12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110 |
- //===- InstCombineVectorOps.cpp -------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements instcombine for ExtractElement, InsertElement and
- // ShuffleVector.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <utility>
- #define DEBUG_TYPE "instcombine"
- using namespace llvm;
- using namespace PatternMatch;
- STATISTIC(NumAggregateReconstructionsSimplified,
- "Number of aggregate reconstructions turned into reuse of the "
- "original aggregate");
- /// Return true if the value is cheaper to scalarize than it is to leave as a
- /// vector operation. If the extract index \p EI is a constant integer then
- /// some operations may be cheap to scalarize.
- ///
- /// FIXME: It's possible to create more instructions than previously existed.
- static bool cheapToScalarize(Value *V, Value *EI) {
- ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
- // If we can pick a scalar constant value out of a vector, that is free.
- if (auto *C = dyn_cast<Constant>(V))
- return CEI || C->getSplatValue();
- if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
- ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
- // Index needs to be lower than the minimum size of the vector, because
- // for scalable vector, the vector size is known at run time.
- return CEI->getValue().ult(EC.getKnownMinValue());
- }
- // An insertelement to the same constant index as our extract will simplify
- // to the scalar inserted element. An insertelement to a different constant
- // index is irrelevant to our extract.
- if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
- return CEI;
- if (match(V, m_OneUse(m_Load(m_Value()))))
- return true;
- if (match(V, m_OneUse(m_UnOp())))
- return true;
- Value *V0, *V1;
- if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
- if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
- return true;
- CmpInst::Predicate UnusedPred;
- if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
- if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
- return true;
- return false;
- }
- // If we have a PHI node with a vector type that is only used to feed
- // itself and be an operand of extractelement at a constant location,
- // try to replace the PHI of the vector type with a PHI of a scalar type.
- Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
- PHINode *PN) {
- SmallVector<Instruction *, 2> Extracts;
- // The users we want the PHI to have are:
- // 1) The EI ExtractElement (we already know this)
- // 2) Possibly more ExtractElements with the same index.
- // 3) Another operand, which will feed back into the PHI.
- Instruction *PHIUser = nullptr;
- for (auto *U : PN->users()) {
- if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
- if (EI.getIndexOperand() == EU->getIndexOperand())
- Extracts.push_back(EU);
- else
- return nullptr;
- } else if (!PHIUser) {
- PHIUser = cast<Instruction>(U);
- } else {
- return nullptr;
- }
- }
- if (!PHIUser)
- return nullptr;
- // Verify that this PHI user has one use, which is the PHI itself,
- // and that it is a binary operation which is cheap to scalarize.
- // otherwise return nullptr.
- if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
- !(isa<BinaryOperator>(PHIUser)) ||
- !cheapToScalarize(PHIUser, EI.getIndexOperand()))
- return nullptr;
- // Create a scalar PHI node that will replace the vector PHI node
- // just before the current PHI node.
- PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
- PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
- // Scalarize each PHI operand.
- for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
- Value *PHIInVal = PN->getIncomingValue(i);
- BasicBlock *inBB = PN->getIncomingBlock(i);
- Value *Elt = EI.getIndexOperand();
- // If the operand is the PHI induction variable:
- if (PHIInVal == PHIUser) {
- // Scalarize the binary operation. Its first operand is the
- // scalar PHI, and the second operand is extracted from the other
- // vector operand.
- BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
- unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
- Value *Op = InsertNewInstWith(
- ExtractElementInst::Create(B0->getOperand(opId), Elt,
- B0->getOperand(opId)->getName() + ".Elt"),
- *B0);
- Value *newPHIUser = InsertNewInstWith(
- BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
- scalarPHI, Op, B0), *B0);
- scalarPHI->addIncoming(newPHIUser, inBB);
- } else {
- // Scalarize PHI input:
- Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
- // Insert the new instruction into the predecessor basic block.
- Instruction *pos = dyn_cast<Instruction>(PHIInVal);
- BasicBlock::iterator InsertPos;
- if (pos && !isa<PHINode>(pos)) {
- InsertPos = ++pos->getIterator();
- } else {
- InsertPos = inBB->getFirstInsertionPt();
- }
- InsertNewInstWith(newEI, *InsertPos);
- scalarPHI->addIncoming(newEI, inBB);
- }
- }
- for (auto *E : Extracts)
- replaceInstUsesWith(*E, scalarPHI);
- return &EI;
- }
- Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
- Value *X;
- uint64_t ExtIndexC;
- if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
- !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
- return nullptr;
- ElementCount NumElts =
- cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
- Type *DestTy = Ext.getType();
- unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
- bool IsBigEndian = DL.isBigEndian();
- // If we are casting an integer to vector and extracting a portion, that is
- // a shift-right and truncate.
- if (X->getType()->isIntegerTy()) {
- assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
- "Expected fixed vector type for bitcast from scalar integer");
- // Big endian requires adjusting the extract index since MSB is at index 0.
- // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
- // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
- if (IsBigEndian)
- ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
- unsigned ShiftAmountC = ExtIndexC * DestWidth;
- if (!ShiftAmountC ||
- (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) &&
- Ext.getVectorOperand()->hasOneUse())) {
- if (ShiftAmountC)
- X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
- if (DestTy->isFloatingPointTy()) {
- Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
- Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
- return new BitCastInst(Trunc, DestTy);
- }
- return new TruncInst(X, DestTy);
- }
- }
- if (!X->getType()->isVectorTy())
- return nullptr;
- // If this extractelement is using a bitcast from a vector of the same number
- // of elements, see if we can find the source element from the source vector:
- // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
- auto *SrcTy = cast<VectorType>(X->getType());
- ElementCount NumSrcElts = SrcTy->getElementCount();
- if (NumSrcElts == NumElts)
- if (Value *Elt = findScalarElement(X, ExtIndexC))
- return new BitCastInst(Elt, DestTy);
- assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
- "Src and Dst must be the same sort of vector type");
- // If the source elements are wider than the destination, try to shift and
- // truncate a subset of scalar bits of an insert op.
- if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
- Value *Scalar;
- Value *Vec;
- uint64_t InsIndexC;
- if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
- m_ConstantInt(InsIndexC))))
- return nullptr;
- // The extract must be from the subset of vector elements that we inserted
- // into. Example: if we inserted element 1 of a <2 x i64> and we are
- // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
- // of elements 4-7 of the bitcasted vector.
- unsigned NarrowingRatio =
- NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
- if (ExtIndexC / NarrowingRatio != InsIndexC) {
- // Remove insertelement, if we don't use the inserted element.
- // extractelement (bitcast (insertelement (Vec, b)), a) ->
- // extractelement (bitcast (Vec), a)
- // FIXME: this should be removed to SimplifyDemandedVectorElts,
- // once scale vectors are supported.
- if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
- Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
- return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
- }
- return nullptr;
- }
- // We are extracting part of the original scalar. How that scalar is
- // inserted into the vector depends on the endian-ness. Example:
- // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
- // +--+--+--+--+--+--+--+--+
- // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
- // extelt <4 x i16> V', 3: | |S2|S3|
- // +--+--+--+--+--+--+--+--+
- // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
- // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
- // In this example, we must right-shift little-endian. Big-endian is just a
- // truncate.
- unsigned Chunk = ExtIndexC % NarrowingRatio;
- if (IsBigEndian)
- Chunk = NarrowingRatio - 1 - Chunk;
- // Bail out if this is an FP vector to FP vector sequence. That would take
- // more instructions than we started with unless there is no shift, and it
- // may not be handled as well in the backend.
- bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
- bool NeedDestBitcast = DestTy->isFloatingPointTy();
- if (NeedSrcBitcast && NeedDestBitcast)
- return nullptr;
- unsigned SrcWidth = SrcTy->getScalarSizeInBits();
- unsigned ShAmt = Chunk * DestWidth;
- // TODO: This limitation is more strict than necessary. We could sum the
- // number of new instructions and subtract the number eliminated to know if
- // we can proceed.
- if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
- if (NeedSrcBitcast || NeedDestBitcast)
- return nullptr;
- if (NeedSrcBitcast) {
- Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
- Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
- }
- if (ShAmt) {
- // Bail out if we could end with more instructions than we started with.
- if (!Ext.getVectorOperand()->hasOneUse())
- return nullptr;
- Scalar = Builder.CreateLShr(Scalar, ShAmt);
- }
- if (NeedDestBitcast) {
- Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
- return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
- }
- return new TruncInst(Scalar, DestTy);
- }
- return nullptr;
- }
- /// Find elements of V demanded by UserInstr.
- static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
- unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
- // Conservatively assume that all elements are needed.
- APInt UsedElts(APInt::getAllOnes(VWidth));
- switch (UserInstr->getOpcode()) {
- case Instruction::ExtractElement: {
- ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
- assert(EEI->getVectorOperand() == V);
- ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
- if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
- UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
- }
- break;
- }
- case Instruction::ShuffleVector: {
- ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
- unsigned MaskNumElts =
- cast<FixedVectorType>(UserInstr->getType())->getNumElements();
- UsedElts = APInt(VWidth, 0);
- for (unsigned i = 0; i < MaskNumElts; i++) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal == -1u || MaskVal >= 2 * VWidth)
- continue;
- if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
- UsedElts.setBit(MaskVal);
- if (Shuffle->getOperand(1) == V &&
- ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
- UsedElts.setBit(MaskVal - VWidth);
- }
- break;
- }
- default:
- break;
- }
- return UsedElts;
- }
- /// Find union of elements of V demanded by all its users.
- /// If it is known by querying findDemandedEltsBySingleUser that
- /// no user demands an element of V, then the corresponding bit
- /// remains unset in the returned value.
- static APInt findDemandedEltsByAllUsers(Value *V) {
- unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
- APInt UnionUsedElts(VWidth, 0);
- for (const Use &U : V->uses()) {
- if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
- UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
- } else {
- UnionUsedElts = APInt::getAllOnes(VWidth);
- break;
- }
- if (UnionUsedElts.isAllOnes())
- break;
- }
- return UnionUsedElts;
- }
- /// Given a constant index for a extractelement or insertelement instruction,
- /// return it with the canonical type if it isn't already canonical. We
- /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't
- /// matter, we just want a consistent type to simplify CSE.
- ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
- const unsigned IndexBW = IndexC->getType()->getBitWidth();
- if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
- return nullptr;
- return ConstantInt::get(IndexC->getContext(),
- IndexC->getValue().zextOrTrunc(64));
- }
- Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
- Value *SrcVec = EI.getVectorOperand();
- Value *Index = EI.getIndexOperand();
- if (Value *V = simplifyExtractElementInst(SrcVec, Index,
- SQ.getWithInstruction(&EI)))
- return replaceInstUsesWith(EI, V);
- // extractelt (select %x, %vec1, %vec2), %const ->
- // select %x, %vec1[%const], %vec2[%const]
- // TODO: Support constant folding of multiple select operands:
- // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
- // If the extractelement will for instance try to do out of bounds accesses
- // because of the values of %c1 and/or %c2, the sequence could be optimized
- // early. This is currently not possible because constant folding will reach
- // an unreachable assertion if it doesn't find a constant operand.
- if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
- if (SI->getCondition()->getType()->isIntegerTy() &&
- isa<Constant>(EI.getIndexOperand()))
- if (Instruction *R = FoldOpIntoSelect(EI, SI))
- return R;
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- auto *IndexC = dyn_cast<ConstantInt>(Index);
- if (IndexC) {
- // Canonicalize type of constant indices to i64 to simplify CSE
- if (auto *NewIdx = getPreferredVectorIndex(IndexC))
- return replaceOperand(EI, 1, NewIdx);
- ElementCount EC = EI.getVectorOperandType()->getElementCount();
- unsigned NumElts = EC.getKnownMinValue();
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
- Intrinsic::ID IID = II->getIntrinsicID();
- // Index needs to be lower than the minimum size of the vector, because
- // for scalable vector, the vector size is known at run time.
- if (IID == Intrinsic::experimental_stepvector &&
- IndexC->getValue().ult(NumElts)) {
- Type *Ty = EI.getType();
- unsigned BitWidth = Ty->getIntegerBitWidth();
- Value *Idx;
- // Return index when its value does not exceed the allowed limit
- // for the element type of the vector, otherwise return undefined.
- if (IndexC->getValue().getActiveBits() <= BitWidth)
- Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
- else
- Idx = UndefValue::get(Ty);
- return replaceInstUsesWith(EI, Idx);
- }
- }
- // InstSimplify should handle cases where the index is invalid.
- // For fixed-length vector, it's invalid to extract out-of-range element.
- if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
- return nullptr;
- if (Instruction *I = foldBitcastExtElt(EI))
- return I;
- // If there's a vector PHI feeding a scalar use through this extractelement
- // instruction, try to scalarize the PHI.
- if (auto *Phi = dyn_cast<PHINode>(SrcVec))
- if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
- return ScalarPHI;
- }
- // TODO come up with a n-ary matcher that subsumes both unary and
- // binary matchers.
- UnaryOperator *UO;
- if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
- // extelt (unop X), Index --> unop (extelt X, Index)
- Value *X = UO->getOperand(0);
- Value *E = Builder.CreateExtractElement(X, Index);
- return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
- }
- BinaryOperator *BO;
- if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
- // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
- Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
- Value *E0 = Builder.CreateExtractElement(X, Index);
- Value *E1 = Builder.CreateExtractElement(Y, Index);
- return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
- }
- Value *X, *Y;
- CmpInst::Predicate Pred;
- if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
- cheapToScalarize(SrcVec, Index)) {
- // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
- Value *E0 = Builder.CreateExtractElement(X, Index);
- Value *E1 = Builder.CreateExtractElement(Y, Index);
- return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
- }
- if (auto *I = dyn_cast<Instruction>(SrcVec)) {
- if (auto *IE = dyn_cast<InsertElementInst>(I)) {
- // instsimplify already handled the case where the indices are constants
- // and equal by value, if both are constants, they must not be the same
- // value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) && IndexC)
- return replaceOperand(EI, 0, IE->getOperand(0));
- } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- auto *VecType = cast<VectorType>(GEP->getType());
- ElementCount EC = VecType->getElementCount();
- uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
- if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
- // Find out why we have a vector result - these are a few examples:
- // 1. We have a scalar pointer and a vector of indices, or
- // 2. We have a vector of pointers and a scalar index, or
- // 3. We have a vector of pointers and a vector of indices, etc.
- // Here we only consider combining when there is exactly one vector
- // operand, since the optimization is less obviously a win due to
- // needing more than one extractelements.
- unsigned VectorOps =
- llvm::count_if(GEP->operands(), [](const Value *V) {
- return isa<VectorType>(V->getType());
- });
- if (VectorOps == 1) {
- Value *NewPtr = GEP->getPointerOperand();
- if (isa<VectorType>(NewPtr->getType()))
- NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
- SmallVector<Value *> NewOps;
- for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
- Value *Op = GEP->getOperand(I);
- if (isa<VectorType>(Op->getType()))
- NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
- else
- NewOps.push_back(Op);
- }
- GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
- GEP->getSourceElementType(), NewPtr, NewOps);
- NewGEP->setIsInBounds(GEP->isInBounds());
- return NewGEP;
- }
- }
- } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
- // If this is extracting an element from a shufflevector, figure out where
- // it came from and extract from the appropriate input element instead.
- // Restrict the following transformation to fixed-length vector.
- if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
- int SrcIdx =
- SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
- Value *Src;
- unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
- ->getNumElements();
- if (SrcIdx < 0)
- return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
- if (SrcIdx < (int)LHSWidth)
- Src = SVI->getOperand(0);
- else {
- SrcIdx -= LHSWidth;
- Src = SVI->getOperand(1);
- }
- Type *Int32Ty = Type::getInt32Ty(EI.getContext());
- return ExtractElementInst::Create(
- Src, ConstantInt::get(Int32Ty, SrcIdx, false));
- }
- } else if (auto *CI = dyn_cast<CastInst>(I)) {
- // Canonicalize extractelement(cast) -> cast(extractelement).
- // Bitcasts can change the number of vector elements, and they cost
- // nothing.
- if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
- Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
- return CastInst::Create(CI->getOpcode(), EE, EI.getType());
- }
- }
- }
- // Run demanded elements after other transforms as this can drop flags on
- // binops. If there's two paths to the same final result, we prefer the
- // one which doesn't force us to drop flags.
- if (IndexC) {
- ElementCount EC = EI.getVectorOperandType()->getElementCount();
- unsigned NumElts = EC.getKnownMinValue();
- // This instruction only demands the single element from the input vector.
- // Skip for scalable type, the number of elements is unknown at
- // compile-time.
- if (!EC.isScalable() && NumElts != 1) {
- // If the input vector has a single use, simplify it based on this use
- // property.
- if (SrcVec->hasOneUse()) {
- APInt UndefElts(NumElts, 0);
- APInt DemandedElts(NumElts, 0);
- DemandedElts.setBit(IndexC->getZExtValue());
- if (Value *V =
- SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
- return replaceOperand(EI, 0, V);
- } else {
- // If the input vector has multiple uses, simplify it based on a union
- // of all elements used.
- APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
- if (!DemandedElts.isAllOnes()) {
- APInt UndefElts(NumElts, 0);
- if (Value *V = SimplifyDemandedVectorElts(
- SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
- true /* AllowMultipleUsers */)) {
- if (V != SrcVec) {
- SrcVec->replaceAllUsesWith(V);
- return &EI;
- }
- }
- }
- }
- }
- }
- return nullptr;
- }
- /// If V is a shuffle of values that ONLY returns elements from either LHS or
- /// RHS, return the shuffle mask and true. Otherwise, return false.
- static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
- SmallVectorImpl<int> &Mask) {
- assert(LHS->getType() == RHS->getType() &&
- "Invalid CollectSingleShuffleElements");
- unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
- if (match(V, m_Undef())) {
- Mask.assign(NumElts, -1);
- return true;
- }
- if (V == LHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(i);
- return true;
- }
- if (V == RHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(i + NumElts);
- return true;
- }
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
- if (!isa<ConstantInt>(IdxOp))
- return false;
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
- // We can handle this if the vector we are inserting into is
- // transitively ok.
- if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = -1;
- return true;
- }
- } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
- if (isa<ConstantInt>(EI->getOperand(1))) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned NumLHSElts =
- cast<FixedVectorType>(LHS->getType())->getNumElements();
- // This must be extracting from either LHS or RHS.
- if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
- // We can handle this if the vector we are inserting into is
- // transitively ok.
- if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted value.
- if (EI->getOperand(0) == LHS) {
- Mask[InsertedIdx % NumElts] = ExtractedIdx;
- } else {
- assert(EI->getOperand(0) == RHS);
- Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
- }
- return true;
- }
- }
- }
- }
- }
- return false;
- }
- /// If we have insertion into a vector that is wider than the vector that we
- /// are extracting from, try to widen the source vector to allow a single
- /// shufflevector to replace one or more insert/extract pairs.
- static void replaceExtractElements(InsertElementInst *InsElt,
- ExtractElementInst *ExtElt,
- InstCombinerImpl &IC) {
- auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
- auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
- unsigned NumInsElts = InsVecType->getNumElements();
- unsigned NumExtElts = ExtVecType->getNumElements();
- // The inserted-to vector must be wider than the extracted-from vector.
- if (InsVecType->getElementType() != ExtVecType->getElementType() ||
- NumExtElts >= NumInsElts)
- return;
- // Create a shuffle mask to widen the extended-from vector using poison
- // values. The mask selects all of the values of the original vector followed
- // by as many poison values as needed to create a vector of the same length
- // as the inserted-to vector.
- SmallVector<int, 16> ExtendMask;
- for (unsigned i = 0; i < NumExtElts; ++i)
- ExtendMask.push_back(i);
- for (unsigned i = NumExtElts; i < NumInsElts; ++i)
- ExtendMask.push_back(-1);
- Value *ExtVecOp = ExtElt->getVectorOperand();
- auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
- BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
- ? ExtVecOpInst->getParent()
- : ExtElt->getParent();
- // TODO: This restriction matches the basic block check below when creating
- // new extractelement instructions. If that limitation is removed, this one
- // could also be removed. But for now, we just bail out to ensure that we
- // will replace the extractelement instruction that is feeding our
- // insertelement instruction. This allows the insertelement to then be
- // replaced by a shufflevector. If the insertelement is not replaced, we can
- // induce infinite looping because there's an optimization for extractelement
- // that will delete our widening shuffle. This would trigger another attempt
- // here to create that shuffle, and we spin forever.
- if (InsertionBlock != InsElt->getParent())
- return;
- // TODO: This restriction matches the check in visitInsertElementInst() and
- // prevents an infinite loop caused by not turning the extract/insert pair
- // into a shuffle. We really should not need either check, but we're lacking
- // folds for shufflevectors because we're afraid to generate shuffle masks
- // that the backend can't handle.
- if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
- return;
- auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
- // Insert the new shuffle after the vector operand of the extract is defined
- // (as long as it's not a PHI) or at the start of the basic block of the
- // extract, so any subsequent extracts in the same basic block can use it.
- // TODO: Insert before the earliest ExtractElementInst that is replaced.
- if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
- WideVec->insertAfter(ExtVecOpInst);
- else
- IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
- // Replace extracts from the original narrow vector with extracts from the new
- // wide vector.
- for (User *U : ExtVecOp->users()) {
- ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
- if (!OldExt || OldExt->getParent() != WideVec->getParent())
- continue;
- auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
- NewExt->insertAfter(OldExt);
- IC.replaceInstUsesWith(*OldExt, NewExt);
- }
- }
- /// We are building a shuffle to create V, which is a sequence of insertelement,
- /// extractelement pairs. If PermittedRHS is set, then we must either use it or
- /// not rely on the second vector source. Return a std::pair containing the
- /// left and right vectors of the proposed shuffle (or 0), and set the Mask
- /// parameter as required.
- ///
- /// Note: we intentionally don't try to fold earlier shuffles since they have
- /// often been chosen carefully to be efficiently implementable on the target.
- using ShuffleOps = std::pair<Value *, Value *>;
- static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
- Value *PermittedRHS,
- InstCombinerImpl &IC) {
- assert(V->getType()->isVectorTy() && "Invalid shuffle!");
- unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
- if (match(V, m_Undef())) {
- Mask.assign(NumElts, -1);
- return std::make_pair(
- PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
- }
- if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, 0);
- return std::make_pair(V, nullptr);
- }
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- // Either the extracted from or inserted into vector must be RHSVec,
- // otherwise we'd end up with a shuffle of three inputs.
- if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
- Value *RHS = EI->getOperand(0);
- ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
- assert(LR.second == nullptr || LR.second == RHS);
- if (LR.first->getType() != RHS->getType()) {
- // Although we are giving up for now, see if we can create extracts
- // that match the inserts for another round of combining.
- replaceExtractElements(IEI, EI, IC);
- // We tried our best, but we can't find anything compatible with RHS
- // further up the chain. Return a trivial shuffle.
- for (unsigned i = 0; i < NumElts; ++i)
- Mask[i] = i;
- return std::make_pair(V, nullptr);
- }
- unsigned NumLHSElts =
- cast<FixedVectorType>(RHS->getType())->getNumElements();
- Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
- return std::make_pair(LR.first, RHS);
- }
- if (VecOp == PermittedRHS) {
- // We've gone as far as we can: anything on the other side of the
- // extractelement will already have been converted into a shuffle.
- unsigned NumLHSElts =
- cast<FixedVectorType>(EI->getOperand(0)->getType())
- ->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
- return std::make_pair(EI->getOperand(0), PermittedRHS);
- }
- // If this insertelement is a chain that comes from exactly these two
- // vectors, return the vector and the effective shuffle.
- if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
- collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
- Mask))
- return std::make_pair(EI->getOperand(0), PermittedRHS);
- }
- }
- }
- // Otherwise, we can't do anything fancy. Return an identity vector.
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(i);
- return std::make_pair(V, nullptr);
- }
- /// Look for chain of insertvalue's that fully define an aggregate, and trace
- /// back the values inserted, see if they are all were extractvalue'd from
- /// the same source aggregate from the exact same element indexes.
- /// If they were, just reuse the source aggregate.
- /// This potentially deals with PHI indirections.
- Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
- InsertValueInst &OrigIVI) {
- Type *AggTy = OrigIVI.getType();
- unsigned NumAggElts;
- switch (AggTy->getTypeID()) {
- case Type::StructTyID:
- NumAggElts = AggTy->getStructNumElements();
- break;
- case Type::ArrayTyID:
- NumAggElts = AggTy->getArrayNumElements();
- break;
- default:
- llvm_unreachable("Unhandled aggregate type?");
- }
- // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
- // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
- // FIXME: any interesting patterns to be caught with larger limit?
- assert(NumAggElts > 0 && "Aggregate should have elements.");
- if (NumAggElts > 2)
- return nullptr;
- static constexpr auto NotFound = std::nullopt;
- static constexpr auto FoundMismatch = nullptr;
- // Try to find a value of each element of an aggregate.
- // FIXME: deal with more complex, not one-dimensional, aggregate types
- SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
- // Do we know values for each element of the aggregate?
- auto KnowAllElts = [&AggElts]() {
- return !llvm::is_contained(AggElts, NotFound);
- };
- int Depth = 0;
- // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
- // every element being overwritten twice, which should never happen.
- static const int DepthLimit = 2 * NumAggElts;
- // Recurse up the chain of `insertvalue` aggregate operands until either we've
- // reconstructed full initializer or can't visit any more `insertvalue`'s.
- for (InsertValueInst *CurrIVI = &OrigIVI;
- Depth < DepthLimit && CurrIVI && !KnowAllElts();
- CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
- ++Depth) {
- auto *InsertedValue =
- dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
- if (!InsertedValue)
- return nullptr; // Inserted value must be produced by an instruction.
- ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
- // Don't bother with more than single-level aggregates.
- if (Indices.size() != 1)
- return nullptr; // FIXME: deal with more complex aggregates?
- // Now, we may have already previously recorded the value for this element
- // of an aggregate. If we did, that means the CurrIVI will later be
- // overwritten with the already-recorded value. But if not, let's record it!
- std::optional<Instruction *> &Elt = AggElts[Indices.front()];
- Elt = Elt.value_or(InsertedValue);
- // FIXME: should we handle chain-terminating undef base operand?
- }
- // Was that sufficient to deduce the full initializer for the aggregate?
- if (!KnowAllElts())
- return nullptr; // Give up then.
- // We now want to find the source[s] of the aggregate elements we've found.
- // And with "source" we mean the original aggregate[s] from which
- // the inserted elements were extracted. This may require PHI translation.
- enum class AggregateDescription {
- /// When analyzing the value that was inserted into an aggregate, we did
- /// not manage to find defining `extractvalue` instruction to analyze.
- NotFound,
- /// When analyzing the value that was inserted into an aggregate, we did
- /// manage to find defining `extractvalue` instruction[s], and everything
- /// matched perfectly - aggregate type, element insertion/extraction index.
- Found,
- /// When analyzing the value that was inserted into an aggregate, we did
- /// manage to find defining `extractvalue` instruction, but there was
- /// a mismatch: either the source type from which the extraction was didn't
- /// match the aggregate type into which the insertion was,
- /// or the extraction/insertion channels mismatched,
- /// or different elements had different source aggregates.
- FoundMismatch
- };
- auto Describe = [](std::optional<Value *> SourceAggregate) {
- if (SourceAggregate == NotFound)
- return AggregateDescription::NotFound;
- if (*SourceAggregate == FoundMismatch)
- return AggregateDescription::FoundMismatch;
- return AggregateDescription::Found;
- };
- // Given the value \p Elt that was being inserted into element \p EltIdx of an
- // aggregate AggTy, see if \p Elt was originally defined by an
- // appropriate extractvalue (same element index, same aggregate type).
- // If found, return the source aggregate from which the extraction was.
- // If \p PredBB is provided, does PHI translation of an \p Elt first.
- auto FindSourceAggregate =
- [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
- std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
- // For now(?), only deal with, at most, a single level of PHI indirection.
- if (UseBB && PredBB)
- Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
- // FIXME: deal with multiple levels of PHI indirection?
- // Did we find an extraction?
- auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
- if (!EVI)
- return NotFound;
- Value *SourceAggregate = EVI->getAggregateOperand();
- // Is the extraction from the same type into which the insertion was?
- if (SourceAggregate->getType() != AggTy)
- return FoundMismatch;
- // And the element index doesn't change between extraction and insertion?
- if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
- return FoundMismatch;
- return SourceAggregate; // AggregateDescription::Found
- };
- // Given elements AggElts that were constructing an aggregate OrigIVI,
- // see if we can find appropriate source aggregate for each of the elements,
- // and see it's the same aggregate for each element. If so, return it.
- auto FindCommonSourceAggregate =
- [&](std::optional<BasicBlock *> UseBB,
- std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
- std::optional<Value *> SourceAggregate;
- for (auto I : enumerate(AggElts)) {
- assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
- "We don't store nullptr in SourceAggregate!");
- assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
- (I.index() != 0) &&
- "SourceAggregate should be valid after the first element,");
- // For this element, is there a plausible source aggregate?
- // FIXME: we could special-case undef element, IFF we know that in the
- // source aggregate said element isn't poison.
- std::optional<Value *> SourceAggregateForElement =
- FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
- // Okay, what have we found? Does that correlate with previous findings?
- // Regardless of whether or not we have previously found source
- // aggregate for previous elements (if any), if we didn't find one for
- // this element, passthrough whatever we have just found.
- if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
- return SourceAggregateForElement;
- // Okay, we have found source aggregate for this element.
- // Let's see what we already know from previous elements, if any.
- switch (Describe(SourceAggregate)) {
- case AggregateDescription::NotFound:
- // This is apparently the first element that we have examined.
- SourceAggregate = SourceAggregateForElement; // Record the aggregate!
- continue; // Great, now look at next element.
- case AggregateDescription::Found:
- // We have previously already successfully examined other elements.
- // Is this the same source aggregate we've found for other elements?
- if (*SourceAggregateForElement != *SourceAggregate)
- return FoundMismatch;
- continue; // Still the same aggregate, look at next element.
- case AggregateDescription::FoundMismatch:
- llvm_unreachable("Can't happen. We would have early-exited then.");
- };
- }
- assert(Describe(SourceAggregate) == AggregateDescription::Found &&
- "Must be a valid Value");
- return *SourceAggregate;
- };
- std::optional<Value *> SourceAggregate;
- // Can we find the source aggregate without looking at predecessors?
- SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
- /*PredBB=*/std::nullopt);
- if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
- if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
- return nullptr; // Conflicting source aggregates!
- ++NumAggregateReconstructionsSimplified;
- return replaceInstUsesWith(OrigIVI, *SourceAggregate);
- }
- // Okay, apparently we need to look at predecessors.
- // We should be smart about picking the "use" basic block, which will be the
- // merge point for aggregate, where we'll insert the final PHI that will be
- // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
- // We should look in which blocks each of the AggElts is being defined,
- // they all should be defined in the same basic block.
- BasicBlock *UseBB = nullptr;
- for (const std::optional<Instruction *> &I : AggElts) {
- BasicBlock *BB = (*I)->getParent();
- // If it's the first instruction we've encountered, record the basic block.
- if (!UseBB) {
- UseBB = BB;
- continue;
- }
- // Otherwise, this must be the same basic block we've seen previously.
- if (UseBB != BB)
- return nullptr;
- }
- // If *all* of the elements are basic-block-independent, meaning they are
- // either function arguments, or constant expressions, then if we didn't
- // handle them without predecessor-aware handling, we won't handle them now.
- if (!UseBB)
- return nullptr;
- // If we didn't manage to find source aggregate without looking at
- // predecessors, and there are no predecessors to look at, then we're done.
- if (pred_empty(UseBB))
- return nullptr;
- // Arbitrary predecessor count limit.
- static const int PredCountLimit = 64;
- // Cache the (non-uniqified!) list of predecessors in a vector,
- // checking the limit at the same time for efficiency.
- SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
- for (BasicBlock *Pred : predecessors(UseBB)) {
- // Don't bother if there are too many predecessors.
- if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
- return nullptr;
- Preds.emplace_back(Pred);
- }
- // For each predecessor, what is the source aggregate,
- // from which all the elements were originally extracted from?
- // Note that we want for the map to have stable iteration order!
- SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
- for (BasicBlock *Pred : Preds) {
- std::pair<decltype(SourceAggregates)::iterator, bool> IV =
- SourceAggregates.insert({Pred, nullptr});
- // Did we already evaluate this predecessor?
- if (!IV.second)
- continue;
- // Let's hope that when coming from predecessor Pred, all elements of the
- // aggregate produced by OrigIVI must have been originally extracted from
- // the same aggregate. Is that so? Can we find said original aggregate?
- SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
- if (Describe(SourceAggregate) != AggregateDescription::Found)
- return nullptr; // Give up.
- IV.first->second = *SourceAggregate;
- }
- // All good! Now we just need to thread the source aggregates here.
- // Note that we have to insert the new PHI here, ourselves, because we can't
- // rely on InstCombinerImpl::run() inserting it into the right basic block.
- // Note that the same block can be a predecessor more than once,
- // and we need to preserve that invariant for the PHI node.
- BuilderTy::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(UseBB->getFirstNonPHI());
- auto *PHI =
- Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
- for (BasicBlock *Pred : Preds)
- PHI->addIncoming(SourceAggregates[Pred], Pred);
- ++NumAggregateReconstructionsSimplified;
- return replaceInstUsesWith(OrigIVI, PHI);
- }
- /// Try to find redundant insertvalue instructions, like the following ones:
- /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
- /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
- /// Here the second instruction inserts values at the same indices, as the
- /// first one, making the first one redundant.
- /// It should be transformed to:
- /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
- Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
- bool IsRedundant = false;
- ArrayRef<unsigned int> FirstIndices = I.getIndices();
- // If there is a chain of insertvalue instructions (each of them except the
- // last one has only one use and it's another insertvalue insn from this
- // chain), check if any of the 'children' uses the same indices as the first
- // instruction. In this case, the first one is redundant.
- Value *V = &I;
- unsigned Depth = 0;
- while (V->hasOneUse() && Depth < 10) {
- User *U = V->user_back();
- auto UserInsInst = dyn_cast<InsertValueInst>(U);
- if (!UserInsInst || U->getOperand(0) != V)
- break;
- if (UserInsInst->getIndices() == FirstIndices) {
- IsRedundant = true;
- break;
- }
- V = UserInsInst;
- Depth++;
- }
- if (IsRedundant)
- return replaceInstUsesWith(I, I.getOperand(0));
- if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
- return NewI;
- return nullptr;
- }
- static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
- // Can not analyze scalable type, the number of elements is not a compile-time
- // constant.
- if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
- return false;
- int MaskSize = Shuf.getShuffleMask().size();
- int VecSize =
- cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
- // A vector select does not change the size of the operands.
- if (MaskSize != VecSize)
- return false;
- // Each mask element must be undefined or choose a vector element from one of
- // the source operands without crossing vector lanes.
- for (int i = 0; i != MaskSize; ++i) {
- int Elt = Shuf.getMaskValue(i);
- if (Elt != -1 && Elt != i && Elt != i + VecSize)
- return false;
- }
- return true;
- }
- /// Turn a chain of inserts that splats a value into an insert + shuffle:
- /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
- /// shufflevector(insertelt(X, %k, 0), poison, zero)
- static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
- // We are interested in the last insert in a chain. So if this insert has a
- // single user and that user is an insert, bail.
- if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
- return nullptr;
- VectorType *VecTy = InsElt.getType();
- // Can not handle scalable type, the number of elements is not a compile-time
- // constant.
- if (isa<ScalableVectorType>(VecTy))
- return nullptr;
- unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
- // Do not try to do this for a one-element vector, since that's a nop,
- // and will cause an inf-loop.
- if (NumElements == 1)
- return nullptr;
- Value *SplatVal = InsElt.getOperand(1);
- InsertElementInst *CurrIE = &InsElt;
- SmallBitVector ElementPresent(NumElements, false);
- InsertElementInst *FirstIE = nullptr;
- // Walk the chain backwards, keeping track of which indices we inserted into,
- // until we hit something that isn't an insert of the splatted value.
- while (CurrIE) {
- auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
- if (!Idx || CurrIE->getOperand(1) != SplatVal)
- return nullptr;
- auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
- // Check none of the intermediate steps have any additional uses, except
- // for the root insertelement instruction, which can be re-used, if it
- // inserts at position 0.
- if (CurrIE != &InsElt &&
- (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
- return nullptr;
- ElementPresent[Idx->getZExtValue()] = true;
- FirstIE = CurrIE;
- CurrIE = NextIE;
- }
- // If this is just a single insertelement (not a sequence), we are done.
- if (FirstIE == &InsElt)
- return nullptr;
- // If we are not inserting into an undef vector, make sure we've seen an
- // insert into every element.
- // TODO: If the base vector is not undef, it might be better to create a splat
- // and then a select-shuffle (blend) with the base vector.
- if (!match(FirstIE->getOperand(0), m_Undef()))
- if (!ElementPresent.all())
- return nullptr;
- // Create the insert + shuffle.
- Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
- PoisonValue *PoisonVec = PoisonValue::get(VecTy);
- Constant *Zero = ConstantInt::get(Int32Ty, 0);
- if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
- FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
- // Splat from element 0, but replace absent elements with undef in the mask.
- SmallVector<int, 16> Mask(NumElements, 0);
- for (unsigned i = 0; i != NumElements; ++i)
- if (!ElementPresent[i])
- Mask[i] = -1;
- return new ShuffleVectorInst(FirstIE, Mask);
- }
- /// Try to fold an insert element into an existing splat shuffle by changing
- /// the shuffle's mask to include the index of this insert element.
- static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
- // Check if the vector operand of this insert is a canonical splat shuffle.
- auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
- if (!Shuf || !Shuf->isZeroEltSplat())
- return nullptr;
- // Bail out early if shuffle is scalable type. The number of elements in
- // shuffle mask is unknown at compile-time.
- if (isa<ScalableVectorType>(Shuf->getType()))
- return nullptr;
- // Check for a constant insertion index.
- uint64_t IdxC;
- if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
- return nullptr;
- // Check if the splat shuffle's input is the same as this insert's scalar op.
- Value *X = InsElt.getOperand(1);
- Value *Op0 = Shuf->getOperand(0);
- if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
- return nullptr;
- // Replace the shuffle mask element at the index of this insert with a zero.
- // For example:
- // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
- // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
- unsigned NumMaskElts =
- cast<FixedVectorType>(Shuf->getType())->getNumElements();
- SmallVector<int, 16> NewMask(NumMaskElts);
- for (unsigned i = 0; i != NumMaskElts; ++i)
- NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
- return new ShuffleVectorInst(Op0, NewMask);
- }
- /// Try to fold an extract+insert element into an existing identity shuffle by
- /// changing the shuffle's mask to include the index of this insert element.
- static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
- // Check if the vector operand of this insert is an identity shuffle.
- auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
- if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
- !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
- return nullptr;
- // Bail out early if shuffle is scalable type. The number of elements in
- // shuffle mask is unknown at compile-time.
- if (isa<ScalableVectorType>(Shuf->getType()))
- return nullptr;
- // Check for a constant insertion index.
- uint64_t IdxC;
- if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
- return nullptr;
- // Check if this insert's scalar op is extracted from the identity shuffle's
- // input vector.
- Value *Scalar = InsElt.getOperand(1);
- Value *X = Shuf->getOperand(0);
- if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
- return nullptr;
- // Replace the shuffle mask element at the index of this extract+insert with
- // that same index value.
- // For example:
- // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
- unsigned NumMaskElts =
- cast<FixedVectorType>(Shuf->getType())->getNumElements();
- SmallVector<int, 16> NewMask(NumMaskElts);
- ArrayRef<int> OldMask = Shuf->getShuffleMask();
- for (unsigned i = 0; i != NumMaskElts; ++i) {
- if (i != IdxC) {
- // All mask elements besides the inserted element remain the same.
- NewMask[i] = OldMask[i];
- } else if (OldMask[i] == (int)IdxC) {
- // If the mask element was already set, there's nothing to do
- // (demanded elements analysis may unset it later).
- return nullptr;
- } else {
- assert(OldMask[i] == UndefMaskElem &&
- "Unexpected shuffle mask element for identity shuffle");
- NewMask[i] = IdxC;
- }
- }
- return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
- }
- /// If we have an insertelement instruction feeding into another insertelement
- /// and the 2nd is inserting a constant into the vector, canonicalize that
- /// constant insertion before the insertion of a variable:
- ///
- /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
- /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
- ///
- /// This has the potential of eliminating the 2nd insertelement instruction
- /// via constant folding of the scalar constant into a vector constant.
- static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
- InstCombiner::BuilderTy &Builder) {
- auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
- if (!InsElt1 || !InsElt1->hasOneUse())
- return nullptr;
- Value *X, *Y;
- Constant *ScalarC;
- ConstantInt *IdxC1, *IdxC2;
- if (match(InsElt1->getOperand(0), m_Value(X)) &&
- match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
- match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
- match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
- match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
- Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
- return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
- }
- return nullptr;
- }
- /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
- /// --> shufflevector X, CVec', Mask'
- static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
- auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
- // Bail out if the parent has more than one use. In that case, we'd be
- // replacing the insertelt with a shuffle, and that's not a clear win.
- if (!Inst || !Inst->hasOneUse())
- return nullptr;
- if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
- // The shuffle must have a constant vector operand. The insertelt must have
- // a constant scalar being inserted at a constant position in the vector.
- Constant *ShufConstVec, *InsEltScalar;
- uint64_t InsEltIndex;
- if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
- !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
- !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
- return nullptr;
- // Adding an element to an arbitrary shuffle could be expensive, but a
- // shuffle that selects elements from vectors without crossing lanes is
- // assumed cheap.
- // If we're just adding a constant into that shuffle, it will still be
- // cheap.
- if (!isShuffleEquivalentToSelect(*Shuf))
- return nullptr;
- // From the above 'select' check, we know that the mask has the same number
- // of elements as the vector input operands. We also know that each constant
- // input element is used in its lane and can not be used more than once by
- // the shuffle. Therefore, replace the constant in the shuffle's constant
- // vector with the insertelt constant. Replace the constant in the shuffle's
- // mask vector with the insertelt index plus the length of the vector
- // (because the constant vector operand of a shuffle is always the 2nd
- // operand).
- ArrayRef<int> Mask = Shuf->getShuffleMask();
- unsigned NumElts = Mask.size();
- SmallVector<Constant *, 16> NewShufElts(NumElts);
- SmallVector<int, 16> NewMaskElts(NumElts);
- for (unsigned I = 0; I != NumElts; ++I) {
- if (I == InsEltIndex) {
- NewShufElts[I] = InsEltScalar;
- NewMaskElts[I] = InsEltIndex + NumElts;
- } else {
- // Copy over the existing values.
- NewShufElts[I] = ShufConstVec->getAggregateElement(I);
- NewMaskElts[I] = Mask[I];
- }
- // Bail if we failed to find an element.
- if (!NewShufElts[I])
- return nullptr;
- }
- // Create new operands for a shuffle that includes the constant of the
- // original insertelt. The old shuffle will be dead now.
- return new ShuffleVectorInst(Shuf->getOperand(0),
- ConstantVector::get(NewShufElts), NewMaskElts);
- } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
- // Transform sequences of insertelements ops with constant data/indexes into
- // a single shuffle op.
- // Can not handle scalable type, the number of elements needed to create
- // shuffle mask is not a compile-time constant.
- if (isa<ScalableVectorType>(InsElt.getType()))
- return nullptr;
- unsigned NumElts =
- cast<FixedVectorType>(InsElt.getType())->getNumElements();
- uint64_t InsertIdx[2];
- Constant *Val[2];
- if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
- !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
- !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
- !match(IEI->getOperand(1), m_Constant(Val[1])))
- return nullptr;
- SmallVector<Constant *, 16> Values(NumElts);
- SmallVector<int, 16> Mask(NumElts);
- auto ValI = std::begin(Val);
- // Generate new constant vector and mask.
- // We have 2 values/masks from the insertelements instructions. Insert them
- // into new value/mask vectors.
- for (uint64_t I : InsertIdx) {
- if (!Values[I]) {
- Values[I] = *ValI;
- Mask[I] = NumElts + I;
- }
- ++ValI;
- }
- // Remaining values are filled with 'undef' values.
- for (unsigned I = 0; I < NumElts; ++I) {
- if (!Values[I]) {
- Values[I] = UndefValue::get(InsElt.getType()->getElementType());
- Mask[I] = I;
- }
- }
- // Create new operands for a shuffle that includes the constant of the
- // original insertelt.
- return new ShuffleVectorInst(IEI->getOperand(0),
- ConstantVector::get(Values), Mask);
- }
- return nullptr;
- }
- /// If both the base vector and the inserted element are extended from the same
- /// type, do the insert element in the narrow source type followed by extend.
- /// TODO: This can be extended to include other cast opcodes, but particularly
- /// if we create a wider insertelement, make sure codegen is not harmed.
- static Instruction *narrowInsElt(InsertElementInst &InsElt,
- InstCombiner::BuilderTy &Builder) {
- // We are creating a vector extend. If the original vector extend has another
- // use, that would mean we end up with 2 vector extends, so avoid that.
- // TODO: We could ease the use-clause to "if at least one op has one use"
- // (assuming that the source types match - see next TODO comment).
- Value *Vec = InsElt.getOperand(0);
- if (!Vec->hasOneUse())
- return nullptr;
- Value *Scalar = InsElt.getOperand(1);
- Value *X, *Y;
- CastInst::CastOps CastOpcode;
- if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
- CastOpcode = Instruction::FPExt;
- else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
- CastOpcode = Instruction::SExt;
- else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
- CastOpcode = Instruction::ZExt;
- else
- return nullptr;
- // TODO: We can allow mismatched types by creating an intermediate cast.
- if (X->getType()->getScalarType() != Y->getType())
- return nullptr;
- // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
- Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
- return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
- }
- /// If we are inserting 2 halves of a value into adjacent elements of a vector,
- /// try to convert to a single insert with appropriate bitcasts.
- static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
- bool IsBigEndian,
- InstCombiner::BuilderTy &Builder) {
- Value *VecOp = InsElt.getOperand(0);
- Value *ScalarOp = InsElt.getOperand(1);
- Value *IndexOp = InsElt.getOperand(2);
- // Pattern depends on endian because we expect lower index is inserted first.
- // Big endian:
- // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
- // Little endian:
- // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
- // Note: It is not safe to do this transform with an arbitrary base vector
- // because the bitcast of that vector to fewer/larger elements could
- // allow poison to spill into an element that was not poison before.
- // TODO: Detect smaller fractions of the scalar.
- // TODO: One-use checks are conservative.
- auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
- Value *Scalar0, *BaseVec;
- uint64_t Index0, Index1;
- if (!VTy || (VTy->getNumElements() & 1) ||
- !match(IndexOp, m_ConstantInt(Index1)) ||
- !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
- m_ConstantInt(Index0))) ||
- !match(BaseVec, m_Undef()))
- return nullptr;
- // The first insert must be to the index one less than this one, and
- // the first insert must be to an even index.
- if (Index0 + 1 != Index1 || Index0 & 1)
- return nullptr;
- // For big endian, the high half of the value should be inserted first.
- // For little endian, the low half of the value should be inserted first.
- Value *X;
- uint64_t ShAmt;
- if (IsBigEndian) {
- if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
- !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
- return nullptr;
- } else {
- if (!match(Scalar0, m_Trunc(m_Value(X))) ||
- !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
- return nullptr;
- }
- Type *SrcTy = X->getType();
- unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
- unsigned VecEltWidth = VTy->getScalarSizeInBits();
- if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
- return nullptr;
- // Bitcast the base vector to a vector type with the source element type.
- Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
- Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
- // Scale the insert index for a vector with half as many elements.
- // bitcast (inselt (bitcast BaseVec), X, NewIndex)
- uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
- Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
- return new BitCastInst(NewInsert, VTy);
- }
- Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
- Value *VecOp = IE.getOperand(0);
- Value *ScalarOp = IE.getOperand(1);
- Value *IdxOp = IE.getOperand(2);
- if (auto *V = simplifyInsertElementInst(
- VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
- return replaceInstUsesWith(IE, V);
- // Canonicalize type of constant indices to i64 to simplify CSE
- if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
- if (auto *NewIdx = getPreferredVectorIndex(IndexC))
- return replaceOperand(IE, 2, NewIdx);
- Value *BaseVec, *OtherScalar;
- uint64_t OtherIndexVal;
- if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
- m_Value(OtherScalar),
- m_ConstantInt(OtherIndexVal)))) &&
- !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
- Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
- return InsertElementInst::Create(NewIns, OtherScalar,
- Builder.getInt64(OtherIndexVal));
- }
- }
- // If the scalar is bitcast and inserted into undef, do the insert in the
- // source type followed by bitcast.
- // TODO: Generalize for insert into any constant, not just undef?
- Value *ScalarSrc;
- if (match(VecOp, m_Undef()) &&
- match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
- (ScalarSrc->getType()->isIntegerTy() ||
- ScalarSrc->getType()->isFloatingPointTy())) {
- // inselt undef, (bitcast ScalarSrc), IdxOp -->
- // bitcast (inselt undef, ScalarSrc, IdxOp)
- Type *ScalarTy = ScalarSrc->getType();
- Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
- UndefValue *NewUndef = UndefValue::get(VecTy);
- Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
- return new BitCastInst(NewInsElt, IE.getType());
- }
- // If the vector and scalar are both bitcast from the same element type, do
- // the insert in that source type followed by bitcast.
- Value *VecSrc;
- if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
- match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
- (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
- VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
- cast<VectorType>(VecSrc->getType())->getElementType() ==
- ScalarSrc->getType()) {
- // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
- // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
- Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
- return new BitCastInst(NewInsElt, IE.getType());
- }
- // If the inserted element was extracted from some other fixed-length vector
- // and both indexes are valid constants, try to turn this into a shuffle.
- // Can not handle scalable vector type, the number of elements needed to
- // create shuffle mask is not a compile-time constant.
- uint64_t InsertedIdx, ExtractedIdx;
- Value *ExtVecOp;
- if (isa<FixedVectorType>(IE.getType()) &&
- match(IdxOp, m_ConstantInt(InsertedIdx)) &&
- match(ScalarOp,
- m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
- isa<FixedVectorType>(ExtVecOp->getType()) &&
- ExtractedIdx <
- cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
- // TODO: Looking at the user(s) to determine if this insert is a
- // fold-to-shuffle opportunity does not match the usual instcombine
- // constraints. We should decide if the transform is worthy based only
- // on this instruction and its operands, but that may not work currently.
- //
- // Here, we are trying to avoid creating shuffles before reaching
- // the end of a chain of extract-insert pairs. This is complicated because
- // we do not generally form arbitrary shuffle masks in instcombine
- // (because those may codegen poorly), but collectShuffleElements() does
- // exactly that.
- //
- // The rules for determining what is an acceptable target-independent
- // shuffle mask are fuzzy because they evolve based on the backend's
- // capabilities and real-world impact.
- auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
- if (!Insert.hasOneUse())
- return true;
- auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
- if (!InsertUser)
- return true;
- return false;
- };
- // Try to form a shuffle from a chain of extract-insert ops.
- if (isShuffleRootCandidate(IE)) {
- SmallVector<int, 16> Mask;
- ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
- // The proposed shuffle may be trivial, in which case we shouldn't
- // perform the combine.
- if (LR.first != &IE && LR.second != &IE) {
- // We now have a shuffle of LHS, RHS, Mask.
- if (LR.second == nullptr)
- LR.second = UndefValue::get(LR.first->getType());
- return new ShuffleVectorInst(LR.first, LR.second, Mask);
- }
- }
- }
- if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
- unsigned VWidth = VecTy->getNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
- if (V != &IE)
- return replaceInstUsesWith(IE, V);
- return &IE;
- }
- }
- if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
- return Shuf;
- if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
- return NewInsElt;
- if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
- return Broadcast;
- if (Instruction *Splat = foldInsEltIntoSplat(IE))
- return Splat;
- if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
- return IdentityShuf;
- if (Instruction *Ext = narrowInsElt(IE, Builder))
- return Ext;
- if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
- return Ext;
- return nullptr;
- }
- /// Return true if we can evaluate the specified expression tree if the vector
- /// elements were shuffled in a different order.
- static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
- unsigned Depth = 5) {
- // We can always reorder the elements of a constant.
- if (isa<Constant>(V))
- return true;
- // We won't reorder vector arguments. No IPO here.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // Two users may expect different orders of the elements. Don't try it.
- if (!I->hasOneUse())
- return false;
- if (Depth == 0) return false;
- switch (I->getOpcode()) {
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- // Propagating an undefined shuffle mask element to integer div/rem is not
- // allowed because those opcodes can create immediate undefined behavior
- // from an undefined element in an operand.
- if (llvm::is_contained(Mask, -1))
- return false;
- [[fallthrough]];
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::GetElementPtr: {
- // Bail out if we would create longer vector ops. We could allow creating
- // longer vector ops, but that may result in more expensive codegen.
- Type *ITy = I->getType();
- if (ITy->isVectorTy() &&
- Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
- return false;
- for (Value *Operand : I->operands()) {
- if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
- return false;
- }
- return true;
- }
- case Instruction::InsertElement: {
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
- if (!CI) return false;
- int ElementNumber = CI->getLimitedValue();
- // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
- // can't put an element into multiple indices.
- bool SeenOnce = false;
- for (int I : Mask) {
- if (I == ElementNumber) {
- if (SeenOnce)
- return false;
- SeenOnce = true;
- }
- }
- return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
- }
- }
- return false;
- }
- /// Rebuild a new instruction just like 'I' but with the new operands given.
- /// In the event of type mismatch, the type of the operands is correct.
- static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
- // We don't want to use the IRBuilder here because we want the replacement
- // instructions to appear next to 'I', not the builder's insertion point.
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- BinaryOperator *BO = cast<BinaryOperator>(I);
- assert(NewOps.size() == 2 && "binary operator with #ops != 2");
- BinaryOperator *New =
- BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
- NewOps[0], NewOps[1], "", BO);
- if (isa<OverflowingBinaryOperator>(BO)) {
- New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
- New->setHasNoSignedWrap(BO->hasNoSignedWrap());
- }
- if (isa<PossiblyExactOperator>(BO)) {
- New->setIsExact(BO->isExact());
- }
- if (isa<FPMathOperator>(BO))
- New->copyFastMathFlags(I);
- return New;
- }
- case Instruction::ICmp:
- assert(NewOps.size() == 2 && "icmp with #ops != 2");
- return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::FCmp:
- assert(NewOps.size() == 2 && "fcmp with #ops != 2");
- return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt: {
- // It's possible that the mask has a different number of elements from
- // the original cast. We recompute the destination type to match the mask.
- Type *DestTy = VectorType::get(
- I->getType()->getScalarType(),
- cast<VectorType>(NewOps[0]->getType())->getElementCount());
- assert(NewOps.size() == 1 && "cast with #ops != 1");
- return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
- "", I);
- }
- case Instruction::GetElementPtr: {
- Value *Ptr = NewOps[0];
- ArrayRef<Value*> Idx = NewOps.slice(1);
- GetElementPtrInst *GEP = GetElementPtrInst::Create(
- cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
- GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
- return GEP;
- }
- }
- llvm_unreachable("failed to rebuild vector instructions");
- }
- static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
- // Mask.size() does not need to be equal to the number of vector elements.
- assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
- Type *EltTy = V->getType()->getScalarType();
- Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
- if (match(V, m_Undef()))
- return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
- if (isa<ConstantAggregateZero>(V))
- return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
- if (Constant *C = dyn_cast<Constant>(V))
- return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
- Mask);
- Instruction *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::Select:
- case Instruction::GetElementPtr: {
- SmallVector<Value*, 8> NewOps;
- bool NeedsRebuild =
- (Mask.size() !=
- cast<FixedVectorType>(I->getType())->getNumElements());
- for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *V;
- // Recursively call evaluateInDifferentElementOrder on vector arguments
- // as well. E.g. GetElementPtr may have scalar operands even if the
- // return value is a vector, so we need to examine the operand type.
- if (I->getOperand(i)->getType()->isVectorTy())
- V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
- else
- V = I->getOperand(i);
- NewOps.push_back(V);
- NeedsRebuild |= (V != I->getOperand(i));
- }
- if (NeedsRebuild) {
- return buildNew(I, NewOps);
- }
- return I;
- }
- case Instruction::InsertElement: {
- int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
- // The insertelement was inserting at Element. Figure out which element
- // that becomes after shuffling. The answer is guaranteed to be unique
- // by CanEvaluateShuffled.
- bool Found = false;
- int Index = 0;
- for (int e = Mask.size(); Index != e; ++Index) {
- if (Mask[Index] == Element) {
- Found = true;
- break;
- }
- }
- // If element is not in Mask, no need to handle the operand 1 (element to
- // be inserted). Just evaluate values in operand 0 according to Mask.
- if (!Found)
- return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
- Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
- return InsertElementInst::Create(V, I->getOperand(1),
- ConstantInt::get(I32Ty, Index), "", I);
- }
- }
- llvm_unreachable("failed to reorder elements of vector instruction!");
- }
- // Returns true if the shuffle is extracting a contiguous range of values from
- // LHS, for example:
- // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
- // Shuffles to: |EE|FF|GG|HH|
- // +--+--+--+--+
- static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
- ArrayRef<int> Mask) {
- unsigned LHSElems =
- cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
- unsigned MaskElems = Mask.size();
- unsigned BegIdx = Mask.front();
- unsigned EndIdx = Mask.back();
- if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
- return false;
- for (unsigned I = 0; I != MaskElems; ++I)
- if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
- return false;
- return true;
- }
- /// These are the ingredients in an alternate form binary operator as described
- /// below.
- struct BinopElts {
- BinaryOperator::BinaryOps Opcode;
- Value *Op0;
- Value *Op1;
- BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
- Value *V0 = nullptr, Value *V1 = nullptr) :
- Opcode(Opc), Op0(V0), Op1(V1) {}
- operator bool() const { return Opcode != 0; }
- };
- /// Binops may be transformed into binops with different opcodes and operands.
- /// Reverse the usual canonicalization to enable folds with the non-canonical
- /// form of the binop. If a transform is possible, return the elements of the
- /// new binop. If not, return invalid elements.
- static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
- Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
- Type *Ty = BO->getType();
- switch (BO->getOpcode()) {
- case Instruction::Shl: {
- // shl X, C --> mul X, (1 << C)
- Constant *C;
- if (match(BO1, m_Constant(C))) {
- Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
- return {Instruction::Mul, BO0, ShlOne};
- }
- break;
- }
- case Instruction::Or: {
- // or X, C --> add X, C (when X and C have no common bits set)
- const APInt *C;
- if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
- return {Instruction::Add, BO0, BO1};
- break;
- }
- case Instruction::Sub:
- // sub 0, X --> mul X, -1
- if (match(BO0, m_ZeroInt()))
- return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
- break;
- default:
- break;
- }
- return {};
- }
- /// A select shuffle of a select shuffle with a shared operand can be reduced
- /// to a single select shuffle. This is an obvious improvement in IR, and the
- /// backend is expected to lower select shuffles efficiently.
- static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
- assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- SmallVector<int, 16> Mask;
- Shuf.getShuffleMask(Mask);
- unsigned NumElts = Mask.size();
- // Canonicalize a select shuffle with common operand as Op1.
- auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
- if (ShufOp && ShufOp->isSelect() &&
- (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
- std::swap(Op0, Op1);
- ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
- }
- ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
- if (!ShufOp || !ShufOp->isSelect() ||
- (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
- return nullptr;
- Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
- SmallVector<int, 16> Mask1;
- ShufOp->getShuffleMask(Mask1);
- assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");
- // Canonicalize common operand (Op0) as X (first operand of first shuffle).
- if (Y == Op0) {
- std::swap(X, Y);
- ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
- }
- // If the mask chooses from X (operand 0), it stays the same.
- // If the mask chooses from the earlier shuffle, the other mask value is
- // transferred to the combined select shuffle:
- // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
- SmallVector<int, 16> NewMask(NumElts);
- for (unsigned i = 0; i != NumElts; ++i)
- NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];
- // A select mask with undef elements might look like an identity mask.
- assert((ShuffleVectorInst::isSelectMask(NewMask) ||
- ShuffleVectorInst::isIdentityMask(NewMask)) &&
- "Unexpected shuffle mask");
- return new ShuffleVectorInst(X, Y, NewMask);
- }
- static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
- assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
- // Are we shuffling together some value and that same value after it has been
- // modified by a binop with a constant?
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- Constant *C;
- bool Op0IsBinop;
- if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
- Op0IsBinop = true;
- else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
- Op0IsBinop = false;
- else
- return nullptr;
- // The identity constant for a binop leaves a variable operand unchanged. For
- // a vector, this is a splat of something like 0, -1, or 1.
- // If there's no identity constant for this binop, we're done.
- auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
- BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
- Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
- if (!IdC)
- return nullptr;
- // Shuffle identity constants into the lanes that return the original value.
- // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
- // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
- // The existing binop constant vector remains in the same operand position.
- ArrayRef<int> Mask = Shuf.getShuffleMask();
- Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
- ConstantExpr::getShuffleVector(IdC, C, Mask);
- bool MightCreatePoisonOrUB =
- is_contained(Mask, UndefMaskElem) &&
- (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
- if (MightCreatePoisonOrUB)
- NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
- // shuf (bop X, C), X, M --> bop X, C'
- // shuf X, (bop X, C), M --> bop X, C'
- Value *X = Op0IsBinop ? Op1 : Op0;
- Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
- NewBO->copyIRFlags(BO);
- // An undef shuffle mask element may propagate as an undef constant element in
- // the new binop. That would produce poison where the original code might not.
- // If we already made a safe constant, then there's no danger.
- if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
- NewBO->dropPoisonGeneratingFlags();
- return NewBO;
- }
- /// If we have an insert of a scalar to a non-zero element of an undefined
- /// vector and then shuffle that value, that's the same as inserting to the zero
- /// element and shuffling. Splatting from the zero element is recognized as the
- /// canonical form of splat.
- static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder) {
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- ArrayRef<int> Mask = Shuf.getShuffleMask();
- Value *X;
- uint64_t IndexC;
- // Match a shuffle that is a splat to a non-zero element.
- if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
- m_ConstantInt(IndexC)))) ||
- !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
- return nullptr;
- // Insert into element 0 of an undef vector.
- UndefValue *UndefVec = UndefValue::get(Shuf.getType());
- Constant *Zero = Builder.getInt32(0);
- Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
- // Splat from element 0. Any mask element that is undefined remains undefined.
- // For example:
- // shuf (inselt undef, X, 2), _, <2,2,undef>
- // --> shuf (inselt undef, X, 0), poison, <0,0,undef>
- unsigned NumMaskElts =
- cast<FixedVectorType>(Shuf.getType())->getNumElements();
- SmallVector<int, 16> NewMask(NumMaskElts, 0);
- for (unsigned i = 0; i != NumMaskElts; ++i)
- if (Mask[i] == UndefMaskElem)
- NewMask[i] = Mask[i];
- return new ShuffleVectorInst(NewIns, NewMask);
- }
- /// Try to fold shuffles that are the equivalent of a vector select.
- Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
- if (!Shuf.isSelect())
- return nullptr;
- // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
- // Commuting undef to operand 0 conflicts with another canonicalization.
- unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
- if (!match(Shuf.getOperand(1), m_Undef()) &&
- Shuf.getMaskValue(0) >= (int)NumElts) {
- // TODO: Can we assert that both operands of a shuffle-select are not undef
- // (otherwise, it would have been folded by instsimplify?
- Shuf.commute();
- return &Shuf;
- }
- if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
- return I;
- if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
- return I;
- BinaryOperator *B0, *B1;
- if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
- !match(Shuf.getOperand(1), m_BinOp(B1)))
- return nullptr;
- // If one operand is "0 - X", allow that to be viewed as "X * -1"
- // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
- // with a multiply, we will exit because C0/C1 will not be set.
- Value *X, *Y;
- Constant *C0 = nullptr, *C1 = nullptr;
- bool ConstantsAreOp1;
- if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
- match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
- ConstantsAreOp1 = false;
- else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
- m_Neg(m_Value(X)))) &&
- match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
- m_Neg(m_Value(Y)))))
- ConstantsAreOp1 = true;
- else
- return nullptr;
- // We need matching binops to fold the lanes together.
- BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
- BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
- bool DropNSW = false;
- if (ConstantsAreOp1 && Opc0 != Opc1) {
- // TODO: We drop "nsw" if shift is converted into multiply because it may
- // not be correct when the shift amount is BitWidth - 1. We could examine
- // each vector element to determine if it is safe to keep that flag.
- if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
- DropNSW = true;
- if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
- assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
- Opc0 = AltB0.Opcode;
- C0 = cast<Constant>(AltB0.Op1);
- } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
- assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
- Opc1 = AltB1.Opcode;
- C1 = cast<Constant>(AltB1.Op1);
- }
- }
- if (Opc0 != Opc1 || !C0 || !C1)
- return nullptr;
- // The opcodes must be the same. Use a new name to make that clear.
- BinaryOperator::BinaryOps BOpc = Opc0;
- // Select the constant elements needed for the single binop.
- ArrayRef<int> Mask = Shuf.getShuffleMask();
- Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
- // We are moving a binop after a shuffle. When a shuffle has an undefined
- // mask element, the result is undefined, but it is not poison or undefined
- // behavior. That is not necessarily true for div/rem/shift.
- bool MightCreatePoisonOrUB =
- is_contained(Mask, UndefMaskElem) &&
- (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
- if (MightCreatePoisonOrUB)
- NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
- ConstantsAreOp1);
- Value *V;
- if (X == Y) {
- // Remove a binop and the shuffle by rearranging the constant:
- // shuffle (op V, C0), (op V, C1), M --> op V, C'
- // shuffle (op C0, V), (op C1, V), M --> op C', V
- V = X;
- } else {
- // If there are 2 different variable operands, we must create a new shuffle
- // (select) first, so check uses to ensure that we don't end up with more
- // instructions than we started with.
- if (!B0->hasOneUse() && !B1->hasOneUse())
- return nullptr;
- // If we use the original shuffle mask and op1 is *variable*, we would be
- // putting an undef into operand 1 of div/rem/shift. This is either UB or
- // poison. We do not have to guard against UB when *constants* are op1
- // because safe constants guarantee that we do not overflow sdiv/srem (and
- // there's no danger for other opcodes).
- // TODO: To allow this case, create a new shuffle mask with no undefs.
- if (MightCreatePoisonOrUB && !ConstantsAreOp1)
- return nullptr;
- // Note: In general, we do not create new shuffles in InstCombine because we
- // do not know if a target can lower an arbitrary shuffle optimally. In this
- // case, the shuffle uses the existing mask, so there is no additional risk.
- // Select the variable vectors first, then perform the binop:
- // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
- // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
- V = Builder.CreateShuffleVector(X, Y, Mask);
- }
- Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
- Builder.CreateBinOp(BOpc, NewC, V);
- // Flags are intersected from the 2 source binops. But there are 2 exceptions:
- // 1. If we changed an opcode, poison conditions might have changed.
- // 2. If the shuffle had undef mask elements, the new binop might have undefs
- // where the original code did not. But if we already made a safe constant,
- // then there's no danger.
- if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
- NewI->copyIRFlags(B0);
- NewI->andIRFlags(B1);
- if (DropNSW)
- NewI->setHasNoSignedWrap(false);
- if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
- NewI->dropPoisonGeneratingFlags();
- }
- return replaceInstUsesWith(Shuf, NewBO);
- }
- /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
- /// Example (little endian):
- /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
- static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
- bool IsBigEndian) {
- // This must be a bitcasted shuffle of 1 vector integer operand.
- Type *DestType = Shuf.getType();
- Value *X;
- if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
- !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
- return nullptr;
- // The source type must have the same number of elements as the shuffle,
- // and the source element type must be larger than the shuffle element type.
- Type *SrcType = X->getType();
- if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
- cast<FixedVectorType>(SrcType)->getNumElements() !=
- cast<FixedVectorType>(DestType)->getNumElements() ||
- SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
- return nullptr;
- assert(Shuf.changesLength() && !Shuf.increasesLength() &&
- "Expected a shuffle that decreases length");
- // Last, check that the mask chooses the correct low bits for each narrow
- // element in the result.
- uint64_t TruncRatio =
- SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
- ArrayRef<int> Mask = Shuf.getShuffleMask();
- for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == UndefMaskElem)
- continue;
- uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
- assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
- if (Mask[i] != (int)LSBIndex)
- return nullptr;
- }
- return new TruncInst(X, DestType);
- }
- /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
- /// narrowing (concatenating with undef and extracting back to the original
- /// length). This allows replacing the wide select with a narrow select.
- static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder) {
- // This must be a narrowing identity shuffle. It extracts the 1st N elements
- // of the 1st vector operand of a shuffle.
- if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
- return nullptr;
- // The vector being shuffled must be a vector select that we can eliminate.
- // TODO: The one-use requirement could be eased if X and/or Y are constants.
- Value *Cond, *X, *Y;
- if (!match(Shuf.getOperand(0),
- m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
- return nullptr;
- // We need a narrow condition value. It must be extended with undef elements
- // and have the same number of elements as this shuffle.
- unsigned NarrowNumElts =
- cast<FixedVectorType>(Shuf.getType())->getNumElements();
- Value *NarrowCond;
- if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
- cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
- NarrowNumElts ||
- !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
- return nullptr;
- // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
- // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
- Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
- Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
- return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
- }
- /// Canonicalize FP negate after shuffle.
- static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder) {
- Instruction *FNeg0;
- Value *X;
- if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0),
- m_FNeg(m_Value(X)))))
- return nullptr;
- // shuffle (fneg X), Mask --> fneg (shuffle X, Mask)
- if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) {
- Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
- return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0);
- }
- Instruction *FNeg1;
- Value *Y;
- if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1),
- m_FNeg(m_Value(Y)))))
- return nullptr;
- // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask)
- if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) {
- Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
- Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf);
- NewFNeg->copyIRFlags(FNeg0);
- NewFNeg->andIRFlags(FNeg1);
- return NewFNeg;
- }
- return nullptr;
- }
- /// Canonicalize casts after shuffle.
- static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder) {
- // Do we have 2 matching cast operands?
- auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
- auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
- if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
- Cast0->getSrcTy() != Cast1->getSrcTy())
- return nullptr;
- // TODO: Allow other opcodes? That would require easing the type restrictions
- // below here.
- CastInst::CastOps CastOpcode = Cast0->getOpcode();
- switch (CastOpcode) {
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- break;
- default:
- return nullptr;
- }
- VectorType *ShufTy = Shuf.getType();
- VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
- VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
- // TODO: Allow length-increasing shuffles?
- if (ShufTy->getElementCount().getKnownMinValue() >
- ShufOpTy->getElementCount().getKnownMinValue())
- return nullptr;
- // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
- assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
- "Expected fixed vector operands for casts and binary shuffle");
- if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
- return nullptr;
- // At least one of the operands must have only one use (the shuffle).
- if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
- return nullptr;
- // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
- Value *X = Cast0->getOperand(0);
- Value *Y = Cast1->getOperand(0);
- Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
- return CastInst::Create(CastOpcode, NewShuf, ShufTy);
- }
- /// Try to fold an extract subvector operation.
- static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
- return nullptr;
- // Check if we are extracting all bits of an inserted scalar:
- // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
- Value *X;
- if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
- X->getType()->getPrimitiveSizeInBits() ==
- Shuf.getType()->getPrimitiveSizeInBits())
- return new BitCastInst(X, Shuf.getType());
- // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
- Value *Y;
- ArrayRef<int> Mask;
- if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
- return nullptr;
- // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
- // then combining may result in worse codegen.
- if (!Op0->hasOneUse())
- return nullptr;
- // We are extracting a subvector from a shuffle. Remove excess elements from
- // the 1st shuffle mask to eliminate the extract.
- //
- // This transform is conservatively limited to identity extracts because we do
- // not allow arbitrary shuffle mask creation as a target-independent transform
- // (because we can't guarantee that will lower efficiently).
- //
- // If the extracting shuffle has an undef mask element, it transfers to the
- // new shuffle mask. Otherwise, copy the original mask element. Example:
- // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
- // shuf X, Y, <C0, undef, C2, undef>
- unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
- SmallVector<int, 16> NewMask(NumElts);
- assert(NumElts < Mask.size() &&
- "Identity with extract must have less elements than its inputs");
- for (unsigned i = 0; i != NumElts; ++i) {
- int ExtractMaskElt = Shuf.getMaskValue(i);
- int MaskElt = Mask[i];
- NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
- }
- return new ShuffleVectorInst(X, Y, NewMask);
- }
- /// Try to replace a shuffle with an insertelement or try to replace a shuffle
- /// operand with the operand of an insertelement.
- static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
- InstCombinerImpl &IC) {
- Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
- SmallVector<int, 16> Mask;
- Shuf.getShuffleMask(Mask);
- int NumElts = Mask.size();
- int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
- // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
- // not be able to handle it there if the insertelement has >1 use.
- // If the shuffle has an insertelement operand but does not choose the
- // inserted scalar element from that value, then we can replace that shuffle
- // operand with the source vector of the insertelement.
- Value *X;
- uint64_t IdxC;
- if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
- // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
- if (!is_contained(Mask, (int)IdxC))
- return IC.replaceOperand(Shuf, 0, X);
- }
- if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
- // Offset the index constant by the vector width because we are checking for
- // accesses to the 2nd vector input of the shuffle.
- IdxC += InpNumElts;
- // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
- if (!is_contained(Mask, (int)IdxC))
- return IC.replaceOperand(Shuf, 1, X);
- }
- // For the rest of the transform, the shuffle must not change vector sizes.
- // TODO: This restriction could be removed if the insert has only one use
- // (because the transform would require a new length-changing shuffle).
- if (NumElts != InpNumElts)
- return nullptr;
- // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
- auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
- // We need an insertelement with a constant index.
- if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
- m_ConstantInt(IndexC))))
- return false;
- // Test the shuffle mask to see if it splices the inserted scalar into the
- // operand 1 vector of the shuffle.
- int NewInsIndex = -1;
- for (int i = 0; i != NumElts; ++i) {
- // Ignore undef mask elements.
- if (Mask[i] == -1)
- continue;
- // The shuffle takes elements of operand 1 without lane changes.
- if (Mask[i] == NumElts + i)
- continue;
- // The shuffle must choose the inserted scalar exactly once.
- if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
- return false;
- // The shuffle is placing the inserted scalar into element i.
- NewInsIndex = i;
- }
- assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
- // Index is updated to the potentially translated insertion lane.
- IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
- return true;
- };
- // If the shuffle is unnecessary, insert the scalar operand directly into
- // operand 1 of the shuffle. Example:
- // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
- Value *Scalar;
- ConstantInt *IndexC;
- if (isShufflingScalarIntoOp1(Scalar, IndexC))
- return InsertElementInst::Create(V1, Scalar, IndexC);
- // Try again after commuting shuffle. Example:
- // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
- // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
- std::swap(V0, V1);
- ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
- if (isShufflingScalarIntoOp1(Scalar, IndexC))
- return InsertElementInst::Create(V1, Scalar, IndexC);
- return nullptr;
- }
- static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
- // Match the operands as identity with padding (also known as concatenation
- // with undef) shuffles of the same source type. The backend is expected to
- // recreate these concatenations from a shuffle of narrow operands.
- auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
- auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
- if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
- !Shuffle1 || !Shuffle1->isIdentityWithPadding())
- return nullptr;
- // We limit this transform to power-of-2 types because we expect that the
- // backend can convert the simplified IR patterns to identical nodes as the
- // original IR.
- // TODO: If we can verify the same behavior for arbitrary types, the
- // power-of-2 checks can be removed.
- Value *X = Shuffle0->getOperand(0);
- Value *Y = Shuffle1->getOperand(0);
- if (X->getType() != Y->getType() ||
- !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
- !isPowerOf2_32(
- cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
- !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
- match(X, m_Undef()) || match(Y, m_Undef()))
- return nullptr;
- assert(match(Shuffle0->getOperand(1), m_Undef()) &&
- match(Shuffle1->getOperand(1), m_Undef()) &&
- "Unexpected operand for identity shuffle");
- // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
- // operands directly by adjusting the shuffle mask to account for the narrower
- // types:
- // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
- int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
- int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
- assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
- ArrayRef<int> Mask = Shuf.getShuffleMask();
- SmallVector<int, 16> NewMask(Mask.size(), -1);
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == -1)
- continue;
- // If this shuffle is choosing an undef element from 1 of the sources, that
- // element is undef.
- if (Mask[i] < WideElts) {
- if (Shuffle0->getMaskValue(Mask[i]) == -1)
- continue;
- } else {
- if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
- continue;
- }
- // If this shuffle is choosing from the 1st narrow op, the mask element is
- // the same. If this shuffle is choosing from the 2nd narrow op, the mask
- // element is offset down to adjust for the narrow vector widths.
- if (Mask[i] < WideElts) {
- assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
- NewMask[i] = Mask[i];
- } else {
- assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
- NewMask[i] = Mask[i] - (WideElts - NarrowElts);
- }
- }
- return new ShuffleVectorInst(X, Y, NewMask);
- }
- // Splatting the first element of the result of a BinOp, where any of the
- // BinOp's operands are the result of a first element splat can be simplified to
- // splatting the first element of the result of the BinOp
- Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
- if (!match(SVI.getOperand(1), m_Undef()) ||
- !match(SVI.getShuffleMask(), m_ZeroMask()))
- return nullptr;
- Value *Op0 = SVI.getOperand(0);
- Value *X, *Y;
- if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()),
- m_Value(Y))) &&
- !match(Op0, m_BinOp(m_Value(X),
- m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask()))))
- return nullptr;
- if (X->getType() != Y->getType())
- return nullptr;
- auto *BinOp = cast<BinaryOperator>(Op0);
- if (!isSafeToSpeculativelyExecute(BinOp))
- return nullptr;
- Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
- if (auto NewBOI = dyn_cast<Instruction>(NewBO))
- NewBOI->copyIRFlags(BinOp);
- return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
- }
- Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- Value *LHS = SVI.getOperand(0);
- Value *RHS = SVI.getOperand(1);
- SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
- if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
- SVI.getType(), ShufQuery))
- return replaceInstUsesWith(SVI, V);
- if (Instruction *I = simplifyBinOpSplats(SVI))
- return I;
- if (isa<ScalableVectorType>(LHS->getType()))
- return nullptr;
- unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
- unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
- // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
- //
- // if X and Y are of the same (vector) type, and the element size is not
- // changed by the bitcasts, we can distribute the bitcasts through the
- // shuffle, hopefully reducing the number of instructions. We make sure that
- // at least one bitcast only has one use, so we don't *increase* the number of
- // instructions here.
- Value *X, *Y;
- if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
- X->getType()->isVectorTy() && X->getType() == Y->getType() &&
- X->getType()->getScalarSizeInBits() ==
- SVI.getType()->getScalarSizeInBits() &&
- (LHS->hasOneUse() || RHS->hasOneUse())) {
- Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
- SVI.getName() + ".uncasted");
- return new BitCastInst(V, SVI.getType());
- }
- ArrayRef<int> Mask = SVI.getShuffleMask();
- Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
- // Peek through a bitcasted shuffle operand by scaling the mask. If the
- // simulated shuffle can simplify, then this shuffle is unnecessary:
- // shuf (bitcast X), undef, Mask --> bitcast X'
- // TODO: This could be extended to allow length-changing shuffles.
- // The transform might also be obsoleted if we allowed canonicalization
- // of bitcasted shuffles.
- if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
- X->getType()->isVectorTy() && VWidth == LHSWidth) {
- // Try to create a scaled mask constant.
- auto *XType = cast<FixedVectorType>(X->getType());
- unsigned XNumElts = XType->getNumElements();
- SmallVector<int, 16> ScaledMask;
- if (XNumElts >= VWidth) {
- assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
- narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
- } else {
- assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
- if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
- ScaledMask.clear();
- }
- if (!ScaledMask.empty()) {
- // If the shuffled source vector simplifies, cast that value to this
- // shuffle's type.
- if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
- ScaledMask, XType, ShufQuery))
- return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
- }
- }
- // shuffle x, x, mask --> shuffle x, undef, mask'
- if (LHS == RHS) {
- assert(!match(RHS, m_Undef()) &&
- "Shuffle with 2 undef ops not simplified?");
- return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
- }
- // shuffle undef, x, mask --> shuffle x, undef, mask'
- if (match(LHS, m_Undef())) {
- SVI.commute();
- return &SVI;
- }
- if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
- return I;
- if (Instruction *I = foldSelectShuffle(SVI))
- return I;
- if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
- return I;
- if (Instruction *I = narrowVectorSelect(SVI, Builder))
- return I;
- if (Instruction *I = foldFNegShuffle(SVI, Builder))
- return I;
- if (Instruction *I = foldCastShuffle(SVI, Builder))
- return I;
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
- if (V != &SVI)
- return replaceInstUsesWith(SVI, V);
- return &SVI;
- }
- if (Instruction *I = foldIdentityExtractShuffle(SVI))
- return I;
- // These transforms have the potential to lose undef knowledge, so they are
- // intentionally placed after SimplifyDemandedVectorElts().
- if (Instruction *I = foldShuffleWithInsert(SVI, *this))
- return I;
- if (Instruction *I = foldIdentityPaddedShuffles(SVI))
- return I;
- if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
- Value *V = evaluateInDifferentElementOrder(LHS, Mask);
- return replaceInstUsesWith(SVI, V);
- }
- // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
- // a non-vector type. We can instead bitcast the original vector followed by
- // an extract of the desired element:
- //
- // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
- // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
- // %1 = bitcast <4 x i8> %sroa to i32
- // Becomes:
- // %bc = bitcast <16 x i8> %in to <4 x i32>
- // %ext = extractelement <4 x i32> %bc, i32 0
- //
- // If the shuffle is extracting a contiguous range of values from the input
- // vector then each use which is a bitcast of the extracted size can be
- // replaced. This will work if the vector types are compatible, and the begin
- // index is aligned to a value in the casted vector type. If the begin index
- // isn't aligned then we can shuffle the original vector (keeping the same
- // vector type) before extracting.
- //
- // This code will bail out if the target type is fundamentally incompatible
- // with vectors of the source type.
- //
- // Example of <16 x i8>, target type i32:
- // Index range [4,8): v-----------v Will work.
- // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- // <16 x i8>: | | | | | | | | | | | | | | | | |
- // <4 x i32>: | | | | |
- // +-----------+-----------+-----------+-----------+
- // Index range [6,10): ^-----------^ Needs an extra shuffle.
- // Target type i40: ^--------------^ Won't work, bail.
- bool MadeChange = false;
- if (isShuffleExtractingFromLHS(SVI, Mask)) {
- Value *V = LHS;
- unsigned MaskElems = Mask.size();
- auto *SrcTy = cast<FixedVectorType>(V->getType());
- unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
- unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
- assert(SrcElemBitWidth && "vector elements must have a bitwidth");
- unsigned SrcNumElems = SrcTy->getNumElements();
- SmallVector<BitCastInst *, 8> BCs;
- DenseMap<Type *, Value *> NewBCs;
- for (User *U : SVI.users())
- if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
- if (!BC->use_empty())
- // Only visit bitcasts that weren't previously handled.
- BCs.push_back(BC);
- for (BitCastInst *BC : BCs) {
- unsigned BegIdx = Mask.front();
- Type *TgtTy = BC->getDestTy();
- unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
- if (!TgtElemBitWidth)
- continue;
- unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
- bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
- bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
- if (!VecBitWidthsEqual)
- continue;
- if (!VectorType::isValidElementType(TgtTy))
- continue;
- auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
- if (!BegIsAligned) {
- // Shuffle the input so [0,NumElements) contains the output, and
- // [NumElems,SrcNumElems) is undef.
- SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
- for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
- ShuffleMask[I] = Idx;
- V = Builder.CreateShuffleVector(V, ShuffleMask,
- SVI.getName() + ".extract");
- BegIdx = 0;
- }
- unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
- assert(SrcElemsPerTgtElem);
- BegIdx /= SrcElemsPerTgtElem;
- bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
- auto *NewBC =
- BCAlreadyExists
- ? NewBCs[CastSrcTy]
- : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
- if (!BCAlreadyExists)
- NewBCs[CastSrcTy] = NewBC;
- auto *Ext = Builder.CreateExtractElement(
- NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
- // The shufflevector isn't being replaced: the bitcast that used it
- // is. InstCombine will visit the newly-created instructions.
- replaceInstUsesWith(*BC, Ext);
- MadeChange = true;
- }
- }
- // If the LHS is a shufflevector itself, see if we can combine it with this
- // one without producing an unusual shuffle.
- // Cases that might be simplified:
- // 1.
- // x1=shuffle(v1,v2,mask1)
- // x=shuffle(x1,undef,mask)
- // ==>
- // x=shuffle(v1,undef,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
- // 2.
- // x1=shuffle(v1,undef,mask1)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == mask1.size()
- // ==>
- // x=shuffle(v1,x2,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
- // 3.
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v2.size() == mask2.size()
- // ==>
- // x=shuffle(x1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
- // 4.
- // x1=shuffle(v1,undef,mask1)
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == v2.size()
- // ==>
- // x=shuffle(v1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
- //
- // Here we are really conservative:
- // we are absolutely afraid of producing a shuffle mask not in the input
- // program, because the code gen may not be smart enough to turn a merged
- // shuffle into two specific shuffles: it may produce worse code. As such,
- // we only merge two shuffles if the result is either a splat or one of the
- // input shuffle masks. In this case, merging the shuffles just removes
- // one instruction, which we know is safe. This is good for things like
- // turning: (splat(splat)) -> splat, or
- // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
- ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
- ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
- if (LHSShuffle)
- if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
- LHSShuffle = nullptr;
- if (RHSShuffle)
- if (!match(RHSShuffle->getOperand(1), m_Undef()))
- RHSShuffle = nullptr;
- if (!LHSShuffle && !RHSShuffle)
- return MadeChange ? &SVI : nullptr;
- Value* LHSOp0 = nullptr;
- Value* LHSOp1 = nullptr;
- Value* RHSOp0 = nullptr;
- unsigned LHSOp0Width = 0;
- unsigned RHSOp0Width = 0;
- if (LHSShuffle) {
- LHSOp0 = LHSShuffle->getOperand(0);
- LHSOp1 = LHSShuffle->getOperand(1);
- LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
- }
- if (RHSShuffle) {
- RHSOp0 = RHSShuffle->getOperand(0);
- RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
- }
- Value* newLHS = LHS;
- Value* newRHS = RHS;
- if (LHSShuffle) {
- // case 1
- if (match(RHS, m_Undef())) {
- newLHS = LHSOp0;
- newRHS = LHSOp1;
- }
- // case 2 or 4
- else if (LHSOp0Width == LHSWidth) {
- newLHS = LHSOp0;
- }
- }
- // case 3 or 4
- if (RHSShuffle && RHSOp0Width == LHSWidth) {
- newRHS = RHSOp0;
- }
- // case 4
- if (LHSOp0 == RHSOp0) {
- newLHS = LHSOp0;
- newRHS = nullptr;
- }
- if (newLHS == LHS && newRHS == RHS)
- return MadeChange ? &SVI : nullptr;
- ArrayRef<int> LHSMask;
- ArrayRef<int> RHSMask;
- if (newLHS != LHS)
- LHSMask = LHSShuffle->getShuffleMask();
- if (RHSShuffle && newRHS != RHS)
- RHSMask = RHSShuffle->getShuffleMask();
- unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
- SmallVector<int, 16> newMask;
- bool isSplat = true;
- int SplatElt = -1;
- // Create a new mask for the new ShuffleVectorInst so that the new
- // ShuffleVectorInst is equivalent to the original one.
- for (unsigned i = 0; i < VWidth; ++i) {
- int eltMask;
- if (Mask[i] < 0) {
- // This element is an undef value.
- eltMask = -1;
- } else if (Mask[i] < (int)LHSWidth) {
- // This element is from left hand side vector operand.
- //
- // If LHS is going to be replaced (case 1, 2, or 4), calculate the
- // new mask value for the element.
- if (newLHS != LHS) {
- eltMask = LHSMask[Mask[i]];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
- eltMask = -1;
- } else
- eltMask = Mask[i];
- } else {
- // This element is from right hand side vector operand
- //
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value. (case 1)
- if (match(RHS, m_Undef()))
- eltMask = -1;
- // If RHS is going to be replaced (case 3 or 4), calculate the
- // new mask value for the element.
- else if (newRHS != RHS) {
- eltMask = RHSMask[Mask[i]-LHSWidth];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)RHSOp0Width) {
- assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
- "should have been check above");
- eltMask = -1;
- }
- } else
- eltMask = Mask[i]-LHSWidth;
- // If LHS's width is changed, shift the mask value accordingly.
- // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
- // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
- // If newRHS == newLHS, we want to remap any references from newRHS to
- // newLHS so that we can properly identify splats that may occur due to
- // obfuscation across the two vectors.
- if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
- eltMask += newLHSWidth;
- }
- // Check if this could still be a splat.
- if (eltMask >= 0) {
- if (SplatElt >= 0 && SplatElt != eltMask)
- isSplat = false;
- SplatElt = eltMask;
- }
- newMask.push_back(eltMask);
- }
- // If the result mask is equal to one of the original shuffle masks,
- // or is a splat, do the replacement.
- if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
- if (!newRHS)
- newRHS = UndefValue::get(newLHS->getType());
- return new ShuffleVectorInst(newLHS, newRHS, newMask);
- }
- return MadeChange ? &SVI : nullptr;
- }
|