12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927 |
- //===- InstCombineCasts.cpp -----------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visit functions for cast operations.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include <optional>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- /// Analyze 'Val', seeing if it is a simple linear expression.
- /// If so, decompose it, returning some value X, such that Val is
- /// X*Scale+Offset.
- ///
- static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
- uint64_t &Offset) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- Offset = CI->getZExtValue();
- Scale = 0;
- return ConstantInt::get(Val->getType(), 0);
- }
- if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
- // Cannot look past anything that might overflow.
- // We specifically require nuw because we store the Scale in an unsigned
- // and perform an unsigned divide on it.
- OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
- if (OBI && !OBI->hasNoUnsignedWrap()) {
- Scale = 1;
- Offset = 0;
- return Val;
- }
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (I->getOpcode() == Instruction::Shl) {
- // This is a value scaled by '1 << the shift amt'.
- Scale = UINT64_C(1) << RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- }
- if (I->getOpcode() == Instruction::Mul) {
- // This value is scaled by 'RHS'.
- Scale = RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- }
- if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
- // where C1 is divisible by C2.
- unsigned SubScale;
- Value *SubVal =
- decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
- Offset += RHS->getZExtValue();
- Scale = SubScale;
- return SubVal;
- }
- }
- }
- // Otherwise, we can't look past this.
- Scale = 1;
- Offset = 0;
- return Val;
- }
- /// If we find a cast of an allocation instruction, try to eliminate the cast by
- /// moving the type information into the alloc.
- Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
- AllocaInst &AI) {
- PointerType *PTy = cast<PointerType>(CI.getType());
- // Opaque pointers don't have an element type we could replace with.
- if (PTy->isOpaque())
- return nullptr;
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(&AI);
- // Get the type really allocated and the type casted to.
- Type *AllocElTy = AI.getAllocatedType();
- Type *CastElTy = PTy->getNonOpaquePointerElementType();
- if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
- // This optimisation does not work for cases where the cast type
- // is scalable and the allocated type is not. This because we need to
- // know how many times the casted type fits into the allocated type.
- // For the opposite case where the allocated type is scalable and the
- // cast type is not this leads to poor code quality due to the
- // introduction of 'vscale' into the calculations. It seems better to
- // bail out for this case too until we've done a proper cost-benefit
- // analysis.
- bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
- bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
- if (AllocIsScalable != CastIsScalable) return nullptr;
- Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
- Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
- if (CastElTyAlign < AllocElTyAlign) return nullptr;
- // If the allocation has multiple uses, only promote it if we are strictly
- // increasing the alignment of the resultant allocation. If we keep it the
- // same, we open the door to infinite loops of various kinds.
- if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
- // The alloc and cast types should be either both fixed or both scalable.
- uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinValue();
- uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinValue();
- if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
- // If the allocation has multiple uses, only promote it if we're not
- // shrinking the amount of memory being allocated.
- uint64_t AllocElTyStoreSize =
- DL.getTypeStoreSize(AllocElTy).getKnownMinValue();
- uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinValue();
- if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
- // See if we can satisfy the modulus by pulling a scale out of the array
- // size argument.
- unsigned ArraySizeScale;
- uint64_t ArrayOffset;
- Value *NumElements = // See if the array size is a decomposable linear expr.
- decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
- // If we can now satisfy the modulus, by using a non-1 scale, we really can
- // do the xform.
- if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
- (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
- // We don't currently support arrays of scalable types.
- assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
- unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
- Value *Amt = nullptr;
- if (Scale == 1) {
- Amt = NumElements;
- } else {
- Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
- // Insert before the alloca, not before the cast.
- Amt = Builder.CreateMul(Amt, NumElements);
- }
- if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
- Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
- Offset, true);
- Amt = Builder.CreateAdd(Amt, Off);
- }
- AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt);
- New->setAlignment(AI.getAlign());
- New->takeName(&AI);
- New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
- New->setMetadata(LLVMContext::MD_DIAssignID,
- AI.getMetadata(LLVMContext::MD_DIAssignID));
- replaceAllDbgUsesWith(AI, *New, *New, DT);
- // If the allocation has multiple real uses, insert a cast and change all
- // things that used it to use the new cast. This will also hack on CI, but it
- // will die soon.
- if (!AI.hasOneUse()) {
- // New is the allocation instruction, pointer typed. AI is the original
- // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
- Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
- replaceInstUsesWith(AI, NewCast);
- eraseInstFromFunction(AI);
- }
- return replaceInstUsesWith(CI, New);
- }
- /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
- /// true for, actually insert the code to evaluate the expression.
- Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
- bool isSigned) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
- // If we got a constantexpr back, try to simplify it with DL info.
- return ConstantFoldConstant(C, DL, &TLI);
- }
- // Otherwise, it must be an instruction.
- Instruction *I = cast<Instruction>(V);
- Instruction *Res = nullptr;
- unsigned Opc = I->getOpcode();
- switch (Opc) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::Shl:
- case Instruction::UDiv:
- case Instruction::URem: {
- Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
- Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
- break;
- }
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- // If the source type of the cast is the type we're trying for then we can
- // just return the source. There's no need to insert it because it is not
- // new.
- if (I->getOperand(0)->getType() == Ty)
- return I->getOperand(0);
- // Otherwise, must be the same type of cast, so just reinsert a new one.
- // This also handles the case of zext(trunc(x)) -> zext(x).
- Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
- Opc == Instruction::SExt);
- break;
- case Instruction::Select: {
- Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
- Res = SelectInst::Create(I->getOperand(0), True, False);
- break;
- }
- case Instruction::PHI: {
- PHINode *OPN = cast<PHINode>(I);
- PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
- for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
- Value *V =
- EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
- NPN->addIncoming(V, OPN->getIncomingBlock(i));
- }
- Res = NPN;
- break;
- }
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- Res = CastInst::Create(
- static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
- break;
- default:
- // TODO: Can handle more cases here.
- llvm_unreachable("Unreachable!");
- }
- Res->takeName(I);
- return InsertNewInstWith(Res, *I);
- }
- Instruction::CastOps
- InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
- const CastInst *CI2) {
- Type *SrcTy = CI1->getSrcTy();
- Type *MidTy = CI1->getDestTy();
- Type *DstTy = CI2->getDestTy();
- Instruction::CastOps firstOp = CI1->getOpcode();
- Instruction::CastOps secondOp = CI2->getOpcode();
- Type *SrcIntPtrTy =
- SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy =
- MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy =
- DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
- unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy, SrcIntPtrTy, MidIntPtrTy,
- DstIntPtrTy);
- // We don't want to form an inttoptr or ptrtoint that converts to an integer
- // type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
- (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
- Res = 0;
- return Instruction::CastOps(Res);
- }
- /// Implement the transforms common to all CastInst visitors.
- Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
- Type *Ty = CI.getType();
- // Try to eliminate a cast of a cast.
- if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
- // The first cast (CSrc) is eliminable so we need to fix up or replace
- // the second cast (CI). CSrc will then have a good chance of being dead.
- auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
- // Point debug users of the dying cast to the new one.
- if (CSrc->hasOneUse())
- replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
- return Res;
- }
- }
- if (auto *Sel = dyn_cast<SelectInst>(Src)) {
- // We are casting a select. Try to fold the cast into the select if the
- // select does not have a compare instruction with matching operand types
- // or the select is likely better done in a narrow type.
- // Creating a select with operands that are different sizes than its
- // condition may inhibit other folds and lead to worse codegen.
- auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
- if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
- (CI.getOpcode() == Instruction::Trunc &&
- shouldChangeType(CI.getSrcTy(), CI.getType()))) {
- if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
- replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
- return NV;
- }
- }
- }
- // If we are casting a PHI, then fold the cast into the PHI.
- if (auto *PN = dyn_cast<PHINode>(Src)) {
- // Don't do this if it would create a PHI node with an illegal type from a
- // legal type.
- if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
- shouldChangeType(CI.getSrcTy(), CI.getType()))
- if (Instruction *NV = foldOpIntoPhi(CI, PN))
- return NV;
- }
- // Canonicalize a unary shuffle after the cast if neither operation changes
- // the size or element size of the input vector.
- // TODO: We could allow size-changing ops if that doesn't harm codegen.
- // cast (shuffle X, Mask) --> shuffle (cast X), Mask
- Value *X;
- ArrayRef<int> Mask;
- if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
- // TODO: Allow scalable vectors?
- auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
- auto *DestTy = dyn_cast<FixedVectorType>(Ty);
- if (SrcTy && DestTy &&
- SrcTy->getNumElements() == DestTy->getNumElements() &&
- SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
- Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
- return new ShuffleVectorInst(CastX, Mask);
- }
- }
- return nullptr;
- }
- /// Constants and extensions/truncates from the destination type are always
- /// free to be evaluated in that type. This is a helper for canEvaluate*.
- static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
- if (isa<Constant>(V))
- return true;
- Value *X;
- if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
- X->getType() == Ty)
- return true;
- return false;
- }
- /// Filter out values that we can not evaluate in the destination type for free.
- /// This is a helper for canEvaluate*.
- static bool canNotEvaluateInType(Value *V, Type *Ty) {
- assert(!isa<Constant>(V) && "Constant should already be handled.");
- if (!isa<Instruction>(V))
- return true;
- // We don't extend or shrink something that has multiple uses -- doing so
- // would require duplicating the instruction which isn't profitable.
- if (!V->hasOneUse())
- return true;
- return false;
- }
- /// Return true if we can evaluate the specified expression tree as type Ty
- /// instead of its larger type, and arrive with the same value.
- /// This is used by code that tries to eliminate truncates.
- ///
- /// Ty will always be a type smaller than V. We should return true if trunc(V)
- /// can be computed by computing V in the smaller type. If V is an instruction,
- /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
- /// makes sense if x and y can be efficiently truncated.
- ///
- /// This function works on both vectors and scalars.
- ///
- static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
- Instruction *CxtI) {
- if (canAlwaysEvaluateInType(V, Ty))
- return true;
- if (canNotEvaluateInType(V, Ty))
- return false;
- auto *I = cast<Instruction>(V);
- Type *OrigTy = V->getType();
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // These operators can all arbitrarily be extended or truncated.
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- case Instruction::UDiv:
- case Instruction::URem: {
- // UDiv and URem can be truncated if all the truncated bits are zero.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
- APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
- if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
- IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- }
- break;
- }
- case Instruction::Shl: {
- // If we are truncating the result of this SHL, and if it's a shift of an
- // inrange amount, we can always perform a SHL in a smaller type.
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- KnownBits AmtKnownBits =
- llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
- if (AmtKnownBits.getMaxValue().ult(BitWidth))
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- break;
- }
- case Instruction::LShr: {
- // If this is a truncate of a logical shr, we can truncate it to a smaller
- // lshr iff we know that the bits we would otherwise be shifting in are
- // already zeros.
- // TODO: It is enough to check that the bits we would be shifting in are
- // zero - use AmtKnownBits.getMaxValue().
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- KnownBits AmtKnownBits =
- llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
- APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
- if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
- IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- }
- break;
- }
- case Instruction::AShr: {
- // If this is a truncate of an arithmetic shr, we can truncate it to a
- // smaller ashr iff we know that all the bits from the sign bit of the
- // original type and the sign bit of the truncate type are similar.
- // TODO: It is enough to check that the bits we would be shifting in are
- // similar to sign bit of the truncate type.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- KnownBits AmtKnownBits =
- llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
- unsigned ShiftedBits = OrigBitWidth - BitWidth;
- if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
- ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- break;
- }
- case Instruction::Trunc:
- // trunc(trunc(x)) -> trunc(x)
- return true;
- case Instruction::ZExt:
- case Instruction::SExt:
- // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
- // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
- return true;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
- canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
- return false;
- return true;
- }
- case Instruction::FPToUI:
- case Instruction::FPToSI: {
- // If the integer type can hold the max FP value, it is safe to cast
- // directly to that type. Otherwise, we may create poison via overflow
- // that did not exist in the original code.
- //
- // The max FP value is pow(2, MaxExponent) * (1 + MaxFraction), so we need
- // at least one more bit than the MaxExponent to hold the max FP value.
- Type *InputTy = I->getOperand(0)->getType()->getScalarType();
- const fltSemantics &Semantics = InputTy->getFltSemantics();
- uint32_t MinBitWidth = APFloatBase::semanticsMaxExponent(Semantics);
- // Extra sign bit needed.
- if (I->getOpcode() == Instruction::FPToSI)
- ++MinBitWidth;
- return Ty->getScalarSizeInBits() > MinBitWidth;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
- return false;
- }
- /// Given a vector that is bitcast to an integer, optionally logically
- /// right-shifted, and truncated, convert it to an extractelement.
- /// Example (big endian):
- /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
- /// --->
- /// extractelement <4 x i32> %X, 1
- static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
- InstCombinerImpl &IC) {
- Value *TruncOp = Trunc.getOperand(0);
- Type *DestType = Trunc.getType();
- if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
- return nullptr;
- Value *VecInput = nullptr;
- ConstantInt *ShiftVal = nullptr;
- if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
- m_LShr(m_BitCast(m_Value(VecInput)),
- m_ConstantInt(ShiftVal)))) ||
- !isa<VectorType>(VecInput->getType()))
- return nullptr;
- VectorType *VecType = cast<VectorType>(VecInput->getType());
- unsigned VecWidth = VecType->getPrimitiveSizeInBits();
- unsigned DestWidth = DestType->getPrimitiveSizeInBits();
- unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
- if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
- return nullptr;
- // If the element type of the vector doesn't match the result type,
- // bitcast it to a vector type that we can extract from.
- unsigned NumVecElts = VecWidth / DestWidth;
- if (VecType->getElementType() != DestType) {
- VecType = FixedVectorType::get(DestType, NumVecElts);
- VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
- }
- unsigned Elt = ShiftAmount / DestWidth;
- if (IC.getDataLayout().isBigEndian())
- Elt = NumVecElts - 1 - Elt;
- return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
- }
- /// Funnel/Rotate left/right may occur in a wider type than necessary because of
- /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
- Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
- assert((isa<VectorType>(Trunc.getSrcTy()) ||
- shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
- "Don't narrow to an illegal scalar type");
- // Bail out on strange types. It is possible to handle some of these patterns
- // even with non-power-of-2 sizes, but it is not a likely scenario.
- Type *DestTy = Trunc.getType();
- unsigned NarrowWidth = DestTy->getScalarSizeInBits();
- unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
- if (!isPowerOf2_32(NarrowWidth))
- return nullptr;
- // First, find an or'd pair of opposite shifts:
- // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
- BinaryOperator *Or0, *Or1;
- if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
- return nullptr;
- Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
- if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
- !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
- Or0->getOpcode() == Or1->getOpcode())
- return nullptr;
- // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
- if (Or0->getOpcode() == BinaryOperator::LShr) {
- std::swap(Or0, Or1);
- std::swap(ShVal0, ShVal1);
- std::swap(ShAmt0, ShAmt1);
- }
- assert(Or0->getOpcode() == BinaryOperator::Shl &&
- Or1->getOpcode() == BinaryOperator::LShr &&
- "Illegal or(shift,shift) pair");
- // Match the shift amount operands for a funnel/rotate pattern. This always
- // matches a subtraction on the R operand.
- auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
- // The shift amounts may add up to the narrow bit width:
- // (shl ShVal0, L) | (lshr ShVal1, Width - L)
- // If this is a funnel shift (different operands are shifted), then the
- // shift amount can not over-shift (create poison) in the narrow type.
- unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
- APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
- if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
- if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
- return L;
- // The following patterns currently only work for rotation patterns.
- // TODO: Add more general funnel-shift compatible patterns.
- if (ShVal0 != ShVal1)
- return nullptr;
- // The shift amount may be masked with negation:
- // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
- Value *X;
- unsigned Mask = Width - 1;
- if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
- match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
- return X;
- // Same as above, but the shift amount may be extended after masking:
- if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
- match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
- return X;
- return nullptr;
- };
- Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
- bool IsFshl = true; // Sub on LSHR.
- if (!ShAmt) {
- ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
- IsFshl = false; // Sub on SHL.
- }
- if (!ShAmt)
- return nullptr;
- // The right-shifted value must have high zeros in the wide type (for example
- // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
- // truncated, so those do not matter.
- APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
- if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
- return nullptr;
- // We have an unnecessarily wide rotate!
- // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
- // Narrow the inputs and convert to funnel shift intrinsic:
- // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
- Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
- Value *X, *Y;
- X = Y = Builder.CreateTrunc(ShVal0, DestTy);
- if (ShVal0 != ShVal1)
- Y = Builder.CreateTrunc(ShVal1, DestTy);
- Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
- Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
- return CallInst::Create(F, {X, Y, NarrowShAmt});
- }
- /// Try to narrow the width of math or bitwise logic instructions by pulling a
- /// truncate ahead of binary operators.
- Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
- Type *SrcTy = Trunc.getSrcTy();
- Type *DestTy = Trunc.getType();
- unsigned SrcWidth = SrcTy->getScalarSizeInBits();
- unsigned DestWidth = DestTy->getScalarSizeInBits();
- if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
- return nullptr;
- BinaryOperator *BinOp;
- if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
- return nullptr;
- Value *BinOp0 = BinOp->getOperand(0);
- Value *BinOp1 = BinOp->getOperand(1);
- switch (BinOp->getOpcode()) {
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul: {
- Constant *C;
- if (match(BinOp0, m_Constant(C))) {
- // trunc (binop C, X) --> binop (trunc C', X)
- Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
- Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
- }
- if (match(BinOp1, m_Constant(C))) {
- // trunc (binop X, C) --> binop (trunc X, C')
- Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
- Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
- }
- Value *X;
- if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
- // trunc (binop (ext X), Y) --> binop X, (trunc Y)
- Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
- }
- if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
- // trunc (binop Y, (ext X)) --> binop (trunc Y), X
- Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
- }
- break;
- }
- case Instruction::LShr:
- case Instruction::AShr: {
- // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
- Value *A;
- Constant *C;
- if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
- unsigned MaxShiftAmt = SrcWidth - DestWidth;
- // If the shift is small enough, all zero/sign bits created by the shift
- // are removed by the trunc.
- if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
- APInt(SrcWidth, MaxShiftAmt)))) {
- auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
- bool IsExact = OldShift->isExact();
- auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
- ShAmt = Constant::mergeUndefsWith(ShAmt, C);
- Value *Shift =
- OldShift->getOpcode() == Instruction::AShr
- ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
- : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
- return CastInst::CreateTruncOrBitCast(Shift, DestTy);
- }
- }
- break;
- }
- default: break;
- }
- if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
- return NarrowOr;
- return nullptr;
- }
- /// Try to narrow the width of a splat shuffle. This could be generalized to any
- /// shuffle with a constant operand, but we limit the transform to avoid
- /// creating a shuffle type that targets may not be able to lower effectively.
- static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
- InstCombiner::BuilderTy &Builder) {
- auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
- if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
- all_equal(Shuf->getShuffleMask()) &&
- Shuf->getType() == Shuf->getOperand(0)->getType()) {
- // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
- // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
- Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
- return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
- }
- return nullptr;
- }
- /// Try to narrow the width of an insert element. This could be generalized for
- /// any vector constant, but we limit the transform to insertion into undef to
- /// avoid potential backend problems from unsupported insertion widths. This
- /// could also be extended to handle the case of inserting a scalar constant
- /// into a vector variable.
- static Instruction *shrinkInsertElt(CastInst &Trunc,
- InstCombiner::BuilderTy &Builder) {
- Instruction::CastOps Opcode = Trunc.getOpcode();
- assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
- "Unexpected instruction for shrinking");
- auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
- if (!InsElt || !InsElt->hasOneUse())
- return nullptr;
- Type *DestTy = Trunc.getType();
- Type *DestScalarTy = DestTy->getScalarType();
- Value *VecOp = InsElt->getOperand(0);
- Value *ScalarOp = InsElt->getOperand(1);
- Value *Index = InsElt->getOperand(2);
- if (match(VecOp, m_Undef())) {
- // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
- // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
- UndefValue *NarrowUndef = UndefValue::get(DestTy);
- Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
- return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
- if (Instruction *Result = commonCastTransforms(Trunc))
- return Result;
- Value *Src = Trunc.getOperand(0);
- Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
- unsigned DestWidth = DestTy->getScalarSizeInBits();
- unsigned SrcWidth = SrcTy->getScalarSizeInBits();
- // Attempt to truncate the entire input expression tree to the destination
- // type. Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
- canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
- // If this cast is a truncate, evaluting in a different type always
- // eliminates the cast, so it is always a win.
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid cast: "
- << Trunc << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, false);
- assert(Res->getType() == DestTy);
- return replaceInstUsesWith(Trunc, Res);
- }
- // For integer types, check if we can shorten the entire input expression to
- // DestWidth * 2, which won't allow removing the truncate, but reducing the
- // width may enable further optimizations, e.g. allowing for larger
- // vectorization factors.
- if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
- if (DestWidth * 2 < SrcWidth) {
- auto *NewDestTy = DestITy->getExtendedType();
- if (shouldChangeType(SrcTy, NewDestTy) &&
- canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to reduce the width of operand of"
- << Trunc << '\n');
- Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
- return new TruncInst(Res, DestTy);
- }
- }
- }
- // Test if the trunc is the user of a select which is part of a
- // minimum or maximum operation. If so, don't do any more simplification.
- // Even simplifying demanded bits can break the canonical form of a
- // min/max.
- Value *LHS, *RHS;
- if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
- if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
- return nullptr;
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(Trunc))
- return &Trunc;
- if (DestWidth == 1) {
- Value *Zero = Constant::getNullValue(SrcTy);
- if (DestTy->isIntegerTy()) {
- // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
- // TODO: We canonicalize to more instructions here because we are probably
- // lacking equivalent analysis for trunc relative to icmp. There may also
- // be codegen concerns. If those trunc limitations were removed, we could
- // remove this transform.
- Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
- return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
- }
- // For vectors, we do not canonicalize all truncs to icmp, so optimize
- // patterns that would be covered within visitICmpInst.
- Value *X;
- Constant *C;
- if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
- // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
- Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
- Constant *MaskC = ConstantExpr::getShl(One, C);
- Value *And = Builder.CreateAnd(X, MaskC);
- return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
- }
- if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
- m_Deferred(X))))) {
- // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
- Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
- Constant *MaskC = ConstantExpr::getShl(One, C);
- MaskC = ConstantExpr::getOr(MaskC, One);
- Value *And = Builder.CreateAnd(X, MaskC);
- return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
- }
- }
- Value *A, *B;
- Constant *C;
- if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
- unsigned AWidth = A->getType()->getScalarSizeInBits();
- unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
- auto *OldSh = cast<Instruction>(Src);
- bool IsExact = OldSh->isExact();
- // If the shift is small enough, all zero bits created by the shift are
- // removed by the trunc.
- if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
- APInt(SrcWidth, MaxShiftAmt)))) {
- // trunc (lshr (sext A), C) --> ashr A, C
- if (A->getType() == DestTy) {
- Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
- Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
- ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
- ShAmt = Constant::mergeUndefsWith(ShAmt, C);
- return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
- : BinaryOperator::CreateAShr(A, ShAmt);
- }
- // The types are mismatched, so create a cast after shifting:
- // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
- if (Src->hasOneUse()) {
- Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
- Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
- ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
- Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
- return CastInst::CreateIntegerCast(Shift, DestTy, true);
- }
- }
- // TODO: Mask high bits with 'and'.
- }
- if (Instruction *I = narrowBinOp(Trunc))
- return I;
- if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
- return I;
- if (Instruction *I = shrinkInsertElt(Trunc, Builder))
- return I;
- if (Src->hasOneUse() &&
- (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
- // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
- // dest type is native and cst < dest size.
- if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
- !match(A, m_Shr(m_Value(), m_Constant()))) {
- // Skip shifts of shift by constants. It undoes a combine in
- // FoldShiftByConstant and is the extend in reg pattern.
- APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
- if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
- Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
- return BinaryOperator::Create(Instruction::Shl, NewTrunc,
- ConstantExpr::getTrunc(C, DestTy));
- }
- }
- }
- if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
- return I;
- // Whenever an element is extracted from a vector, and then truncated,
- // canonicalize by converting it to a bitcast followed by an
- // extractelement.
- //
- // Example (little endian):
- // trunc (extractelement <4 x i64> %X, 0) to i32
- // --->
- // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
- Value *VecOp;
- ConstantInt *Cst;
- if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
- auto *VecOpTy = cast<VectorType>(VecOp->getType());
- auto VecElts = VecOpTy->getElementCount();
- // A badly fit destination size would result in an invalid cast.
- if (SrcWidth % DestWidth == 0) {
- uint64_t TruncRatio = SrcWidth / DestWidth;
- uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
- uint64_t VecOpIdx = Cst->getZExtValue();
- uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
- : VecOpIdx * TruncRatio;
- assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
- "overflow 32-bits");
- auto *BitCastTo =
- VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
- Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
- return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
- }
- }
- // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
- if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
- m_Value(B))))) {
- unsigned AWidth = A->getType()->getScalarSizeInBits();
- if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
- Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
- Value *NarrowCtlz =
- Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
- return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
- }
- }
- if (match(Src, m_VScale(DL))) {
- if (Trunc.getFunction() &&
- Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
- Attribute Attr =
- Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
- if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
- if (Log2_32(*MaxVScale) < DestWidth) {
- Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
- return replaceInstUsesWith(Trunc, VScale);
- }
- }
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
- ZExtInst &Zext) {
- // If we are just checking for a icmp eq of a single bit and zext'ing it
- // to an integer, then shift the bit to the appropriate place and then
- // cast to integer to avoid the comparison.
- // FIXME: This set of transforms does not check for extra uses and/or creates
- // an extra instruction (an optional final cast is not included
- // in the transform comments). We may also want to favor icmp over
- // shifts in cases of equal instructions because icmp has better
- // analysis in general (invert the transform).
- const APInt *Op1CV;
- if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
- // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
- if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
- Value *In = Cmp->getOperand(0);
- Value *Sh = ConstantInt::get(In->getType(),
- In->getType()->getScalarSizeInBits() - 1);
- In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
- if (In->getType() != Zext.getType())
- In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
- return replaceInstUsesWith(Zext, In);
- }
- // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
- // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- // zext (X != 0) to i32 --> X iff X has only the low bit set.
- // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
- if (Op1CV->isZero() && Cmp->isEquality() &&
- (Cmp->getOperand(0)->getType() == Zext.getType() ||
- Cmp->getPredicate() == ICmpInst::ICMP_NE)) {
- // If Op1C some other power of two, convert:
- KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
- // Exactly 1 possible 1? But not the high-bit because that is
- // canonicalized to this form.
- APInt KnownZeroMask(~Known.Zero);
- if (KnownZeroMask.isPowerOf2() &&
- (Zext.getType()->getScalarSizeInBits() !=
- KnownZeroMask.logBase2() + 1)) {
- uint32_t ShAmt = KnownZeroMask.logBase2();
- Value *In = Cmp->getOperand(0);
- if (ShAmt) {
- // Perform a logical shr by shiftamt.
- // Insert the shift to put the result in the low bit.
- In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
- In->getName() + ".lobit");
- }
- // Toggle the low bit for "X == 0".
- if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
- In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
- if (Zext.getType() == In->getType())
- return replaceInstUsesWith(Zext, In);
- Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
- return replaceInstUsesWith(Zext, IntCast);
- }
- }
- }
- if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
- // Test if a bit is clear/set using a shifted-one mask:
- // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
- // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
- Value *X, *ShAmt;
- if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
- match(Cmp->getOperand(0),
- m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
- if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
- X = Builder.CreateNot(X);
- Value *Lshr = Builder.CreateLShr(X, ShAmt);
- Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
- return replaceInstUsesWith(Zext, And1);
- }
- }
- return nullptr;
- }
- /// Determine if the specified value can be computed in the specified wider type
- /// and produce the same low bits. If not, return false.
- ///
- /// If this function returns true, it can also return a non-zero number of bits
- /// (in BitsToClear) which indicates that the value it computes is correct for
- /// the zero extend, but that the additional BitsToClear bits need to be zero'd
- /// out. For example, to promote something like:
- ///
- /// %B = trunc i64 %A to i32
- /// %C = lshr i32 %B, 8
- /// %E = zext i32 %C to i64
- ///
- /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
- /// set to 8 to indicate that the promoted value needs to have bits 24-31
- /// cleared in addition to bits 32-63. Since an 'and' will be generated to
- /// clear the top bits anyway, doing this has no extra cost.
- ///
- /// This function works on both vectors and scalars.
- static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
- InstCombinerImpl &IC, Instruction *CxtI) {
- BitsToClear = 0;
- if (canAlwaysEvaluateInType(V, Ty))
- return true;
- if (canNotEvaluateInType(V, Ty))
- return false;
- auto *I = cast<Instruction>(V);
- unsigned Tmp;
- switch (I->getOpcode()) {
- case Instruction::ZExt: // zext(zext(x)) -> zext(x).
- case Instruction::SExt: // zext(sext(x)) -> sext(x).
- case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
- return true;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
- !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
- return false;
- // These can all be promoted if neither operand has 'bits to clear'.
- if (BitsToClear == 0 && Tmp == 0)
- return true;
- // If the operation is an AND/OR/XOR and the bits to clear are zero in the
- // other side, BitsToClear is ok.
- if (Tmp == 0 && I->isBitwiseLogicOp()) {
- // We use MaskedValueIsZero here for generality, but the case we care
- // about the most is constant RHS.
- unsigned VSize = V->getType()->getScalarSizeInBits();
- if (IC.MaskedValueIsZero(I->getOperand(1),
- APInt::getHighBitsSet(VSize, BitsToClear),
- 0, CxtI)) {
- // If this is an And instruction and all of the BitsToClear are
- // known to be zero we can reset BitsToClear.
- if (I->getOpcode() == Instruction::And)
- BitsToClear = 0;
- return true;
- }
- }
- // Otherwise, we don't know how to analyze this BitsToClear case yet.
- return false;
- case Instruction::Shl: {
- // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
- // upper bits we can reduce BitsToClear by the shift amount.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
- return false;
- uint64_t ShiftAmt = Amt->getZExtValue();
- BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
- return true;
- }
- return false;
- }
- case Instruction::LShr: {
- // We can promote lshr(x, cst) if we can promote x. This requires the
- // ultimate 'and' to clear out the high zero bits we're clearing out though.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
- return false;
- BitsToClear += Amt->getZExtValue();
- if (BitsToClear > V->getType()->getScalarSizeInBits())
- BitsToClear = V->getType()->getScalarSizeInBits();
- return true;
- }
- // Cannot promote variable LSHR.
- return false;
- }
- case Instruction::Select:
- if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
- !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
- // TODO: If important, we could handle the case when the BitsToClear are
- // known zero in the disagreeing side.
- Tmp != BitsToClear)
- return false;
- return true;
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
- return false;
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
- // TODO: If important, we could handle the case when the BitsToClear
- // are known zero in the disagreeing input.
- Tmp != BitsToClear)
- return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- return false;
- }
- }
- Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
- // If this zero extend is only used by a truncate, let the truncate be
- // eliminated before we try to optimize this zext.
- if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()))
- return nullptr;
- // If one of the common conversion will work, do it.
- if (Instruction *Result = commonCastTransforms(Zext))
- return Result;
- Value *Src = Zext.getOperand(0);
- Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
- // Try to extend the entire expression tree to the wide destination type.
- unsigned BitsToClear;
- if (shouldChangeType(SrcTy, DestTy) &&
- canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
- assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
- "Can't clear more bits than in SrcTy");
- // Okay, we can transform this! Insert the new expression now.
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid zero extend: "
- << Zext << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, false);
- assert(Res->getType() == DestTy);
- // Preserve debug values referring to Src if the zext is its last use.
- if (auto *SrcOp = dyn_cast<Instruction>(Src))
- if (SrcOp->hasOneUse())
- replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
- uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
- // If the high bits are already filled with zeros, just replace this
- // cast with the result.
- if (MaskedValueIsZero(Res,
- APInt::getHighBitsSet(DestBitSize,
- DestBitSize - SrcBitsKept),
- 0, &Zext))
- return replaceInstUsesWith(Zext, Res);
- // We need to emit an AND to clear the high bits.
- Constant *C = ConstantInt::get(Res->getType(),
- APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
- return BinaryOperator::CreateAnd(Res, C);
- }
- // If this is a TRUNC followed by a ZEXT then we are dealing with integral
- // types and if the sizes are just right we can convert this into a logical
- // 'and' which will be much cheaper than the pair of casts.
- if (auto *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
- // TODO: Subsume this into EvaluateInDifferentType.
- // Get the sizes of the types involved. We know that the intermediate type
- // will be smaller than A or C, but don't know the relation between A and C.
- Value *A = CSrc->getOperand(0);
- unsigned SrcSize = A->getType()->getScalarSizeInBits();
- unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
- unsigned DstSize = DestTy->getScalarSizeInBits();
- // If we're actually extending zero bits, then if
- // SrcSize < DstSize: zext(a & mask)
- // SrcSize == DstSize: a & mask
- // SrcSize > DstSize: trunc(a) & mask
- if (SrcSize < DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
- Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
- return new ZExtInst(And, DestTy);
- }
- if (SrcSize == DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
- AndValue));
- }
- if (SrcSize > DstSize) {
- Value *Trunc = Builder.CreateTrunc(A, DestTy);
- APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
- ConstantInt::get(Trunc->getType(),
- AndValue));
- }
- }
- if (auto *Cmp = dyn_cast<ICmpInst>(Src))
- return transformZExtICmp(Cmp, Zext);
- // zext(trunc(X) & C) -> (X & zext(C)).
- Constant *C;
- Value *X;
- if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
- X->getType() == DestTy)
- return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, DestTy));
- // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
- Value *And;
- if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
- match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
- X->getType() == DestTy) {
- Constant *ZC = ConstantExpr::getZExt(C, DestTy);
- return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
- }
- // If we are truncating, masking, and then zexting back to the original type,
- // that's just a mask. This is not handled by canEvaluateZextd if the
- // intermediate values have extra uses. This could be generalized further for
- // a non-constant mask operand.
- // zext (and (trunc X), C) --> and X, (zext C)
- if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
- X->getType() == DestTy) {
- Constant *ZextC = ConstantExpr::getZExt(C, DestTy);
- return BinaryOperator::CreateAnd(X, ZextC);
- }
- if (match(Src, m_VScale(DL))) {
- if (Zext.getFunction() &&
- Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
- Attribute Attr =
- Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
- if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
- unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
- if (Log2_32(*MaxVScale) < TypeWidth) {
- Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
- return replaceInstUsesWith(Zext, VScale);
- }
- }
- }
- }
- return nullptr;
- }
- /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
- Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
- SExtInst &Sext) {
- Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
- ICmpInst::Predicate Pred = Cmp->getPredicate();
- // Don't bother if Op1 isn't of vector or integer type.
- if (!Op1->getType()->isIntOrIntVectorTy())
- return nullptr;
- if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
- // sext (x <s 0) --> ashr x, 31 (all ones if negative)
- Value *Sh = ConstantInt::get(Op0->getType(),
- Op0->getType()->getScalarSizeInBits() - 1);
- Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
- if (In->getType() != Sext.getType())
- In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
- return replaceInstUsesWith(Sext, In);
- }
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- // If we know that only one bit of the LHS of the icmp can be set and we
- // have an equality comparison with zero or a power of 2, we can transform
- // the icmp and sext into bitwise/integer operations.
- if (Cmp->hasOneUse() &&
- Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
- KnownBits Known = computeKnownBits(Op0, 0, &Sext);
- APInt KnownZeroMask(~Known.Zero);
- if (KnownZeroMask.isPowerOf2()) {
- Value *In = Cmp->getOperand(0);
- // If the icmp tests for a known zero bit we can constant fold it.
- if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
- Value *V = Pred == ICmpInst::ICMP_NE ?
- ConstantInt::getAllOnesValue(Sext.getType()) :
- ConstantInt::getNullValue(Sext.getType());
- return replaceInstUsesWith(Sext, V);
- }
- if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
- // sext ((x & 2^n) == 0) -> (x >> n) - 1
- // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
- unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
- // Perform a right shift to place the desired bit in the LSB.
- if (ShiftAmt)
- In = Builder.CreateLShr(In,
- ConstantInt::get(In->getType(), ShiftAmt));
- // At this point "In" is either 1 or 0. Subtract 1 to turn
- // {1, 0} -> {0, -1}.
- In = Builder.CreateAdd(In,
- ConstantInt::getAllOnesValue(In->getType()),
- "sext");
- } else {
- // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
- // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
- unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
- // Perform a left shift to place the desired bit in the MSB.
- if (ShiftAmt)
- In = Builder.CreateShl(In,
- ConstantInt::get(In->getType(), ShiftAmt));
- // Distribute the bit over the whole bit width.
- In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
- KnownZeroMask.getBitWidth() - 1), "sext");
- }
- if (Sext.getType() == In->getType())
- return replaceInstUsesWith(Sext, In);
- return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
- }
- }
- }
- return nullptr;
- }
- /// Return true if we can take the specified value and return it as type Ty
- /// without inserting any new casts and without changing the value of the common
- /// low bits. This is used by code that tries to promote integer operations to
- /// a wider types will allow us to eliminate the extension.
- ///
- /// This function works on both vectors and scalars.
- ///
- static bool canEvaluateSExtd(Value *V, Type *Ty) {
- assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
- "Can't sign extend type to a smaller type");
- if (canAlwaysEvaluateInType(V, Ty))
- return true;
- if (canNotEvaluateInType(V, Ty))
- return false;
- auto *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::SExt: // sext(sext(x)) -> sext(x)
- case Instruction::ZExt: // sext(zext(x)) -> zext(x)
- case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
- return true;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // These operators can all arbitrarily be extended if their inputs can.
- return canEvaluateSExtd(I->getOperand(0), Ty) &&
- canEvaluateSExtd(I->getOperand(1), Ty);
- //case Instruction::Shl: TODO
- //case Instruction::LShr: TODO
- case Instruction::Select:
- return canEvaluateSExtd(I->getOperand(1), Ty) &&
- canEvaluateSExtd(I->getOperand(2), Ty);
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateSExtd(IncValue, Ty)) return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
- return false;
- }
- Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
- // If this sign extend is only used by a truncate, let the truncate be
- // eliminated before we try to optimize this sext.
- if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
- return nullptr;
- if (Instruction *I = commonCastTransforms(Sext))
- return I;
- Value *Src = Sext.getOperand(0);
- Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- // If the value being extended is zero or positive, use a zext instead.
- if (isKnownNonNegative(Src, DL, 0, &AC, &Sext, &DT))
- return CastInst::Create(Instruction::ZExt, Src, DestTy);
- // Try to extend the entire expression tree to the wide destination type.
- if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
- // Okay, we can transform this! Insert the new expression now.
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid sign extend: "
- << Sext << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, true);
- assert(Res->getType() == DestTy);
- // If the high bits are already filled with sign bit, just replace this
- // cast with the result.
- if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
- return replaceInstUsesWith(Sext, Res);
- // We need to emit a shl + ashr to do the sign extend.
- Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
- return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
- ShAmt);
- }
- Value *X;
- if (match(Src, m_Trunc(m_Value(X)))) {
- // If the input has more sign bits than bits truncated, then convert
- // directly to final type.
- unsigned XBitSize = X->getType()->getScalarSizeInBits();
- if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
- return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
- // If input is a trunc from the destination type, then convert into shifts.
- if (Src->hasOneUse() && X->getType() == DestTy) {
- // sext (trunc X) --> ashr (shl X, C), C
- Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
- return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
- }
- // If we are replacing shifted-in high zero bits with sign bits, convert
- // the logic shift to arithmetic shift and eliminate the cast to
- // intermediate type:
- // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
- Value *Y;
- if (Src->hasOneUse() &&
- match(X, m_LShr(m_Value(Y),
- m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) {
- Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
- return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
- }
- }
- if (auto *Cmp = dyn_cast<ICmpInst>(Src))
- return transformSExtICmp(Cmp, Sext);
- // If the input is a shl/ashr pair of a same constant, then this is a sign
- // extension from a smaller value. If we could trust arbitrary bitwidth
- // integers, we could turn this into a truncate to the smaller bit and then
- // use a sext for the whole extension. Since we don't, look deeper and check
- // for a truncate. If the source and dest are the same type, eliminate the
- // trunc and extend and just do shifts. For example, turn:
- // %a = trunc i32 %i to i8
- // %b = shl i8 %a, C
- // %c = ashr i8 %b, C
- // %d = sext i8 %c to i32
- // into:
- // %a = shl i32 %i, 32-(8-C)
- // %d = ashr i32 %a, 32-(8-C)
- Value *A = nullptr;
- // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
- Constant *BA = nullptr, *CA = nullptr;
- if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
- m_Constant(CA))) &&
- BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
- Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
- Constant *NumLowbitsLeft = ConstantExpr::getSub(
- ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
- Constant *NewShAmt = ConstantExpr::getSub(
- ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
- NumLowbitsLeft);
- NewShAmt =
- Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
- A = Builder.CreateShl(A, NewShAmt, Sext.getName());
- return BinaryOperator::CreateAShr(A, NewShAmt);
- }
- // Splatting a bit of constant-index across a value:
- // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
- // If the dest type is different, use a cast (adjust use check).
- if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
- m_SpecificInt(SrcBitSize - 1))))) {
- Type *XTy = X->getType();
- unsigned XBitSize = XTy->getScalarSizeInBits();
- Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
- Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
- if (XTy == DestTy)
- return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
- AshrAmtC);
- if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
- Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
- return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
- }
- }
- if (match(Src, m_VScale(DL))) {
- if (Sext.getFunction() &&
- Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
- Attribute Attr =
- Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
- if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
- if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
- Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
- return replaceInstUsesWith(Sext, VScale);
- }
- }
- }
- }
- return nullptr;
- }
- /// Return a Constant* for the specified floating-point constant if it fits
- /// in the specified FP type without changing its value.
- static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
- bool losesInfo;
- APFloat F = CFP->getValueAPF();
- (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
- return !losesInfo;
- }
- static Type *shrinkFPConstant(ConstantFP *CFP) {
- if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
- return nullptr; // No constant folding of this.
- // See if the value can be truncated to half and then reextended.
- if (fitsInFPType(CFP, APFloat::IEEEhalf()))
- return Type::getHalfTy(CFP->getContext());
- // See if the value can be truncated to float and then reextended.
- if (fitsInFPType(CFP, APFloat::IEEEsingle()))
- return Type::getFloatTy(CFP->getContext());
- if (CFP->getType()->isDoubleTy())
- return nullptr; // Won't shrink.
- if (fitsInFPType(CFP, APFloat::IEEEdouble()))
- return Type::getDoubleTy(CFP->getContext());
- // Don't try to shrink to various long double types.
- return nullptr;
- }
- // Determine if this is a vector of ConstantFPs and if so, return the minimal
- // type we can safely truncate all elements to.
- static Type *shrinkFPConstantVector(Value *V) {
- auto *CV = dyn_cast<Constant>(V);
- auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
- if (!CV || !CVVTy)
- return nullptr;
- Type *MinType = nullptr;
- unsigned NumElts = CVVTy->getNumElements();
- // For fixed-width vectors we find the minimal type by looking
- // through the constant values of the vector.
- for (unsigned i = 0; i != NumElts; ++i) {
- if (isa<UndefValue>(CV->getAggregateElement(i)))
- continue;
- auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
- if (!CFP)
- return nullptr;
- Type *T = shrinkFPConstant(CFP);
- if (!T)
- return nullptr;
- // If we haven't found a type yet or this type has a larger mantissa than
- // our previous type, this is our new minimal type.
- if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
- MinType = T;
- }
- // Make a vector type from the minimal type.
- return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
- }
- /// Find the minimum FP type we can safely truncate to.
- static Type *getMinimumFPType(Value *V) {
- if (auto *FPExt = dyn_cast<FPExtInst>(V))
- return FPExt->getOperand(0)->getType();
- // If this value is a constant, return the constant in the smallest FP type
- // that can accurately represent it. This allows us to turn
- // (float)((double)X+2.0) into x+2.0f.
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- if (Type *T = shrinkFPConstant(CFP))
- return T;
- // We can only correctly find a minimum type for a scalable vector when it is
- // a splat. For splats of constant values the fpext is wrapped up as a
- // ConstantExpr.
- if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
- if (FPCExt->getOpcode() == Instruction::FPExt)
- return FPCExt->getOperand(0)->getType();
- // Try to shrink a vector of FP constants. This returns nullptr on scalable
- // vectors
- if (Type *T = shrinkFPConstantVector(V))
- return T;
- return V->getType();
- }
- /// Return true if the cast from integer to FP can be proven to be exact for all
- /// possible inputs (the conversion does not lose any precision).
- static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
- CastInst::CastOps Opcode = I.getOpcode();
- assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
- "Unexpected cast");
- Value *Src = I.getOperand(0);
- Type *SrcTy = Src->getType();
- Type *FPTy = I.getType();
- bool IsSigned = Opcode == Instruction::SIToFP;
- int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
- // Easy case - if the source integer type has less bits than the FP mantissa,
- // then the cast must be exact.
- int DestNumSigBits = FPTy->getFPMantissaWidth();
- if (SrcSize <= DestNumSigBits)
- return true;
- // Cast from FP to integer and back to FP is independent of the intermediate
- // integer width because of poison on overflow.
- Value *F;
- if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
- // If this is uitofp (fptosi F), the source needs an extra bit to avoid
- // potential rounding of negative FP input values.
- int SrcNumSigBits = F->getType()->getFPMantissaWidth();
- if (!IsSigned && match(Src, m_FPToSI(m_Value())))
- SrcNumSigBits++;
- // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
- // significant bits than the destination (and make sure neither type is
- // weird -- ppc_fp128).
- if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
- SrcNumSigBits <= DestNumSigBits)
- return true;
- }
- // TODO:
- // Try harder to find if the source integer type has less significant bits.
- // For example, compute number of sign bits.
- KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
- int SigBits = (int)SrcTy->getScalarSizeInBits() -
- SrcKnown.countMinLeadingZeros() -
- SrcKnown.countMinTrailingZeros();
- if (SigBits <= DestNumSigBits)
- return true;
- return false;
- }
- Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
- if (Instruction *I = commonCastTransforms(FPT))
- return I;
- // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
- // simplify this expression to avoid one or more of the trunc/extend
- // operations if we can do so without changing the numerical results.
- //
- // The exact manner in which the widths of the operands interact to limit
- // what we can and cannot do safely varies from operation to operation, and
- // is explained below in the various case statements.
- Type *Ty = FPT.getType();
- auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
- if (BO && BO->hasOneUse()) {
- Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
- Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
- unsigned OpWidth = BO->getType()->getFPMantissaWidth();
- unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
- unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
- unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
- unsigned DstWidth = Ty->getFPMantissaWidth();
- switch (BO->getOpcode()) {
- default: break;
- case Instruction::FAdd:
- case Instruction::FSub:
- // For addition and subtraction, the infinitely precise result can
- // essentially be arbitrarily wide; proving that double rounding
- // will not occur because the result of OpI is exact (as we will for
- // FMul, for example) is hopeless. However, we *can* nonetheless
- // frequently know that double rounding cannot occur (or that it is
- // innocuous) by taking advantage of the specific structure of
- // infinitely-precise results that admit double rounding.
- //
- // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
- // to represent both sources, we can guarantee that the double
- // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
- // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
- // for proof of this fact).
- //
- // Note: Figueroa does not consider the case where DstFormat !=
- // SrcFormat. It's possible (likely even!) that this analysis
- // could be tightened for those cases, but they are rare (the main
- // case of interest here is (float)((double)float + float)).
- if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
- Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
- Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
- Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
- RI->copyFastMathFlags(BO);
- return RI;
- }
- break;
- case Instruction::FMul:
- // For multiplication, the infinitely precise result has at most
- // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
- // that such a value can be exactly represented, then no double
- // rounding can possibly occur; we can safely perform the operation
- // in the destination format if it can represent both sources.
- if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
- Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
- Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
- return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
- }
- break;
- case Instruction::FDiv:
- // For division, we use again use the bound from Figueroa's
- // dissertation. I am entirely certain that this bound can be
- // tightened in the unbalanced operand case by an analysis based on
- // the diophantine rational approximation bound, but the well-known
- // condition used here is a good conservative first pass.
- // TODO: Tighten bound via rigorous analysis of the unbalanced case.
- if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
- Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
- Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
- return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
- }
- break;
- case Instruction::FRem: {
- // Remainder is straightforward. Remainder is always exact, so the
- // type of OpI doesn't enter into things at all. We simply evaluate
- // in whichever source type is larger, then convert to the
- // destination type.
- if (SrcWidth == OpWidth)
- break;
- Value *LHS, *RHS;
- if (LHSWidth == SrcWidth) {
- LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
- RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
- } else {
- LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
- RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
- }
- Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
- return CastInst::CreateFPCast(ExactResult, Ty);
- }
- }
- }
- // (fptrunc (fneg x)) -> (fneg (fptrunc x))
- Value *X;
- Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
- if (Op && Op->hasOneUse()) {
- // FIXME: The FMF should propagate from the fptrunc, not the source op.
- IRBuilder<>::FastMathFlagGuard FMFG(Builder);
- if (isa<FPMathOperator>(Op))
- Builder.setFastMathFlags(Op->getFastMathFlags());
- if (match(Op, m_FNeg(m_Value(X)))) {
- Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
- return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
- }
- // If we are truncating a select that has an extended operand, we can
- // narrow the other operand and do the select as a narrow op.
- Value *Cond, *X, *Y;
- if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
- X->getType() == Ty) {
- // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
- Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
- Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
- return replaceInstUsesWith(FPT, Sel);
- }
- if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
- X->getType() == Ty) {
- // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
- Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
- Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
- return replaceInstUsesWith(FPT, Sel);
- }
- }
- if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::ceil:
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::nearbyint:
- case Intrinsic::rint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::trunc: {
- Value *Src = II->getArgOperand(0);
- if (!Src->hasOneUse())
- break;
- // Except for fabs, this transformation requires the input of the unary FP
- // operation to be itself an fpext from the type to which we're
- // truncating.
- if (II->getIntrinsicID() != Intrinsic::fabs) {
- FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
- if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
- break;
- }
- // Do unary FP operation on smaller type.
- // (fptrunc (fabs x)) -> (fabs (fptrunc x))
- Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
- Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
- II->getIntrinsicID(), Ty);
- SmallVector<OperandBundleDef, 1> OpBundles;
- II->getOperandBundlesAsDefs(OpBundles);
- CallInst *NewCI =
- CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
- NewCI->copyFastMathFlags(II);
- return NewCI;
- }
- }
- }
- if (Instruction *I = shrinkInsertElt(FPT, Builder))
- return I;
- Value *Src = FPT.getOperand(0);
- if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
- auto *FPCast = cast<CastInst>(Src);
- if (isKnownExactCastIntToFP(*FPCast, *this))
- return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
- // If the source operand is a cast from integer to FP and known exact, then
- // cast the integer operand directly to the destination type.
- Type *Ty = FPExt.getType();
- Value *Src = FPExt.getOperand(0);
- if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
- auto *FPCast = cast<CastInst>(Src);
- if (isKnownExactCastIntToFP(*FPCast, *this))
- return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
- }
- return commonCastTransforms(FPExt);
- }
- /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
- /// This is safe if the intermediate type has enough bits in its mantissa to
- /// accurately represent all values of X. For example, this won't work with
- /// i64 -> float -> i64.
- Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
- if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
- return nullptr;
- auto *OpI = cast<CastInst>(FI.getOperand(0));
- Value *X = OpI->getOperand(0);
- Type *XType = X->getType();
- Type *DestType = FI.getType();
- bool IsOutputSigned = isa<FPToSIInst>(FI);
- // Since we can assume the conversion won't overflow, our decision as to
- // whether the input will fit in the float should depend on the minimum
- // of the input range and output range.
- // This means this is also safe for a signed input and unsigned output, since
- // a negative input would lead to undefined behavior.
- if (!isKnownExactCastIntToFP(*OpI, *this)) {
- // The first cast may not round exactly based on the source integer width
- // and FP width, but the overflow UB rules can still allow this to fold.
- // If the destination type is narrow, that means the intermediate FP value
- // must be large enough to hold the source value exactly.
- // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
- int OutputSize = (int)DestType->getScalarSizeInBits();
- if (OutputSize > OpI->getType()->getFPMantissaWidth())
- return nullptr;
- }
- if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
- bool IsInputSigned = isa<SIToFPInst>(OpI);
- if (IsInputSigned && IsOutputSigned)
- return new SExtInst(X, DestType);
- return new ZExtInst(X, DestType);
- }
- if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
- return new TruncInst(X, DestType);
- assert(XType == DestType && "Unexpected types for int to FP to int casts");
- return replaceInstUsesWith(FI, X);
- }
- Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
- if (Instruction *I = foldItoFPtoI(FI))
- return I;
- return commonCastTransforms(FI);
- }
- Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
- if (Instruction *I = foldItoFPtoI(FI))
- return I;
- return commonCastTransforms(FI);
- }
- Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
- }
- Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
- }
- Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
- // If the source integer type is not the intptr_t type for this target, do a
- // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
- // cast to be exposed to other transforms.
- unsigned AS = CI.getAddressSpace();
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
- DL.getPointerSizeInBits(AS)) {
- Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
- DL.getIntPtrType(CI.getContext(), AS));
- Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
- return new IntToPtrInst(P, CI.getType());
- }
- if (Instruction *I = commonCastTransforms(CI))
- return I;
- return nullptr;
- }
- /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
- Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
- // If casting the result of a getelementptr instruction with no offset, turn
- // this into a cast of the original pointer!
- if (GEP->hasAllZeroIndices() &&
- // If CI is an addrspacecast and GEP changes the poiner type, merging
- // GEP into CI would undo canonicalizing addrspacecast with different
- // pointer types, causing infinite loops.
- (!isa<AddrSpaceCastInst>(CI) ||
- GEP->getType() == GEP->getPointerOperandType())) {
- // Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
- // pointer operand so the opcode doesn't need to change.
- return replaceOperand(CI, 0, GEP->getOperand(0));
- }
- }
- return commonCastTransforms(CI);
- }
- Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
- // If the destination integer type is not the intptr_t type for this target,
- // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
- // to be exposed to other transforms.
- Value *SrcOp = CI.getPointerOperand();
- Type *SrcTy = SrcOp->getType();
- Type *Ty = CI.getType();
- unsigned AS = CI.getPointerAddressSpace();
- unsigned TySize = Ty->getScalarSizeInBits();
- unsigned PtrSize = DL.getPointerSizeInBits(AS);
- if (TySize != PtrSize) {
- Type *IntPtrTy =
- SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
- Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
- return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
- // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
- // While this can increase the number of instructions it doesn't actually
- // increase the overall complexity since the arithmetic is just part of
- // the GEP otherwise.
- if (GEP->hasOneUse() &&
- isa<ConstantPointerNull>(GEP->getPointerOperand())) {
- return replaceInstUsesWith(CI,
- Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
- /*isSigned=*/false));
- }
- }
- Value *Vec, *Scalar, *Index;
- if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
- m_Value(Scalar), m_Value(Index)))) &&
- Vec->getType() == Ty) {
- assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
- // Convert the scalar to int followed by insert to eliminate one cast:
- // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
- Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
- return InsertElementInst::Create(Vec, NewCast, Index);
- }
- return commonPointerCastTransforms(CI);
- }
- /// This input value (which is known to have vector type) is being zero extended
- /// or truncated to the specified vector type. Since the zext/trunc is done
- /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
- /// endianness will impact which end of the vector that is extended or
- /// truncated.
- ///
- /// A vector is always stored with index 0 at the lowest address, which
- /// corresponds to the most significant bits for a big endian stored integer and
- /// the least significant bits for little endian. A trunc/zext of an integer
- /// impacts the big end of the integer. Thus, we need to add/remove elements at
- /// the front of the vector for big endian targets, and the back of the vector
- /// for little endian targets.
- ///
- /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
- ///
- /// The source and destination vector types may have different element types.
- static Instruction *
- optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
- InstCombinerImpl &IC) {
- // We can only do this optimization if the output is a multiple of the input
- // element size, or the input is a multiple of the output element size.
- // Convert the input type to have the same element type as the output.
- VectorType *SrcTy = cast<VectorType>(InVal->getType());
- if (SrcTy->getElementType() != DestTy->getElementType()) {
- // The input types don't need to be identical, but for now they must be the
- // same size. There is no specific reason we couldn't handle things like
- // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
- // there yet.
- if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
- DestTy->getElementType()->getPrimitiveSizeInBits())
- return nullptr;
- SrcTy =
- FixedVectorType::get(DestTy->getElementType(),
- cast<FixedVectorType>(SrcTy)->getNumElements());
- InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
- }
- bool IsBigEndian = IC.getDataLayout().isBigEndian();
- unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
- unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
- assert(SrcElts != DestElts && "Element counts should be different.");
- // Now that the element types match, get the shuffle mask and RHS of the
- // shuffle to use, which depends on whether we're increasing or decreasing the
- // size of the input.
- auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
- ArrayRef<int> ShuffleMask;
- Value *V2;
- if (SrcElts > DestElts) {
- // If we're shrinking the number of elements (rewriting an integer
- // truncate), just shuffle in the elements corresponding to the least
- // significant bits from the input and use poison as the second shuffle
- // input.
- V2 = PoisonValue::get(SrcTy);
- // Make sure the shuffle mask selects the "least significant bits" by
- // keeping elements from back of the src vector for big endian, and from the
- // front for little endian.
- ShuffleMask = ShuffleMaskStorage;
- if (IsBigEndian)
- ShuffleMask = ShuffleMask.take_back(DestElts);
- else
- ShuffleMask = ShuffleMask.take_front(DestElts);
- } else {
- // If we're increasing the number of elements (rewriting an integer zext),
- // shuffle in all of the elements from InVal. Fill the rest of the result
- // elements with zeros from a constant zero.
- V2 = Constant::getNullValue(SrcTy);
- // Use first elt from V2 when indicating zero in the shuffle mask.
- uint32_t NullElt = SrcElts;
- // Extend with null values in the "most significant bits" by adding elements
- // in front of the src vector for big endian, and at the back for little
- // endian.
- unsigned DeltaElts = DestElts - SrcElts;
- if (IsBigEndian)
- ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
- else
- ShuffleMaskStorage.append(DeltaElts, NullElt);
- ShuffleMask = ShuffleMaskStorage;
- }
- return new ShuffleVectorInst(InVal, V2, ShuffleMask);
- }
- static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
- return Value % Ty->getPrimitiveSizeInBits() == 0;
- }
- static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
- return Value / Ty->getPrimitiveSizeInBits();
- }
- /// V is a value which is inserted into a vector of VecEltTy.
- /// Look through the value to see if we can decompose it into
- /// insertions into the vector. See the example in the comment for
- /// OptimizeIntegerToVectorInsertions for the pattern this handles.
- /// The type of V is always a non-zero multiple of VecEltTy's size.
- /// Shift is the number of bits between the lsb of V and the lsb of
- /// the vector.
- ///
- /// This returns false if the pattern can't be matched or true if it can,
- /// filling in Elements with the elements found here.
- static bool collectInsertionElements(Value *V, unsigned Shift,
- SmallVectorImpl<Value *> &Elements,
- Type *VecEltTy, bool isBigEndian) {
- assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
- "Shift should be a multiple of the element type size");
- // Undef values never contribute useful bits to the result.
- if (isa<UndefValue>(V)) return true;
- // If we got down to a value of the right type, we win, try inserting into the
- // right element.
- if (V->getType() == VecEltTy) {
- // Inserting null doesn't actually insert any elements.
- if (Constant *C = dyn_cast<Constant>(V))
- if (C->isNullValue())
- return true;
- unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
- if (isBigEndian)
- ElementIndex = Elements.size() - ElementIndex - 1;
- // Fail if multiple elements are inserted into this slot.
- if (Elements[ElementIndex])
- return false;
- Elements[ElementIndex] = V;
- return true;
- }
- if (Constant *C = dyn_cast<Constant>(V)) {
- // Figure out the # elements this provides, and bitcast it or slice it up
- // as required.
- unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
- VecEltTy);
- // If the constant is the size of a vector element, we just need to bitcast
- // it to the right type so it gets properly inserted.
- if (NumElts == 1)
- return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
- Shift, Elements, VecEltTy, isBigEndian);
- // Okay, this is a constant that covers multiple elements. Slice it up into
- // pieces and insert each element-sized piece into the vector.
- if (!isa<IntegerType>(C->getType()))
- C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
- C->getType()->getPrimitiveSizeInBits()));
- unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
- Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
- for (unsigned i = 0; i != NumElts; ++i) {
- unsigned ShiftI = Shift+i*ElementSize;
- Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
- ShiftI));
- Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
- if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
- isBigEndian))
- return false;
- }
- return true;
- }
- if (!V->hasOneUse()) return false;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- switch (I->getOpcode()) {
- default: return false; // Unhandled case.
- case Instruction::BitCast:
- if (I->getOperand(0)->getType()->isVectorTy())
- return false;
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::ZExt:
- if (!isMultipleOfTypeSize(
- I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
- VecEltTy))
- return false;
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::Or:
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian) &&
- collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::Shl: {
- // Must be shifting by a constant that is a multiple of the element size.
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!CI) return false;
- Shift += CI->getZExtValue();
- if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- }
- }
- }
- /// If the input is an 'or' instruction, we may be doing shifts and ors to
- /// assemble the elements of the vector manually.
- /// Try to rip the code out and replace it with insertelements. This is to
- /// optimize code like this:
- ///
- /// %tmp37 = bitcast float %inc to i32
- /// %tmp38 = zext i32 %tmp37 to i64
- /// %tmp31 = bitcast float %inc5 to i32
- /// %tmp32 = zext i32 %tmp31 to i64
- /// %tmp33 = shl i64 %tmp32, 32
- /// %ins35 = or i64 %tmp33, %tmp38
- /// %tmp43 = bitcast i64 %ins35 to <2 x float>
- ///
- /// Into two insertelements that do "buildvector{%inc, %inc5}".
- static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
- InstCombinerImpl &IC) {
- auto *DestVecTy = cast<FixedVectorType>(CI.getType());
- Value *IntInput = CI.getOperand(0);
- SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
- if (!collectInsertionElements(IntInput, 0, Elements,
- DestVecTy->getElementType(),
- IC.getDataLayout().isBigEndian()))
- return nullptr;
- // If we succeeded, we know that all of the element are specified by Elements
- // or are zero if Elements has a null entry. Recast this as a set of
- // insertions.
- Value *Result = Constant::getNullValue(CI.getType());
- for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
- if (!Elements[i]) continue; // Unset element.
- Result = IC.Builder.CreateInsertElement(Result, Elements[i],
- IC.Builder.getInt32(i));
- }
- return Result;
- }
- /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
- /// vector followed by extract element. The backend tends to handle bitcasts of
- /// vectors better than bitcasts of scalars because vector registers are
- /// usually not type-specific like scalar integer or scalar floating-point.
- static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
- InstCombinerImpl &IC) {
- Value *VecOp, *Index;
- if (!match(BitCast.getOperand(0),
- m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
- return nullptr;
- // The bitcast must be to a vectorizable type, otherwise we can't make a new
- // type to extract from.
- Type *DestType = BitCast.getType();
- VectorType *VecType = cast<VectorType>(VecOp->getType());
- if (VectorType::isValidElementType(DestType)) {
- auto *NewVecType = VectorType::get(DestType, VecType);
- auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
- return ExtractElementInst::Create(NewBC, Index);
- }
- // Only solve DestType is vector to avoid inverse transform in visitBitCast.
- // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
- auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
- if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
- return CastInst::Create(Instruction::BitCast, VecOp, DestType);
- return nullptr;
- }
- /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
- static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
- InstCombiner::BuilderTy &Builder) {
- Type *DestTy = BitCast.getType();
- BinaryOperator *BO;
- if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
- !BO->isBitwiseLogicOp())
- return nullptr;
- // FIXME: This transform is restricted to vector types to avoid backend
- // problems caused by creating potentially illegal operations. If a fix-up is
- // added to handle that situation, we can remove this check.
- if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
- return nullptr;
- if (DestTy->isFPOrFPVectorTy()) {
- Value *X, *Y;
- // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
- if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
- match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
- if (X->getType()->isFPOrFPVectorTy() &&
- Y->getType()->isIntOrIntVectorTy()) {
- Value *CastedOp =
- Builder.CreateBitCast(BO->getOperand(0), Y->getType());
- Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
- return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
- }
- if (X->getType()->isIntOrIntVectorTy() &&
- Y->getType()->isFPOrFPVectorTy()) {
- Value *CastedOp =
- Builder.CreateBitCast(BO->getOperand(1), X->getType());
- Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
- return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
- }
- }
- return nullptr;
- }
- if (!DestTy->isIntOrIntVectorTy())
- return nullptr;
- Value *X;
- if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
- X->getType() == DestTy && !isa<Constant>(X)) {
- // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
- Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
- return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
- }
- if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
- X->getType() == DestTy && !isa<Constant>(X)) {
- // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
- Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
- return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
- }
- // Canonicalize vector bitcasts to come before vector bitwise logic with a
- // constant. This eases recognition of special constants for later ops.
- // Example:
- // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
- Constant *C;
- if (match(BO->getOperand(1), m_Constant(C))) {
- // bitcast (logic X, C) --> logic (bitcast X, C')
- Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
- Value *CastedC = Builder.CreateBitCast(C, DestTy);
- return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
- }
- return nullptr;
- }
- /// Change the type of a select if we can eliminate a bitcast.
- static Instruction *foldBitCastSelect(BitCastInst &BitCast,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond, *TVal, *FVal;
- if (!match(BitCast.getOperand(0),
- m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
- return nullptr;
- // A vector select must maintain the same number of elements in its operands.
- Type *CondTy = Cond->getType();
- Type *DestTy = BitCast.getType();
- if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
- if (!DestTy->isVectorTy() ||
- CondVTy->getElementCount() !=
- cast<VectorType>(DestTy)->getElementCount())
- return nullptr;
- // FIXME: This transform is restricted from changing the select between
- // scalars and vectors to avoid backend problems caused by creating
- // potentially illegal operations. If a fix-up is added to handle that
- // situation, we can remove this check.
- if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
- return nullptr;
- auto *Sel = cast<Instruction>(BitCast.getOperand(0));
- Value *X;
- if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
- !isa<Constant>(X)) {
- // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
- Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
- return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
- }
- if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
- !isa<Constant>(X)) {
- // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
- Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
- return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
- }
- return nullptr;
- }
- /// Check if all users of CI are StoreInsts.
- static bool hasStoreUsersOnly(CastInst &CI) {
- for (User *U : CI.users()) {
- if (!isa<StoreInst>(U))
- return false;
- }
- return true;
- }
- /// This function handles following case
- ///
- /// A -> B cast
- /// PHI
- /// B -> A cast
- ///
- /// All the related PHI nodes can be replaced by new PHI nodes with type A.
- /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
- Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
- PHINode *PN) {
- // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
- if (hasStoreUsersOnly(CI))
- return nullptr;
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType(); // Type B
- Type *DestTy = CI.getType(); // Type A
- SmallVector<PHINode *, 4> PhiWorklist;
- SmallSetVector<PHINode *, 4> OldPhiNodes;
- // Find all of the A->B casts and PHI nodes.
- // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
- // OldPhiNodes is used to track all known PHI nodes, before adding a new
- // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
- PhiWorklist.push_back(PN);
- OldPhiNodes.insert(PN);
- while (!PhiWorklist.empty()) {
- auto *OldPN = PhiWorklist.pop_back_val();
- for (Value *IncValue : OldPN->incoming_values()) {
- if (isa<Constant>(IncValue))
- continue;
- if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
- // If there is a sequence of one or more load instructions, each loaded
- // value is used as address of later load instruction, bitcast is
- // necessary to change the value type, don't optimize it. For
- // simplicity we give up if the load address comes from another load.
- Value *Addr = LI->getOperand(0);
- if (Addr == &CI || isa<LoadInst>(Addr))
- return nullptr;
- // Don't tranform "load <256 x i32>, <256 x i32>*" to
- // "load x86_amx, x86_amx*", because x86_amx* is invalid.
- // TODO: Remove this check when bitcast between vector and x86_amx
- // is replaced with a specific intrinsic.
- if (DestTy->isX86_AMXTy())
- return nullptr;
- if (LI->hasOneUse() && LI->isSimple())
- continue;
- // If a LoadInst has more than one use, changing the type of loaded
- // value may create another bitcast.
- return nullptr;
- }
- if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
- if (OldPhiNodes.insert(PNode))
- PhiWorklist.push_back(PNode);
- continue;
- }
- auto *BCI = dyn_cast<BitCastInst>(IncValue);
- // We can't handle other instructions.
- if (!BCI)
- return nullptr;
- // Verify it's a A->B cast.
- Type *TyA = BCI->getOperand(0)->getType();
- Type *TyB = BCI->getType();
- if (TyA != DestTy || TyB != SrcTy)
- return nullptr;
- }
- }
- // Check that each user of each old PHI node is something that we can
- // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
- for (auto *OldPN : OldPhiNodes) {
- for (User *V : OldPN->users()) {
- if (auto *SI = dyn_cast<StoreInst>(V)) {
- if (!SI->isSimple() || SI->getOperand(0) != OldPN)
- return nullptr;
- } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
- // Verify it's a B->A cast.
- Type *TyB = BCI->getOperand(0)->getType();
- Type *TyA = BCI->getType();
- if (TyA != DestTy || TyB != SrcTy)
- return nullptr;
- } else if (auto *PHI = dyn_cast<PHINode>(V)) {
- // As long as the user is another old PHI node, then even if we don't
- // rewrite it, the PHI web we're considering won't have any users
- // outside itself, so it'll be dead.
- if (!OldPhiNodes.contains(PHI))
- return nullptr;
- } else {
- return nullptr;
- }
- }
- }
- // For each old PHI node, create a corresponding new PHI node with a type A.
- SmallDenseMap<PHINode *, PHINode *> NewPNodes;
- for (auto *OldPN : OldPhiNodes) {
- Builder.SetInsertPoint(OldPN);
- PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
- NewPNodes[OldPN] = NewPN;
- }
- // Fill in the operands of new PHI nodes.
- for (auto *OldPN : OldPhiNodes) {
- PHINode *NewPN = NewPNodes[OldPN];
- for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
- Value *V = OldPN->getOperand(j);
- Value *NewV = nullptr;
- if (auto *C = dyn_cast<Constant>(V)) {
- NewV = ConstantExpr::getBitCast(C, DestTy);
- } else if (auto *LI = dyn_cast<LoadInst>(V)) {
- // Explicitly perform load combine to make sure no opposing transform
- // can remove the bitcast in the meantime and trigger an infinite loop.
- Builder.SetInsertPoint(LI);
- NewV = combineLoadToNewType(*LI, DestTy);
- // Remove the old load and its use in the old phi, which itself becomes
- // dead once the whole transform finishes.
- replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
- eraseInstFromFunction(*LI);
- } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
- NewV = BCI->getOperand(0);
- } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
- NewV = NewPNodes[PrevPN];
- }
- assert(NewV);
- NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
- }
- }
- // Traverse all accumulated PHI nodes and process its users,
- // which are Stores and BitcCasts. Without this processing
- // NewPHI nodes could be replicated and could lead to extra
- // moves generated after DeSSA.
- // If there is a store with type B, change it to type A.
- // Replace users of BitCast B->A with NewPHI. These will help
- // later to get rid off a closure formed by OldPHI nodes.
- Instruction *RetVal = nullptr;
- for (auto *OldPN : OldPhiNodes) {
- PHINode *NewPN = NewPNodes[OldPN];
- for (User *V : make_early_inc_range(OldPN->users())) {
- if (auto *SI = dyn_cast<StoreInst>(V)) {
- assert(SI->isSimple() && SI->getOperand(0) == OldPN);
- Builder.SetInsertPoint(SI);
- auto *NewBC =
- cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
- SI->setOperand(0, NewBC);
- Worklist.push(SI);
- assert(hasStoreUsersOnly(*NewBC));
- }
- else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
- Type *TyB = BCI->getOperand(0)->getType();
- Type *TyA = BCI->getType();
- assert(TyA == DestTy && TyB == SrcTy);
- (void) TyA;
- (void) TyB;
- Instruction *I = replaceInstUsesWith(*BCI, NewPN);
- if (BCI == &CI)
- RetVal = I;
- } else if (auto *PHI = dyn_cast<PHINode>(V)) {
- assert(OldPhiNodes.contains(PHI));
- (void) PHI;
- } else {
- llvm_unreachable("all uses should be handled");
- }
- }
- }
- return RetVal;
- }
- static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder,
- const DataLayout &DL) {
- Value *Src = CI.getOperand(0);
- PointerType *SrcPTy = cast<PointerType>(Src->getType());
- PointerType *DstPTy = cast<PointerType>(CI.getType());
- // Bitcasts involving opaque pointers cannot be converted into a GEP.
- if (SrcPTy->isOpaque() || DstPTy->isOpaque())
- return nullptr;
- Type *DstElTy = DstPTy->getNonOpaquePointerElementType();
- Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType();
- // When the type pointed to is not sized the cast cannot be
- // turned into a gep.
- if (!SrcElTy->isSized())
- return nullptr;
- // If the source and destination are pointers, and this cast is equivalent
- // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
- // This can enhance SROA and other transforms that want type-safe pointers.
- unsigned NumZeros = 0;
- while (SrcElTy && SrcElTy != DstElTy) {
- SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
- ++NumZeros;
- }
- // If we found a path from the src to dest, create the getelementptr now.
- if (SrcElTy == DstElTy) {
- SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
- GetElementPtrInst *GEP = GetElementPtrInst::Create(
- SrcPTy->getNonOpaquePointerElementType(), Src, Idxs);
- // If the source pointer is dereferenceable, then assume it points to an
- // allocated object and apply "inbounds" to the GEP.
- bool CanBeNull, CanBeFreed;
- if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
- // In a non-default address space (not 0), a null pointer can not be
- // assumed inbounds, so ignore that case (dereferenceable_or_null).
- // The reason is that 'null' is not treated differently in these address
- // spaces, and we consequently ignore the 'gep inbounds' special case
- // for 'null' which allows 'inbounds' on 'null' if the indices are
- // zeros.
- if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
- GEP->setIsInBounds();
- }
- return GEP;
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
- // If the operands are integer typed then apply the integer transforms,
- // otherwise just apply the common ones.
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType();
- Type *DestTy = CI.getType();
- // Get rid of casts from one type to the same type. These are useless and can
- // be replaced by the operand.
- if (DestTy == Src->getType())
- return replaceInstUsesWith(CI, Src);
- if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
- // If we are casting a alloca to a pointer to a type of the same
- // size, rewrite the allocation instruction to allocate the "right" type.
- // There is no need to modify malloc calls because it is their bitcast that
- // needs to be cleaned up.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
- if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
- return V;
- if (Instruction *I = convertBitCastToGEP(CI, Builder, DL))
- return I;
- }
- if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
- // Beware: messing with this target-specific oddity may cause trouble.
- if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
- Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
- return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- }
- if (isa<IntegerType>(SrcTy)) {
- // If this is a cast from an integer to vector, check to see if the input
- // is a trunc or zext of a bitcast from vector. If so, we can replace all
- // the casts with a shuffle and (potentially) a bitcast.
- if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
- CastInst *SrcCast = cast<CastInst>(Src);
- if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
- if (isa<VectorType>(BCIn->getOperand(0)->getType()))
- if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
- BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
- return I;
- }
- // If the input is an 'or' instruction, we may be doing shifts and ors to
- // assemble the elements of the vector manually. Try to rip the code out
- // and replace it with insertelements.
- if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
- return replaceInstUsesWith(CI, V);
- }
- }
- if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
- if (SrcVTy->getNumElements() == 1) {
- // If our destination is not a vector, then make this a straight
- // scalar-scalar cast.
- if (!DestTy->isVectorTy()) {
- Value *Elem =
- Builder.CreateExtractElement(Src,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- return CastInst::Create(Instruction::BitCast, Elem, DestTy);
- }
- // Otherwise, see if our source is an insert. If so, then use the scalar
- // component directly:
- // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
- if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
- return new BitCastInst(InsElt->getOperand(1), DestTy);
- }
- // Convert an artificial vector insert into more analyzable bitwise logic.
- unsigned BitWidth = DestTy->getScalarSizeInBits();
- Value *X, *Y;
- uint64_t IndexC;
- if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
- m_Value(Y), m_ConstantInt(IndexC)))) &&
- DestTy->isIntegerTy() && X->getType() == DestTy &&
- Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
- // Adjust for big endian - the LSBs are at the high index.
- if (DL.isBigEndian())
- IndexC = SrcVTy->getNumElements() - 1 - IndexC;
- // We only handle (endian-normalized) insert to index 0. Any other insert
- // would require a left-shift, so that is an extra instruction.
- if (IndexC == 0) {
- // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
- unsigned EltWidth = Y->getType()->getScalarSizeInBits();
- APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
- Value *AndX = Builder.CreateAnd(X, MaskC);
- Value *ZextY = Builder.CreateZExt(Y, DestTy);
- return BinaryOperator::CreateOr(AndX, ZextY);
- }
- }
- }
- if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
- // Okay, we have (bitcast (shuffle ..)). Check to see if this is
- // a bitcast to a vector with the same # elts.
- Value *ShufOp0 = Shuf->getOperand(0);
- Value *ShufOp1 = Shuf->getOperand(1);
- auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
- auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
- if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
- cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
- ShufElts == SrcVecElts) {
- BitCastInst *Tmp;
- // If either of the operands is a cast from CI.getType(), then
- // evaluating the shuffle in the casted destination's type will allow
- // us to eliminate at least one cast.
- if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
- Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
- Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
- Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
- // Return a new shuffle vector. Use the same element ID's, as we
- // know the vector types match #elts.
- return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
- }
- }
- // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
- // as a byte/bit swap:
- // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
- // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
- if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
- Shuf->hasOneUse() && Shuf->isReverse()) {
- unsigned IntrinsicNum = 0;
- if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
- SrcTy->getScalarSizeInBits() == 8) {
- IntrinsicNum = Intrinsic::bswap;
- } else if (SrcTy->getScalarSizeInBits() == 1) {
- IntrinsicNum = Intrinsic::bitreverse;
- }
- if (IntrinsicNum != 0) {
- assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
- assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
- Function *BswapOrBitreverse =
- Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
- Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
- return CallInst::Create(BswapOrBitreverse, {ScalarX});
- }
- }
- }
- // Handle the A->B->A cast, and there is an intervening PHI node.
- if (PHINode *PN = dyn_cast<PHINode>(Src))
- if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
- return I;
- if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
- return I;
- if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
- return I;
- if (Instruction *I = foldBitCastSelect(CI, Builder))
- return I;
- if (SrcTy->isPointerTy())
- return commonPointerCastTransforms(CI);
- return commonCastTransforms(CI);
- }
- Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
- // If the destination pointer element type is not the same as the source's
- // first do a bitcast to the destination type, and then the addrspacecast.
- // This allows the cast to be exposed to other transforms.
- Value *Src = CI.getOperand(0);
- PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
- PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
- if (!SrcTy->hasSameElementTypeAs(DestTy)) {
- Type *MidTy =
- PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace());
- // Handle vectors of pointers.
- if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
- MidTy = VectorType::get(MidTy, VT->getElementCount());
- Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
- return new AddrSpaceCastInst(NewBitCast, CI.getType());
- }
- return commonPointerCastTransforms(CI);
- }
|