1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057 |
- //===- InstCombineCompares.cpp --------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitICmp and visitFCmp functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CmpInstAnalysis.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- // How many times is a select replaced by one of its operands?
- STATISTIC(NumSel, "Number of select opts");
- /// Compute Result = In1+In2, returning true if the result overflowed for this
- /// type.
- static bool addWithOverflow(APInt &Result, const APInt &In1,
- const APInt &In2, bool IsSigned = false) {
- bool Overflow;
- if (IsSigned)
- Result = In1.sadd_ov(In2, Overflow);
- else
- Result = In1.uadd_ov(In2, Overflow);
- return Overflow;
- }
- /// Compute Result = In1-In2, returning true if the result overflowed for this
- /// type.
- static bool subWithOverflow(APInt &Result, const APInt &In1,
- const APInt &In2, bool IsSigned = false) {
- bool Overflow;
- if (IsSigned)
- Result = In1.ssub_ov(In2, Overflow);
- else
- Result = In1.usub_ov(In2, Overflow);
- return Overflow;
- }
- /// Given an icmp instruction, return true if any use of this comparison is a
- /// branch on sign bit comparison.
- static bool hasBranchUse(ICmpInst &I) {
- for (auto *U : I.users())
- if (isa<BranchInst>(U))
- return true;
- return false;
- }
- /// Returns true if the exploded icmp can be expressed as a signed comparison
- /// to zero and updates the predicate accordingly.
- /// The signedness of the comparison is preserved.
- /// TODO: Refactor with decomposeBitTestICmp()?
- static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
- if (!ICmpInst::isSigned(Pred))
- return false;
- if (C.isZero())
- return ICmpInst::isRelational(Pred);
- if (C.isOne()) {
- if (Pred == ICmpInst::ICMP_SLT) {
- Pred = ICmpInst::ICMP_SLE;
- return true;
- }
- } else if (C.isAllOnes()) {
- if (Pred == ICmpInst::ICMP_SGT) {
- Pred = ICmpInst::ICMP_SGE;
- return true;
- }
- }
- return false;
- }
- /// This is called when we see this pattern:
- /// cmp pred (load (gep GV, ...)), cmpcst
- /// where GV is a global variable with a constant initializer. Try to simplify
- /// this into some simple computation that does not need the load. For example
- /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
- ///
- /// If AndCst is non-null, then the loaded value is masked with that constant
- /// before doing the comparison. This handles cases like "A[i]&4 == 0".
- Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
- LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
- ConstantInt *AndCst) {
- if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
- GV->getValueType() != GEP->getSourceElementType() ||
- !GV->isConstant() || !GV->hasDefinitiveInitializer())
- return nullptr;
- Constant *Init = GV->getInitializer();
- if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
- return nullptr;
- uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
- // Don't blow up on huge arrays.
- if (ArrayElementCount > MaxArraySizeForCombine)
- return nullptr;
- // There are many forms of this optimization we can handle, for now, just do
- // the simple index into a single-dimensional array.
- //
- // Require: GEP GV, 0, i {{, constant indices}}
- if (GEP->getNumOperands() < 3 ||
- !isa<ConstantInt>(GEP->getOperand(1)) ||
- !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
- isa<Constant>(GEP->getOperand(2)))
- return nullptr;
- // Check that indices after the variable are constants and in-range for the
- // type they index. Collect the indices. This is typically for arrays of
- // structs.
- SmallVector<unsigned, 4> LaterIndices;
- Type *EltTy = Init->getType()->getArrayElementType();
- for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
- ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!Idx) return nullptr; // Variable index.
- uint64_t IdxVal = Idx->getZExtValue();
- if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
- if (StructType *STy = dyn_cast<StructType>(EltTy))
- EltTy = STy->getElementType(IdxVal);
- else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
- if (IdxVal >= ATy->getNumElements()) return nullptr;
- EltTy = ATy->getElementType();
- } else {
- return nullptr; // Unknown type.
- }
- LaterIndices.push_back(IdxVal);
- }
- enum { Overdefined = -3, Undefined = -2 };
- // Variables for our state machines.
- // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
- // "i == 47 | i == 87", where 47 is the first index the condition is true for,
- // and 87 is the second (and last) index. FirstTrueElement is -2 when
- // undefined, otherwise set to the first true element. SecondTrueElement is
- // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
- int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
- // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
- // form "i != 47 & i != 87". Same state transitions as for true elements.
- int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
- /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
- /// define a state machine that triggers for ranges of values that the index
- /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
- /// This is -2 when undefined, -3 when overdefined, and otherwise the last
- /// index in the range (inclusive). We use -2 for undefined here because we
- /// use relative comparisons and don't want 0-1 to match -1.
- int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
- // MagicBitvector - This is a magic bitvector where we set a bit if the
- // comparison is true for element 'i'. If there are 64 elements or less in
- // the array, this will fully represent all the comparison results.
- uint64_t MagicBitvector = 0;
- // Scan the array and see if one of our patterns matches.
- Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
- for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
- Constant *Elt = Init->getAggregateElement(i);
- if (!Elt) return nullptr;
- // If this is indexing an array of structures, get the structure element.
- if (!LaterIndices.empty()) {
- Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
- if (!Elt)
- return nullptr;
- }
- // If the element is masked, handle it.
- if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
- // Find out if the comparison would be true or false for the i'th element.
- Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
- CompareRHS, DL, &TLI);
- // If the result is undef for this element, ignore it.
- if (isa<UndefValue>(C)) {
- // Extend range state machines to cover this element in case there is an
- // undef in the middle of the range.
- if (TrueRangeEnd == (int)i-1)
- TrueRangeEnd = i;
- if (FalseRangeEnd == (int)i-1)
- FalseRangeEnd = i;
- continue;
- }
- // If we can't compute the result for any of the elements, we have to give
- // up evaluating the entire conditional.
- if (!isa<ConstantInt>(C)) return nullptr;
- // Otherwise, we know if the comparison is true or false for this element,
- // update our state machines.
- bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
- // State machine for single/double/range index comparison.
- if (IsTrueForElt) {
- // Update the TrueElement state machine.
- if (FirstTrueElement == Undefined)
- FirstTrueElement = TrueRangeEnd = i; // First true element.
- else {
- // Update double-compare state machine.
- if (SecondTrueElement == Undefined)
- SecondTrueElement = i;
- else
- SecondTrueElement = Overdefined;
- // Update range state machine.
- if (TrueRangeEnd == (int)i-1)
- TrueRangeEnd = i;
- else
- TrueRangeEnd = Overdefined;
- }
- } else {
- // Update the FalseElement state machine.
- if (FirstFalseElement == Undefined)
- FirstFalseElement = FalseRangeEnd = i; // First false element.
- else {
- // Update double-compare state machine.
- if (SecondFalseElement == Undefined)
- SecondFalseElement = i;
- else
- SecondFalseElement = Overdefined;
- // Update range state machine.
- if (FalseRangeEnd == (int)i-1)
- FalseRangeEnd = i;
- else
- FalseRangeEnd = Overdefined;
- }
- }
- // If this element is in range, update our magic bitvector.
- if (i < 64 && IsTrueForElt)
- MagicBitvector |= 1ULL << i;
- // If all of our states become overdefined, bail out early. Since the
- // predicate is expensive, only check it every 8 elements. This is only
- // really useful for really huge arrays.
- if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
- SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
- FalseRangeEnd == Overdefined)
- return nullptr;
- }
- // Now that we've scanned the entire array, emit our new comparison(s). We
- // order the state machines in complexity of the generated code.
- Value *Idx = GEP->getOperand(2);
- // If the index is larger than the pointer size of the target, truncate the
- // index down like the GEP would do implicitly. We don't have to do this for
- // an inbounds GEP because the index can't be out of range.
- if (!GEP->isInBounds()) {
- Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
- unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
- if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > PtrSize)
- Idx = Builder.CreateTrunc(Idx, IntPtrTy);
- }
- // If inbounds keyword is not present, Idx * ElementSize can overflow.
- // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
- // Then, there are two possible values for Idx to match offset 0:
- // 0x00..00, 0x80..00.
- // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
- // comparison is false if Idx was 0x80..00.
- // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
- unsigned ElementSize =
- DL.getTypeAllocSize(Init->getType()->getArrayElementType());
- auto MaskIdx = [&](Value* Idx){
- if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
- Value *Mask = ConstantInt::get(Idx->getType(), -1);
- Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
- Idx = Builder.CreateAnd(Idx, Mask);
- }
- return Idx;
- };
- // If the comparison is only true for one or two elements, emit direct
- // comparisons.
- if (SecondTrueElement != Overdefined) {
- Idx = MaskIdx(Idx);
- // None true -> false.
- if (FirstTrueElement == Undefined)
- return replaceInstUsesWith(ICI, Builder.getFalse());
- Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
- // True for one element -> 'i == 47'.
- if (SecondTrueElement == Undefined)
- return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
- // True for two elements -> 'i == 47 | i == 72'.
- Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
- Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
- Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
- return BinaryOperator::CreateOr(C1, C2);
- }
- // If the comparison is only false for one or two elements, emit direct
- // comparisons.
- if (SecondFalseElement != Overdefined) {
- Idx = MaskIdx(Idx);
- // None false -> true.
- if (FirstFalseElement == Undefined)
- return replaceInstUsesWith(ICI, Builder.getTrue());
- Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
- // False for one element -> 'i != 47'.
- if (SecondFalseElement == Undefined)
- return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
- // False for two elements -> 'i != 47 & i != 72'.
- Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
- Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
- Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
- return BinaryOperator::CreateAnd(C1, C2);
- }
- // If the comparison can be replaced with a range comparison for the elements
- // where it is true, emit the range check.
- if (TrueRangeEnd != Overdefined) {
- assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
- Idx = MaskIdx(Idx);
- // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
- if (FirstTrueElement) {
- Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
- Idx = Builder.CreateAdd(Idx, Offs);
- }
- Value *End = ConstantInt::get(Idx->getType(),
- TrueRangeEnd-FirstTrueElement+1);
- return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
- }
- // False range check.
- if (FalseRangeEnd != Overdefined) {
- assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
- Idx = MaskIdx(Idx);
- // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
- if (FirstFalseElement) {
- Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
- Idx = Builder.CreateAdd(Idx, Offs);
- }
- Value *End = ConstantInt::get(Idx->getType(),
- FalseRangeEnd-FirstFalseElement);
- return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
- }
- // If a magic bitvector captures the entire comparison state
- // of this load, replace it with computation that does:
- // ((magic_cst >> i) & 1) != 0
- {
- Type *Ty = nullptr;
- // Look for an appropriate type:
- // - The type of Idx if the magic fits
- // - The smallest fitting legal type
- if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
- Ty = Idx->getType();
- else
- Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
- if (Ty) {
- Idx = MaskIdx(Idx);
- Value *V = Builder.CreateIntCast(Idx, Ty, false);
- V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
- V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
- return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
- }
- }
- return nullptr;
- }
- /// Returns true if we can rewrite Start as a GEP with pointer Base
- /// and some integer offset. The nodes that need to be re-written
- /// for this transformation will be added to Explored.
- static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
- const DataLayout &DL,
- SetVector<Value *> &Explored) {
- SmallVector<Value *, 16> WorkList(1, Start);
- Explored.insert(Base);
- // The following traversal gives us an order which can be used
- // when doing the final transformation. Since in the final
- // transformation we create the PHI replacement instructions first,
- // we don't have to get them in any particular order.
- //
- // However, for other instructions we will have to traverse the
- // operands of an instruction first, which means that we have to
- // do a post-order traversal.
- while (!WorkList.empty()) {
- SetVector<PHINode *> PHIs;
- while (!WorkList.empty()) {
- if (Explored.size() >= 100)
- return false;
- Value *V = WorkList.back();
- if (Explored.contains(V)) {
- WorkList.pop_back();
- continue;
- }
- if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
- !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
- // We've found some value that we can't explore which is different from
- // the base. Therefore we can't do this transformation.
- return false;
- if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
- auto *CI = cast<CastInst>(V);
- if (!CI->isNoopCast(DL))
- return false;
- if (!Explored.contains(CI->getOperand(0)))
- WorkList.push_back(CI->getOperand(0));
- }
- if (auto *GEP = dyn_cast<GEPOperator>(V)) {
- // We're limiting the GEP to having one index. This will preserve
- // the original pointer type. We could handle more cases in the
- // future.
- if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
- GEP->getSourceElementType() != ElemTy)
- return false;
- if (!Explored.contains(GEP->getOperand(0)))
- WorkList.push_back(GEP->getOperand(0));
- }
- if (WorkList.back() == V) {
- WorkList.pop_back();
- // We've finished visiting this node, mark it as such.
- Explored.insert(V);
- }
- if (auto *PN = dyn_cast<PHINode>(V)) {
- // We cannot transform PHIs on unsplittable basic blocks.
- if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
- return false;
- Explored.insert(PN);
- PHIs.insert(PN);
- }
- }
- // Explore the PHI nodes further.
- for (auto *PN : PHIs)
- for (Value *Op : PN->incoming_values())
- if (!Explored.contains(Op))
- WorkList.push_back(Op);
- }
- // Make sure that we can do this. Since we can't insert GEPs in a basic
- // block before a PHI node, we can't easily do this transformation if
- // we have PHI node users of transformed instructions.
- for (Value *Val : Explored) {
- for (Value *Use : Val->uses()) {
- auto *PHI = dyn_cast<PHINode>(Use);
- auto *Inst = dyn_cast<Instruction>(Val);
- if (Inst == Base || Inst == PHI || !Inst || !PHI ||
- !Explored.contains(PHI))
- continue;
- if (PHI->getParent() == Inst->getParent())
- return false;
- }
- }
- return true;
- }
- // Sets the appropriate insert point on Builder where we can add
- // a replacement Instruction for V (if that is possible).
- static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
- bool Before = true) {
- if (auto *PHI = dyn_cast<PHINode>(V)) {
- Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
- return;
- }
- if (auto *I = dyn_cast<Instruction>(V)) {
- if (!Before)
- I = &*std::next(I->getIterator());
- Builder.SetInsertPoint(I);
- return;
- }
- if (auto *A = dyn_cast<Argument>(V)) {
- // Set the insertion point in the entry block.
- BasicBlock &Entry = A->getParent()->getEntryBlock();
- Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
- return;
- }
- // Otherwise, this is a constant and we don't need to set a new
- // insertion point.
- assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
- }
- /// Returns a re-written value of Start as an indexed GEP using Base as a
- /// pointer.
- static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
- const DataLayout &DL,
- SetVector<Value *> &Explored) {
- // Perform all the substitutions. This is a bit tricky because we can
- // have cycles in our use-def chains.
- // 1. Create the PHI nodes without any incoming values.
- // 2. Create all the other values.
- // 3. Add the edges for the PHI nodes.
- // 4. Emit GEPs to get the original pointers.
- // 5. Remove the original instructions.
- Type *IndexType = IntegerType::get(
- Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
- DenseMap<Value *, Value *> NewInsts;
- NewInsts[Base] = ConstantInt::getNullValue(IndexType);
- // Create the new PHI nodes, without adding any incoming values.
- for (Value *Val : Explored) {
- if (Val == Base)
- continue;
- // Create empty phi nodes. This avoids cyclic dependencies when creating
- // the remaining instructions.
- if (auto *PHI = dyn_cast<PHINode>(Val))
- NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
- PHI->getName() + ".idx", PHI);
- }
- IRBuilder<> Builder(Base->getContext());
- // Create all the other instructions.
- for (Value *Val : Explored) {
- if (NewInsts.find(Val) != NewInsts.end())
- continue;
- if (auto *CI = dyn_cast<CastInst>(Val)) {
- // Don't get rid of the intermediate variable here; the store can grow
- // the map which will invalidate the reference to the input value.
- Value *V = NewInsts[CI->getOperand(0)];
- NewInsts[CI] = V;
- continue;
- }
- if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
- Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
- : GEP->getOperand(1);
- setInsertionPoint(Builder, GEP);
- // Indices might need to be sign extended. GEPs will magically do
- // this, but we need to do it ourselves here.
- if (Index->getType()->getScalarSizeInBits() !=
- NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
- Index = Builder.CreateSExtOrTrunc(
- Index, NewInsts[GEP->getOperand(0)]->getType(),
- GEP->getOperand(0)->getName() + ".sext");
- }
- auto *Op = NewInsts[GEP->getOperand(0)];
- if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
- NewInsts[GEP] = Index;
- else
- NewInsts[GEP] = Builder.CreateNSWAdd(
- Op, Index, GEP->getOperand(0)->getName() + ".add");
- continue;
- }
- if (isa<PHINode>(Val))
- continue;
- llvm_unreachable("Unexpected instruction type");
- }
- // Add the incoming values to the PHI nodes.
- for (Value *Val : Explored) {
- if (Val == Base)
- continue;
- // All the instructions have been created, we can now add edges to the
- // phi nodes.
- if (auto *PHI = dyn_cast<PHINode>(Val)) {
- PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
- for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
- Value *NewIncoming = PHI->getIncomingValue(I);
- if (NewInsts.find(NewIncoming) != NewInsts.end())
- NewIncoming = NewInsts[NewIncoming];
- NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
- }
- }
- }
- PointerType *PtrTy =
- ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
- for (Value *Val : Explored) {
- if (Val == Base)
- continue;
- // Depending on the type, for external users we have to emit
- // a GEP or a GEP + ptrtoint.
- setInsertionPoint(Builder, Val, false);
- // Cast base to the expected type.
- Value *NewVal = Builder.CreateBitOrPointerCast(
- Base, PtrTy, Start->getName() + "to.ptr");
- NewVal = Builder.CreateInBoundsGEP(ElemTy, NewVal, ArrayRef(NewInsts[Val]),
- Val->getName() + ".ptr");
- NewVal = Builder.CreateBitOrPointerCast(
- NewVal, Val->getType(), Val->getName() + ".conv");
- Val->replaceAllUsesWith(NewVal);
- }
- return NewInsts[Start];
- }
- /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
- /// the input Value as a constant indexed GEP. Returns a pair containing
- /// the GEPs Pointer and Index.
- static std::pair<Value *, Value *>
- getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
- Type *IndexType = IntegerType::get(V->getContext(),
- DL.getIndexTypeSizeInBits(V->getType()));
- Constant *Index = ConstantInt::getNullValue(IndexType);
- while (true) {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- // We accept only inbouds GEPs here to exclude the possibility of
- // overflow.
- if (!GEP->isInBounds())
- break;
- if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
- GEP->getSourceElementType() == ElemTy) {
- V = GEP->getOperand(0);
- Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
- Index = ConstantExpr::getAdd(
- Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType));
- continue;
- }
- break;
- }
- if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
- if (!CI->isNoopCast(DL))
- break;
- V = CI->getOperand(0);
- continue;
- }
- if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
- if (!CI->isNoopCast(DL))
- break;
- V = CI->getOperand(0);
- continue;
- }
- break;
- }
- return {V, Index};
- }
- /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
- /// We can look through PHIs, GEPs and casts in order to determine a common base
- /// between GEPLHS and RHS.
- static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond,
- const DataLayout &DL) {
- // FIXME: Support vector of pointers.
- if (GEPLHS->getType()->isVectorTy())
- return nullptr;
- if (!GEPLHS->hasAllConstantIndices())
- return nullptr;
- Type *ElemTy = GEPLHS->getSourceElementType();
- Value *PtrBase, *Index;
- std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
- // The set of nodes that will take part in this transformation.
- SetVector<Value *> Nodes;
- if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
- return nullptr;
- // We know we can re-write this as
- // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
- // Since we've only looked through inbouds GEPs we know that we
- // can't have overflow on either side. We can therefore re-write
- // this as:
- // OFFSET1 cmp OFFSET2
- Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
- // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
- // GEP having PtrBase as the pointer base, and has returned in NewRHS the
- // offset. Since Index is the offset of LHS to the base pointer, we will now
- // compare the offsets instead of comparing the pointers.
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
- }
- /// Fold comparisons between a GEP instruction and something else. At this point
- /// we know that the GEP is on the LHS of the comparison.
- Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond,
- Instruction &I) {
- // Don't transform signed compares of GEPs into index compares. Even if the
- // GEP is inbounds, the final add of the base pointer can have signed overflow
- // and would change the result of the icmp.
- // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
- // the maximum signed value for the pointer type.
- if (ICmpInst::isSigned(Cond))
- return nullptr;
- // Look through bitcasts and addrspacecasts. We do not however want to remove
- // 0 GEPs.
- if (!isa<GetElementPtrInst>(RHS))
- RHS = RHS->stripPointerCasts();
- Value *PtrBase = GEPLHS->getOperand(0);
- if (PtrBase == RHS && GEPLHS->isInBounds()) {
- // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
- Value *Offset = EmitGEPOffset(GEPLHS);
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
- Constant::getNullValue(Offset->getType()));
- }
- if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
- isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
- !NullPointerIsDefined(I.getFunction(),
- RHS->getType()->getPointerAddressSpace())) {
- // For most address spaces, an allocation can't be placed at null, but null
- // itself is treated as a 0 size allocation in the in bounds rules. Thus,
- // the only valid inbounds address derived from null, is null itself.
- // Thus, we have four cases to consider:
- // 1) Base == nullptr, Offset == 0 -> inbounds, null
- // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
- // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
- // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
- //
- // (Note if we're indexing a type of size 0, that simply collapses into one
- // of the buckets above.)
- //
- // In general, we're allowed to make values less poison (i.e. remove
- // sources of full UB), so in this case, we just select between the two
- // non-poison cases (1 and 4 above).
- //
- // For vectors, we apply the same reasoning on a per-lane basis.
- auto *Base = GEPLHS->getPointerOperand();
- if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
- auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
- Base = Builder.CreateVectorSplat(EC, Base);
- }
- return new ICmpInst(Cond, Base,
- ConstantExpr::getPointerBitCastOrAddrSpaceCast(
- cast<Constant>(RHS), Base->getType()));
- } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
- // If the base pointers are different, but the indices are the same, just
- // compare the base pointer.
- if (PtrBase != GEPRHS->getOperand(0)) {
- bool IndicesTheSame =
- GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
- GEPLHS->getPointerOperand()->getType() ==
- GEPRHS->getPointerOperand()->getType() &&
- GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
- if (IndicesTheSame)
- for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
- if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
- IndicesTheSame = false;
- break;
- }
- // If all indices are the same, just compare the base pointers.
- Type *BaseType = GEPLHS->getOperand(0)->getType();
- if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
- return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
- // If we're comparing GEPs with two base pointers that only differ in type
- // and both GEPs have only constant indices or just one use, then fold
- // the compare with the adjusted indices.
- // FIXME: Support vector of pointers.
- if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
- (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
- (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
- PtrBase->stripPointerCasts() ==
- GEPRHS->getOperand(0)->stripPointerCasts() &&
- !GEPLHS->getType()->isVectorTy()) {
- Value *LOffset = EmitGEPOffset(GEPLHS);
- Value *ROffset = EmitGEPOffset(GEPRHS);
- // If we looked through an addrspacecast between different sized address
- // spaces, the LHS and RHS pointers are different sized
- // integers. Truncate to the smaller one.
- Type *LHSIndexTy = LOffset->getType();
- Type *RHSIndexTy = ROffset->getType();
- if (LHSIndexTy != RHSIndexTy) {
- if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() <
- RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) {
- ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
- } else
- LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
- }
- Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
- LOffset, ROffset);
- return replaceInstUsesWith(I, Cmp);
- }
- // Otherwise, the base pointers are different and the indices are
- // different. Try convert this to an indexed compare by looking through
- // PHIs/casts.
- return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
- }
- // If one of the GEPs has all zero indices, recurse.
- // FIXME: Handle vector of pointers.
- if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
- return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
- ICmpInst::getSwappedPredicate(Cond), I);
- // If the other GEP has all zero indices, recurse.
- // FIXME: Handle vector of pointers.
- if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
- return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
- bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
- if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
- GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
- // If the GEPs only differ by one index, compare it.
- unsigned NumDifferences = 0; // Keep track of # differences.
- unsigned DiffOperand = 0; // The operand that differs.
- for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
- if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
- Type *LHSType = GEPLHS->getOperand(i)->getType();
- Type *RHSType = GEPRHS->getOperand(i)->getType();
- // FIXME: Better support for vector of pointers.
- if (LHSType->getPrimitiveSizeInBits() !=
- RHSType->getPrimitiveSizeInBits() ||
- (GEPLHS->getType()->isVectorTy() &&
- (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
- // Irreconcilable differences.
- NumDifferences = 2;
- break;
- }
- if (NumDifferences++) break;
- DiffOperand = i;
- }
- if (NumDifferences == 0) // SAME GEP?
- return replaceInstUsesWith(I, // No comparison is needed here.
- ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
- else if (NumDifferences == 1 && GEPsInBounds) {
- Value *LHSV = GEPLHS->getOperand(DiffOperand);
- Value *RHSV = GEPRHS->getOperand(DiffOperand);
- // Make sure we do a signed comparison here.
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
- }
- }
- // Only lower this if the icmp is the only user of the GEP or if we expect
- // the result to fold to a constant!
- if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
- (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
- // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
- Value *L = EmitGEPOffset(GEPLHS);
- Value *R = EmitGEPOffset(GEPRHS);
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
- }
- }
- // Try convert this to an indexed compare by looking through PHIs/casts as a
- // last resort.
- return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
- }
- Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
- const AllocaInst *Alloca) {
- assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
- // It would be tempting to fold away comparisons between allocas and any
- // pointer not based on that alloca (e.g. an argument). However, even
- // though such pointers cannot alias, they can still compare equal.
- //
- // But LLVM doesn't specify where allocas get their memory, so if the alloca
- // doesn't escape we can argue that it's impossible to guess its value, and we
- // can therefore act as if any such guesses are wrong.
- //
- // The code below checks that the alloca doesn't escape, and that it's only
- // used in a comparison once (the current instruction). The
- // single-comparison-use condition ensures that we're trivially folding all
- // comparisons against the alloca consistently, and avoids the risk of
- // erroneously folding a comparison of the pointer with itself.
- unsigned MaxIter = 32; // Break cycles and bound to constant-time.
- SmallVector<const Use *, 32> Worklist;
- for (const Use &U : Alloca->uses()) {
- if (Worklist.size() >= MaxIter)
- return nullptr;
- Worklist.push_back(&U);
- }
- unsigned NumCmps = 0;
- while (!Worklist.empty()) {
- assert(Worklist.size() <= MaxIter);
- const Use *U = Worklist.pop_back_val();
- const Value *V = U->getUser();
- --MaxIter;
- if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
- isa<SelectInst>(V)) {
- // Track the uses.
- } else if (isa<LoadInst>(V)) {
- // Loading from the pointer doesn't escape it.
- continue;
- } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
- // Storing *to* the pointer is fine, but storing the pointer escapes it.
- if (SI->getValueOperand() == U->get())
- return nullptr;
- continue;
- } else if (isa<ICmpInst>(V)) {
- if (NumCmps++)
- return nullptr; // Found more than one cmp.
- continue;
- } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
- switch (Intrin->getIntrinsicID()) {
- // These intrinsics don't escape or compare the pointer. Memset is safe
- // because we don't allow ptrtoint. Memcpy and memmove are safe because
- // we don't allow stores, so src cannot point to V.
- case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
- case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
- continue;
- default:
- return nullptr;
- }
- } else {
- return nullptr;
- }
- for (const Use &U : V->uses()) {
- if (Worklist.size() >= MaxIter)
- return nullptr;
- Worklist.push_back(&U);
- }
- }
- auto *Res = ConstantInt::get(ICI.getType(),
- !CmpInst::isTrueWhenEqual(ICI.getPredicate()));
- return replaceInstUsesWith(ICI, Res);
- }
- /// Fold "icmp pred (X+C), X".
- Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
- ICmpInst::Predicate Pred) {
- // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
- // so the values can never be equal. Similarly for all other "or equals"
- // operators.
- assert(!!C && "C should not be zero!");
- // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
- // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
- // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
- Constant *R = ConstantInt::get(X->getType(),
- APInt::getMaxValue(C.getBitWidth()) - C);
- return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
- }
- // (X+1) >u X --> X <u (0-1) --> X != 255
- // (X+2) >u X --> X <u (0-2) --> X <u 254
- // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
- return new ICmpInst(ICmpInst::ICMP_ULT, X,
- ConstantInt::get(X->getType(), -C));
- APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
- // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
- // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
- // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
- // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
- // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
- // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_SGT, X,
- ConstantInt::get(X->getType(), SMax - C));
- // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
- // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
- // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
- // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
- // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
- // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
- assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
- return new ICmpInst(ICmpInst::ICMP_SLT, X,
- ConstantInt::get(X->getType(), SMax - (C - 1)));
- }
- /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
- /// (icmp eq/ne A, Log2(AP2/AP1)) ->
- /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
- Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
- const APInt &AP1,
- const APInt &AP2) {
- assert(I.isEquality() && "Cannot fold icmp gt/lt");
- auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
- if (I.getPredicate() == I.ICMP_NE)
- Pred = CmpInst::getInversePredicate(Pred);
- return new ICmpInst(Pred, LHS, RHS);
- };
- // Don't bother doing any work for cases which InstSimplify handles.
- if (AP2.isZero())
- return nullptr;
- bool IsAShr = isa<AShrOperator>(I.getOperand(0));
- if (IsAShr) {
- if (AP2.isAllOnes())
- return nullptr;
- if (AP2.isNegative() != AP1.isNegative())
- return nullptr;
- if (AP2.sgt(AP1))
- return nullptr;
- }
- if (!AP1)
- // 'A' must be large enough to shift out the highest set bit.
- return getICmp(I.ICMP_UGT, A,
- ConstantInt::get(A->getType(), AP2.logBase2()));
- if (AP1 == AP2)
- return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
- int Shift;
- if (IsAShr && AP1.isNegative())
- Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
- else
- Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
- if (Shift > 0) {
- if (IsAShr && AP1 == AP2.ashr(Shift)) {
- // There are multiple solutions if we are comparing against -1 and the LHS
- // of the ashr is not a power of two.
- if (AP1.isAllOnes() && !AP2.isPowerOf2())
- return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
- } else if (AP1 == AP2.lshr(Shift)) {
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
- }
- }
- // Shifting const2 will never be equal to const1.
- // FIXME: This should always be handled by InstSimplify?
- auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
- return replaceInstUsesWith(I, TorF);
- }
- /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
- /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
- Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
- const APInt &AP1,
- const APInt &AP2) {
- assert(I.isEquality() && "Cannot fold icmp gt/lt");
- auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
- if (I.getPredicate() == I.ICMP_NE)
- Pred = CmpInst::getInversePredicate(Pred);
- return new ICmpInst(Pred, LHS, RHS);
- };
- // Don't bother doing any work for cases which InstSimplify handles.
- if (AP2.isZero())
- return nullptr;
- unsigned AP2TrailingZeros = AP2.countTrailingZeros();
- if (!AP1 && AP2TrailingZeros != 0)
- return getICmp(
- I.ICMP_UGE, A,
- ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
- if (AP1 == AP2)
- return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
- // Get the distance between the lowest bits that are set.
- int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
- if (Shift > 0 && AP2.shl(Shift) == AP1)
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
- // Shifting const2 will never be equal to const1.
- // FIXME: This should always be handled by InstSimplify?
- auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
- return replaceInstUsesWith(I, TorF);
- }
- /// The caller has matched a pattern of the form:
- /// I = icmp ugt (add (add A, B), CI2), CI1
- /// If this is of the form:
- /// sum = a + b
- /// if (sum+128 >u 255)
- /// Then replace it with llvm.sadd.with.overflow.i8.
- ///
- static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
- ConstantInt *CI2, ConstantInt *CI1,
- InstCombinerImpl &IC) {
- // The transformation we're trying to do here is to transform this into an
- // llvm.sadd.with.overflow. To do this, we have to replace the original add
- // with a narrower add, and discard the add-with-constant that is part of the
- // range check (if we can't eliminate it, this isn't profitable).
- // In order to eliminate the add-with-constant, the compare can be its only
- // use.
- Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
- if (!AddWithCst->hasOneUse())
- return nullptr;
- // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
- if (!CI2->getValue().isPowerOf2())
- return nullptr;
- unsigned NewWidth = CI2->getValue().countTrailingZeros();
- if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
- return nullptr;
- // The width of the new add formed is 1 more than the bias.
- ++NewWidth;
- // Check to see that CI1 is an all-ones value with NewWidth bits.
- if (CI1->getBitWidth() == NewWidth ||
- CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
- return nullptr;
- // This is only really a signed overflow check if the inputs have been
- // sign-extended; check for that condition. For example, if CI2 is 2^31 and
- // the operands of the add are 64 bits wide, we need at least 33 sign bits.
- if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
- IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
- return nullptr;
- // In order to replace the original add with a narrower
- // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
- // and truncates that discard the high bits of the add. Verify that this is
- // the case.
- Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
- for (User *U : OrigAdd->users()) {
- if (U == AddWithCst)
- continue;
- // Only accept truncates for now. We would really like a nice recursive
- // predicate like SimplifyDemandedBits, but which goes downwards the use-def
- // chain to see which bits of a value are actually demanded. If the
- // original add had another add which was then immediately truncated, we
- // could still do the transformation.
- TruncInst *TI = dyn_cast<TruncInst>(U);
- if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
- return nullptr;
- }
- // If the pattern matches, truncate the inputs to the narrower type and
- // use the sadd_with_overflow intrinsic to efficiently compute both the
- // result and the overflow bit.
- Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
- Function *F = Intrinsic::getDeclaration(
- I.getModule(), Intrinsic::sadd_with_overflow, NewType);
- InstCombiner::BuilderTy &Builder = IC.Builder;
- // Put the new code above the original add, in case there are any uses of the
- // add between the add and the compare.
- Builder.SetInsertPoint(OrigAdd);
- Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
- Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
- CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
- Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
- Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
- // The inner add was the result of the narrow add, zero extended to the
- // wider type. Replace it with the result computed by the intrinsic.
- IC.replaceInstUsesWith(*OrigAdd, ZExt);
- IC.eraseInstFromFunction(*OrigAdd);
- // The original icmp gets replaced with the overflow value.
- return ExtractValueInst::Create(Call, 1, "sadd.overflow");
- }
- /// If we have:
- /// icmp eq/ne (urem/srem %x, %y), 0
- /// iff %y is a power-of-two, we can replace this with a bit test:
- /// icmp eq/ne (and %x, (add %y, -1)), 0
- Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
- // This fold is only valid for equality predicates.
- if (!I.isEquality())
- return nullptr;
- ICmpInst::Predicate Pred;
- Value *X, *Y, *Zero;
- if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
- m_CombineAnd(m_Zero(), m_Value(Zero)))))
- return nullptr;
- if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
- return nullptr;
- // This may increase instruction count, we don't enforce that Y is a constant.
- Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
- Value *Masked = Builder.CreateAnd(X, Mask);
- return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
- }
- /// Fold equality-comparison between zero and any (maybe truncated) right-shift
- /// by one-less-than-bitwidth into a sign test on the original value.
- Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
- Instruction *Val;
- ICmpInst::Predicate Pred;
- if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
- return nullptr;
- Value *X;
- Type *XTy;
- Constant *C;
- if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
- XTy = X->getType();
- unsigned XBitWidth = XTy->getScalarSizeInBits();
- if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
- APInt(XBitWidth, XBitWidth - 1))))
- return nullptr;
- } else if (isa<BinaryOperator>(Val) &&
- (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
- cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
- /*AnalyzeForSignBitExtraction=*/true))) {
- XTy = X->getType();
- } else
- return nullptr;
- return ICmpInst::Create(Instruction::ICmp,
- Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
- : ICmpInst::ICMP_SLT,
- X, ConstantInt::getNullValue(XTy));
- }
- // Handle icmp pred X, 0
- Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
- CmpInst::Predicate Pred = Cmp.getPredicate();
- if (!match(Cmp.getOperand(1), m_Zero()))
- return nullptr;
- // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
- if (Pred == ICmpInst::ICMP_SGT) {
- Value *A, *B;
- if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
- if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
- return new ICmpInst(Pred, B, Cmp.getOperand(1));
- if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
- return new ICmpInst(Pred, A, Cmp.getOperand(1));
- }
- }
- if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
- return New;
- // Given:
- // icmp eq/ne (urem %x, %y), 0
- // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
- // icmp eq/ne %x, 0
- Value *X, *Y;
- if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
- ICmpInst::isEquality(Pred)) {
- KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
- KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
- if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
- return new ICmpInst(Pred, X, Cmp.getOperand(1));
- }
- return nullptr;
- }
- /// Fold icmp Pred X, C.
- /// TODO: This code structure does not make sense. The saturating add fold
- /// should be moved to some other helper and extended as noted below (it is also
- /// possible that code has been made unnecessary - do we canonicalize IR to
- /// overflow/saturating intrinsics or not?).
- Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
- // Match the following pattern, which is a common idiom when writing
- // overflow-safe integer arithmetic functions. The source performs an addition
- // in wider type and explicitly checks for overflow using comparisons against
- // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
- //
- // TODO: This could probably be generalized to handle other overflow-safe
- // operations if we worked out the formulas to compute the appropriate magic
- // constants.
- //
- // sum = a + b
- // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
- CmpInst::Predicate Pred = Cmp.getPredicate();
- Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
- Value *A, *B;
- ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
- if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
- match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
- if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
- return Res;
- // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
- Constant *C = dyn_cast<Constant>(Op1);
- if (!C)
- return nullptr;
- if (auto *Phi = dyn_cast<PHINode>(Op0))
- if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
- Type *Ty = Cmp.getType();
- Builder.SetInsertPoint(Phi);
- PHINode *NewPhi =
- Builder.CreatePHI(Ty, Phi->getNumOperands());
- for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
- auto *Input =
- cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
- auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
- NewPhi->addIncoming(BoolInput, Predecessor);
- }
- NewPhi->takeName(&Cmp);
- return replaceInstUsesWith(Cmp, NewPhi);
- }
- return nullptr;
- }
- /// Canonicalize icmp instructions based on dominating conditions.
- Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
- // This is a cheap/incomplete check for dominance - just match a single
- // predecessor with a conditional branch.
- BasicBlock *CmpBB = Cmp.getParent();
- BasicBlock *DomBB = CmpBB->getSinglePredecessor();
- if (!DomBB)
- return nullptr;
- Value *DomCond;
- BasicBlock *TrueBB, *FalseBB;
- if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
- return nullptr;
- assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
- "Predecessor block does not point to successor?");
- // The branch should get simplified. Don't bother simplifying this condition.
- if (TrueBB == FalseBB)
- return nullptr;
- // Try to simplify this compare to T/F based on the dominating condition.
- std::optional<bool> Imp =
- isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
- if (Imp)
- return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
- CmpInst::Predicate Pred = Cmp.getPredicate();
- Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
- ICmpInst::Predicate DomPred;
- const APInt *C, *DomC;
- if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
- match(Y, m_APInt(C))) {
- // We have 2 compares of a variable with constants. Calculate the constant
- // ranges of those compares to see if we can transform the 2nd compare:
- // DomBB:
- // DomCond = icmp DomPred X, DomC
- // br DomCond, CmpBB, FalseBB
- // CmpBB:
- // Cmp = icmp Pred X, C
- ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
- ConstantRange DominatingCR =
- (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
- : ConstantRange::makeExactICmpRegion(
- CmpInst::getInversePredicate(DomPred), *DomC);
- ConstantRange Intersection = DominatingCR.intersectWith(CR);
- ConstantRange Difference = DominatingCR.difference(CR);
- if (Intersection.isEmptySet())
- return replaceInstUsesWith(Cmp, Builder.getFalse());
- if (Difference.isEmptySet())
- return replaceInstUsesWith(Cmp, Builder.getTrue());
- // Canonicalizing a sign bit comparison that gets used in a branch,
- // pessimizes codegen by generating branch on zero instruction instead
- // of a test and branch. So we avoid canonicalizing in such situations
- // because test and branch instruction has better branch displacement
- // than compare and branch instruction.
- bool UnusedBit;
- bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
- if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
- return nullptr;
- // Avoid an infinite loop with min/max canonicalization.
- // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
- if (Cmp.hasOneUse() &&
- match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
- return nullptr;
- if (const APInt *EqC = Intersection.getSingleElement())
- return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
- if (const APInt *NeC = Difference.getSingleElement())
- return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
- }
- return nullptr;
- }
- /// Fold icmp (trunc X), C.
- Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
- TruncInst *Trunc,
- const APInt &C) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *X = Trunc->getOperand(0);
- if (C.isOne() && C.getBitWidth() > 1) {
- // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
- Value *V = nullptr;
- if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
- return new ICmpInst(ICmpInst::ICMP_SLT, V,
- ConstantInt::get(V->getType(), 1));
- }
- Type *SrcTy = X->getType();
- unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
- SrcBits = SrcTy->getScalarSizeInBits();
- // TODO: Handle any shifted constant by subtracting trailing zeros.
- // TODO: Handle non-equality predicates.
- Value *Y;
- if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) {
- // (trunc (1 << Y) to iN) == 0 --> Y u>= N
- // (trunc (1 << Y) to iN) != 0 --> Y u< N
- if (C.isZero()) {
- auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT;
- return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits));
- }
- // (trunc (1 << Y) to iN) == 2**C --> Y == C
- // (trunc (1 << Y) to iN) != 2**C --> Y != C
- if (C.isPowerOf2())
- return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2()));
- }
- if (Cmp.isEquality() && Trunc->hasOneUse()) {
- // Canonicalize to a mask and wider compare if the wide type is suitable:
- // (trunc X to i8) == C --> (X & 0xff) == (zext C)
- if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
- Constant *Mask =
- ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits));
- Value *And = Builder.CreateAnd(X, Mask);
- Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits));
- return new ICmpInst(Pred, And, WideC);
- }
- // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
- // of the high bits truncated out of x are known.
- KnownBits Known = computeKnownBits(X, 0, &Cmp);
- // If all the high bits are known, we can do this xform.
- if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
- // Pull in the high bits from known-ones set.
- APInt NewRHS = C.zext(SrcBits);
- NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
- return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS));
- }
- }
- // Look through truncated right-shift of the sign-bit for a sign-bit check:
- // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
- // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
- Value *ShOp;
- const APInt *ShAmtC;
- bool TrueIfSigned;
- if (isSignBitCheck(Pred, C, TrueIfSigned) &&
- match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
- DstBits == SrcBits - ShAmtC->getZExtValue()) {
- return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
- ConstantInt::getNullValue(SrcTy))
- : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
- ConstantInt::getAllOnesValue(SrcTy));
- }
- return nullptr;
- }
- /// Fold icmp (xor X, Y), C.
- Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
- BinaryOperator *Xor,
- const APInt &C) {
- if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C))
- return I;
- Value *X = Xor->getOperand(0);
- Value *Y = Xor->getOperand(1);
- const APInt *XorC;
- if (!match(Y, m_APInt(XorC)))
- return nullptr;
- // If this is a comparison that tests the signbit (X < 0) or (x > -1),
- // fold the xor.
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- bool TrueIfSigned = false;
- if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
- // If the sign bit of the XorCst is not set, there is no change to
- // the operation, just stop using the Xor.
- if (!XorC->isNegative())
- return replaceOperand(Cmp, 0, X);
- // Emit the opposite comparison.
- if (TrueIfSigned)
- return new ICmpInst(ICmpInst::ICMP_SGT, X,
- ConstantInt::getAllOnesValue(X->getType()));
- else
- return new ICmpInst(ICmpInst::ICMP_SLT, X,
- ConstantInt::getNullValue(X->getType()));
- }
- if (Xor->hasOneUse()) {
- // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
- if (!Cmp.isEquality() && XorC->isSignMask()) {
- Pred = Cmp.getFlippedSignednessPredicate();
- return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
- }
- // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
- if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
- Pred = Cmp.getFlippedSignednessPredicate();
- Pred = Cmp.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
- }
- }
- // Mask constant magic can eliminate an 'xor' with unsigned compares.
- if (Pred == ICmpInst::ICMP_UGT) {
- // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
- if (*XorC == ~C && (C + 1).isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
- // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
- if (*XorC == C && (C + 1).isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
- }
- if (Pred == ICmpInst::ICMP_ULT) {
- // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
- if (*XorC == -C && C.isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_UGT, X,
- ConstantInt::get(X->getType(), ~C));
- // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
- if (*XorC == C && (-C).isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_UGT, X,
- ConstantInt::get(X->getType(), ~C));
- }
- return nullptr;
- }
- /// For power-of-2 C:
- /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
- /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
- Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp,
- BinaryOperator *Xor,
- const APInt &C) {
- CmpInst::Predicate Pred = Cmp.getPredicate();
- APInt PowerOf2;
- if (Pred == ICmpInst::ICMP_ULT)
- PowerOf2 = C;
- else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue())
- PowerOf2 = C + 1;
- else
- return nullptr;
- if (!PowerOf2.isPowerOf2())
- return nullptr;
- Value *X;
- const APInt *ShiftC;
- if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X),
- m_AShr(m_Deferred(X), m_APInt(ShiftC))))))
- return nullptr;
- uint64_t Shift = ShiftC->getLimitedValue();
- Type *XType = X->getType();
- if (Shift == 0 || PowerOf2.isMinSignedValue())
- return nullptr;
- Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2));
- APInt Bound =
- Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1);
- return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound));
- }
- /// Fold icmp (and (sh X, Y), C2), C1.
- Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
- BinaryOperator *And,
- const APInt &C1,
- const APInt &C2) {
- BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
- if (!Shift || !Shift->isShift())
- return nullptr;
- // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
- // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
- // code produced by the clang front-end, for bitfield access.
- // This seemingly simple opportunity to fold away a shift turns out to be
- // rather complicated. See PR17827 for details.
- unsigned ShiftOpcode = Shift->getOpcode();
- bool IsShl = ShiftOpcode == Instruction::Shl;
- const APInt *C3;
- if (match(Shift->getOperand(1), m_APInt(C3))) {
- APInt NewAndCst, NewCmpCst;
- bool AnyCmpCstBitsShiftedOut;
- if (ShiftOpcode == Instruction::Shl) {
- // For a left shift, we can fold if the comparison is not signed. We can
- // also fold a signed comparison if the mask value and comparison value
- // are not negative. These constraints may not be obvious, but we can
- // prove that they are correct using an SMT solver.
- if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
- return nullptr;
- NewCmpCst = C1.lshr(*C3);
- NewAndCst = C2.lshr(*C3);
- AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
- } else if (ShiftOpcode == Instruction::LShr) {
- // For a logical right shift, we can fold if the comparison is not signed.
- // We can also fold a signed comparison if the shifted mask value and the
- // shifted comparison value are not negative. These constraints may not be
- // obvious, but we can prove that they are correct using an SMT solver.
- NewCmpCst = C1.shl(*C3);
- NewAndCst = C2.shl(*C3);
- AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
- if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
- return nullptr;
- } else {
- // For an arithmetic shift, check that both constants don't use (in a
- // signed sense) the top bits being shifted out.
- assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
- NewCmpCst = C1.shl(*C3);
- NewAndCst = C2.shl(*C3);
- AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
- if (NewAndCst.ashr(*C3) != C2)
- return nullptr;
- }
- if (AnyCmpCstBitsShiftedOut) {
- // If we shifted bits out, the fold is not going to work out. As a
- // special case, check to see if this means that the result is always
- // true or false now.
- if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
- return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
- if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
- return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
- } else {
- Value *NewAnd = Builder.CreateAnd(
- Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
- return new ICmpInst(Cmp.getPredicate(),
- NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
- }
- }
- // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
- // preferable because it allows the C2 << Y expression to be hoisted out of a
- // loop if Y is invariant and X is not.
- if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
- !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
- // Compute C2 << Y.
- Value *NewShift =
- IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
- : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
- // Compute X & (C2 << Y).
- Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
- return replaceOperand(Cmp, 0, NewAnd);
- }
- return nullptr;
- }
- /// Fold icmp (and X, C2), C1.
- Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
- BinaryOperator *And,
- const APInt &C1) {
- bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
- // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
- // TODO: We canonicalize to the longer form for scalars because we have
- // better analysis/folds for icmp, and codegen may be better with icmp.
- if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
- match(And->getOperand(1), m_One()))
- return new TruncInst(And->getOperand(0), Cmp.getType());
- const APInt *C2;
- Value *X;
- if (!match(And, m_And(m_Value(X), m_APInt(C2))))
- return nullptr;
- // Don't perform the following transforms if the AND has multiple uses
- if (!And->hasOneUse())
- return nullptr;
- if (Cmp.isEquality() && C1.isZero()) {
- // Restrict this fold to single-use 'and' (PR10267).
- // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
- if (C2->isSignMask()) {
- Constant *Zero = Constant::getNullValue(X->getType());
- auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
- return new ICmpInst(NewPred, X, Zero);
- }
- APInt NewC2 = *C2;
- KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
- // Set high zeros of C2 to allow matching negated power-of-2.
- NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(),
- Know.countMinLeadingZeros());
- // Restrict this fold only for single-use 'and' (PR10267).
- // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
- if (NewC2.isNegatedPowerOf2()) {
- Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
- auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
- return new ICmpInst(NewPred, X, NegBOC);
- }
- }
- // If the LHS is an 'and' of a truncate and we can widen the and/compare to
- // the input width without changing the value produced, eliminate the cast:
- //
- // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
- //
- // We can do this transformation if the constants do not have their sign bits
- // set or if it is an equality comparison. Extending a relational comparison
- // when we're checking the sign bit would not work.
- Value *W;
- if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
- (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
- // TODO: Is this a good transform for vectors? Wider types may reduce
- // throughput. Should this transform be limited (even for scalars) by using
- // shouldChangeType()?
- if (!Cmp.getType()->isVectorTy()) {
- Type *WideType = W->getType();
- unsigned WideScalarBits = WideType->getScalarSizeInBits();
- Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
- Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
- Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
- return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
- }
- }
- if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
- return I;
- // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
- // (icmp pred (and A, (or (shl 1, B), 1), 0))
- //
- // iff pred isn't signed
- if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
- match(And->getOperand(1), m_One())) {
- Constant *One = cast<Constant>(And->getOperand(1));
- Value *Or = And->getOperand(0);
- Value *A, *B, *LShr;
- if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
- match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
- unsigned UsesRemoved = 0;
- if (And->hasOneUse())
- ++UsesRemoved;
- if (Or->hasOneUse())
- ++UsesRemoved;
- if (LShr->hasOneUse())
- ++UsesRemoved;
- // Compute A & ((1 << B) | 1)
- Value *NewOr = nullptr;
- if (auto *C = dyn_cast<Constant>(B)) {
- if (UsesRemoved >= 1)
- NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
- } else {
- if (UsesRemoved >= 3)
- NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
- /*HasNUW=*/true),
- One, Or->getName());
- }
- if (NewOr) {
- Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
- return replaceOperand(Cmp, 0, NewAnd);
- }
- }
- }
- return nullptr;
- }
- /// Fold icmp (and X, Y), C.
- Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
- BinaryOperator *And,
- const APInt &C) {
- if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
- return I;
- const ICmpInst::Predicate Pred = Cmp.getPredicate();
- bool TrueIfNeg;
- if (isSignBitCheck(Pred, C, TrueIfNeg)) {
- // ((X - 1) & ~X) < 0 --> X == 0
- // ((X - 1) & ~X) >= 0 --> X != 0
- Value *X;
- if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
- match(And->getOperand(1), m_Not(m_Specific(X)))) {
- auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
- return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
- }
- }
- // TODO: These all require that Y is constant too, so refactor with the above.
- // Try to optimize things like "A[i] & 42 == 0" to index computations.
- Value *X = And->getOperand(0);
- Value *Y = And->getOperand(1);
- if (auto *C2 = dyn_cast<ConstantInt>(Y))
- if (auto *LI = dyn_cast<LoadInst>(X))
- if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
- if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (Instruction *Res =
- foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
- return Res;
- if (!Cmp.isEquality())
- return nullptr;
- // X & -C == -C -> X > u ~C
- // X & -C != -C -> X <= u ~C
- // iff C is a power of 2
- if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
- auto NewPred =
- Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
- return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
- }
- // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
- // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X)
- // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X)
- // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
- if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) &&
- X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) {
- Value *TruncY = Builder.CreateTrunc(Y, X->getType());
- if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) {
- Value *And = Builder.CreateAnd(TruncY, X);
- return BinaryOperator::CreateNot(And);
- }
- return BinaryOperator::CreateAnd(TruncY, X);
- }
- return nullptr;
- }
- /// Fold icmp (or X, Y), C.
- Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
- BinaryOperator *Or,
- const APInt &C) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- if (C.isOne()) {
- // icmp slt signum(V) 1 --> icmp slt V, 1
- Value *V = nullptr;
- if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
- return new ICmpInst(ICmpInst::ICMP_SLT, V,
- ConstantInt::get(V->getType(), 1));
- }
- Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
- const APInt *MaskC;
- if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
- if (*MaskC == C && (C + 1).isPowerOf2()) {
- // X | C == C --> X <=u C
- // X | C != C --> X >u C
- // iff C+1 is a power of 2 (C is a bitmask of the low bits)
- Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
- return new ICmpInst(Pred, OrOp0, OrOp1);
- }
- // More general: canonicalize 'equality with set bits mask' to
- // 'equality with clear bits mask'.
- // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
- // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
- if (Or->hasOneUse()) {
- Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
- Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
- return new ICmpInst(Pred, And, NewC);
- }
- }
- // (X | (X-1)) s< 0 --> X s< 1
- // (X | (X-1)) s> -1 --> X s> 0
- Value *X;
- bool TrueIfSigned;
- if (isSignBitCheck(Pred, C, TrueIfSigned) &&
- match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
- auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
- Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
- return new ICmpInst(NewPred, X, NewC);
- }
- if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
- return nullptr;
- Value *P, *Q;
- if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
- // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
- // -> and (icmp eq P, null), (icmp eq Q, null).
- Value *CmpP =
- Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
- Value *CmpQ =
- Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
- auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- return BinaryOperator::Create(BOpc, CmpP, CmpQ);
- }
- // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
- // a shorter form that has more potential to be folded even further.
- Value *X1, *X2, *X3, *X4;
- if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
- match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
- // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
- // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
- Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
- Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
- auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
- }
- return nullptr;
- }
- /// Fold icmp (mul X, Y), C.
- Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
- BinaryOperator *Mul,
- const APInt &C) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Type *MulTy = Mul->getType();
- Value *X = Mul->getOperand(0);
- // If there's no overflow:
- // X * X == 0 --> X == 0
- // X * X != 0 --> X != 0
- if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) &&
- (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap()))
- return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
- const APInt *MulC;
- if (!match(Mul->getOperand(1), m_APInt(MulC)))
- return nullptr;
- // If this is a test of the sign bit and the multiply is sign-preserving with
- // a constant operand, use the multiply LHS operand instead:
- // (X * +MulC) < 0 --> X < 0
- // (X * -MulC) < 0 --> X > 0
- if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
- if (MulC->isNegative())
- Pred = ICmpInst::getSwappedPredicate(Pred);
- return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
- }
- if (MulC->isZero() || (!Mul->hasNoSignedWrap() && !Mul->hasNoUnsignedWrap()))
- return nullptr;
- // If the multiply does not wrap, try to divide the compare constant by the
- // multiplication factor.
- if (Cmp.isEquality()) {
- // (mul nsw X, MulC) == C --> X == C /s MulC
- if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
- Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC));
- return new ICmpInst(Pred, X, NewC);
- }
- // (mul nuw X, MulC) == C --> X == C /u MulC
- if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
- Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC));
- return new ICmpInst(Pred, X, NewC);
- }
- }
- // With a matching no-overflow guarantee, fold the constants:
- // (X * MulC) < C --> X < (C / MulC)
- // (X * MulC) > C --> X > (C / MulC)
- // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
- Constant *NewC = nullptr;
- if (Mul->hasNoSignedWrap()) {
- // MININT / -1 --> overflow.
- if (C.isMinSignedValue() && MulC->isAllOnes())
- return nullptr;
- if (MulC->isNegative())
- Pred = ICmpInst::getSwappedPredicate(Pred);
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE)
- NewC = ConstantInt::get(
- MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP));
- if (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT)
- NewC = ConstantInt::get(
- MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN));
- } else {
- assert(Mul->hasNoUnsignedWrap() && "Expected mul nuw");
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)
- NewC = ConstantInt::get(
- MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP));
- if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)
- NewC = ConstantInt::get(
- MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN));
- }
- return NewC ? new ICmpInst(Pred, X, NewC) : nullptr;
- }
- /// Fold icmp (shl 1, Y), C.
- static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
- const APInt &C) {
- Value *Y;
- if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
- return nullptr;
- Type *ShiftType = Shl->getType();
- unsigned TypeBits = C.getBitWidth();
- bool CIsPowerOf2 = C.isPowerOf2();
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- if (Cmp.isUnsigned()) {
- // (1 << Y) pred C -> Y pred Log2(C)
- if (!CIsPowerOf2) {
- // (1 << Y) < 30 -> Y <= 4
- // (1 << Y) <= 30 -> Y <= 4
- // (1 << Y) >= 30 -> Y > 4
- // (1 << Y) > 30 -> Y > 4
- if (Pred == ICmpInst::ICMP_ULT)
- Pred = ICmpInst::ICMP_ULE;
- else if (Pred == ICmpInst::ICMP_UGE)
- Pred = ICmpInst::ICMP_UGT;
- }
- unsigned CLog2 = C.logBase2();
- return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
- } else if (Cmp.isSigned()) {
- Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
- // (1 << Y) > 0 -> Y != 31
- // (1 << Y) > C -> Y != 31 if C is negative.
- if (Pred == ICmpInst::ICMP_SGT && C.sle(0))
- return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
- // (1 << Y) < 0 -> Y == 31
- // (1 << Y) < 1 -> Y == 31
- // (1 << Y) < C -> Y == 31 if C is negative and not signed min.
- // Exclude signed min by subtracting 1 and lower the upper bound to 0.
- if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0))
- return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
- }
- return nullptr;
- }
- /// Fold icmp (shl X, Y), C.
- Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
- BinaryOperator *Shl,
- const APInt &C) {
- const APInt *ShiftVal;
- if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
- return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
- const APInt *ShiftAmt;
- if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
- return foldICmpShlOne(Cmp, Shl, C);
- // Check that the shift amount is in range. If not, don't perform undefined
- // shifts. When the shift is visited, it will be simplified.
- unsigned TypeBits = C.getBitWidth();
- if (ShiftAmt->uge(TypeBits))
- return nullptr;
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *X = Shl->getOperand(0);
- Type *ShType = Shl->getType();
- // NSW guarantees that we are only shifting out sign bits from the high bits,
- // so we can ASHR the compare constant without needing a mask and eliminate
- // the shift.
- if (Shl->hasNoSignedWrap()) {
- if (Pred == ICmpInst::ICMP_SGT) {
- // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
- APInt ShiftedC = C.ashr(*ShiftAmt);
- return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
- }
- if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
- C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
- APInt ShiftedC = C.ashr(*ShiftAmt);
- return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
- }
- if (Pred == ICmpInst::ICMP_SLT) {
- // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
- // (X << S) <=s C is equiv to X <=s (C >> S) for all C
- // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
- // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
- assert(!C.isMinSignedValue() && "Unexpected icmp slt");
- APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
- return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
- }
- // If this is a signed comparison to 0 and the shift is sign preserving,
- // use the shift LHS operand instead; isSignTest may change 'Pred', so only
- // do that if we're sure to not continue on in this function.
- if (isSignTest(Pred, C))
- return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
- }
- // NUW guarantees that we are only shifting out zero bits from the high bits,
- // so we can LSHR the compare constant without needing a mask and eliminate
- // the shift.
- if (Shl->hasNoUnsignedWrap()) {
- if (Pred == ICmpInst::ICMP_UGT) {
- // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
- APInt ShiftedC = C.lshr(*ShiftAmt);
- return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
- }
- if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
- C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
- APInt ShiftedC = C.lshr(*ShiftAmt);
- return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
- }
- if (Pred == ICmpInst::ICMP_ULT) {
- // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
- // (X << S) <=u C is equiv to X <=u (C >> S) for all C
- // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
- // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
- assert(C.ugt(0) && "ult 0 should have been eliminated");
- APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
- return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
- }
- }
- if (Cmp.isEquality() && Shl->hasOneUse()) {
- // Strength-reduce the shift into an 'and'.
- Constant *Mask = ConstantInt::get(
- ShType,
- APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
- Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
- Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
- return new ICmpInst(Pred, And, LShrC);
- }
- // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
- bool TrueIfSigned = false;
- if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
- // (X << 31) <s 0 --> (X & 1) != 0
- Constant *Mask = ConstantInt::get(
- ShType,
- APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
- Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
- return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Constant::getNullValue(ShType));
- }
- // Simplify 'shl' inequality test into 'and' equality test.
- if (Cmp.isUnsigned() && Shl->hasOneUse()) {
- // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
- if ((C + 1).isPowerOf2() &&
- (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
- Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
- return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
- : ICmpInst::ICMP_NE,
- And, Constant::getNullValue(ShType));
- }
- // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
- if (C.isPowerOf2() &&
- (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
- Value *And =
- Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
- return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
- : ICmpInst::ICMP_NE,
- And, Constant::getNullValue(ShType));
- }
- }
- // Transform (icmp pred iM (shl iM %v, N), C)
- // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
- // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
- // This enables us to get rid of the shift in favor of a trunc that may be
- // free on the target. It has the additional benefit of comparing to a
- // smaller constant that may be more target-friendly.
- unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
- if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
- DL.isLegalInteger(TypeBits - Amt)) {
- Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
- if (auto *ShVTy = dyn_cast<VectorType>(ShType))
- TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
- Constant *NewC =
- ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
- return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
- }
- return nullptr;
- }
- /// Fold icmp ({al}shr X, Y), C.
- Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
- BinaryOperator *Shr,
- const APInt &C) {
- // An exact shr only shifts out zero bits, so:
- // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
- Value *X = Shr->getOperand(0);
- CmpInst::Predicate Pred = Cmp.getPredicate();
- if (Cmp.isEquality() && Shr->isExact() && C.isZero())
- return new ICmpInst(Pred, X, Cmp.getOperand(1));
- bool IsAShr = Shr->getOpcode() == Instruction::AShr;
- const APInt *ShiftValC;
- if (match(X, m_APInt(ShiftValC))) {
- if (Cmp.isEquality())
- return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
- // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
- // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0
- bool TrueIfSigned;
- if (!IsAShr && ShiftValC->isNegative() &&
- isSignBitCheck(Pred, C, TrueIfSigned))
- return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE,
- Shr->getOperand(1),
- ConstantInt::getNullValue(X->getType()));
- // If the shifted constant is a power-of-2, test the shift amount directly:
- // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
- // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
- if (!IsAShr && ShiftValC->isPowerOf2() &&
- (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
- bool IsUGT = Pred == CmpInst::ICMP_UGT;
- assert(ShiftValC->uge(C) && "Expected simplify of compare");
- assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
- unsigned CmpLZ =
- IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros();
- unsigned ShiftLZ = ShiftValC->countLeadingZeros();
- Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
- auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
- return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
- }
- }
- const APInt *ShiftAmtC;
- if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
- return nullptr;
- // Check that the shift amount is in range. If not, don't perform undefined
- // shifts. When the shift is visited it will be simplified.
- unsigned TypeBits = C.getBitWidth();
- unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
- if (ShAmtVal >= TypeBits || ShAmtVal == 0)
- return nullptr;
- bool IsExact = Shr->isExact();
- Type *ShrTy = Shr->getType();
- // TODO: If we could guarantee that InstSimplify would handle all of the
- // constant-value-based preconditions in the folds below, then we could assert
- // those conditions rather than checking them. This is difficult because of
- // undef/poison (PR34838).
- if (IsAShr) {
- if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
- // When ShAmtC can be shifted losslessly:
- // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
- // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
- APInt ShiftedC = C.shl(ShAmtVal);
- if (ShiftedC.ashr(ShAmtVal) == C)
- return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
- }
- if (Pred == CmpInst::ICMP_SGT) {
- // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
- APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
- if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
- (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
- return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
- }
- if (Pred == CmpInst::ICMP_UGT) {
- // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
- // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
- // clause accounts for that pattern.
- APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
- if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
- (C + 1).shl(ShAmtVal).isMinSignedValue())
- return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
- }
- // If the compare constant has significant bits above the lowest sign-bit,
- // then convert an unsigned cmp to a test of the sign-bit:
- // (ashr X, ShiftC) u> C --> X s< 0
- // (ashr X, ShiftC) u< C --> X s> -1
- if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
- if (Pred == CmpInst::ICMP_UGT) {
- return new ICmpInst(CmpInst::ICMP_SLT, X,
- ConstantInt::getNullValue(ShrTy));
- }
- if (Pred == CmpInst::ICMP_ULT) {
- return new ICmpInst(CmpInst::ICMP_SGT, X,
- ConstantInt::getAllOnesValue(ShrTy));
- }
- }
- } else {
- if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
- // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
- // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
- APInt ShiftedC = C.shl(ShAmtVal);
- if (ShiftedC.lshr(ShAmtVal) == C)
- return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
- }
- if (Pred == CmpInst::ICMP_UGT) {
- // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
- APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
- if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
- return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
- }
- }
- if (!Cmp.isEquality())
- return nullptr;
- // Handle equality comparisons of shift-by-constant.
- // If the comparison constant changes with the shift, the comparison cannot
- // succeed (bits of the comparison constant cannot match the shifted value).
- // This should be known by InstSimplify and already be folded to true/false.
- assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
- (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
- "Expected icmp+shr simplify did not occur.");
- // If the bits shifted out are known zero, compare the unshifted value:
- // (X & 4) >> 1 == 2 --> (X & 4) == 4.
- if (Shr->isExact())
- return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
- if (C.isZero()) {
- // == 0 is u< 1.
- if (Pred == CmpInst::ICMP_EQ)
- return new ICmpInst(CmpInst::ICMP_ULT, X,
- ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
- else
- return new ICmpInst(CmpInst::ICMP_UGT, X,
- ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
- }
- if (Shr->hasOneUse()) {
- // Canonicalize the shift into an 'and':
- // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
- APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = ConstantInt::get(ShrTy, Val);
- Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
- return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
- BinaryOperator *SRem,
- const APInt &C) {
- // Match an 'is positive' or 'is negative' comparison of remainder by a
- // constant power-of-2 value:
- // (X % pow2C) sgt/slt 0
- const ICmpInst::Predicate Pred = Cmp.getPredicate();
- if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
- Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
- return nullptr;
- // TODO: The one-use check is standard because we do not typically want to
- // create longer instruction sequences, but this might be a special-case
- // because srem is not good for analysis or codegen.
- if (!SRem->hasOneUse())
- return nullptr;
- const APInt *DivisorC;
- if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
- return nullptr;
- // For cmp_sgt/cmp_slt only zero valued C is handled.
- // For cmp_eq/cmp_ne only positive valued C is handled.
- if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
- !C.isZero()) ||
- ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
- !C.isStrictlyPositive()))
- return nullptr;
- // Mask off the sign bit and the modulo bits (low-bits).
- Type *Ty = SRem->getType();
- APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
- Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
- Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
- if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
- return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
- // For 'is positive?' check that the sign-bit is clear and at least 1 masked
- // bit is set. Example:
- // (i8 X % 32) s> 0 --> (X & 159) s> 0
- if (Pred == ICmpInst::ICMP_SGT)
- return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
- // For 'is negative?' check that the sign-bit is set and at least 1 masked
- // bit is set. Example:
- // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
- return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
- }
- /// Fold icmp (udiv X, Y), C.
- Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
- BinaryOperator *UDiv,
- const APInt &C) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *X = UDiv->getOperand(0);
- Value *Y = UDiv->getOperand(1);
- Type *Ty = UDiv->getType();
- const APInt *C2;
- if (!match(X, m_APInt(C2)))
- return nullptr;
- assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
- // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
- if (Pred == ICmpInst::ICMP_UGT) {
- assert(!C.isMaxValue() &&
- "icmp ugt X, UINT_MAX should have been simplified already.");
- return new ICmpInst(ICmpInst::ICMP_ULE, Y,
- ConstantInt::get(Ty, C2->udiv(C + 1)));
- }
- // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
- if (Pred == ICmpInst::ICMP_ULT) {
- assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
- return new ICmpInst(ICmpInst::ICMP_UGT, Y,
- ConstantInt::get(Ty, C2->udiv(C)));
- }
- return nullptr;
- }
- /// Fold icmp ({su}div X, Y), C.
- Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
- BinaryOperator *Div,
- const APInt &C) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *X = Div->getOperand(0);
- Value *Y = Div->getOperand(1);
- Type *Ty = Div->getType();
- bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
- // If unsigned division and the compare constant is bigger than
- // UMAX/2 (negative), there's only one pair of values that satisfies an
- // equality check, so eliminate the division:
- // (X u/ Y) == C --> (X == C) && (Y == 1)
- // (X u/ Y) != C --> (X != C) || (Y != 1)
- // Similarly, if signed division and the compare constant is exactly SMIN:
- // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
- // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
- if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
- (!DivIsSigned || C.isMinSignedValue())) {
- Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
- Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
- auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- return BinaryOperator::Create(Logic, XBig, YOne);
- }
- // Fold: icmp pred ([us]div X, C2), C -> range test
- // Fold this div into the comparison, producing a range check.
- // Determine, based on the divide type, what the range is being
- // checked. If there is an overflow on the low or high side, remember
- // it, otherwise compute the range [low, hi) bounding the new value.
- // See: InsertRangeTest above for the kinds of replacements possible.
- const APInt *C2;
- if (!match(Y, m_APInt(C2)))
- return nullptr;
- // FIXME: If the operand types don't match the type of the divide
- // then don't attempt this transform. The code below doesn't have the
- // logic to deal with a signed divide and an unsigned compare (and
- // vice versa). This is because (x /s C2) <s C produces different
- // results than (x /s C2) <u C or (x /u C2) <s C or even
- // (x /u C2) <u C. Simply casting the operands and result won't
- // work. :( The if statement below tests that condition and bails
- // if it finds it.
- if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
- return nullptr;
- // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
- // INT_MIN will also fail if the divisor is 1. Although folds of all these
- // division-by-constant cases should be present, we can not assert that they
- // have happened before we reach this icmp instruction.
- if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
- return nullptr;
- // Compute Prod = C * C2. We are essentially solving an equation of
- // form X / C2 = C. We solve for X by multiplying C2 and C.
- // By solving for X, we can turn this into a range check instead of computing
- // a divide.
- APInt Prod = C * *C2;
- // Determine if the product overflows by seeing if the product is not equal to
- // the divide. Make sure we do the same kind of divide as in the LHS
- // instruction that we're folding.
- bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
- // If the division is known to be exact, then there is no remainder from the
- // divide, so the covered range size is unit, otherwise it is the divisor.
- APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
- // Figure out the interval that is being checked. For example, a comparison
- // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
- // Compute this interval based on the constants involved and the signedness of
- // the compare/divide. This computes a half-open interval, keeping track of
- // whether either value in the interval overflows. After analysis each
- // overflow variable is set to 0 if it's corresponding bound variable is valid
- // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
- int LoOverflow = 0, HiOverflow = 0;
- APInt LoBound, HiBound;
- if (!DivIsSigned) { // udiv
- // e.g. X/5 op 3 --> [15, 20)
- LoBound = Prod;
- HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow) {
- // If this is not an exact divide, then many values in the range collapse
- // to the same result value.
- HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
- }
- } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
- if (C.isZero()) { // (X / pos) op 0
- // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
- LoBound = -(RangeSize - 1);
- HiBound = RangeSize;
- } else if (C.isStrictlyPositive()) { // (X / pos) op pos
- LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
- HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
- } else { // (X / pos) op neg
- // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
- HiBound = Prod + 1;
- LoOverflow = HiOverflow = ProdOV ? -1 : 0;
- if (!LoOverflow) {
- APInt DivNeg = -RangeSize;
- LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
- }
- }
- } else if (C2->isNegative()) { // Divisor is < 0.
- if (Div->isExact())
- RangeSize.negate();
- if (C.isZero()) { // (X / neg) op 0
- // e.g. X/-5 op 0 --> [-4, 5)
- LoBound = RangeSize + 1;
- HiBound = -RangeSize;
- if (HiBound == *C2) { // -INTMIN = INTMIN
- HiOverflow = 1; // [INTMIN+1, overflow)
- HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
- }
- } else if (C.isStrictlyPositive()) { // (X / neg) op pos
- // e.g. X/-5 op 3 --> [-19, -14)
- HiBound = Prod + 1;
- HiOverflow = LoOverflow = ProdOV ? -1 : 0;
- if (!LoOverflow)
- LoOverflow =
- addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
- } else { // (X / neg) op neg
- LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
- LoOverflow = HiOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
- }
- // Dividing by a negative swaps the condition. LT <-> GT
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- switch (Pred) {
- default:
- llvm_unreachable("Unhandled icmp predicate!");
- case ICmpInst::ICMP_EQ:
- if (LoOverflow && HiOverflow)
- return replaceInstUsesWith(Cmp, Builder.getFalse());
- if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
- X, ConstantInt::get(Ty, LoBound));
- if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
- X, ConstantInt::get(Ty, HiBound));
- return replaceInstUsesWith(
- Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
- case ICmpInst::ICMP_NE:
- if (LoOverflow && HiOverflow)
- return replaceInstUsesWith(Cmp, Builder.getTrue());
- if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
- X, ConstantInt::get(Ty, LoBound));
- if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
- X, ConstantInt::get(Ty, HiBound));
- return replaceInstUsesWith(
- Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT:
- if (LoOverflow == +1) // Low bound is greater than input range.
- return replaceInstUsesWith(Cmp, Builder.getTrue());
- if (LoOverflow == -1) // Low bound is less than input range.
- return replaceInstUsesWith(Cmp, Builder.getFalse());
- return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT:
- if (HiOverflow == +1) // High bound greater than input range.
- return replaceInstUsesWith(Cmp, Builder.getFalse());
- if (HiOverflow == -1) // High bound less than input range.
- return replaceInstUsesWith(Cmp, Builder.getTrue());
- if (Pred == ICmpInst::ICMP_UGT)
- return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
- return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
- }
- return nullptr;
- }
- /// Fold icmp (sub X, Y), C.
- Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
- BinaryOperator *Sub,
- const APInt &C) {
- Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Type *Ty = Sub->getType();
- // (SubC - Y) == C) --> Y == (SubC - C)
- // (SubC - Y) != C) --> Y != (SubC - C)
- Constant *SubC;
- if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
- return new ICmpInst(Pred, Y,
- ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
- }
- // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
- const APInt *C2;
- APInt SubResult;
- ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
- bool HasNSW = Sub->hasNoSignedWrap();
- bool HasNUW = Sub->hasNoUnsignedWrap();
- if (match(X, m_APInt(C2)) &&
- ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
- !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
- return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
- // X - Y == 0 --> X == Y.
- // X - Y != 0 --> X != Y.
- // TODO: We allow this with multiple uses as long as the other uses are not
- // in phis. The phi use check is guarding against a codegen regression
- // for a loop test. If the backend could undo this (and possibly
- // subsequent transforms), we would not need this hack.
- if (Cmp.isEquality() && C.isZero() &&
- none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
- return new ICmpInst(Pred, X, Y);
- // The following transforms are only worth it if the only user of the subtract
- // is the icmp.
- // TODO: This is an artificial restriction for all of the transforms below
- // that only need a single replacement icmp. Can these use the phi test
- // like the transform above here?
- if (!Sub->hasOneUse())
- return nullptr;
- if (Sub->hasNoSignedWrap()) {
- // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
- if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
- return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
- // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
- if (Pred == ICmpInst::ICMP_SGT && C.isZero())
- return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
- // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
- if (Pred == ICmpInst::ICMP_SLT && C.isZero())
- return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
- // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
- if (Pred == ICmpInst::ICMP_SLT && C.isOne())
- return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
- }
- if (!match(X, m_APInt(C2)))
- return nullptr;
- // C2 - Y <u C -> (Y | (C - 1)) == C2
- // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
- if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
- (*C2 & (C - 1)) == (C - 1))
- return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
- // C2 - Y >u C -> (Y | C) != C2
- // iff C2 & C == C and C + 1 is a power of 2
- if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
- return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
- // We have handled special cases that reduce.
- // Canonicalize any remaining sub to add as:
- // (C2 - Y) > C --> (Y + ~C2) < ~C
- Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
- HasNUW, HasNSW);
- return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
- }
- /// Fold icmp (add X, Y), C.
- Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
- BinaryOperator *Add,
- const APInt &C) {
- Value *Y = Add->getOperand(1);
- const APInt *C2;
- if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
- return nullptr;
- // Fold icmp pred (add X, C2), C.
- Value *X = Add->getOperand(0);
- Type *Ty = Add->getType();
- const CmpInst::Predicate Pred = Cmp.getPredicate();
- // If the add does not wrap, we can always adjust the compare by subtracting
- // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
- // are canonicalized to SGT/SLT/UGT/ULT.
- if ((Add->hasNoSignedWrap() &&
- (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
- (Add->hasNoUnsignedWrap() &&
- (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
- bool Overflow;
- APInt NewC =
- Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
- // If there is overflow, the result must be true or false.
- // TODO: Can we assert there is no overflow because InstSimplify always
- // handles those cases?
- if (!Overflow)
- // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
- return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
- }
- auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
- const APInt &Upper = CR.getUpper();
- const APInt &Lower = CR.getLower();
- if (Cmp.isSigned()) {
- if (Lower.isSignMask())
- return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
- if (Upper.isSignMask())
- return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
- } else {
- if (Lower.isMinValue())
- return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
- if (Upper.isMinValue())
- return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
- }
- // This set of folds is intentionally placed after folds that use no-wrapping
- // flags because those folds are likely better for later analysis/codegen.
- const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
- const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
- // Fold compare with offset to opposite sign compare if it eliminates offset:
- // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
- if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
- return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
- // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
- if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
- return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
- // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
- if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
- return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
- // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
- if (Pred == CmpInst::ICMP_SLT && C == *C2)
- return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
- // (X + -1) <u C --> X <=u C (if X is never null)
- if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) {
- const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
- if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT))
- return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C));
- }
- if (!Add->hasOneUse())
- return nullptr;
- // X+C <u C2 -> (X & -C2) == C
- // iff C & (C2-1) == 0
- // C2 is a power of 2
- if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
- return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
- ConstantExpr::getNeg(cast<Constant>(Y)));
- // X+C >u C2 -> (X & ~C2) != C
- // iff C & C2 == 0
- // C2+1 is a power of 2
- if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
- return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
- ConstantExpr::getNeg(cast<Constant>(Y)));
- // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
- // to the ult form.
- // X+C2 >u C -> X+(C2-C-1) <u ~C
- if (Pred == ICmpInst::ICMP_UGT)
- return new ICmpInst(ICmpInst::ICMP_ULT,
- Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
- ConstantInt::get(Ty, ~C));
- return nullptr;
- }
- bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
- Value *&RHS, ConstantInt *&Less,
- ConstantInt *&Equal,
- ConstantInt *&Greater) {
- // TODO: Generalize this to work with other comparison idioms or ensure
- // they get canonicalized into this form.
- // select i1 (a == b),
- // i32 Equal,
- // i32 (select i1 (a < b), i32 Less, i32 Greater)
- // where Equal, Less and Greater are placeholders for any three constants.
- ICmpInst::Predicate PredA;
- if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
- !ICmpInst::isEquality(PredA))
- return false;
- Value *EqualVal = SI->getTrueValue();
- Value *UnequalVal = SI->getFalseValue();
- // We still can get non-canonical predicate here, so canonicalize.
- if (PredA == ICmpInst::ICMP_NE)
- std::swap(EqualVal, UnequalVal);
- if (!match(EqualVal, m_ConstantInt(Equal)))
- return false;
- ICmpInst::Predicate PredB;
- Value *LHS2, *RHS2;
- if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
- m_ConstantInt(Less), m_ConstantInt(Greater))))
- return false;
- // We can get predicate mismatch here, so canonicalize if possible:
- // First, ensure that 'LHS' match.
- if (LHS2 != LHS) {
- // x sgt y <--> y slt x
- std::swap(LHS2, RHS2);
- PredB = ICmpInst::getSwappedPredicate(PredB);
- }
- if (LHS2 != LHS)
- return false;
- // We also need to canonicalize 'RHS'.
- if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
- // x sgt C-1 <--> x sge C <--> not(x slt C)
- auto FlippedStrictness =
- InstCombiner::getFlippedStrictnessPredicateAndConstant(
- PredB, cast<Constant>(RHS2));
- if (!FlippedStrictness)
- return false;
- assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
- "basic correctness failure");
- RHS2 = FlippedStrictness->second;
- // And kind-of perform the result swap.
- std::swap(Less, Greater);
- PredB = ICmpInst::ICMP_SLT;
- }
- return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
- }
- Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
- SelectInst *Select,
- ConstantInt *C) {
- assert(C && "Cmp RHS should be a constant int!");
- // If we're testing a constant value against the result of a three way
- // comparison, the result can be expressed directly in terms of the
- // original values being compared. Note: We could possibly be more
- // aggressive here and remove the hasOneUse test. The original select is
- // really likely to simplify or sink when we remove a test of the result.
- Value *OrigLHS, *OrigRHS;
- ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
- if (Cmp.hasOneUse() &&
- matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
- C3GreaterThan)) {
- assert(C1LessThan && C2Equal && C3GreaterThan);
- bool TrueWhenLessThan =
- ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
- ->isAllOnesValue();
- bool TrueWhenEqual =
- ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
- ->isAllOnesValue();
- bool TrueWhenGreaterThan =
- ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
- ->isAllOnesValue();
- // This generates the new instruction that will replace the original Cmp
- // Instruction. Instead of enumerating the various combinations when
- // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
- // false, we rely on chaining of ORs and future passes of InstCombine to
- // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
- // When none of the three constants satisfy the predicate for the RHS (C),
- // the entire original Cmp can be simplified to a false.
- Value *Cond = Builder.getFalse();
- if (TrueWhenLessThan)
- Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
- OrigLHS, OrigRHS));
- if (TrueWhenEqual)
- Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
- OrigLHS, OrigRHS));
- if (TrueWhenGreaterThan)
- Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
- OrigLHS, OrigRHS));
- return replaceInstUsesWith(Cmp, Cond);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
- auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
- if (!Bitcast)
- return nullptr;
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *Op1 = Cmp.getOperand(1);
- Value *BCSrcOp = Bitcast->getOperand(0);
- Type *SrcType = Bitcast->getSrcTy();
- Type *DstType = Bitcast->getType();
- // Make sure the bitcast doesn't change between scalar and vector and
- // doesn't change the number of vector elements.
- if (SrcType->isVectorTy() == DstType->isVectorTy() &&
- SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
- // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
- Value *X;
- if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
- // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
- // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
- // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
- // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
- if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
- Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
- match(Op1, m_Zero()))
- return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
- // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
- if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
- return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
- // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
- if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
- return new ICmpInst(Pred, X,
- ConstantInt::getAllOnesValue(X->getType()));
- }
- // Zero-equality checks are preserved through unsigned floating-point casts:
- // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
- // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
- if (match(BCSrcOp, m_UIToFP(m_Value(X))))
- if (Cmp.isEquality() && match(Op1, m_Zero()))
- return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
- // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
- // the FP extend/truncate because that cast does not change the sign-bit.
- // This is true for all standard IEEE-754 types and the X86 80-bit type.
- // The sign-bit is always the most significant bit in those types.
- const APInt *C;
- bool TrueIfSigned;
- if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
- isSignBitCheck(Pred, *C, TrueIfSigned)) {
- if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
- match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
- // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
- // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
- Type *XType = X->getType();
- // We can't currently handle Power style floating point operations here.
- if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
- Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
- if (auto *XVTy = dyn_cast<VectorType>(XType))
- NewType = VectorType::get(NewType, XVTy->getElementCount());
- Value *NewBitcast = Builder.CreateBitCast(X, NewType);
- if (TrueIfSigned)
- return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
- ConstantInt::getNullValue(NewType));
- else
- return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
- ConstantInt::getAllOnesValue(NewType));
- }
- }
- }
- }
- // Test to see if the operands of the icmp are casted versions of other
- // values. If the ptr->ptr cast can be stripped off both arguments, do so.
- if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
- // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
- // so eliminate it as well.
- if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
- Op1 = BC2->getOperand(0);
- Op1 = Builder.CreateBitCast(Op1, SrcType);
- return new ICmpInst(Pred, BCSrcOp, Op1);
- }
- const APInt *C;
- if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
- !SrcType->isIntOrIntVectorTy())
- return nullptr;
- // If this is checking if all elements of a vector compare are set or not,
- // invert the casted vector equality compare and test if all compare
- // elements are clear or not. Compare against zero is generally easier for
- // analysis and codegen.
- // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
- // Example: are all elements equal? --> are zero elements not equal?
- // TODO: Try harder to reduce compare of 2 freely invertible operands?
- if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
- isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
- Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType);
- return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
- }
- // If this is checking if all elements of an extended vector are clear or not,
- // compare in a narrow type to eliminate the extend:
- // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
- Value *X;
- if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
- match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
- if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
- Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
- Value *NewCast = Builder.CreateBitCast(X, NewType);
- return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
- }
- }
- // Folding: icmp <pred> iN X, C
- // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
- // and C is a splat of a K-bit pattern
- // and SC is a constant vector = <C', C', C', ..., C'>
- // Into:
- // %E = extractelement <M x iK> %vec, i32 C'
- // icmp <pred> iK %E, trunc(C)
- Value *Vec;
- ArrayRef<int> Mask;
- if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
- // Check whether every element of Mask is the same constant
- if (all_equal(Mask)) {
- auto *VecTy = cast<VectorType>(SrcType);
- auto *EltTy = cast<IntegerType>(VecTy->getElementType());
- if (C->isSplat(EltTy->getBitWidth())) {
- // Fold the icmp based on the value of C
- // If C is M copies of an iK sized bit pattern,
- // then:
- // => %E = extractelement <N x iK> %vec, i32 Elem
- // icmp <pred> iK %SplatVal, <pattern>
- Value *Elem = Builder.getInt32(Mask[0]);
- Value *Extract = Builder.CreateExtractElement(Vec, Elem);
- Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
- return new ICmpInst(Pred, Extract, NewC);
- }
- }
- }
- return nullptr;
- }
- /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
- /// where X is some kind of instruction.
- Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
- const APInt *C;
- if (match(Cmp.getOperand(1), m_APInt(C))) {
- if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
- if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
- return I;
- if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
- // For now, we only support constant integers while folding the
- // ICMP(SELECT)) pattern. We can extend this to support vector of integers
- // similar to the cases handled by binary ops above.
- if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
- if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
- return I;
- if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
- if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
- return I;
- if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
- if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
- return I;
- // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
- // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
- // TODO: This checks one-use, but that is not strictly necessary.
- Value *Cmp0 = Cmp.getOperand(0);
- Value *X, *Y;
- if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() &&
- (match(Cmp0,
- m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>(
- m_Value(X), m_Value(Y)))) ||
- match(Cmp0,
- m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
- m_Value(X), m_Value(Y))))))
- return new ICmpInst(Cmp.getPredicate(), X, Y);
- }
- if (match(Cmp.getOperand(1), m_APIntAllowUndef(C)))
- return foldICmpInstWithConstantAllowUndef(Cmp, *C);
- return nullptr;
- }
- /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
- /// icmp eq/ne BO, C.
- Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
- ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
- // TODO: Some of these folds could work with arbitrary constants, but this
- // function is limited to scalar and vector splat constants.
- if (!Cmp.isEquality())
- return nullptr;
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
- Constant *RHS = cast<Constant>(Cmp.getOperand(1));
- Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
- switch (BO->getOpcode()) {
- case Instruction::SRem:
- // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
- if (C.isZero() && BO->hasOneUse()) {
- const APInt *BOC;
- if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
- Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
- return new ICmpInst(Pred, NewRem,
- Constant::getNullValue(BO->getType()));
- }
- }
- break;
- case Instruction::Add: {
- // (A + C2) == C --> A == (C - C2)
- // (A + C2) != C --> A != (C - C2)
- // TODO: Remove the one-use limitation? See discussion in D58633.
- if (Constant *C2 = dyn_cast<Constant>(BOp1)) {
- if (BO->hasOneUse())
- return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2));
- } else if (C.isZero()) {
- // Replace ((add A, B) != 0) with (A != -B) if A or B is
- // efficiently invertible, or if the add has just this one use.
- if (Value *NegVal = dyn_castNegVal(BOp1))
- return new ICmpInst(Pred, BOp0, NegVal);
- if (Value *NegVal = dyn_castNegVal(BOp0))
- return new ICmpInst(Pred, NegVal, BOp1);
- if (BO->hasOneUse()) {
- Value *Neg = Builder.CreateNeg(BOp1);
- Neg->takeName(BO);
- return new ICmpInst(Pred, BOp0, Neg);
- }
- }
- break;
- }
- case Instruction::Xor:
- if (BO->hasOneUse()) {
- if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
- // For the xor case, we can xor two constants together, eliminating
- // the explicit xor.
- return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
- } else if (C.isZero()) {
- // Replace ((xor A, B) != 0) with (A != B)
- return new ICmpInst(Pred, BOp0, BOp1);
- }
- }
- break;
- case Instruction::Or: {
- const APInt *BOC;
- if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
- // Comparing if all bits outside of a constant mask are set?
- // Replace (X | C) == -1 with (X & ~C) == ~C.
- // This removes the -1 constant.
- Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
- Value *And = Builder.CreateAnd(BOp0, NotBOC);
- return new ICmpInst(Pred, And, NotBOC);
- }
- break;
- }
- case Instruction::And: {
- const APInt *BOC;
- if (match(BOp1, m_APInt(BOC))) {
- // If we have ((X & C) == C), turn it into ((X & C) != 0).
- if (C == *BOC && C.isPowerOf2())
- return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
- BO, Constant::getNullValue(RHS->getType()));
- }
- break;
- }
- case Instruction::UDiv:
- if (C.isZero()) {
- // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
- auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
- return new ICmpInst(NewPred, BOp1, BOp0);
- }
- break;
- default:
- break;
- }
- return nullptr;
- }
- /// Fold an equality icmp with LLVM intrinsic and constant operand.
- Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
- ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
- Type *Ty = II->getType();
- unsigned BitWidth = C.getBitWidth();
- const ICmpInst::Predicate Pred = Cmp.getPredicate();
- switch (II->getIntrinsicID()) {
- case Intrinsic::abs:
- // abs(A) == 0 -> A == 0
- // abs(A) == INT_MIN -> A == INT_MIN
- if (C.isZero() || C.isMinSignedValue())
- return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
- break;
- case Intrinsic::bswap:
- // bswap(A) == C -> A == bswap(C)
- return new ICmpInst(Pred, II->getArgOperand(0),
- ConstantInt::get(Ty, C.byteSwap()));
- case Intrinsic::ctlz:
- case Intrinsic::cttz: {
- // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
- if (C == BitWidth)
- return new ICmpInst(Pred, II->getArgOperand(0),
- ConstantInt::getNullValue(Ty));
- // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
- // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
- // Limit to one use to ensure we don't increase instruction count.
- unsigned Num = C.getLimitedValue(BitWidth);
- if (Num != BitWidth && II->hasOneUse()) {
- bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
- APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
- : APInt::getHighBitsSet(BitWidth, Num + 1);
- APInt Mask2 = IsTrailing
- ? APInt::getOneBitSet(BitWidth, Num)
- : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
- return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
- ConstantInt::get(Ty, Mask2));
- }
- break;
- }
- case Intrinsic::ctpop: {
- // popcount(A) == 0 -> A == 0 and likewise for !=
- // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
- bool IsZero = C.isZero();
- if (IsZero || C == BitWidth)
- return new ICmpInst(Pred, II->getArgOperand(0),
- IsZero ? Constant::getNullValue(Ty)
- : Constant::getAllOnesValue(Ty));
- break;
- }
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- if (II->getArgOperand(0) == II->getArgOperand(1)) {
- const APInt *RotAmtC;
- // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
- // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
- if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
- return new ICmpInst(Pred, II->getArgOperand(0),
- II->getIntrinsicID() == Intrinsic::fshl
- ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
- : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
- }
- break;
- case Intrinsic::uadd_sat: {
- // uadd.sat(a, b) == 0 -> (a | b) == 0
- if (C.isZero()) {
- Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
- return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
- }
- break;
- }
- case Intrinsic::usub_sat: {
- // usub.sat(a, b) == 0 -> a <= b
- if (C.isZero()) {
- ICmpInst::Predicate NewPred =
- Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
- return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
- }
- break;
- }
- default:
- break;
- }
- return nullptr;
- }
- /// Fold an icmp with LLVM intrinsics
- static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
- assert(Cmp.isEquality());
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *Op0 = Cmp.getOperand(0);
- Value *Op1 = Cmp.getOperand(1);
- const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
- const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
- if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
- return nullptr;
- switch (IIOp0->getIntrinsicID()) {
- case Intrinsic::bswap:
- case Intrinsic::bitreverse:
- // If both operands are byte-swapped or bit-reversed, just compare the
- // original values.
- return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- // If both operands are rotated by same amount, just compare the
- // original values.
- if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
- break;
- if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
- break;
- if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
- break;
- return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
- default:
- break;
- }
- return nullptr;
- }
- /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
- /// where X is some kind of instruction and C is AllowUndef.
- /// TODO: Move more folds which allow undef to this function.
- Instruction *
- InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
- const APInt &C) {
- const ICmpInst::Predicate Pred = Cmp.getPredicate();
- if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
- switch (II->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
- // (rot X, ?) == 0/-1 --> X == 0/-1
- if (C.isZero() || C.isAllOnes())
- return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
- }
- break;
- }
- }
- return nullptr;
- }
- /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
- Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
- BinaryOperator *BO,
- const APInt &C) {
- switch (BO->getOpcode()) {
- case Instruction::Xor:
- if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::And:
- if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::Or:
- if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::Mul:
- if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::Shl:
- if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::LShr:
- case Instruction::AShr:
- if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::SRem:
- if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::UDiv:
- if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
- return I;
- [[fallthrough]];
- case Instruction::SDiv:
- if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::Sub:
- if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
- return I;
- break;
- case Instruction::Add:
- if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
- return I;
- break;
- default:
- break;
- }
- // TODO: These folds could be refactored to be part of the above calls.
- return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
- }
- /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
- Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
- IntrinsicInst *II,
- const APInt &C) {
- if (Cmp.isEquality())
- return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
- Type *Ty = II->getType();
- unsigned BitWidth = C.getBitWidth();
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- switch (II->getIntrinsicID()) {
- case Intrinsic::ctpop: {
- // (ctpop X > BitWidth - 1) --> X == -1
- Value *X = II->getArgOperand(0);
- if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
- return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
- ConstantInt::getAllOnesValue(Ty));
- // (ctpop X < BitWidth) --> X != -1
- if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
- return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
- ConstantInt::getAllOnesValue(Ty));
- break;
- }
- case Intrinsic::ctlz: {
- // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
- if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
- unsigned Num = C.getLimitedValue();
- APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
- return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
- II->getArgOperand(0), ConstantInt::get(Ty, Limit));
- }
- // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
- if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
- unsigned Num = C.getLimitedValue();
- APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
- return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
- II->getArgOperand(0), ConstantInt::get(Ty, Limit));
- }
- break;
- }
- case Intrinsic::cttz: {
- // Limit to one use to ensure we don't increase instruction count.
- if (!II->hasOneUse())
- return nullptr;
- // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
- if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
- APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
- return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
- Builder.CreateAnd(II->getArgOperand(0), Mask),
- ConstantInt::getNullValue(Ty));
- }
- // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
- if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
- APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
- return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
- Builder.CreateAnd(II->getArgOperand(0), Mask),
- ConstantInt::getNullValue(Ty));
- }
- break;
- }
- default:
- break;
- }
- return nullptr;
- }
- /// Handle icmp with constant (but not simple integer constant) RHS.
- Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Constant *RHSC = dyn_cast<Constant>(Op1);
- Instruction *LHSI = dyn_cast<Instruction>(Op0);
- if (!RHSC || !LHSI)
- return nullptr;
- switch (LHSI->getOpcode()) {
- case Instruction::GetElementPtr:
- // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
- if (RHSC->isNullValue() &&
- cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
- return new ICmpInst(
- I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- break;
- case Instruction::PHI:
- // Only fold icmp into the PHI if the phi and icmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
- return NV;
- break;
- case Instruction::IntToPtr:
- // icmp pred inttoptr(X), null -> icmp pred X, 0
- if (RHSC->isNullValue() &&
- DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
- return new ICmpInst(
- I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- break;
- case Instruction::Load:
- // Try to optimize things like "A[i] > 4" to index computations.
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (Instruction *Res =
- foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
- return Res;
- break;
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
- SelectInst *SI, Value *RHS,
- const ICmpInst &I) {
- // Try to fold the comparison into the select arms, which will cause the
- // select to be converted into a logical and/or.
- auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
- if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
- return Res;
- if (std::optional<bool> Impl = isImpliedCondition(
- SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue))
- return ConstantInt::get(I.getType(), *Impl);
- return nullptr;
- };
- ConstantInt *CI = nullptr;
- Value *Op1 = SimplifyOp(SI->getOperand(1), true);
- if (Op1)
- CI = dyn_cast<ConstantInt>(Op1);
- Value *Op2 = SimplifyOp(SI->getOperand(2), false);
- if (Op2)
- CI = dyn_cast<ConstantInt>(Op2);
- // We only want to perform this transformation if it will not lead to
- // additional code. This is true if either both sides of the select
- // fold to a constant (in which case the icmp is replaced with a select
- // which will usually simplify) or this is the only user of the
- // select (in which case we are trading a select+icmp for a simpler
- // select+icmp) or all uses of the select can be replaced based on
- // dominance information ("Global cases").
- bool Transform = false;
- if (Op1 && Op2)
- Transform = true;
- else if (Op1 || Op2) {
- // Local case
- if (SI->hasOneUse())
- Transform = true;
- // Global cases
- else if (CI && !CI->isZero())
- // When Op1 is constant try replacing select with second operand.
- // Otherwise Op2 is constant and try replacing select with first
- // operand.
- Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
- }
- if (Transform) {
- if (!Op1)
- Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
- if (!Op2)
- Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
- return SelectInst::Create(SI->getOperand(0), Op1, Op2);
- }
- return nullptr;
- }
- /// Some comparisons can be simplified.
- /// In this case, we are looking for comparisons that look like
- /// a check for a lossy truncation.
- /// Folds:
- /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
- /// Where Mask is some pattern that produces all-ones in low bits:
- /// (-1 >> y)
- /// ((-1 << y) >> y) <- non-canonical, has extra uses
- /// ~(-1 << y)
- /// ((1 << y) + (-1)) <- non-canonical, has extra uses
- /// The Mask can be a constant, too.
- /// For some predicates, the operands are commutative.
- /// For others, x can only be on a specific side.
- static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate SrcPred;
- Value *X, *M, *Y;
- auto m_VariableMask = m_CombineOr(
- m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
- m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
- m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
- m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
- auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
- if (!match(&I, m_c_ICmp(SrcPred,
- m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
- m_Deferred(X))))
- return nullptr;
- ICmpInst::Predicate DstPred;
- switch (SrcPred) {
- case ICmpInst::Predicate::ICMP_EQ:
- // x & (-1 >> y) == x -> x u<= (-1 >> y)
- DstPred = ICmpInst::Predicate::ICMP_ULE;
- break;
- case ICmpInst::Predicate::ICMP_NE:
- // x & (-1 >> y) != x -> x u> (-1 >> y)
- DstPred = ICmpInst::Predicate::ICMP_UGT;
- break;
- case ICmpInst::Predicate::ICMP_ULT:
- // x & (-1 >> y) u< x -> x u> (-1 >> y)
- // x u> x & (-1 >> y) -> x u> (-1 >> y)
- DstPred = ICmpInst::Predicate::ICMP_UGT;
- break;
- case ICmpInst::Predicate::ICMP_UGE:
- // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
- // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
- DstPred = ICmpInst::Predicate::ICMP_ULE;
- break;
- case ICmpInst::Predicate::ICMP_SLT:
- // x & (-1 >> y) s< x -> x s> (-1 >> y)
- // x s> x & (-1 >> y) -> x s> (-1 >> y)
- if (!match(M, m_Constant())) // Can not do this fold with non-constant.
- return nullptr;
- if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
- return nullptr;
- DstPred = ICmpInst::Predicate::ICMP_SGT;
- break;
- case ICmpInst::Predicate::ICMP_SGE:
- // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
- // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
- if (!match(M, m_Constant())) // Can not do this fold with non-constant.
- return nullptr;
- if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
- return nullptr;
- DstPred = ICmpInst::Predicate::ICMP_SLE;
- break;
- case ICmpInst::Predicate::ICMP_SGT:
- case ICmpInst::Predicate::ICMP_SLE:
- return nullptr;
- case ICmpInst::Predicate::ICMP_UGT:
- case ICmpInst::Predicate::ICMP_ULE:
- llvm_unreachable("Instsimplify took care of commut. variant");
- break;
- default:
- llvm_unreachable("All possible folds are handled.");
- }
- // The mask value may be a vector constant that has undefined elements. But it
- // may not be safe to propagate those undefs into the new compare, so replace
- // those elements by copying an existing, defined, and safe scalar constant.
- Type *OpTy = M->getType();
- auto *VecC = dyn_cast<Constant>(M);
- auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
- if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
- Constant *SafeReplacementConstant = nullptr;
- for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
- if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
- SafeReplacementConstant = VecC->getAggregateElement(i);
- break;
- }
- }
- assert(SafeReplacementConstant && "Failed to find undef replacement");
- M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
- }
- return Builder.CreateICmp(DstPred, X, M);
- }
- /// Some comparisons can be simplified.
- /// In this case, we are looking for comparisons that look like
- /// a check for a lossy signed truncation.
- /// Folds: (MaskedBits is a constant.)
- /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
- /// Into:
- /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
- /// Where KeptBits = bitwidth(%x) - MaskedBits
- static Value *
- foldICmpWithTruncSignExtendedVal(ICmpInst &I,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate SrcPred;
- Value *X;
- const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
- // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
- if (!match(&I, m_c_ICmp(SrcPred,
- m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
- m_APInt(C1))),
- m_Deferred(X))))
- return nullptr;
- // Potential handling of non-splats: for each element:
- // * if both are undef, replace with constant 0.
- // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
- // * if both are not undef, and are different, bailout.
- // * else, only one is undef, then pick the non-undef one.
- // The shift amount must be equal.
- if (*C0 != *C1)
- return nullptr;
- const APInt &MaskedBits = *C0;
- assert(MaskedBits != 0 && "shift by zero should be folded away already.");
- ICmpInst::Predicate DstPred;
- switch (SrcPred) {
- case ICmpInst::Predicate::ICMP_EQ:
- // ((%x << MaskedBits) a>> MaskedBits) == %x
- // =>
- // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
- DstPred = ICmpInst::Predicate::ICMP_ULT;
- break;
- case ICmpInst::Predicate::ICMP_NE:
- // ((%x << MaskedBits) a>> MaskedBits) != %x
- // =>
- // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
- DstPred = ICmpInst::Predicate::ICMP_UGE;
- break;
- // FIXME: are more folds possible?
- default:
- return nullptr;
- }
- auto *XType = X->getType();
- const unsigned XBitWidth = XType->getScalarSizeInBits();
- const APInt BitWidth = APInt(XBitWidth, XBitWidth);
- assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
- // KeptBits = bitwidth(%x) - MaskedBits
- const APInt KeptBits = BitWidth - MaskedBits;
- assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
- // ICmpCst = (1 << KeptBits)
- const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
- assert(ICmpCst.isPowerOf2());
- // AddCst = (1 << (KeptBits-1))
- const APInt AddCst = ICmpCst.lshr(1);
- assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
- // T0 = add %x, AddCst
- Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
- // T1 = T0 DstPred ICmpCst
- Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
- return T1;
- }
- // Given pattern:
- // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
- // we should move shifts to the same hand of 'and', i.e. rewrite as
- // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
- // We are only interested in opposite logical shifts here.
- // One of the shifts can be truncated.
- // If we can, we want to end up creating 'lshr' shift.
- static Value *
- foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
- InstCombiner::BuilderTy &Builder) {
- if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
- !I.getOperand(0)->hasOneUse())
- return nullptr;
- auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
- // Look for an 'and' of two logical shifts, one of which may be truncated.
- // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
- Instruction *XShift, *MaybeTruncation, *YShift;
- if (!match(
- I.getOperand(0),
- m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
- m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
- m_AnyLogicalShift, m_Instruction(YShift))),
- m_Instruction(MaybeTruncation)))))
- return nullptr;
- // We potentially looked past 'trunc', but only when matching YShift,
- // therefore YShift must have the widest type.
- Instruction *WidestShift = YShift;
- // Therefore XShift must have the shallowest type.
- // Or they both have identical types if there was no truncation.
- Instruction *NarrowestShift = XShift;
- Type *WidestTy = WidestShift->getType();
- Type *NarrowestTy = NarrowestShift->getType();
- assert(NarrowestTy == I.getOperand(0)->getType() &&
- "We did not look past any shifts while matching XShift though.");
- bool HadTrunc = WidestTy != I.getOperand(0)->getType();
- // If YShift is a 'lshr', swap the shifts around.
- if (match(YShift, m_LShr(m_Value(), m_Value())))
- std::swap(XShift, YShift);
- // The shifts must be in opposite directions.
- auto XShiftOpcode = XShift->getOpcode();
- if (XShiftOpcode == YShift->getOpcode())
- return nullptr; // Do not care about same-direction shifts here.
- Value *X, *XShAmt, *Y, *YShAmt;
- match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
- match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
- // If one of the values being shifted is a constant, then we will end with
- // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
- // however, we will need to ensure that we won't increase instruction count.
- if (!isa<Constant>(X) && !isa<Constant>(Y)) {
- // At least one of the hands of the 'and' should be one-use shift.
- if (!match(I.getOperand(0),
- m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
- return nullptr;
- if (HadTrunc) {
- // Due to the 'trunc', we will need to widen X. For that either the old
- // 'trunc' or the shift amt in the non-truncated shift should be one-use.
- if (!MaybeTruncation->hasOneUse() &&
- !NarrowestShift->getOperand(1)->hasOneUse())
- return nullptr;
- }
- }
- // We have two shift amounts from two different shifts. The types of those
- // shift amounts may not match. If that's the case let's bailout now.
- if (XShAmt->getType() != YShAmt->getType())
- return nullptr;
- // As input, we have the following pattern:
- // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
- // We want to rewrite that as:
- // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
- // While we know that originally (Q+K) would not overflow
- // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
- // shift amounts. so it may now overflow in smaller bitwidth.
- // To ensure that does not happen, we need to ensure that the total maximal
- // shift amount is still representable in that smaller bit width.
- unsigned MaximalPossibleTotalShiftAmount =
- (WidestTy->getScalarSizeInBits() - 1) +
- (NarrowestTy->getScalarSizeInBits() - 1);
- APInt MaximalRepresentableShiftAmount =
- APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
- if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
- return nullptr;
- // Can we fold (XShAmt+YShAmt) ?
- auto *NewShAmt = dyn_cast_or_null<Constant>(
- simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
- /*isNUW=*/false, SQ.getWithInstruction(&I)));
- if (!NewShAmt)
- return nullptr;
- NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
- unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
- // Is the new shift amount smaller than the bit width?
- // FIXME: could also rely on ConstantRange.
- if (!match(NewShAmt,
- m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
- APInt(WidestBitWidth, WidestBitWidth))))
- return nullptr;
- // An extra legality check is needed if we had trunc-of-lshr.
- if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
- auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
- WidestShift]() {
- // It isn't obvious whether it's worth it to analyze non-constants here.
- // Also, let's basically give up on non-splat cases, pessimizing vectors.
- // If *any* of these preconditions matches we can perform the fold.
- Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
- ? NewShAmt->getSplatValue()
- : NewShAmt;
- // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
- if (NewShAmtSplat &&
- (NewShAmtSplat->isNullValue() ||
- NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
- return true;
- // We consider *min* leading zeros so a single outlier
- // blocks the transform as opposed to allowing it.
- if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
- KnownBits Known = computeKnownBits(C, SQ.DL);
- unsigned MinLeadZero = Known.countMinLeadingZeros();
- // If the value being shifted has at most lowest bit set we can fold.
- unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
- if (MaxActiveBits <= 1)
- return true;
- // Precondition: NewShAmt u<= countLeadingZeros(C)
- if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
- return true;
- }
- if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
- KnownBits Known = computeKnownBits(C, SQ.DL);
- unsigned MinLeadZero = Known.countMinLeadingZeros();
- // If the value being shifted has at most lowest bit set we can fold.
- unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
- if (MaxActiveBits <= 1)
- return true;
- // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
- if (NewShAmtSplat) {
- APInt AdjNewShAmt =
- (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
- if (AdjNewShAmt.ule(MinLeadZero))
- return true;
- }
- }
- return false; // Can't tell if it's ok.
- };
- if (!CanFold())
- return nullptr;
- }
- // All good, we can do this fold.
- X = Builder.CreateZExt(X, WidestTy);
- Y = Builder.CreateZExt(Y, WidestTy);
- // The shift is the same that was for X.
- Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
- ? Builder.CreateLShr(X, NewShAmt)
- : Builder.CreateShl(X, NewShAmt);
- Value *T1 = Builder.CreateAnd(T0, Y);
- return Builder.CreateICmp(I.getPredicate(), T1,
- Constant::getNullValue(WidestTy));
- }
- /// Fold
- /// (-1 u/ x) u< y
- /// ((x * y) ?/ x) != y
- /// to
- /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
- /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
- /// will mean that we are looking for the opposite answer.
- Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
- ICmpInst::Predicate Pred;
- Value *X, *Y;
- Instruction *Mul;
- Instruction *Div;
- bool NeedNegation;
- // Look for: (-1 u/ x) u</u>= y
- if (!I.isEquality() &&
- match(&I, m_c_ICmp(Pred,
- m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
- m_Instruction(Div)),
- m_Value(Y)))) {
- Mul = nullptr;
- // Are we checking that overflow does not happen, or does happen?
- switch (Pred) {
- case ICmpInst::Predicate::ICMP_ULT:
- NeedNegation = false;
- break; // OK
- case ICmpInst::Predicate::ICMP_UGE:
- NeedNegation = true;
- break; // OK
- default:
- return nullptr; // Wrong predicate.
- }
- } else // Look for: ((x * y) / x) !=/== y
- if (I.isEquality() &&
- match(&I,
- m_c_ICmp(Pred, m_Value(Y),
- m_CombineAnd(
- m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
- m_Value(X)),
- m_Instruction(Mul)),
- m_Deferred(X))),
- m_Instruction(Div))))) {
- NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
- } else
- return nullptr;
- BuilderTy::InsertPointGuard Guard(Builder);
- // If the pattern included (x * y), we'll want to insert new instructions
- // right before that original multiplication so that we can replace it.
- bool MulHadOtherUses = Mul && !Mul->hasOneUse();
- if (MulHadOtherUses)
- Builder.SetInsertPoint(Mul);
- Function *F = Intrinsic::getDeclaration(I.getModule(),
- Div->getOpcode() == Instruction::UDiv
- ? Intrinsic::umul_with_overflow
- : Intrinsic::smul_with_overflow,
- X->getType());
- CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
- // If the multiplication was used elsewhere, to ensure that we don't leave
- // "duplicate" instructions, replace uses of that original multiplication
- // with the multiplication result from the with.overflow intrinsic.
- if (MulHadOtherUses)
- replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
- Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
- if (NeedNegation) // This technically increases instruction count.
- Res = Builder.CreateNot(Res, "mul.not.ov");
- // If we replaced the mul, erase it. Do this after all uses of Builder,
- // as the mul is used as insertion point.
- if (MulHadOtherUses)
- eraseInstFromFunction(*Mul);
- return Res;
- }
- static Instruction *foldICmpXNegX(ICmpInst &I) {
- CmpInst::Predicate Pred;
- Value *X;
- if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
- return nullptr;
- if (ICmpInst::isSigned(Pred))
- Pred = ICmpInst::getSwappedPredicate(Pred);
- else if (ICmpInst::isUnsigned(Pred))
- Pred = ICmpInst::getSignedPredicate(Pred);
- // else for equality-comparisons just keep the predicate.
- return ICmpInst::Create(Instruction::ICmp, Pred, X,
- Constant::getNullValue(X->getType()), I.getName());
- }
- /// Try to fold icmp (binop), X or icmp X, (binop).
- /// TODO: A large part of this logic is duplicated in InstSimplify's
- /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
- /// duplication.
- Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
- const SimplifyQuery &SQ) {
- const SimplifyQuery Q = SQ.getWithInstruction(&I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // Special logic for binary operators.
- BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
- BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
- if (!BO0 && !BO1)
- return nullptr;
- if (Instruction *NewICmp = foldICmpXNegX(I))
- return NewICmp;
- const CmpInst::Predicate Pred = I.getPredicate();
- Value *X;
- // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
- // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
- if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
- (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
- return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
- // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
- if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
- (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
- return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
- {
- // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
- Constant *C;
- if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
- m_ImmConstant(C)))) &&
- (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
- Constant *C2 = ConstantExpr::getNot(C);
- return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
- }
- // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
- if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
- m_ImmConstant(C)))) &&
- (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
- Constant *C2 = ConstantExpr::getNot(C);
- return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
- }
- }
- {
- // Similar to above: an unsigned overflow comparison may use offset + mask:
- // ((Op1 + C) & C) u< Op1 --> Op1 != 0
- // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
- // Op0 u> ((Op0 + C) & C) --> Op0 != 0
- // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
- BinaryOperator *BO;
- const APInt *C;
- if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
- match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
- match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
- CmpInst::Predicate NewPred =
- Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
- Constant *Zero = ConstantInt::getNullValue(Op1->getType());
- return new ICmpInst(NewPred, Op1, Zero);
- }
- if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
- match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
- match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
- CmpInst::Predicate NewPred =
- Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
- Constant *Zero = ConstantInt::getNullValue(Op1->getType());
- return new ICmpInst(NewPred, Op0, Zero);
- }
- }
- bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
- if (BO0 && isa<OverflowingBinaryOperator>(BO0))
- NoOp0WrapProblem =
- ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
- if (BO1 && isa<OverflowingBinaryOperator>(BO1))
- NoOp1WrapProblem =
- ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
- // Analyze the case when either Op0 or Op1 is an add instruction.
- // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Add) {
- A = BO0->getOperand(0);
- B = BO0->getOperand(1);
- }
- if (BO1 && BO1->getOpcode() == Instruction::Add) {
- C = BO1->getOperand(0);
- D = BO1->getOperand(1);
- }
- // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
- // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
- if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
- return new ICmpInst(Pred, A == Op1 ? B : A,
- Constant::getNullValue(Op1->getType()));
- // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
- // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
- if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
- return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
- C == Op0 ? D : C);
- // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
- if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
- NoOp1WrapProblem) {
- // Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y, *Z;
- if (A == C) {
- // C + B == C + D -> B == D
- Y = B;
- Z = D;
- } else if (A == D) {
- // D + B == C + D -> B == C
- Y = B;
- Z = C;
- } else if (B == C) {
- // A + C == C + D -> A == D
- Y = A;
- Z = D;
- } else {
- assert(B == D);
- // A + D == C + D -> A == C
- Y = A;
- Z = C;
- }
- return new ICmpInst(Pred, Y, Z);
- }
- // icmp slt (A + -1), Op1 -> icmp sle A, Op1
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
- match(B, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
- // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
- match(B, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
- // icmp sle (A + 1), Op1 -> icmp slt A, Op1
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
- // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
- // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
- match(D, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
- // icmp sle Op0, (C + -1) -> icmp slt Op0, C
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
- match(D, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
- // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
- return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
- // icmp slt Op0, (C + 1) -> icmp sle Op0, C
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
- return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
- // TODO: The subtraction-related identities shown below also hold, but
- // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
- // wouldn't happen even if they were implemented.
- //
- // icmp ult (A - 1), Op1 -> icmp ule A, Op1
- // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
- // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
- // icmp ule Op0, (C - 1) -> icmp ult Op0, C
- // icmp ule (A + 1), Op0 -> icmp ult A, Op1
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
- // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
- // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
- return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
- // icmp ult Op0, (C + 1) -> icmp ule Op0, C
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
- return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
- // if C1 has greater magnitude than C2:
- // icmp (A + C1), (C + C2) -> icmp (A + C3), C
- // s.t. C3 = C1 - C2
- //
- // if C2 has greater magnitude than C1:
- // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
- // s.t. C3 = C2 - C1
- if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
- (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
- const APInt *AP1, *AP2;
- // TODO: Support non-uniform vectors.
- // TODO: Allow undef passthrough if B AND D's element is undef.
- if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) &&
- AP1->isNegative() == AP2->isNegative()) {
- APInt AP1Abs = AP1->abs();
- APInt AP2Abs = AP2->abs();
- if (AP1Abs.uge(AP2Abs)) {
- APInt Diff = *AP1 - *AP2;
- bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1);
- bool HasNSW = BO0->hasNoSignedWrap();
- Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
- Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
- return new ICmpInst(Pred, NewAdd, C);
- } else {
- APInt Diff = *AP2 - *AP1;
- bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2);
- bool HasNSW = BO1->hasNoSignedWrap();
- Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
- Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
- return new ICmpInst(Pred, A, NewAdd);
- }
- }
- Constant *Cst1, *Cst2;
- if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
- ICmpInst::isEquality(Pred)) {
- Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
- Value *NewAdd = Builder.CreateAdd(C, Diff);
- return new ICmpInst(Pred, A, NewAdd);
- }
- }
- // Analyze the case when either Op0 or Op1 is a sub instruction.
- // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
- A = nullptr;
- B = nullptr;
- C = nullptr;
- D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Sub) {
- A = BO0->getOperand(0);
- B = BO0->getOperand(1);
- }
- if (BO1 && BO1->getOpcode() == Instruction::Sub) {
- C = BO1->getOperand(0);
- D = BO1->getOperand(1);
- }
- // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
- if (A == Op1 && NoOp0WrapProblem)
- return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
- // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
- if (C == Op0 && NoOp1WrapProblem)
- return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
- // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
- // (A - B) u>/u<= A --> B u>/u<= A
- if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
- return new ICmpInst(Pred, B, A);
- // C u</u>= (C - D) --> C u</u>= D
- if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
- return new ICmpInst(Pred, C, D);
- // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
- if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
- isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
- return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
- // C u<=/u> (C - D) --> C u</u>= D iff B != 0
- if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
- isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
- return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
- // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
- if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
- return new ICmpInst(Pred, A, C);
- // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
- if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
- return new ICmpInst(Pred, D, B);
- // icmp (0-X) < cst --> x > -cst
- if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
- Value *X;
- if (match(BO0, m_Neg(m_Value(X))))
- if (Constant *RHSC = dyn_cast<Constant>(Op1))
- if (RHSC->isNotMinSignedValue())
- return new ICmpInst(I.getSwappedPredicate(), X,
- ConstantExpr::getNeg(RHSC));
- }
- {
- // Try to remove shared constant multiplier from equality comparison:
- // X * C == Y * C (with no overflowing/aliasing) --> X == Y
- Value *X, *Y;
- const APInt *C;
- if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
- match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
- if (!C->countTrailingZeros() ||
- (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
- (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
- return new ICmpInst(Pred, X, Y);
- }
- BinaryOperator *SRem = nullptr;
- // icmp (srem X, Y), Y
- if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
- SRem = BO0;
- // icmp Y, (srem X, Y)
- else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
- Op0 == BO1->getOperand(1))
- SRem = BO1;
- if (SRem) {
- // We don't check hasOneUse to avoid increasing register pressure because
- // the value we use is the same value this instruction was already using.
- switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
- default:
- break;
- case ICmpInst::ICMP_EQ:
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- case ICmpInst::ICMP_NE:
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
- Constant::getAllOnesValue(SRem->getType()));
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
- Constant::getNullValue(SRem->getType()));
- }
- }
- if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
- BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
- switch (BO0->getOpcode()) {
- default:
- break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor: {
- if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
- return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
- const APInt *C;
- if (match(BO0->getOperand(1), m_APInt(C))) {
- // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
- if (C->isSignMask()) {
- ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
- return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
- }
- // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
- if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
- ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
- NewPred = I.getSwappedPredicate(NewPred);
- return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
- }
- }
- break;
- }
- case Instruction::Mul: {
- if (!I.isEquality())
- break;
- const APInt *C;
- if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
- !C->isOne()) {
- // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
- // Mask = -1 >> count-trailing-zeros(C).
- if (unsigned TZs = C->countTrailingZeros()) {
- Constant *Mask = ConstantInt::get(
- BO0->getType(),
- APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
- Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
- Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
- return new ICmpInst(Pred, And1, And2);
- }
- }
- break;
- }
- case Instruction::UDiv:
- case Instruction::LShr:
- if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
- break;
- return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
- case Instruction::SDiv:
- if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
- break;
- return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
- case Instruction::AShr:
- if (!BO0->isExact() || !BO1->isExact())
- break;
- return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
- case Instruction::Shl: {
- bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
- bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
- if (!NUW && !NSW)
- break;
- if (!NSW && I.isSigned())
- break;
- return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
- }
- }
- }
- if (BO0) {
- // Transform A & (L - 1) `ult` L --> L != 0
- auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
- auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
- if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
- auto *Zero = Constant::getNullValue(BO0->getType());
- return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
- }
- }
- // For unsigned predicates / eq / ne:
- // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0
- // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x
- if (!ICmpInst::isSigned(Pred)) {
- if (match(Op0, m_Shl(m_Specific(Op1), m_One())))
- return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1,
- Constant::getNullValue(Op1->getType()));
- else if (match(Op1, m_Shl(m_Specific(Op0), m_One())))
- return new ICmpInst(ICmpInst::getSignedPredicate(Pred),
- Constant::getNullValue(Op0->getType()), Op0);
- }
- if (Value *V = foldMultiplicationOverflowCheck(I))
- return replaceInstUsesWith(I, V);
- if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
- return replaceInstUsesWith(I, V);
- if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
- return replaceInstUsesWith(I, V);
- if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
- return replaceInstUsesWith(I, V);
- return nullptr;
- }
- /// Fold icmp Pred min|max(X, Y), X.
- static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *Op0 = Cmp.getOperand(0);
- Value *X = Cmp.getOperand(1);
- // Canonicalize minimum or maximum operand to LHS of the icmp.
- if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
- match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
- match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
- match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
- std::swap(Op0, X);
- Pred = Cmp.getSwappedPredicate();
- }
- Value *Y;
- if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
- // smin(X, Y) == X --> X s<= Y
- // smin(X, Y) s>= X --> X s<= Y
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
- return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
- // smin(X, Y) != X --> X s> Y
- // smin(X, Y) s< X --> X s> Y
- if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
- return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
- // These cases should be handled in InstSimplify:
- // smin(X, Y) s<= X --> true
- // smin(X, Y) s> X --> false
- return nullptr;
- }
- if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
- // smax(X, Y) == X --> X s>= Y
- // smax(X, Y) s<= X --> X s>= Y
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
- // smax(X, Y) != X --> X s< Y
- // smax(X, Y) s> X --> X s< Y
- if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
- return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
- // These cases should be handled in InstSimplify:
- // smax(X, Y) s>= X --> true
- // smax(X, Y) s< X --> false
- return nullptr;
- }
- if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
- // umin(X, Y) == X --> X u<= Y
- // umin(X, Y) u>= X --> X u<= Y
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
- return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
- // umin(X, Y) != X --> X u> Y
- // umin(X, Y) u< X --> X u> Y
- if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
- return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
- // These cases should be handled in InstSimplify:
- // umin(X, Y) u<= X --> true
- // umin(X, Y) u> X --> false
- return nullptr;
- }
- if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
- // umax(X, Y) == X --> X u>= Y
- // umax(X, Y) u<= X --> X u>= Y
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
- return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
- // umax(X, Y) != X --> X u< Y
- // umax(X, Y) u> X --> X u< Y
- if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
- return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
- // These cases should be handled in InstSimplify:
- // umax(X, Y) u>= X --> true
- // umax(X, Y) u< X --> false
- return nullptr;
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
- if (!I.isEquality())
- return nullptr;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- const CmpInst::Predicate Pred = I.getPredicate();
- Value *A, *B, *C, *D;
- if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
- if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
- Value *OtherVal = A == Op1 ? B : A;
- return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
- }
- if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
- // A^c1 == C^c2 --> A == C^(c1^c2)
- ConstantInt *C1, *C2;
- if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
- Op1->hasOneUse()) {
- Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
- Value *Xor = Builder.CreateXor(C, NC);
- return new ICmpInst(Pred, A, Xor);
- }
- // A^B == A^D -> B == D
- if (A == C)
- return new ICmpInst(Pred, B, D);
- if (A == D)
- return new ICmpInst(Pred, B, C);
- if (B == C)
- return new ICmpInst(Pred, A, D);
- if (B == D)
- return new ICmpInst(Pred, A, C);
- }
- }
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
- // A == (A^B) -> B == 0
- Value *OtherVal = A == Op0 ? B : A;
- return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
- }
- // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
- if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
- match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
- Value *X = nullptr, *Y = nullptr, *Z = nullptr;
- if (A == C) {
- X = B;
- Y = D;
- Z = A;
- } else if (A == D) {
- X = B;
- Y = C;
- Z = A;
- } else if (B == C) {
- X = A;
- Y = D;
- Z = B;
- } else if (B == D) {
- X = A;
- Y = C;
- Z = B;
- }
- if (X) { // Build (X^Y) & Z
- Op1 = Builder.CreateXor(X, Y);
- Op1 = Builder.CreateAnd(Op1, Z);
- return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
- }
- }
- {
- // Similar to above, but specialized for constant because invert is needed:
- // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
- Value *X, *Y;
- Constant *C;
- if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
- match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
- Value *Xor = Builder.CreateXor(X, Y);
- Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
- return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
- }
- }
- if (match(Op1, m_ZExt(m_Value(A))) &&
- (Op0->hasOneUse() || Op1->hasOneUse())) {
- // (B & (Pow2C-1)) == zext A --> A == trunc B
- // (B & (Pow2C-1)) != zext A --> A != trunc B
- const APInt *MaskC;
- if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) &&
- MaskC->countTrailingOnes() == A->getType()->getScalarSizeInBits())
- return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
- // Test if 2 values have different or same signbits:
- // (X u>> BitWidth - 1) == zext (Y s> -1) --> (X ^ Y) < 0
- // (X u>> BitWidth - 1) != zext (Y s> -1) --> (X ^ Y) > -1
- unsigned OpWidth = Op0->getType()->getScalarSizeInBits();
- Value *X, *Y;
- ICmpInst::Predicate Pred2;
- if (match(Op0, m_LShr(m_Value(X), m_SpecificIntAllowUndef(OpWidth - 1))) &&
- match(A, m_ICmp(Pred2, m_Value(Y), m_AllOnes())) &&
- Pred2 == ICmpInst::ICMP_SGT && X->getType() == Y->getType()) {
- Value *Xor = Builder.CreateXor(X, Y, "xor.signbits");
- Value *R = (Pred == ICmpInst::ICMP_EQ) ? Builder.CreateIsNeg(Xor) :
- Builder.CreateIsNotNeg(Xor);
- return replaceInstUsesWith(I, R);
- }
- }
- // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
- // For lshr and ashr pairs.
- const APInt *AP1, *AP2;
- if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
- match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) ||
- (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) &&
- match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) {
- if (AP1 != AP2)
- return nullptr;
- unsigned TypeBits = AP1->getBitWidth();
- unsigned ShAmt = AP1->getLimitedValue(TypeBits);
- if (ShAmt < TypeBits && ShAmt != 0) {
- ICmpInst::Predicate NewPred =
- Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
- Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
- APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
- return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
- }
- }
- // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
- ConstantInt *Cst1;
- if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
- unsigned TypeBits = Cst1->getBitWidth();
- unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
- if (ShAmt < TypeBits && ShAmt != 0) {
- Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
- APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
- Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
- I.getName() + ".mask");
- return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
- }
- }
- // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
- // "icmp (and X, mask), cst"
- uint64_t ShAmt = 0;
- if (Op0->hasOneUse() &&
- match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
- match(Op1, m_ConstantInt(Cst1)) &&
- // Only do this when A has multiple uses. This is most important to do
- // when it exposes other optimizations.
- !A->hasOneUse()) {
- unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
- if (ShAmt < ASize) {
- APInt MaskV =
- APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
- MaskV <<= ShAmt;
- APInt CmpV = Cst1->getValue().zext(ASize);
- CmpV <<= ShAmt;
- Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
- return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
- }
- }
- if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
- return ICmp;
- // Canonicalize checking for a power-of-2-or-zero value:
- // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
- // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
- if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
- m_Deferred(A)))) ||
- !match(Op1, m_ZeroInt()))
- A = nullptr;
- // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
- // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
- if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
- A = Op1;
- else if (match(Op1,
- m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
- A = Op0;
- if (A) {
- Type *Ty = A->getType();
- CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
- return Pred == ICmpInst::ICMP_EQ
- ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
- : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
- }
- // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
- // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
- // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
- // of instcombine.
- unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
- if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
- match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
- A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
- (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
- APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
- Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
- return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
- : ICmpInst::ICMP_UGE,
- Add, ConstantInt::get(A->getType(), C.shl(1)));
- }
- // Canonicalize:
- // Assume B_Pow2 != 0
- // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0
- // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0
- if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) &&
- isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I))
- return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
- ConstantInt::getNullValue(Op0->getType()));
- if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) &&
- isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I))
- return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1,
- ConstantInt::getNullValue(Op1->getType()));
- return nullptr;
- }
- static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate Pred = ICmp.getPredicate();
- Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
- // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
- // The trunc masks high bits while the compare may effectively mask low bits.
- Value *X;
- const APInt *C;
- if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
- return nullptr;
- // This matches patterns corresponding to tests of the signbit as well as:
- // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
- // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
- APInt Mask;
- if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
- Value *And = Builder.CreateAnd(X, Mask);
- Constant *Zero = ConstantInt::getNullValue(X->getType());
- return new ICmpInst(Pred, And, Zero);
- }
- unsigned SrcBits = X->getType()->getScalarSizeInBits();
- if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
- // If C is a negative power-of-2 (high-bit mask):
- // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
- Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
- Value *And = Builder.CreateAnd(X, MaskC);
- return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
- }
- if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
- // If C is not-of-power-of-2 (one clear bit):
- // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
- Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
- Value *And = Builder.CreateAnd(X, MaskC);
- return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
- assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
- auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
- Value *X;
- if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
- return nullptr;
- bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
- bool IsSignedCmp = ICmp.isSigned();
- // icmp Pred (ext X), (ext Y)
- Value *Y;
- if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
- bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0));
- bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1));
- // If we have mismatched casts, treat the zext of a non-negative source as
- // a sext to simulate matching casts. Otherwise, we are done.
- // TODO: Can we handle some predicates (equality) without non-negative?
- if (IsZext0 != IsZext1) {
- if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) ||
- (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT)))
- IsSignedExt = true;
- else
- return nullptr;
- }
- // Not an extension from the same type?
- Type *XTy = X->getType(), *YTy = Y->getType();
- if (XTy != YTy) {
- // One of the casts must have one use because we are creating a new cast.
- if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
- return nullptr;
- // Extend the narrower operand to the type of the wider operand.
- CastInst::CastOps CastOpcode =
- IsSignedExt ? Instruction::SExt : Instruction::ZExt;
- if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
- X = Builder.CreateCast(CastOpcode, X, YTy);
- else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
- Y = Builder.CreateCast(CastOpcode, Y, XTy);
- else
- return nullptr;
- }
- // (zext X) == (zext Y) --> X == Y
- // (sext X) == (sext Y) --> X == Y
- if (ICmp.isEquality())
- return new ICmpInst(ICmp.getPredicate(), X, Y);
- // A signed comparison of sign extended values simplifies into a
- // signed comparison.
- if (IsSignedCmp && IsSignedExt)
- return new ICmpInst(ICmp.getPredicate(), X, Y);
- // The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
- }
- // Below here, we are only folding a compare with constant.
- auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
- if (!C)
- return nullptr;
- // Compute the constant that would happen if we truncated to SrcTy then
- // re-extended to DestTy.
- Type *SrcTy = CastOp0->getSrcTy();
- Type *DestTy = CastOp0->getDestTy();
- Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
- Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
- // If the re-extended constant didn't change...
- if (Res2 == C) {
- if (ICmp.isEquality())
- return new ICmpInst(ICmp.getPredicate(), X, Res1);
- // A signed comparison of sign extended values simplifies into a
- // signed comparison.
- if (IsSignedExt && IsSignedCmp)
- return new ICmpInst(ICmp.getPredicate(), X, Res1);
- // The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
- }
- // The re-extended constant changed, partly changed (in the case of a vector),
- // or could not be determined to be equal (in the case of a constant
- // expression), so the constant cannot be represented in the shorter type.
- // All the cases that fold to true or false will have already been handled
- // by simplifyICmpInst, so only deal with the tricky case.
- if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
- return nullptr;
- // Is source op positive?
- // icmp ult (sext X), C --> icmp sgt X, -1
- if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
- return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
- // Is source op negative?
- // icmp ugt (sext X), C --> icmp slt X, 0
- assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
- return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
- }
- /// Handle icmp (cast x), (cast or constant).
- Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
- // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
- // icmp compares only pointer's value.
- // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
- Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
- Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
- if (SimplifiedOp0 || SimplifiedOp1)
- return new ICmpInst(ICmp.getPredicate(),
- SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
- SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
- auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
- if (!CastOp0)
- return nullptr;
- if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
- return nullptr;
- Value *Op0Src = CastOp0->getOperand(0);
- Type *SrcTy = CastOp0->getSrcTy();
- Type *DestTy = CastOp0->getDestTy();
- // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
- // integer type is the same size as the pointer type.
- auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
- if (isa<VectorType>(SrcTy)) {
- SrcTy = cast<VectorType>(SrcTy)->getElementType();
- DestTy = cast<VectorType>(DestTy)->getElementType();
- }
- return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
- };
- if (CastOp0->getOpcode() == Instruction::PtrToInt &&
- CompatibleSizes(SrcTy, DestTy)) {
- Value *NewOp1 = nullptr;
- if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
- Value *PtrSrc = PtrToIntOp1->getOperand(0);
- if (PtrSrc->getType()->getPointerAddressSpace() ==
- Op0Src->getType()->getPointerAddressSpace()) {
- NewOp1 = PtrToIntOp1->getOperand(0);
- // If the pointer types don't match, insert a bitcast.
- if (Op0Src->getType() != NewOp1->getType())
- NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
- }
- } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
- NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
- }
- if (NewOp1)
- return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
- }
- if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
- return R;
- return foldICmpWithZextOrSext(ICmp);
- }
- static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) {
- switch (BinaryOp) {
- default:
- llvm_unreachable("Unsupported binary op");
- case Instruction::Add:
- case Instruction::Sub:
- return match(RHS, m_Zero());
- case Instruction::Mul:
- return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) &&
- match(RHS, m_One());
- }
- }
- OverflowResult
- InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
- bool IsSigned, Value *LHS, Value *RHS,
- Instruction *CxtI) const {
- switch (BinaryOp) {
- default:
- llvm_unreachable("Unsupported binary op");
- case Instruction::Add:
- if (IsSigned)
- return computeOverflowForSignedAdd(LHS, RHS, CxtI);
- else
- return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
- case Instruction::Sub:
- if (IsSigned)
- return computeOverflowForSignedSub(LHS, RHS, CxtI);
- else
- return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
- case Instruction::Mul:
- if (IsSigned)
- return computeOverflowForSignedMul(LHS, RHS, CxtI);
- else
- return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
- }
- }
- bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
- bool IsSigned, Value *LHS,
- Value *RHS, Instruction &OrigI,
- Value *&Result,
- Constant *&Overflow) {
- if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
- std::swap(LHS, RHS);
- // If the overflow check was an add followed by a compare, the insertion point
- // may be pointing to the compare. We want to insert the new instructions
- // before the add in case there are uses of the add between the add and the
- // compare.
- Builder.SetInsertPoint(&OrigI);
- Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
- if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
- OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
- if (isNeutralValue(BinaryOp, RHS, IsSigned)) {
- Result = LHS;
- Overflow = ConstantInt::getFalse(OverflowTy);
- return true;
- }
- switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
- case OverflowResult::MayOverflow:
- return false;
- case OverflowResult::AlwaysOverflowsLow:
- case OverflowResult::AlwaysOverflowsHigh:
- Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
- Result->takeName(&OrigI);
- Overflow = ConstantInt::getTrue(OverflowTy);
- return true;
- case OverflowResult::NeverOverflows:
- Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
- Result->takeName(&OrigI);
- Overflow = ConstantInt::getFalse(OverflowTy);
- if (auto *Inst = dyn_cast<Instruction>(Result)) {
- if (IsSigned)
- Inst->setHasNoSignedWrap();
- else
- Inst->setHasNoUnsignedWrap();
- }
- return true;
- }
- llvm_unreachable("Unexpected overflow result");
- }
- /// Recognize and process idiom involving test for multiplication
- /// overflow.
- ///
- /// The caller has matched a pattern of the form:
- /// I = cmp u (mul(zext A, zext B), V
- /// The function checks if this is a test for overflow and if so replaces
- /// multiplication with call to 'mul.with.overflow' intrinsic.
- ///
- /// \param I Compare instruction.
- /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
- /// the compare instruction. Must be of integer type.
- /// \param OtherVal The other argument of compare instruction.
- /// \returns Instruction which must replace the compare instruction, NULL if no
- /// replacement required.
- static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
- Value *OtherVal,
- InstCombinerImpl &IC) {
- // Don't bother doing this transformation for pointers, don't do it for
- // vectors.
- if (!isa<IntegerType>(MulVal->getType()))
- return nullptr;
- assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
- assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
- auto *MulInstr = dyn_cast<Instruction>(MulVal);
- if (!MulInstr)
- return nullptr;
- assert(MulInstr->getOpcode() == Instruction::Mul);
- auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
- *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
- assert(LHS->getOpcode() == Instruction::ZExt);
- assert(RHS->getOpcode() == Instruction::ZExt);
- Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
- // Calculate type and width of the result produced by mul.with.overflow.
- Type *TyA = A->getType(), *TyB = B->getType();
- unsigned WidthA = TyA->getPrimitiveSizeInBits(),
- WidthB = TyB->getPrimitiveSizeInBits();
- unsigned MulWidth;
- Type *MulType;
- if (WidthB > WidthA) {
- MulWidth = WidthB;
- MulType = TyB;
- } else {
- MulWidth = WidthA;
- MulType = TyA;
- }
- // In order to replace the original mul with a narrower mul.with.overflow,
- // all uses must ignore upper bits of the product. The number of used low
- // bits must be not greater than the width of mul.with.overflow.
- if (MulVal->hasNUsesOrMore(2))
- for (User *U : MulVal->users()) {
- if (U == &I)
- continue;
- if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
- // Check if truncation ignores bits above MulWidth.
- unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
- if (TruncWidth > MulWidth)
- return nullptr;
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
- // Check if AND ignores bits above MulWidth.
- if (BO->getOpcode() != Instruction::And)
- return nullptr;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- const APInt &CVal = CI->getValue();
- if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
- return nullptr;
- } else {
- // In this case we could have the operand of the binary operation
- // being defined in another block, and performing the replacement
- // could break the dominance relation.
- return nullptr;
- }
- } else {
- // Other uses prohibit this transformation.
- return nullptr;
- }
- }
- // Recognize patterns
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
- ConstantInt *CI;
- Value *ValToMask;
- if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
- if (ValToMask != MulVal)
- return nullptr;
- const APInt &CVal = CI->getValue() + 1;
- if (CVal.isPowerOf2()) {
- unsigned MaskWidth = CVal.logBase2();
- if (MaskWidth == MulWidth)
- break; // Recognized
- }
- }
- return nullptr;
- case ICmpInst::ICMP_UGT:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp ugt mulval, max
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getMaxValue(MulWidth);
- MaxVal = MaxVal.zext(CI->getBitWidth());
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- case ICmpInst::ICMP_UGE:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp uge mulval, max+1
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- case ICmpInst::ICMP_ULE:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp ule mulval, max
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getMaxValue(MulWidth);
- MaxVal = MaxVal.zext(CI->getBitWidth());
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- case ICmpInst::ICMP_ULT:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp ule mulval, max + 1
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- default:
- return nullptr;
- }
- InstCombiner::BuilderTy &Builder = IC.Builder;
- Builder.SetInsertPoint(MulInstr);
- // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
- Value *MulA = A, *MulB = B;
- if (WidthA < MulWidth)
- MulA = Builder.CreateZExt(A, MulType);
- if (WidthB < MulWidth)
- MulB = Builder.CreateZExt(B, MulType);
- Function *F = Intrinsic::getDeclaration(
- I.getModule(), Intrinsic::umul_with_overflow, MulType);
- CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
- IC.addToWorklist(MulInstr);
- // If there are uses of mul result other than the comparison, we know that
- // they are truncation or binary AND. Change them to use result of
- // mul.with.overflow and adjust properly mask/size.
- if (MulVal->hasNUsesOrMore(2)) {
- Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
- for (User *U : make_early_inc_range(MulVal->users())) {
- if (U == &I || U == OtherVal)
- continue;
- if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
- if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
- IC.replaceInstUsesWith(*TI, Mul);
- else
- TI->setOperand(0, Mul);
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
- assert(BO->getOpcode() == Instruction::And);
- // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
- ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
- APInt ShortMask = CI->getValue().trunc(MulWidth);
- Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
- Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
- IC.replaceInstUsesWith(*BO, Zext);
- } else {
- llvm_unreachable("Unexpected Binary operation");
- }
- IC.addToWorklist(cast<Instruction>(U));
- }
- }
- if (isa<Instruction>(OtherVal))
- IC.addToWorklist(cast<Instruction>(OtherVal));
- // The original icmp gets replaced with the overflow value, maybe inverted
- // depending on predicate.
- bool Inverse = false;
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_NE:
- break;
- case ICmpInst::ICMP_EQ:
- Inverse = true;
- break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- if (I.getOperand(0) == MulVal)
- break;
- Inverse = true;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- if (I.getOperand(1) == MulVal)
- break;
- Inverse = true;
- break;
- default:
- llvm_unreachable("Unexpected predicate");
- }
- if (Inverse) {
- Value *Res = Builder.CreateExtractValue(Call, 1);
- return BinaryOperator::CreateNot(Res);
- }
- return ExtractValueInst::Create(Call, 1);
- }
- /// When performing a comparison against a constant, it is possible that not all
- /// the bits in the LHS are demanded. This helper method computes the mask that
- /// IS demanded.
- static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
- const APInt *RHS;
- if (!match(I.getOperand(1), m_APInt(RHS)))
- return APInt::getAllOnes(BitWidth);
- // If this is a normal comparison, it demands all bits. If it is a sign bit
- // comparison, it only demands the sign bit.
- bool UnusedBit;
- if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
- return APInt::getSignMask(BitWidth);
- switch (I.getPredicate()) {
- // For a UGT comparison, we don't care about any bits that
- // correspond to the trailing ones of the comparand. The value of these
- // bits doesn't impact the outcome of the comparison, because any value
- // greater than the RHS must differ in a bit higher than these due to carry.
- case ICmpInst::ICMP_UGT:
- return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
- // Similarly, for a ULT comparison, we don't care about the trailing zeros.
- // Any value less than the RHS must differ in a higher bit because of carries.
- case ICmpInst::ICMP_ULT:
- return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
- default:
- return APInt::getAllOnes(BitWidth);
- }
- }
- /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
- /// should be swapped.
- /// The decision is based on how many times these two operands are reused
- /// as subtract operands and their positions in those instructions.
- /// The rationale is that several architectures use the same instruction for
- /// both subtract and cmp. Thus, it is better if the order of those operands
- /// match.
- /// \return true if Op0 and Op1 should be swapped.
- static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
- // Filter out pointer values as those cannot appear directly in subtract.
- // FIXME: we may want to go through inttoptrs or bitcasts.
- if (Op0->getType()->isPointerTy())
- return false;
- // If a subtract already has the same operands as a compare, swapping would be
- // bad. If a subtract has the same operands as a compare but in reverse order,
- // then swapping is good.
- int GoodToSwap = 0;
- for (const User *U : Op0->users()) {
- if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
- GoodToSwap++;
- else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
- GoodToSwap--;
- }
- return GoodToSwap > 0;
- }
- /// Check that one use is in the same block as the definition and all
- /// other uses are in blocks dominated by a given block.
- ///
- /// \param DI Definition
- /// \param UI Use
- /// \param DB Block that must dominate all uses of \p DI outside
- /// the parent block
- /// \return true when \p UI is the only use of \p DI in the parent block
- /// and all other uses of \p DI are in blocks dominated by \p DB.
- ///
- bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
- const Instruction *UI,
- const BasicBlock *DB) const {
- assert(DI && UI && "Instruction not defined\n");
- // Ignore incomplete definitions.
- if (!DI->getParent())
- return false;
- // DI and UI must be in the same block.
- if (DI->getParent() != UI->getParent())
- return false;
- // Protect from self-referencing blocks.
- if (DI->getParent() == DB)
- return false;
- for (const User *U : DI->users()) {
- auto *Usr = cast<Instruction>(U);
- if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
- return false;
- }
- return true;
- }
- /// Return true when the instruction sequence within a block is select-cmp-br.
- static bool isChainSelectCmpBranch(const SelectInst *SI) {
- const BasicBlock *BB = SI->getParent();
- if (!BB)
- return false;
- auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
- if (!BI || BI->getNumSuccessors() != 2)
- return false;
- auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
- if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
- return false;
- return true;
- }
- /// True when a select result is replaced by one of its operands
- /// in select-icmp sequence. This will eventually result in the elimination
- /// of the select.
- ///
- /// \param SI Select instruction
- /// \param Icmp Compare instruction
- /// \param SIOpd Operand that replaces the select
- ///
- /// Notes:
- /// - The replacement is global and requires dominator information
- /// - The caller is responsible for the actual replacement
- ///
- /// Example:
- ///
- /// entry:
- /// %4 = select i1 %3, %C* %0, %C* null
- /// %5 = icmp eq %C* %4, null
- /// br i1 %5, label %9, label %7
- /// ...
- /// ; <label>:7 ; preds = %entry
- /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
- /// ...
- ///
- /// can be transformed to
- ///
- /// %5 = icmp eq %C* %0, null
- /// %6 = select i1 %3, i1 %5, i1 true
- /// br i1 %6, label %9, label %7
- /// ...
- /// ; <label>:7 ; preds = %entry
- /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
- ///
- /// Similar when the first operand of the select is a constant or/and
- /// the compare is for not equal rather than equal.
- ///
- /// NOTE: The function is only called when the select and compare constants
- /// are equal, the optimization can work only for EQ predicates. This is not a
- /// major restriction since a NE compare should be 'normalized' to an equal
- /// compare, which usually happens in the combiner and test case
- /// select-cmp-br.ll checks for it.
- bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
- const ICmpInst *Icmp,
- const unsigned SIOpd) {
- assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
- if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
- BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
- // The check for the single predecessor is not the best that can be
- // done. But it protects efficiently against cases like when SI's
- // home block has two successors, Succ and Succ1, and Succ1 predecessor
- // of Succ. Then SI can't be replaced by SIOpd because the use that gets
- // replaced can be reached on either path. So the uniqueness check
- // guarantees that the path all uses of SI (outside SI's parent) are on
- // is disjoint from all other paths out of SI. But that information
- // is more expensive to compute, and the trade-off here is in favor
- // of compile-time. It should also be noticed that we check for a single
- // predecessor and not only uniqueness. This to handle the situation when
- // Succ and Succ1 points to the same basic block.
- if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
- NumSel++;
- SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
- return true;
- }
- }
- return false;
- }
- /// Try to fold the comparison based on range information we can get by checking
- /// whether bits are known to be zero or one in the inputs.
- Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = Op0->getType();
- ICmpInst::Predicate Pred = I.getPredicate();
- // Get scalar or pointer size.
- unsigned BitWidth = Ty->isIntOrIntVectorTy()
- ? Ty->getScalarSizeInBits()
- : DL.getPointerTypeSizeInBits(Ty->getScalarType());
- if (!BitWidth)
- return nullptr;
- KnownBits Op0Known(BitWidth);
- KnownBits Op1Known(BitWidth);
- if (SimplifyDemandedBits(&I, 0,
- getDemandedBitsLHSMask(I, BitWidth),
- Op0Known, 0))
- return &I;
- if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
- return &I;
- // Given the known and unknown bits, compute a range that the LHS could be
- // in. Compute the Min, Max and RHS values based on the known bits. For the
- // EQ and NE we use unsigned values.
- APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
- APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
- if (I.isSigned()) {
- Op0Min = Op0Known.getSignedMinValue();
- Op0Max = Op0Known.getSignedMaxValue();
- Op1Min = Op1Known.getSignedMinValue();
- Op1Max = Op1Known.getSignedMaxValue();
- } else {
- Op0Min = Op0Known.getMinValue();
- Op0Max = Op0Known.getMaxValue();
- Op1Min = Op1Known.getMinValue();
- Op1Max = Op1Known.getMaxValue();
- }
- // If Min and Max are known to be the same, then SimplifyDemandedBits figured
- // out that the LHS or RHS is a constant. Constant fold this now, so that
- // code below can assume that Min != Max.
- if (!isa<Constant>(Op0) && Op0Min == Op0Max)
- return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
- if (!isa<Constant>(Op1) && Op1Min == Op1Max)
- return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
- // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
- // min/max canonical compare with some other compare. That could lead to
- // conflict with select canonicalization and infinite looping.
- // FIXME: This constraint may go away if min/max intrinsics are canonical.
- auto isMinMaxCmp = [&](Instruction &Cmp) {
- if (!Cmp.hasOneUse())
- return false;
- Value *A, *B;
- SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
- if (!SelectPatternResult::isMinOrMax(SPF))
- return false;
- return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
- match(Op1, m_MaxOrMin(m_Value(), m_Value()));
- };
- if (!isMinMaxCmp(I)) {
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_ULT: {
- if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- const APInt *CmpC;
- if (match(Op1, m_APInt(CmpC))) {
- // A <u C -> A == C-1 if min(A)+1 == C
- if (*CmpC == Op0Min + 1)
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- ConstantInt::get(Op1->getType(), *CmpC - 1));
- // X <u C --> X == 0, if the number of zero bits in the bottom of X
- // exceeds the log2 of C.
- if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Constant::getNullValue(Op1->getType()));
- }
- break;
- }
- case ICmpInst::ICMP_UGT: {
- if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- const APInt *CmpC;
- if (match(Op1, m_APInt(CmpC))) {
- // A >u C -> A == C+1 if max(a)-1 == C
- if (*CmpC == Op0Max - 1)
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- ConstantInt::get(Op1->getType(), *CmpC + 1));
- // X >u C --> X != 0, if the number of zero bits in the bottom of X
- // exceeds the log2 of C.
- if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
- return new ICmpInst(ICmpInst::ICMP_NE, Op0,
- Constant::getNullValue(Op1->getType()));
- }
- break;
- }
- case ICmpInst::ICMP_SLT: {
- if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- const APInt *CmpC;
- if (match(Op1, m_APInt(CmpC))) {
- if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- ConstantInt::get(Op1->getType(), *CmpC - 1));
- }
- break;
- }
- case ICmpInst::ICMP_SGT: {
- if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- const APInt *CmpC;
- if (match(Op1, m_APInt(CmpC))) {
- if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- ConstantInt::get(Op1->getType(), *CmpC + 1));
- }
- break;
- }
- }
- }
- // Based on the range information we know about the LHS, see if we can
- // simplify this comparison. For example, (x&4) < 8 is always true.
- switch (Pred) {
- default:
- llvm_unreachable("Unknown icmp opcode!");
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE: {
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return replaceInstUsesWith(
- I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
- // If all bits are known zero except for one, then we know at most one bit
- // is set. If the comparison is against zero, then this is a check to see if
- // *that* bit is set.
- APInt Op0KnownZeroInverted = ~Op0Known.Zero;
- if (Op1Known.isZero()) {
- // If the LHS is an AND with the same constant, look through it.
- Value *LHS = nullptr;
- const APInt *LHSC;
- if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
- *LHSC != Op0KnownZeroInverted)
- LHS = Op0;
- Value *X;
- const APInt *C1;
- if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
- Type *XTy = X->getType();
- unsigned Log2C1 = C1->countTrailingZeros();
- APInt C2 = Op0KnownZeroInverted;
- APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
- if (C2Pow2.isPowerOf2()) {
- // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
- // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
- // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1))
- unsigned Log2C2 = C2Pow2.countTrailingZeros();
- auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
- auto NewPred =
- Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
- return new ICmpInst(NewPred, X, CmpC);
- }
- }
- }
- break;
- }
- case ICmpInst::ICMP_ULT: {
- if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- }
- case ICmpInst::ICMP_UGT: {
- if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- }
- case ICmpInst::ICMP_SLT: {
- if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- }
- case ICmpInst::ICMP_SGT: {
- if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- }
- case ICmpInst::ICMP_SGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
- if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
- break;
- case ICmpInst::ICMP_SLE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
- if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
- break;
- case ICmpInst::ICMP_UGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
- if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
- break;
- case ICmpInst::ICMP_ULE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
- if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
- break;
- }
- // Turn a signed comparison into an unsigned one if both operands are known to
- // have the same sign.
- if (I.isSigned() &&
- ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
- (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
- return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
- return nullptr;
- }
- /// If one operand of an icmp is effectively a bool (value range of {0,1}),
- /// then try to reduce patterns based on that limit.
- static Instruction *foldICmpUsingBoolRange(ICmpInst &I,
- InstCombiner::BuilderTy &Builder) {
- Value *X, *Y;
- ICmpInst::Predicate Pred;
- // X must be 0 and bool must be true for "ULT":
- // X <u (zext i1 Y) --> (X == 0) & Y
- if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
- Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
- return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
- // X must be 0 or bool must be true for "ULE":
- // X <=u (sext i1 Y) --> (X == 0) | Y
- if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
- Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
- return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
- return nullptr;
- }
- std::optional<std::pair<CmpInst::Predicate, Constant *>>
- InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
- Constant *C) {
- assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
- "Only for relational integer predicates.");
- Type *Type = C->getType();
- bool IsSigned = ICmpInst::isSigned(Pred);
- CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
- bool WillIncrement =
- UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
- // Check if the constant operand can be safely incremented/decremented
- // without overflowing/underflowing.
- auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
- return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
- };
- Constant *SafeReplacementConstant = nullptr;
- if (auto *CI = dyn_cast<ConstantInt>(C)) {
- // Bail out if the constant can't be safely incremented/decremented.
- if (!ConstantIsOk(CI))
- return std::nullopt;
- } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
- unsigned NumElts = FVTy->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt)
- return std::nullopt;
- if (isa<UndefValue>(Elt))
- continue;
- // Bail out if we can't determine if this constant is min/max or if we
- // know that this constant is min/max.
- auto *CI = dyn_cast<ConstantInt>(Elt);
- if (!CI || !ConstantIsOk(CI))
- return std::nullopt;
- if (!SafeReplacementConstant)
- SafeReplacementConstant = CI;
- }
- } else {
- // ConstantExpr?
- return std::nullopt;
- }
- // It may not be safe to change a compare predicate in the presence of
- // undefined elements, so replace those elements with the first safe constant
- // that we found.
- // TODO: in case of poison, it is safe; let's replace undefs only.
- if (C->containsUndefOrPoisonElement()) {
- assert(SafeReplacementConstant && "Replacement constant not set");
- C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
- }
- CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
- // Increment or decrement the constant.
- Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
- Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
- return std::make_pair(NewPred, NewC);
- }
- /// If we have an icmp le or icmp ge instruction with a constant operand, turn
- /// it into the appropriate icmp lt or icmp gt instruction. This transform
- /// allows them to be folded in visitICmpInst.
- static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
- ICmpInst::Predicate Pred = I.getPredicate();
- if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
- InstCombiner::isCanonicalPredicate(Pred))
- return nullptr;
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- auto *Op1C = dyn_cast<Constant>(Op1);
- if (!Op1C)
- return nullptr;
- auto FlippedStrictness =
- InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
- if (!FlippedStrictness)
- return nullptr;
- return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
- }
- /// If we have a comparison with a non-canonical predicate, if we can update
- /// all the users, invert the predicate and adjust all the users.
- CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
- // Is the predicate already canonical?
- CmpInst::Predicate Pred = I.getPredicate();
- if (InstCombiner::isCanonicalPredicate(Pred))
- return nullptr;
- // Can all users be adjusted to predicate inversion?
- if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
- return nullptr;
- // Ok, we can canonicalize comparison!
- // Let's first invert the comparison's predicate.
- I.setPredicate(CmpInst::getInversePredicate(Pred));
- I.setName(I.getName() + ".not");
- // And, adapt users.
- freelyInvertAllUsersOf(&I);
- return &I;
- }
- /// Integer compare with boolean values can always be turned into bitwise ops.
- static Instruction *canonicalizeICmpBool(ICmpInst &I,
- InstCombiner::BuilderTy &Builder) {
- Value *A = I.getOperand(0), *B = I.getOperand(1);
- assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
- // A boolean compared to true/false can be simplified to Op0/true/false in
- // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
- // Cases not handled by InstSimplify are always 'not' of Op0.
- if (match(B, m_Zero())) {
- switch (I.getPredicate()) {
- case CmpInst::ICMP_EQ: // A == 0 -> !A
- case CmpInst::ICMP_ULE: // A <=u 0 -> !A
- case CmpInst::ICMP_SGE: // A >=s 0 -> !A
- return BinaryOperator::CreateNot(A);
- default:
- llvm_unreachable("ICmp i1 X, C not simplified as expected.");
- }
- } else if (match(B, m_One())) {
- switch (I.getPredicate()) {
- case CmpInst::ICMP_NE: // A != 1 -> !A
- case CmpInst::ICMP_ULT: // A <u 1 -> !A
- case CmpInst::ICMP_SGT: // A >s -1 -> !A
- return BinaryOperator::CreateNot(A);
- default:
- llvm_unreachable("ICmp i1 X, C not simplified as expected.");
- }
- }
- switch (I.getPredicate()) {
- default:
- llvm_unreachable("Invalid icmp instruction!");
- case ICmpInst::ICMP_EQ:
- // icmp eq i1 A, B -> ~(A ^ B)
- return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
- case ICmpInst::ICMP_NE:
- // icmp ne i1 A, B -> A ^ B
- return BinaryOperator::CreateXor(A, B);
- case ICmpInst::ICMP_UGT:
- // icmp ugt -> icmp ult
- std::swap(A, B);
- [[fallthrough]];
- case ICmpInst::ICMP_ULT:
- // icmp ult i1 A, B -> ~A & B
- return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
- case ICmpInst::ICMP_SGT:
- // icmp sgt -> icmp slt
- std::swap(A, B);
- [[fallthrough]];
- case ICmpInst::ICMP_SLT:
- // icmp slt i1 A, B -> A & ~B
- return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
- case ICmpInst::ICMP_UGE:
- // icmp uge -> icmp ule
- std::swap(A, B);
- [[fallthrough]];
- case ICmpInst::ICMP_ULE:
- // icmp ule i1 A, B -> ~A | B
- return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
- case ICmpInst::ICMP_SGE:
- // icmp sge -> icmp sle
- std::swap(A, B);
- [[fallthrough]];
- case ICmpInst::ICMP_SLE:
- // icmp sle i1 A, B -> A | ~B
- return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
- }
- }
- // Transform pattern like:
- // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
- // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
- // Into:
- // (X l>> Y) != 0
- // (X l>> Y) == 0
- static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate Pred, NewPred;
- Value *X, *Y;
- if (match(&Cmp,
- m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
- switch (Pred) {
- case ICmpInst::ICMP_ULE:
- NewPred = ICmpInst::ICMP_NE;
- break;
- case ICmpInst::ICMP_UGT:
- NewPred = ICmpInst::ICMP_EQ;
- break;
- default:
- return nullptr;
- }
- } else if (match(&Cmp, m_c_ICmp(Pred,
- m_OneUse(m_CombineOr(
- m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
- m_Add(m_Shl(m_One(), m_Value(Y)),
- m_AllOnes()))),
- m_Value(X)))) {
- // The variant with 'add' is not canonical, (the variant with 'not' is)
- // we only get it because it has extra uses, and can't be canonicalized,
- switch (Pred) {
- case ICmpInst::ICMP_ULT:
- NewPred = ICmpInst::ICMP_NE;
- break;
- case ICmpInst::ICMP_UGE:
- NewPred = ICmpInst::ICMP_EQ;
- break;
- default:
- return nullptr;
- }
- } else
- return nullptr;
- Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
- Constant *Zero = Constant::getNullValue(NewX->getType());
- return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
- }
- static Instruction *foldVectorCmp(CmpInst &Cmp,
- InstCombiner::BuilderTy &Builder) {
- const CmpInst::Predicate Pred = Cmp.getPredicate();
- Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
- Value *V1, *V2;
- auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) {
- Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName());
- if (auto *I = dyn_cast<Instruction>(V))
- I->copyIRFlags(&Cmp);
- Module *M = Cmp.getModule();
- Function *F = Intrinsic::getDeclaration(
- M, Intrinsic::experimental_vector_reverse, V->getType());
- return CallInst::Create(F, V);
- };
- if (match(LHS, m_VecReverse(m_Value(V1)))) {
- // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2)
- if (match(RHS, m_VecReverse(m_Value(V2))) &&
- (LHS->hasOneUse() || RHS->hasOneUse()))
- return createCmpReverse(Pred, V1, V2);
- // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat)
- if (LHS->hasOneUse() && isSplatValue(RHS))
- return createCmpReverse(Pred, V1, RHS);
- }
- // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2)
- else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
- return createCmpReverse(Pred, LHS, V2);
- ArrayRef<int> M;
- if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
- return nullptr;
- // If both arguments of the cmp are shuffles that use the same mask and
- // shuffle within a single vector, move the shuffle after the cmp:
- // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
- Type *V1Ty = V1->getType();
- if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
- V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
- Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
- return new ShuffleVectorInst(NewCmp, M);
- }
- // Try to canonicalize compare with splatted operand and splat constant.
- // TODO: We could generalize this for more than splats. See/use the code in
- // InstCombiner::foldVectorBinop().
- Constant *C;
- if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
- return nullptr;
- // Length-changing splats are ok, so adjust the constants as needed:
- // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
- Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
- int MaskSplatIndex;
- if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
- // We allow undefs in matching, but this transform removes those for safety.
- // Demanded elements analysis should be able to recover some/all of that.
- C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
- ScalarC);
- SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
- Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
- return new ShuffleVectorInst(NewCmp, NewM);
- }
- return nullptr;
- }
- // extract(uadd.with.overflow(A, B), 0) ult A
- // -> extract(uadd.with.overflow(A, B), 1)
- static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
- CmpInst::Predicate Pred = I.getPredicate();
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *UAddOv;
- Value *A, *B;
- auto UAddOvResultPat = m_ExtractValue<0>(
- m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
- if (match(Op0, UAddOvResultPat) &&
- ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
- (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
- (match(A, m_One()) || match(B, m_One()))) ||
- (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
- (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
- // extract(uadd.with.overflow(A, B), 0) < A
- // extract(uadd.with.overflow(A, 1), 0) == 0
- // extract(uadd.with.overflow(A, -1), 0) != -1
- UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
- else if (match(Op1, UAddOvResultPat) &&
- Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
- // A > extract(uadd.with.overflow(A, B), 0)
- UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
- else
- return nullptr;
- return ExtractValueInst::Create(UAddOv, 1);
- }
- static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
- if (!I.getOperand(0)->getType()->isPointerTy() ||
- NullPointerIsDefined(
- I.getParent()->getParent(),
- I.getOperand(0)->getType()->getPointerAddressSpace())) {
- return nullptr;
- }
- Instruction *Op;
- if (match(I.getOperand(0), m_Instruction(Op)) &&
- match(I.getOperand(1), m_Zero()) &&
- Op->isLaunderOrStripInvariantGroup()) {
- return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
- Op->getOperand(0), I.getOperand(1));
- }
- return nullptr;
- }
- /// This function folds patterns produced by lowering of reduce idioms, such as
- /// llvm.vector.reduce.and which are lowered into instruction chains. This code
- /// attempts to generate fewer number of scalar comparisons instead of vector
- /// comparisons when possible.
- static Instruction *foldReductionIdiom(ICmpInst &I,
- InstCombiner::BuilderTy &Builder,
- const DataLayout &DL) {
- if (I.getType()->isVectorTy())
- return nullptr;
- ICmpInst::Predicate OuterPred, InnerPred;
- Value *LHS, *RHS;
- // Match lowering of @llvm.vector.reduce.and. Turn
- /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs
- /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8
- /// %res = icmp <pred> i8 %scalar_ne, 0
- ///
- /// into
- ///
- /// %lhs.scalar = bitcast <8 x i8> %lhs to i64
- /// %rhs.scalar = bitcast <8 x i8> %rhs to i64
- /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
- ///
- /// for <pred> in {ne, eq}.
- if (!match(&I, m_ICmp(OuterPred,
- m_OneUse(m_BitCast(m_OneUse(
- m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
- m_Zero())))
- return nullptr;
- auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
- if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
- return nullptr;
- unsigned NumBits =
- LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
- // TODO: Relax this to "not wider than max legal integer type"?
- if (!DL.isLegalInteger(NumBits))
- return nullptr;
- if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
- auto *ScalarTy = Builder.getIntNTy(NumBits);
- LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
- RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
- return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
- I.getName());
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
- bool Changed = false;
- const SimplifyQuery Q = SQ.getWithInstruction(&I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- unsigned Op0Cplxity = getComplexity(Op0);
- unsigned Op1Cplxity = getComplexity(Op1);
- /// Orders the operands of the compare so that they are listed from most
- /// complex to least complex. This puts constants before unary operators,
- /// before binary operators.
- if (Op0Cplxity < Op1Cplxity ||
- (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
- I.swapOperands();
- std::swap(Op0, Op1);
- Changed = true;
- }
- if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
- return replaceInstUsesWith(I, V);
- // Comparing -val or val with non-zero is the same as just comparing val
- // ie, abs(val) != 0 -> val != 0
- if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
- Value *Cond, *SelectTrue, *SelectFalse;
- if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
- m_Value(SelectFalse)))) {
- if (Value *V = dyn_castNegVal(SelectTrue)) {
- if (V == SelectFalse)
- return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
- }
- else if (Value *V = dyn_castNegVal(SelectFalse)) {
- if (V == SelectTrue)
- return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
- }
- }
- }
- if (Op0->getType()->isIntOrIntVectorTy(1))
- if (Instruction *Res = canonicalizeICmpBool(I, Builder))
- return Res;
- if (Instruction *Res = canonicalizeCmpWithConstant(I))
- return Res;
- if (Instruction *Res = canonicalizeICmpPredicate(I))
- return Res;
- if (Instruction *Res = foldICmpWithConstant(I))
- return Res;
- if (Instruction *Res = foldICmpWithDominatingICmp(I))
- return Res;
- if (Instruction *Res = foldICmpUsingBoolRange(I, Builder))
- return Res;
- if (Instruction *Res = foldICmpUsingKnownBits(I))
- return Res;
- // Test if the ICmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- //
- // Do the same for the other patterns recognized by matchSelectPattern.
- if (I.hasOneUse())
- if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
- Value *A, *B;
- SelectPatternResult SPR = matchSelectPattern(SI, A, B);
- if (SPR.Flavor != SPF_UNKNOWN)
- return nullptr;
- }
- // Do this after checking for min/max to prevent infinite looping.
- if (Instruction *Res = foldICmpWithZero(I))
- return Res;
- // FIXME: We only do this after checking for min/max to prevent infinite
- // looping caused by a reverse canonicalization of these patterns for min/max.
- // FIXME: The organization of folds is a mess. These would naturally go into
- // canonicalizeCmpWithConstant(), but we can't move all of the above folds
- // down here after the min/max restriction.
- ICmpInst::Predicate Pred = I.getPredicate();
- const APInt *C;
- if (match(Op1, m_APInt(C))) {
- // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
- if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
- Constant *Zero = Constant::getNullValue(Op0->getType());
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
- }
- // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
- if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
- Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
- }
- }
- // The folds in here may rely on wrapping flags and special constants, so
- // they can break up min/max idioms in some cases but not seemingly similar
- // patterns.
- // FIXME: It may be possible to enhance select folding to make this
- // unnecessary. It may also be moot if we canonicalize to min/max
- // intrinsics.
- if (Instruction *Res = foldICmpBinOp(I, Q))
- return Res;
- if (Instruction *Res = foldICmpInstWithConstant(I))
- return Res;
- // Try to match comparison as a sign bit test. Intentionally do this after
- // foldICmpInstWithConstant() to potentially let other folds to happen first.
- if (Instruction *New = foldSignBitTest(I))
- return New;
- if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
- return Res;
- // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
- if (auto *GEP = dyn_cast<GEPOperator>(Op0))
- if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
- return NI;
- if (auto *GEP = dyn_cast<GEPOperator>(Op1))
- if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
- return NI;
- if (auto *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I))
- return NI;
- if (auto *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I))
- return NI;
- // Try to optimize equality comparisons against alloca-based pointers.
- if (Op0->getType()->isPointerTy() && I.isEquality()) {
- assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
- if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
- if (Instruction *New = foldAllocaCmp(I, Alloca))
- return New;
- if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
- if (Instruction *New = foldAllocaCmp(I, Alloca))
- return New;
- }
- if (Instruction *Res = foldICmpBitCast(I))
- return Res;
- // TODO: Hoist this above the min/max bailout.
- if (Instruction *R = foldICmpWithCastOp(I))
- return R;
- if (Instruction *Res = foldICmpWithMinMax(I))
- return Res;
- {
- Value *A, *B;
- // Transform (A & ~B) == 0 --> (A & B) != 0
- // and (A & ~B) != 0 --> (A & B) == 0
- // if A is a power of 2.
- if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Zero()) &&
- isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
- return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
- Op1);
- // ~X < ~Y --> Y < X
- // ~X < C --> X > ~C
- if (match(Op0, m_Not(m_Value(A)))) {
- if (match(Op1, m_Not(m_Value(B))))
- return new ICmpInst(I.getPredicate(), B, A);
- const APInt *C;
- if (match(Op1, m_APInt(C)))
- return new ICmpInst(I.getSwappedPredicate(), A,
- ConstantInt::get(Op1->getType(), ~(*C)));
- }
- Instruction *AddI = nullptr;
- if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
- m_Instruction(AddI))) &&
- isa<IntegerType>(A->getType())) {
- Value *Result;
- Constant *Overflow;
- // m_UAddWithOverflow can match patterns that do not include an explicit
- // "add" instruction, so check the opcode of the matched op.
- if (AddI->getOpcode() == Instruction::Add &&
- OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
- Result, Overflow)) {
- replaceInstUsesWith(*AddI, Result);
- eraseInstFromFunction(*AddI);
- return replaceInstUsesWith(I, Overflow);
- }
- }
- // (zext a) * (zext b) --> llvm.umul.with.overflow.
- if (match(Op0, m_NUWMul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
- if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
- return R;
- }
- if (match(Op1, m_NUWMul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
- if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
- return R;
- }
- }
- if (Instruction *Res = foldICmpEquality(I))
- return Res;
- if (Instruction *Res = foldICmpOfUAddOv(I))
- return Res;
- // The 'cmpxchg' instruction returns an aggregate containing the old value and
- // an i1 which indicates whether or not we successfully did the swap.
- //
- // Replace comparisons between the old value and the expected value with the
- // indicator that 'cmpxchg' returns.
- //
- // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
- // spuriously fail. In those cases, the old value may equal the expected
- // value but it is possible for the swap to not occur.
- if (I.getPredicate() == ICmpInst::ICMP_EQ)
- if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
- if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
- if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
- !ACXI->isWeak())
- return ExtractValueInst::Create(ACXI, 1);
- {
- Value *X;
- const APInt *C;
- // icmp X+Cst, X
- if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
- return foldICmpAddOpConst(X, *C, I.getPredicate());
- // icmp X, X+Cst
- if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
- return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
- }
- if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
- return Res;
- if (I.getType()->isVectorTy())
- if (Instruction *Res = foldVectorCmp(I, Builder))
- return Res;
- if (Instruction *Res = foldICmpInvariantGroup(I))
- return Res;
- if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
- return Res;
- return Changed ? &I : nullptr;
- }
- /// Fold fcmp ([us]itofp x, cst) if possible.
- Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
- Instruction *LHSI,
- Constant *RHSC) {
- if (!isa<ConstantFP>(RHSC)) return nullptr;
- const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
- // Get the width of the mantissa. We don't want to hack on conversions that
- // might lose information from the integer, e.g. "i64 -> float"
- int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
- if (MantissaWidth == -1) return nullptr; // Unknown.
- IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
- bool LHSUnsigned = isa<UIToFPInst>(LHSI);
- if (I.isEquality()) {
- FCmpInst::Predicate P = I.getPredicate();
- bool IsExact = false;
- APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
- RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
- // If the floating point constant isn't an integer value, we know if we will
- // ever compare equal / not equal to it.
- if (!IsExact) {
- // TODO: Can never be -0.0 and other non-representable values
- APFloat RHSRoundInt(RHS);
- RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
- if (RHS != RHSRoundInt) {
- if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
- return replaceInstUsesWith(I, Builder.getFalse());
- assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
- return replaceInstUsesWith(I, Builder.getTrue());
- }
- }
- // TODO: If the constant is exactly representable, is it always OK to do
- // equality compares as integer?
- }
- // Check to see that the input is converted from an integer type that is small
- // enough that preserves all bits. TODO: check here for "known" sign bits.
- // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
- unsigned InputSize = IntTy->getScalarSizeInBits();
- // Following test does NOT adjust InputSize downwards for signed inputs,
- // because the most negative value still requires all the mantissa bits
- // to distinguish it from one less than that value.
- if ((int)InputSize > MantissaWidth) {
- // Conversion would lose accuracy. Check if loss can impact comparison.
- int Exp = ilogb(RHS);
- if (Exp == APFloat::IEK_Inf) {
- int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
- if (MaxExponent < (int)InputSize - !LHSUnsigned)
- // Conversion could create infinity.
- return nullptr;
- } else {
- // Note that if RHS is zero or NaN, then Exp is negative
- // and first condition is trivially false.
- if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
- // Conversion could affect comparison.
- return nullptr;
- }
- }
- // Otherwise, we can potentially simplify the comparison. We know that it
- // will always come through as an integer value and we know the constant is
- // not a NAN (it would have been previously simplified).
- assert(!RHS.isNaN() && "NaN comparison not already folded!");
- ICmpInst::Predicate Pred;
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unexpected predicate!");
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_OEQ:
- Pred = ICmpInst::ICMP_EQ;
- break;
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_OGT:
- Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
- break;
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OGE:
- Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
- break;
- case FCmpInst::FCMP_ULT:
- case FCmpInst::FCMP_OLT:
- Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
- break;
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_OLE:
- Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
- break;
- case FCmpInst::FCMP_UNE:
- case FCmpInst::FCMP_ONE:
- Pred = ICmpInst::ICMP_NE;
- break;
- case FCmpInst::FCMP_ORD:
- return replaceInstUsesWith(I, Builder.getTrue());
- case FCmpInst::FCMP_UNO:
- return replaceInstUsesWith(I, Builder.getFalse());
- }
- // Now we know that the APFloat is a normal number, zero or inf.
- // See if the FP constant is too large for the integer. For example,
- // comparing an i8 to 300.0.
- unsigned IntWidth = IntTy->getScalarSizeInBits();
- if (!LHSUnsigned) {
- // If the RHS value is > SignedMax, fold the comparison. This handles +INF
- // and large values.
- APFloat SMax(RHS.getSemantics());
- SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMax < RHS) { // smax < 13123.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
- Pred == ICmpInst::ICMP_SLE)
- return replaceInstUsesWith(I, Builder.getTrue());
- return replaceInstUsesWith(I, Builder.getFalse());
- }
- } else {
- // If the RHS value is > UnsignedMax, fold the comparison. This handles
- // +INF and large values.
- APFloat UMax(RHS.getSemantics());
- UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
- APFloat::rmNearestTiesToEven);
- if (UMax < RHS) { // umax < 13123.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
- Pred == ICmpInst::ICMP_ULE)
- return replaceInstUsesWith(I, Builder.getTrue());
- return replaceInstUsesWith(I, Builder.getFalse());
- }
- }
- if (!LHSUnsigned) {
- // See if the RHS value is < SignedMin.
- APFloat SMin(RHS.getSemantics());
- SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMin > RHS) { // smin > 12312.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
- Pred == ICmpInst::ICMP_SGE)
- return replaceInstUsesWith(I, Builder.getTrue());
- return replaceInstUsesWith(I, Builder.getFalse());
- }
- } else {
- // See if the RHS value is < UnsignedMin.
- APFloat UMin(RHS.getSemantics());
- UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
- APFloat::rmNearestTiesToEven);
- if (UMin > RHS) { // umin > 12312.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
- Pred == ICmpInst::ICMP_UGE)
- return replaceInstUsesWith(I, Builder.getTrue());
- return replaceInstUsesWith(I, Builder.getFalse());
- }
- }
- // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
- // [0, UMAX], but it may still be fractional. See if it is fractional by
- // casting the FP value to the integer value and back, checking for equality.
- // Don't do this for zero, because -0.0 is not fractional.
- Constant *RHSInt = LHSUnsigned
- ? ConstantExpr::getFPToUI(RHSC, IntTy)
- : ConstantExpr::getFPToSI(RHSC, IntTy);
- if (!RHS.isZero()) {
- bool Equal = LHSUnsigned
- ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
- : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
- if (!Equal) {
- // If we had a comparison against a fractional value, we have to adjust
- // the compare predicate and sometimes the value. RHSC is rounded towards
- // zero at this point.
- switch (Pred) {
- default: llvm_unreachable("Unexpected integer comparison!");
- case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
- return replaceInstUsesWith(I, Builder.getTrue());
- case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
- return replaceInstUsesWith(I, Builder.getFalse());
- case ICmpInst::ICMP_ULE:
- // (float)int <= 4.4 --> int <= 4
- // (float)int <= -4.4 --> false
- if (RHS.isNegative())
- return replaceInstUsesWith(I, Builder.getFalse());
- break;
- case ICmpInst::ICMP_SLE:
- // (float)int <= 4.4 --> int <= 4
- // (float)int <= -4.4 --> int < -4
- if (RHS.isNegative())
- Pred = ICmpInst::ICMP_SLT;
- break;
- case ICmpInst::ICMP_ULT:
- // (float)int < -4.4 --> false
- // (float)int < 4.4 --> int <= 4
- if (RHS.isNegative())
- return replaceInstUsesWith(I, Builder.getFalse());
- Pred = ICmpInst::ICMP_ULE;
- break;
- case ICmpInst::ICMP_SLT:
- // (float)int < -4.4 --> int < -4
- // (float)int < 4.4 --> int <= 4
- if (!RHS.isNegative())
- Pred = ICmpInst::ICMP_SLE;
- break;
- case ICmpInst::ICMP_UGT:
- // (float)int > 4.4 --> int > 4
- // (float)int > -4.4 --> true
- if (RHS.isNegative())
- return replaceInstUsesWith(I, Builder.getTrue());
- break;
- case ICmpInst::ICMP_SGT:
- // (float)int > 4.4 --> int > 4
- // (float)int > -4.4 --> int >= -4
- if (RHS.isNegative())
- Pred = ICmpInst::ICMP_SGE;
- break;
- case ICmpInst::ICMP_UGE:
- // (float)int >= -4.4 --> true
- // (float)int >= 4.4 --> int > 4
- if (RHS.isNegative())
- return replaceInstUsesWith(I, Builder.getTrue());
- Pred = ICmpInst::ICMP_UGT;
- break;
- case ICmpInst::ICMP_SGE:
- // (float)int >= -4.4 --> int >= -4
- // (float)int >= 4.4 --> int > 4
- if (!RHS.isNegative())
- Pred = ICmpInst::ICMP_SGT;
- break;
- }
- }
- }
- // Lower this FP comparison into an appropriate integer version of the
- // comparison.
- return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
- }
- /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
- static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
- Constant *RHSC) {
- // When C is not 0.0 and infinities are not allowed:
- // (C / X) < 0.0 is a sign-bit test of X
- // (C / X) < 0.0 --> X < 0.0 (if C is positive)
- // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
- //
- // Proof:
- // Multiply (C / X) < 0.0 by X * X / C.
- // - X is non zero, if it is the flag 'ninf' is violated.
- // - C defines the sign of X * X * C. Thus it also defines whether to swap
- // the predicate. C is also non zero by definition.
- //
- // Thus X * X / C is non zero and the transformation is valid. [qed]
- FCmpInst::Predicate Pred = I.getPredicate();
- // Check that predicates are valid.
- if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
- (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
- return nullptr;
- // Check that RHS operand is zero.
- if (!match(RHSC, m_AnyZeroFP()))
- return nullptr;
- // Check fastmath flags ('ninf').
- if (!LHSI->hasNoInfs() || !I.hasNoInfs())
- return nullptr;
- // Check the properties of the dividend. It must not be zero to avoid a
- // division by zero (see Proof).
- const APFloat *C;
- if (!match(LHSI->getOperand(0), m_APFloat(C)))
- return nullptr;
- if (C->isZero())
- return nullptr;
- // Get swapped predicate if necessary.
- if (C->isNegative())
- Pred = I.getSwappedPredicate();
- return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
- }
- /// Optimize fabs(X) compared with zero.
- static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
- Value *X;
- if (!match(I.getOperand(0), m_FAbs(m_Value(X))))
- return nullptr;
- const APFloat *C;
- if (!match(I.getOperand(1), m_APFloat(C)))
- return nullptr;
- if (!C->isPosZero()) {
- if (!C->isSmallestNormalized())
- return nullptr;
- const Function *F = I.getFunction();
- DenormalMode Mode = F->getDenormalMode(C->getSemantics());
- if (Mode.Input == DenormalMode::PreserveSign ||
- Mode.Input == DenormalMode::PositiveZero) {
- auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
- Constant *Zero = ConstantFP::getNullValue(X->getType());
- return new FCmpInst(P, X, Zero, "", I);
- };
- switch (I.getPredicate()) {
- case FCmpInst::FCMP_OLT:
- // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
- return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X);
- case FCmpInst::FCMP_UGE:
- // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0
- return replaceFCmp(&I, FCmpInst::FCMP_UNE, X);
- case FCmpInst::FCMP_OGE:
- // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
- return replaceFCmp(&I, FCmpInst::FCMP_ONE, X);
- case FCmpInst::FCMP_ULT:
- // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
- return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X);
- default:
- break;
- }
- }
- return nullptr;
- }
- auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
- I->setPredicate(P);
- return IC.replaceOperand(*I, 0, X);
- };
- switch (I.getPredicate()) {
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OLT:
- // fabs(X) >= 0.0 --> true
- // fabs(X) < 0.0 --> false
- llvm_unreachable("fcmp should have simplified");
- case FCmpInst::FCMP_OGT:
- // fabs(X) > 0.0 --> X != 0.0
- return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
- case FCmpInst::FCMP_UGT:
- // fabs(X) u> 0.0 --> X u!= 0.0
- return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
- case FCmpInst::FCMP_OLE:
- // fabs(X) <= 0.0 --> X == 0.0
- return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
- case FCmpInst::FCMP_ULE:
- // fabs(X) u<= 0.0 --> X u== 0.0
- return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
- case FCmpInst::FCMP_OGE:
- // fabs(X) >= 0.0 --> !isnan(X)
- assert(!I.hasNoNaNs() && "fcmp should have simplified");
- return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
- case FCmpInst::FCMP_ULT:
- // fabs(X) u< 0.0 --> isnan(X)
- assert(!I.hasNoNaNs() && "fcmp should have simplified");
- return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_ONE:
- case FCmpInst::FCMP_UNE:
- case FCmpInst::FCMP_ORD:
- case FCmpInst::FCMP_UNO:
- // Look through the fabs() because it doesn't change anything but the sign.
- // fabs(X) == 0.0 --> X == 0.0,
- // fabs(X) != 0.0 --> X != 0.0
- // isnan(fabs(X)) --> isnan(X)
- // !isnan(fabs(X) --> !isnan(X)
- return replacePredAndOp0(&I, I.getPredicate(), X);
- default:
- return nullptr;
- }
- }
- static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
- CmpInst::Predicate Pred = I.getPredicate();
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // Canonicalize fneg as Op1.
- if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
- std::swap(Op0, Op1);
- Pred = I.getSwappedPredicate();
- }
- if (!match(Op1, m_FNeg(m_Specific(Op0))))
- return nullptr;
- // Replace the negated operand with 0.0:
- // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
- Constant *Zero = ConstantFP::getNullValue(Op0->getType());
- return new FCmpInst(Pred, Op0, Zero, "", &I);
- }
- Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
- bool Changed = false;
- /// Orders the operands of the compare so that they are listed from most
- /// complex to least complex. This puts constants before unary operators,
- /// before binary operators.
- if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
- I.swapOperands();
- Changed = true;
- }
- const CmpInst::Predicate Pred = I.getPredicate();
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- // Simplify 'fcmp pred X, X'
- Type *OpType = Op0->getType();
- assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
- if (Op0 == Op1) {
- switch (Pred) {
- default: break;
- case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
- case FCmpInst::FCMP_ULT: // True if unordered or less than
- case FCmpInst::FCMP_UGT: // True if unordered or greater than
- case FCmpInst::FCMP_UNE: // True if unordered or not equal
- // Canonicalize these to be 'fcmp uno %X, 0.0'.
- I.setPredicate(FCmpInst::FCMP_UNO);
- I.setOperand(1, Constant::getNullValue(OpType));
- return &I;
- case FCmpInst::FCMP_ORD: // True if ordered (no nans)
- case FCmpInst::FCMP_OEQ: // True if ordered and equal
- case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
- case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
- // Canonicalize these to be 'fcmp ord %X, 0.0'.
- I.setPredicate(FCmpInst::FCMP_ORD);
- I.setOperand(1, Constant::getNullValue(OpType));
- return &I;
- }
- }
- // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
- // then canonicalize the operand to 0.0.
- if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
- if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
- return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
- if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
- return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
- }
- // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
- Value *X, *Y;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
- return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
- if (Instruction *R = foldFCmpFNegCommonOp(I))
- return R;
- // Test if the FCmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- if (I.hasOneUse())
- if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
- Value *A, *B;
- SelectPatternResult SPR = matchSelectPattern(SI, A, B);
- if (SPR.Flavor != SPF_UNKNOWN)
- return nullptr;
- }
- // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
- // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
- if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
- return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
- // Ignore signbit of bitcasted int when comparing equality to FP 0.0:
- // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0
- if (match(Op1, m_PosZeroFP()) &&
- match(Op0, m_OneUse(m_BitCast(m_Value(X)))) &&
- X->getType()->isVectorTy() == OpType->isVectorTy() &&
- X->getType()->getScalarSizeInBits() == OpType->getScalarSizeInBits()) {
- ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE;
- if (Pred == FCmpInst::FCMP_OEQ)
- IntPred = ICmpInst::ICMP_EQ;
- else if (Pred == FCmpInst::FCMP_UNE)
- IntPred = ICmpInst::ICMP_NE;
- if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) {
- Type *IntTy = X->getType();
- const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits());
- Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask));
- return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy));
- }
- }
- // Handle fcmp with instruction LHS and constant RHS.
- Instruction *LHSI;
- Constant *RHSC;
- if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
- switch (LHSI->getOpcode()) {
- case Instruction::PHI:
- // Only fold fcmp into the PHI if the phi and fcmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
- return NV;
- break;
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
- return NV;
- break;
- case Instruction::FDiv:
- if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
- return NV;
- break;
- case Instruction::Load:
- if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
- if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
- cast<LoadInst>(LHSI), GEP, GV, I))
- return Res;
- break;
- }
- }
- if (Instruction *R = foldFabsWithFcmpZero(I, *this))
- return R;
- if (match(Op0, m_FNeg(m_Value(X)))) {
- // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
- Constant *C;
- if (match(Op1, m_Constant(C)))
- if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
- return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
- }
- if (match(Op0, m_FPExt(m_Value(X)))) {
- // fcmp (fpext X), (fpext Y) -> fcmp X, Y
- if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
- return new FCmpInst(Pred, X, Y, "", &I);
- const APFloat *C;
- if (match(Op1, m_APFloat(C))) {
- const fltSemantics &FPSem =
- X->getType()->getScalarType()->getFltSemantics();
- bool Lossy;
- APFloat TruncC = *C;
- TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
- if (Lossy) {
- // X can't possibly equal the higher-precision constant, so reduce any
- // equality comparison.
- // TODO: Other predicates can be handled via getFCmpCode().
- switch (Pred) {
- case FCmpInst::FCMP_OEQ:
- // X is ordered and equal to an impossible constant --> false
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- case FCmpInst::FCMP_ONE:
- // X is ordered and not equal to an impossible constant --> ordered
- return new FCmpInst(FCmpInst::FCMP_ORD, X,
- ConstantFP::getNullValue(X->getType()));
- case FCmpInst::FCMP_UEQ:
- // X is unordered or equal to an impossible constant --> unordered
- return new FCmpInst(FCmpInst::FCMP_UNO, X,
- ConstantFP::getNullValue(X->getType()));
- case FCmpInst::FCMP_UNE:
- // X is unordered or not equal to an impossible constant --> true
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- default:
- break;
- }
- }
- // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
- // Avoid lossy conversions and denormals.
- // Zero is a special case that's OK to convert.
- APFloat Fabs = TruncC;
- Fabs.clearSign();
- if (!Lossy &&
- (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) {
- Constant *NewC = ConstantFP::get(X->getType(), TruncC);
- return new FCmpInst(Pred, X, NewC, "", &I);
- }
- }
- }
- // Convert a sign-bit test of an FP value into a cast and integer compare.
- // TODO: Simplify if the copysign constant is 0.0 or NaN.
- // TODO: Handle non-zero compare constants.
- // TODO: Handle other predicates.
- const APFloat *C;
- if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
- m_Value(X)))) &&
- match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
- Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
- if (auto *VecTy = dyn_cast<VectorType>(OpType))
- IntType = VectorType::get(IntType, VecTy->getElementCount());
- // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
- if (Pred == FCmpInst::FCMP_OLT) {
- Value *IntX = Builder.CreateBitCast(X, IntType);
- return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
- ConstantInt::getNullValue(IntType));
- }
- }
- {
- Value *CanonLHS = nullptr, *CanonRHS = nullptr;
- match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS)));
- match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS)));
- // (canonicalize(x) == x) => (x == x)
- if (CanonLHS == Op1)
- return new FCmpInst(Pred, Op1, Op1, "", &I);
- // (x == canonicalize(x)) => (x == x)
- if (CanonRHS == Op0)
- return new FCmpInst(Pred, Op0, Op0, "", &I);
- // (canonicalize(x) == canonicalize(y)) => (x == y)
- if (CanonLHS && CanonRHS)
- return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I);
- }
- if (I.getType()->isVectorTy())
- if (Instruction *Res = foldVectorCmp(I, Builder))
- return Res;
- return Changed ? &I : nullptr;
- }
|