctionCallee TsanRead[kNumberOfAccessSizes];
- FunctionCallee TsanWrite[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
- FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
- FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
- FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
- [kNumberOfAccessSizes];
- FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicThreadFence;
- FunctionCallee TsanAtomicSignalFence;
- FunctionCallee TsanVptrUpdate;
- FunctionCallee TsanVptrLoad;
- FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
- };
- void insertModuleCtor(Module &M) {
- getOrCreateSanitizerCtorAndInitFunctions(
- M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
- /*InitArgs=*/{},
- // This callback is invoked when the functions are created the first
- // time. Hook them into the global ctors list in that case:
- [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
- }
- } // namespace
- PreservedAnalyses ThreadSanitizerPass::run(Function &F,
- FunctionAnalysisManager &FAM) {
- ThreadSanitizer TSan;
- if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
- return PreservedAnalyses::none();
- return PreservedAnalyses::all();
- }
- PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
- ModuleAnalysisManager &MAM) {
- insertModuleCtor(M);
- return PreservedAnalyses::none();
- }
- void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) {
- const DataLayout &DL = M.getDataLayout();
- LLVMContext &Ctx = M.getContext();
- IntptrTy = DL.getIntPtrType(Ctx);
- IRBuilder<> IRB(Ctx);
- AttributeList Attr;
- Attr = Attr.addFnAttribute(Ctx, Attribute::NoUnwind);
- // Initialize the callbacks.
- TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
- IRB.getVoidTy(), IRB.getInt8PtrTy());
- TsanFuncExit =
- M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
- TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
- IRB.getVoidTy());
- TsanIgnoreEnd =
- M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
- IntegerType *OrdTy = IRB.getInt32Ty();
- for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
- const unsigned ByteSize = 1U << i;
- const unsigned BitSize = ByteSize * 8;
- std::string ByteSizeStr = utostr(ByteSize);
- std::string BitSizeStr = utostr(BitSize);
- SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
- TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
- IRB.getInt8PtrTy());
- SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
- TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
- IRB.getInt8PtrTy());
- SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
- TsanUnalignedRead[i] = M.getOrInsertFunction(
- UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
- TsanUnalignedWrite[i] = M.getOrInsertFunction(
- UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
- TsanVolatileRead[i] = M.getOrInsertFunction(
- VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
- TsanVolatileWrite[i] = M.getOrInsertFunction(
- VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
- ByteSizeStr);
- TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
- UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> UnalignedVolatileWriteName(
- "__tsan_unaligned_volatile_write" + ByteSizeStr);
- TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
- UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
- TsanCompoundRW[i] = M.getOrInsertFunction(
- CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
- ByteSizeStr);
- TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
- UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
- Type *Ty = Type::getIntNTy(Ctx, BitSize);
- Type *PtrTy = Ty->getPointerTo();
- SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
- TsanAtomicLoad[i] =
- M.getOrInsertFunction(AtomicLoadName,
- TLI.getAttrList(&Ctx, {1}, /*Signed=*/true,
- /*Ret=*/BitSize <= 32, Attr),
- Ty, PtrTy, OrdTy);
- // Args of type Ty need extension only when BitSize is 32 or less.
- using Idxs = std::vector<unsigned>;
- Idxs Idxs2Or12 ((BitSize <= 32) ? Idxs({1, 2}) : Idxs({2}));
- Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
- SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
- TsanAtomicStore[i] = M.getOrInsertFunction(
- AtomicStoreName,
- TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true, /*Ret=*/false, Attr),
- IRB.getVoidTy(), PtrTy, Ty, OrdTy);
- for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
- Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
- TsanAtomicRMW[Op][i] = nullptr;
- const char *NamePart = nullptr;
- if (Op == AtomicRMWInst::Xchg)
- NamePart = "_exchange";
- else if (Op == AtomicRMWInst::Add)
- NamePart = "_fetch_add";
- else if (Op == AtomicRMWInst::Sub)
- NamePart = "_fetch_sub";
- else if (Op == AtomicRMWInst::And)
- NamePart = "_fetch_and";
- else if (Op == AtomicRMWInst::Or)
- NamePart = "_fetch_or";
- else if (Op == AtomicRMWInst::Xor)
- NamePart = "_fetch_xor";
- else if (Op == AtomicRMWInst::Nand)
- NamePart = "_fetch_nand";
- else
- continue;
- SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
- TsanAtomicRMW[Op][i] = M.getOrInsertFunction(
- RMWName,
- TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true,
- /*Ret=*/BitSize <= 32, Attr),
- Ty, PtrTy, Ty, OrdTy);
- }
- SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
- "_compare_exchange_val");
- TsanAtomicCAS[i] = M.getOrInsertFunction(
- AtomicCASName,
- TLI.getAttrList(&Ctx, Idxs34Or1234, /*Signed=*/true,
- /*Ret=*/BitSize <= 32, Attr),
- Ty, PtrTy, Ty, Ty, OrdTy, OrdTy);
- }
- TsanVptrUpdate =
- M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
- TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
- IRB.getVoidTy(), IRB.getInt8PtrTy());
- TsanAtomicThreadFence = M.getOrInsertFunction(
- "__tsan_atomic_thread_fence",
- TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
- IRB.getVoidTy(), OrdTy);
- TsanAtomicSignalFence = M.getOrInsertFunction(
- "__tsan_atomic_signal_fence",
- TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
- IRB.getVoidTy(), OrdTy);
- MemmoveFn =
- M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
- MemcpyFn =
- M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
- MemsetFn = M.getOrInsertFunction(
- "__tsan_memset",
- TLI.getAttrList(&Ctx, {1}, /*Signed=*/true, /*Ret=*/false, Attr),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
- }
- static bool isVtableAccess(Instruction *I) {
- if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
- return Tag->isTBAAVtableAccess();
- return false;
- }
- // Do not instrument known races/"benign races" that come from compiler
- // instrumentatin. The user has no way of suppressing them.
- static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
- // Peel off GEPs and BitCasts.
- Addr = Addr->stripInBoundsOffsets();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
- if (GV->hasSection()) {
- StringRef SectionName = GV->getSection();
- // Check if the global is in the PGO counters section.
- auto OF = Triple(M->getTargetTriple()).getObjectFormat();
- if (SectionName.endswith(
- getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
- return false;
- }
- // Check if the global is private gcov data.
- if (GV->getName().startswith("__llvm_gcov") ||
- GV->getName().startswith("__llvm_gcda"))
- return false;
- }
- // Do not instrument accesses from different address spaces; we cannot deal
- // with them.
- if (Addr) {
- Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
- if (PtrTy->getPointerAddressSpace() != 0)
- return false;
- }
- return true;
- }
- bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
- // If this is a GEP, just analyze its pointer operand.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
- Addr = GEP->getPointerOperand();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
- if (GV->isConstant()) {
- // Reads from constant globals can not race with any writes.
- NumOmittedReadsFromConstantGlobals++;
- return true;
- }
- } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
- if (isVtableAccess(L)) {
- // Reads from a vtable pointer can not race with any writes.
- NumOmittedReadsFromVtable++;
- return true;
- }
- }
- return false;
- }
- // Instrumenting some of the accesses may be proven redundant.
- // Currently handled:
- // - read-before-write (within same BB, no calls between)
- // - not captured variables
- //
- // We do not handle some of the patterns that should not survive
- // after the classic compiler optimizations.
- // E.g. two reads from the same temp should be eliminated by CSE,
- // two writes should be eliminated by DSE, etc.
- //
- // 'Local' is a vector of insns within the same BB (no calls between).
- // 'All' is a vector of insns that will be instrumented.
- void ThreadSanitizer::chooseInstructionsToInstrument(
- SmallVectorImpl<Instruction *> &Local,
- SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
- DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
- // Iterate from the end.
- for (Instruction *I : reverse(Local)) {
- const bool IsWrite = isa<StoreInst>(*I);
- Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
- : cast<LoadInst>(I)->getPointerOperand();
- if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
- continue;
- if (!IsWrite) {
- const auto WriteEntry = WriteTargets.find(Addr);
- if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
- auto &WI = All[WriteEntry->second];
- // If we distinguish volatile accesses and if either the read or write
- // is volatile, do not omit any instrumentation.
- const bool AnyVolatile =
- ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
- cast<StoreInst>(WI.Inst)->isVolatile());
- if (!AnyVolatile) {
- // We will write to this temp, so no reason to analyze the read.
- // Mark the write instruction as compound.
- WI.Flags |= InstructionInfo::kCompoundRW;
- NumOmittedReadsBeforeWrite++;
- continue;
- }
- }
- if (addrPointsToConstantData(Addr)) {
- // Addr points to some constant data -- it can not race with any writes.
- continue;
- }
- }
- if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
- !PointerMayBeCaptured(Addr, true, true)) {
- // The variable is addressable but not captured, so it cannot be
- // referenced from a different thread and participate in a data race
- // (see llvm/Analysis/CaptureTracking.h for details).
- NumOmittedNonCaptured++;
- continue;
- }
- // Instrument this instruction.
- All.emplace_back(I);
- if (IsWrite) {
- // For read-before-write and compound instrumentation we only need one
- // write target, and we can override any previous entry if it exists.
- WriteTargets[Addr] = All.size() - 1;
- }
- }
- Local.clear();
- }
- static bool isTsanAtomic(const Instruction *I) {
- // TODO: Ask TTI whether synchronization scope is between threads.
- auto SSID = getAtomicSyncScopeID(I);
- if (!SSID)
- return false;
- if (isa<LoadInst>(I) || isa<StoreInst>(I))
- return *SSID != SyncScope::SingleThread;
- return true;
- }
- void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
- InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
- IRB.CreateCall(TsanIgnoreBegin);
- EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
- while (IRBuilder<> *AtExit = EE.Next()) {
- InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
- AtExit->CreateCall(TsanIgnoreEnd);
- }
- }
- bool ThreadSanitizer::sanitizeFunction(Function &F,
- const TargetLibraryInfo &TLI) {
- // This is required to prevent instrumenting call to __tsan_init from within
- // the module constructor.
- if (F.getName() == kTsanModuleCtorName)
- return false;
- // Naked functions can not have prologue/epilogue
- // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
- // all.
- if (F.hasFnAttribute(Attribute::Naked))
- return false;
- // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
- // instrumentation.
- if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
- return false;
- initialize(*F.getParent(), TLI);
- SmallVector<InstructionInfo, 8> AllLoadsAndStores;
- SmallVector<Instruction*, 8> LocalLoadsAndStores;
- SmallVector<Instruction*, 8> AtomicAccesses;
- SmallVector<Instruction*, 8> MemIntrinCalls;
- bool Res = false;
- bool HasCalls = false;
- bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
- const DataLayout &DL = F.getParent()->getDataLayout();
- // Traverse all instructions, collect loads/stores/returns, check for calls.
- for (auto &BB : F) {
- for (auto &Inst : BB) {
- if (isTsanAtomic(&Inst))
- AtomicAccesses.push_back(&Inst);
- else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
- LocalLoadsAndStores.push_back(&Inst);
- else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
- isa<InvokeInst>(Inst)) {
- if (CallInst *CI = dyn_cast<CallInst>(&Inst))
- maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
- if (isa<MemIntrinsic>(Inst))
- MemIntrinCalls.push_back(&Inst);
- HasCalls = true;
- chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
- DL);
- }
- }
- chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
- }
- // We have collected all loads and stores.
- // FIXME: many of these accesses do not need to be checked for races
- // (e.g. variables that do not escape, etc).
- // Instrument memory accesses only if we want to report bugs in the function.
- if (ClInstrumentMemoryAccesses && SanitizeFunction)
- for (const auto &II : AllLoadsAndStores) {
- Res |= instrumentLoadOrStore(II, DL);
- }
- // Instrument atomic memory accesses in any case (they can be used to
- // implement synchronization).
- if (ClInstrumentAtomics)
- for (auto *Inst : AtomicAccesses) {
- Res |= instrumentAtomic(Inst, DL);
- }
- if (ClInstrumentMemIntrinsics && SanitizeFunction)
- for (auto *Inst : MemIntrinCalls) {
- Res |= instrumentMemIntrinsic(Inst);
- }
- if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
- assert(!F.hasFnAttribute(Attribute::SanitizeThread));
- if (HasCalls)
- InsertRuntimeIgnores(F);
- }
- // Instrument function entry/exit points if there were instrumented accesses.
- if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
- InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
- Value *ReturnAddress = IRB.CreateCall(
- Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
- IRB.getInt32(0));
- IRB.CreateCall(TsanFuncEntry, ReturnAddress);
- EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
- while (IRBuilder<> *AtExit = EE.Next()) {
- InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
- AtExit->CreateCall(TsanFuncExit, {});
- }
- Res = true;
- }
- return Res;
- }
- bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
- const DataLayout &DL) {
- InstrumentationIRBuilder IRB(II.Inst);
- const bool IsWrite = isa<StoreInst>(*II.Inst);
- Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
- : cast<LoadInst>(II.Inst)->getPointerOperand();
- Type *OrigTy = getLoadStoreType(II.Inst);
- // swifterror memory addresses are mem2reg promoted by instruction selection.
- // As such they cannot have regular uses like an instrumentation function and
- // it makes no sense to track them as memory.
- if (Addr->isSwiftError())
- return false;
- int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
- if (Idx < 0)
- return false;
- if (IsWrite && isVtableAccess(II.Inst)) {
- LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n");
- Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
- // StoredValue may be a vector type if we are storing several vptrs at once.
- // In this case, just take the first element of the vector since this is
- // enough to find vptr races.
- if (isa<VectorType>(StoredValue->getType()))
- StoredValue = IRB.CreateExtractElement(
- StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
- if (StoredValue->getType()->isIntegerTy())
- StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
- // Call TsanVptrUpdate.
- IRB.CreateCall(TsanVptrUpdate,
- {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
- NumInstrumentedVtableWrites++;
- return true;
- }
- if (!IsWrite && isVtableAccess(II.Inst)) {
- IRB.CreateCall(TsanVptrLoad,
- IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
- NumInstrumentedVtableReads++;
- return true;
- }
- const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
- : cast<LoadInst>(II.Inst)->getAlign();
- const bool IsCompoundRW =
- ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
- const bool IsVolatile = ClDistinguishVolatile &&
- (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
- : cast<LoadInst>(II.Inst)->isVolatile());
- assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
- const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
- FunctionCallee OnAccessFunc = nullptr;
- if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
- if (IsCompoundRW)
- OnAccessFunc = TsanCompoundRW[Idx];
- else if (IsVolatile)
- OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
- else
- OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
- } else {
- if (IsCompoundRW)
- OnAccessFunc = TsanUnalignedCompoundRW[Idx];
- else if (IsVolatile)
- OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
- : TsanUnalignedVolatileRead[Idx];
- else
- OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
- }
- IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
- if (IsCompoundRW || IsWrite)
- NumInstrumentedWrites++;
- if (IsCompoundRW || !IsWrite)
- NumInstrumentedReads++;
- return true;
- }
- static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
- uint32_t v = 0;
- switch (ord) {
- case AtomicOrdering::NotAtomic:
- llvm_unreachable("unexpected atomic ordering!");
- case AtomicOrdering::Unordered: [[fallthrough]];
- case AtomicOrdering::Monotonic: v = 0; break;
- // Not specified yet:
- // case AtomicOrdering::Consume: v = 1; break;
- case AtomicOrdering::Acquire: v = 2; break;
- case AtomicOrdering::Release: v = 3; break;
- case AtomicOrdering::AcquireRelease: v = 4; break;
- case AtomicOrdering::SequentiallyConsistent: v = 5; break;
- }
- return IRB->getInt32(v);
- }
- // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
- // So, we either need to ensure the intrinsic is not inlined, or instrument it.
- // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
- // instead we simply replace them with regular function calls, which are then
- // intercepted by the run-time.
- // Since tsan is running after everyone else, the calls should not be
- // replaced back with intrinsics. If that becomes wrong at some point,
- // we will need to call e.g. __tsan_memset to avoid the intrinsics.
- bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
- IRBuilder<> IRB(I);
- if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
- IRB.CreateCall(
- MemsetFn,
- {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
- IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
- I->eraseFromParent();
- } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
- IRB.CreateCall(
- isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
- {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
- I->eraseFromParent();
- }
- return false;
- }
- // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
- // standards. For background see C++11 standard. A slightly older, publicly
- // available draft of the standard (not entirely up-to-date, but close enough
- // for casual browsing) is available here:
- // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
- // The following page contains more background information:
- // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
- bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
- InstrumentationIRBuilder IRB(I);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Value *Addr = LI->getPointerOperand();
- Type *OrigTy = LI->getType();
- int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
- if (Idx < 0)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- createOrdering(&IRB, LI->getOrdering())};
- Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
- Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
- I->replaceAllUsesWith(Cast);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- Value *Addr = SI->getPointerOperand();
- int Idx =
- getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
- if (Idx < 0)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
- createOrdering(&IRB, SI->getOrdering())};
- CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
- ReplaceInstWithInst(I, C);
- } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
- Value *Addr = RMWI->getPointerOperand();
- int Idx =
- getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
- if (Idx < 0)
- return false;
- FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
- if (!F)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
- createOrdering(&IRB, RMWI->getOrdering())};
- CallInst *C = CallInst::Create(F, Args);
- ReplaceInstWithInst(I, C);
- } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
- Value *Addr = CASI->getPointerOperand();
- Type *OrigOldValTy = CASI->getNewValOperand()->getType();
- int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
- if (Idx < 0)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *CmpOperand =
- IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
- Value *NewOperand =
- IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- CmpOperand,
- NewOperand,
- createOrdering(&IRB, CASI->getSuccessOrdering()),
- createOrdering(&IRB, CASI->getFailureOrdering())};
- CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
- Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
- Value *OldVal = C;
- if (Ty != OrigOldValTy) {
- // The value is a pointer, so we need to cast the return value.
- OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
- }
- Value *Res =
- IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0);
- Res = IRB.CreateInsertValue(Res, Success, 1);
- I->replaceAllUsesWith(Res);
- I->eraseFromParent();
- } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
- Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
- FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
- ? TsanAtomicSignalFence
- : TsanAtomicThreadFence;
- CallInst *C = CallInst::Create(F, Args);
- ReplaceInstWithInst(I, C);
- }
- return true;
- }
- int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
- const DataLayout &DL) {
- assert(OrigTy->isSized());
- assert(
- cast<PointerType>(Addr->getType())->isOpaqueOrPointeeTypeMatches(OrigTy));
- uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
- if (TypeSize != 8 && TypeSize != 16 &&
- TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
- NumAccessesWithBadSize++;
- // Ignore all unusual sizes.
- return -1;
- }
- size_t Idx = countTrailingZeros(TypeSize / 8);
- assert(Idx < kNumberOfAccessSizes);
- return Idx;
- }
|