123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a Union-find algorithm to compute Minimum Spanning Tree
- // for a given CFG.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
- #define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include <utility>
- #include <vector>
- #define DEBUG_TYPE "cfgmst"
- using namespace llvm;
- namespace llvm {
- /// An union-find based Minimum Spanning Tree for CFG
- ///
- /// Implements a Union-find algorithm to compute Minimum Spanning Tree
- /// for a given CFG.
- template <class Edge, class BBInfo> class CFGMST {
- public:
- Function &F;
- // Store all the edges in CFG. It may contain some stale edges
- // when Removed is set.
- std::vector<std::unique_ptr<Edge>> AllEdges;
- // This map records the auxiliary information for each BB.
- DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
- // Whehter the function has an exit block with no successors.
- // (For function with an infinite loop, this block may be absent)
- bool ExitBlockFound = false;
- // Find the root group of the G and compress the path from G to the root.
- BBInfo *findAndCompressGroup(BBInfo *G) {
- if (G->Group != G)
- G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
- return static_cast<BBInfo *>(G->Group);
- }
- // Union BB1 and BB2 into the same group and return true.
- // Returns false if BB1 and BB2 are already in the same group.
- bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
- BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
- BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
- if (BB1G == BB2G)
- return false;
- // Make the smaller rank tree a direct child or the root of high rank tree.
- if (BB1G->Rank < BB2G->Rank)
- BB1G->Group = BB2G;
- else {
- BB2G->Group = BB1G;
- // If the ranks are the same, increment root of one tree by one.
- if (BB1G->Rank == BB2G->Rank)
- BB1G->Rank++;
- }
- return true;
- }
- // Give BB, return the auxiliary information.
- BBInfo &getBBInfo(const BasicBlock *BB) const {
- auto It = BBInfos.find(BB);
- assert(It->second.get() != nullptr);
- return *It->second.get();
- }
- // Give BB, return the auxiliary information if it's available.
- BBInfo *findBBInfo(const BasicBlock *BB) const {
- auto It = BBInfos.find(BB);
- if (It == BBInfos.end())
- return nullptr;
- return It->second.get();
- }
- // Traverse the CFG using a stack. Find all the edges and assign the weight.
- // Edges with large weight will be put into MST first so they are less likely
- // to be instrumented.
- void buildEdges() {
- LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
- const BasicBlock *Entry = &(F.getEntryBlock());
- uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
- // If we want to instrument the entry count, lower the weight to 0.
- if (InstrumentFuncEntry)
- EntryWeight = 0;
- Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
- *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
- uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
- // Add a fake edge to the entry.
- EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
- LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName()
- << " w = " << EntryWeight << "\n");
- // Special handling for single BB functions.
- if (succ_empty(Entry)) {
- addEdge(Entry, nullptr, EntryWeight);
- return;
- }
- static const uint32_t CriticalEdgeMultiplier = 1000;
- for (BasicBlock &BB : F) {
- Instruction *TI = BB.getTerminator();
- uint64_t BBWeight =
- (BFI != nullptr ? BFI->getBlockFreq(&BB).getFrequency() : 2);
- uint64_t Weight = 2;
- if (int successors = TI->getNumSuccessors()) {
- for (int i = 0; i != successors; ++i) {
- BasicBlock *TargetBB = TI->getSuccessor(i);
- bool Critical = isCriticalEdge(TI, i);
- uint64_t scaleFactor = BBWeight;
- if (Critical) {
- if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
- scaleFactor *= CriticalEdgeMultiplier;
- else
- scaleFactor = UINT64_MAX;
- }
- if (BPI != nullptr)
- Weight = BPI->getEdgeProbability(&BB, TargetBB).scale(scaleFactor);
- if (Weight == 0)
- Weight++;
- auto *E = &addEdge(&BB, TargetBB, Weight);
- E->IsCritical = Critical;
- LLVM_DEBUG(dbgs() << " Edge: from " << BB.getName() << " to "
- << TargetBB->getName() << " w=" << Weight << "\n");
- // Keep track of entry/exit edges:
- if (&BB == Entry) {
- if (Weight > MaxEntryOutWeight) {
- MaxEntryOutWeight = Weight;
- EntryOutgoing = E;
- }
- }
- auto *TargetTI = TargetBB->getTerminator();
- if (TargetTI && !TargetTI->getNumSuccessors()) {
- if (Weight > MaxExitInWeight) {
- MaxExitInWeight = Weight;
- ExitIncoming = E;
- }
- }
- }
- } else {
- ExitBlockFound = true;
- Edge *ExitO = &addEdge(&BB, nullptr, BBWeight);
- if (BBWeight > MaxExitOutWeight) {
- MaxExitOutWeight = BBWeight;
- ExitOutgoing = ExitO;
- }
- LLVM_DEBUG(dbgs() << " Edge: from " << BB.getName() << " to fake exit"
- << " w = " << BBWeight << "\n");
- }
- }
- // Entry/exit edge adjustment heurisitic:
- // prefer instrumenting entry edge over exit edge
- // if possible. Those exit edges may never have a chance to be
- // executed (for instance the program is an event handling loop)
- // before the profile is asynchronously dumped.
- //
- // If EntryIncoming and ExitOutgoing has similar weight, make sure
- // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
- // and ExitIncoming has similar weight, make sure ExitIncoming becomes
- // the min-edge.
- uint64_t EntryInWeight = EntryWeight;
- if (EntryInWeight >= MaxExitOutWeight &&
- EntryInWeight * 2 < MaxExitOutWeight * 3) {
- EntryIncoming->Weight = MaxExitOutWeight;
- ExitOutgoing->Weight = EntryInWeight + 1;
- }
- if (MaxEntryOutWeight >= MaxExitInWeight &&
- MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
- EntryOutgoing->Weight = MaxExitInWeight;
- ExitIncoming->Weight = MaxEntryOutWeight + 1;
- }
- }
- // Sort CFG edges based on its weight.
- void sortEdgesByWeight() {
- llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
- const std::unique_ptr<Edge> &Edge2) {
- return Edge1->Weight > Edge2->Weight;
- });
- }
- // Traverse all the edges and compute the Minimum Weight Spanning Tree
- // using union-find algorithm.
- void computeMinimumSpanningTree() {
- // First, put all the critical edge with landing-pad as the Dest to MST.
- // This works around the insufficient support of critical edges split
- // when destination BB is a landing pad.
- for (auto &Ei : AllEdges) {
- if (Ei->Removed)
- continue;
- if (Ei->IsCritical) {
- if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
- if (unionGroups(Ei->SrcBB, Ei->DestBB))
- Ei->InMST = true;
- }
- }
- }
- for (auto &Ei : AllEdges) {
- if (Ei->Removed)
- continue;
- // If we detect infinite loops, force
- // instrumenting the entry edge:
- if (!ExitBlockFound && Ei->SrcBB == nullptr)
- continue;
- if (unionGroups(Ei->SrcBB, Ei->DestBB))
- Ei->InMST = true;
- }
- }
- // Dump the Debug information about the instrumentation.
- void dumpEdges(raw_ostream &OS, const Twine &Message) const {
- if (!Message.str().empty())
- OS << Message << "\n";
- OS << " Number of Basic Blocks: " << BBInfos.size() << "\n";
- for (auto &BI : BBInfos) {
- const BasicBlock *BB = BI.first;
- OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " "
- << BI.second->infoString() << "\n";
- }
- OS << " Number of Edges: " << AllEdges.size()
- << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
- uint32_t Count = 0;
- for (auto &EI : AllEdges)
- OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
- << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
- }
- // Add an edge to AllEdges with weight W.
- Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
- uint32_t Index = BBInfos.size();
- auto Iter = BBInfos.end();
- bool Inserted;
- std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
- if (Inserted) {
- // Newly inserted, update the real info.
- Iter->second = std::move(std::make_unique<BBInfo>(Index));
- Index++;
- }
- std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
- if (Inserted)
- // Newly inserted, update the real info.
- Iter->second = std::move(std::make_unique<BBInfo>(Index));
- AllEdges.emplace_back(new Edge(Src, Dest, W));
- return *AllEdges.back();
- }
- BranchProbabilityInfo *BPI;
- BlockFrequencyInfo *BFI;
- // If function entry will be always instrumented.
- bool InstrumentFuncEntry;
- public:
- CFGMST(Function &Func, bool InstrumentFuncEntry_,
- BranchProbabilityInfo *BPI_ = nullptr,
- BlockFrequencyInfo *BFI_ = nullptr)
- : F(Func), BPI(BPI_), BFI(BFI_),
- InstrumentFuncEntry(InstrumentFuncEntry_) {
- buildEdges();
- sortEdgesByWeight();
- computeMinimumSpanningTree();
- if (AllEdges.size() > 1 && InstrumentFuncEntry)
- std::iter_swap(std::move(AllEdges.begin()),
- std::move(AllEdges.begin() + AllEdges.size() - 1));
- }
- };
- } // end namespace llvm
- #undef DEBUG_TYPE // "cfgmst"
- #endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
|