12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288 |
- //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements folding of constants for LLVM. This implements the
- // (internal) ConstantFold.h interface, which is used by the
- // ConstantExpr::get* methods to automatically fold constants when possible.
- //
- // The current constant folding implementation is implemented in two pieces: the
- // pieces that don't need DataLayout, and the pieces that do. This is to avoid
- // a dependence in IR on Target.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/ConstantFold.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/ErrorHandling.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- //===----------------------------------------------------------------------===//
- // ConstantFold*Instruction Implementations
- //===----------------------------------------------------------------------===//
- /// Convert the specified vector Constant node to the specified vector type.
- /// At this point, we know that the elements of the input vector constant are
- /// all simple integer or FP values.
- static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
- if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
- if (CV->isNullValue()) return Constant::getNullValue(DstTy);
- // Do not iterate on scalable vector. The num of elements is unknown at
- // compile-time.
- if (isa<ScalableVectorType>(DstTy))
- return nullptr;
- // If this cast changes element count then we can't handle it here:
- // doing so requires endianness information. This should be handled by
- // Analysis/ConstantFolding.cpp
- unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements();
- if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements())
- return nullptr;
- Type *DstEltTy = DstTy->getElementType();
- // Fast path for splatted constants.
- if (Constant *Splat = CV->getSplatValue()) {
- return ConstantVector::getSplat(DstTy->getElementCount(),
- ConstantExpr::getBitCast(Splat, DstEltTy));
- }
- SmallVector<Constant*, 16> Result;
- Type *Ty = IntegerType::get(CV->getContext(), 32);
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *C =
- ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
- C = ConstantExpr::getBitCast(C, DstEltTy);
- Result.push_back(C);
- }
- return ConstantVector::get(Result);
- }
- /// This function determines which opcode to use to fold two constant cast
- /// expressions together. It uses CastInst::isEliminableCastPair to determine
- /// the opcode. Consequently its just a wrapper around that function.
- /// Determine if it is valid to fold a cast of a cast
- static unsigned
- foldConstantCastPair(
- unsigned opc, ///< opcode of the second cast constant expression
- ConstantExpr *Op, ///< the first cast constant expression
- Type *DstTy ///< destination type of the first cast
- ) {
- assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
- assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
- assert(CastInst::isCast(opc) && "Invalid cast opcode");
- // The types and opcodes for the two Cast constant expressions
- Type *SrcTy = Op->getOperand(0)->getType();
- Type *MidTy = Op->getType();
- Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
- Instruction::CastOps secondOp = Instruction::CastOps(opc);
- // Assume that pointers are never more than 64 bits wide, and only use this
- // for the middle type. Otherwise we could end up folding away illegal
- // bitcasts between address spaces with different sizes.
- IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
- // Let CastInst::isEliminableCastPair do the heavy lifting.
- return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
- nullptr, FakeIntPtrTy, nullptr);
- }
- static Constant *FoldBitCast(Constant *V, Type *DestTy) {
- Type *SrcTy = V->getType();
- if (SrcTy == DestTy)
- return V; // no-op cast
- // Check to see if we are casting a pointer to an aggregate to a pointer to
- // the first element. If so, return the appropriate GEP instruction.
- if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
- if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
- if (PTy->getAddressSpace() == DPTy->getAddressSpace() &&
- !PTy->isOpaque() && !DPTy->isOpaque() &&
- PTy->getNonOpaquePointerElementType()->isSized()) {
- SmallVector<Value*, 8> IdxList;
- Value *Zero =
- Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
- IdxList.push_back(Zero);
- Type *ElTy = PTy->getNonOpaquePointerElementType();
- while (ElTy && ElTy != DPTy->getNonOpaquePointerElementType()) {
- ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
- IdxList.push_back(Zero);
- }
- if (ElTy == DPTy->getNonOpaquePointerElementType())
- // This GEP is inbounds because all indices are zero.
- return ConstantExpr::getInBoundsGetElementPtr(
- PTy->getNonOpaquePointerElementType(), V, IdxList);
- }
- // Handle casts from one vector constant to another. We know that the src
- // and dest type have the same size (otherwise its an illegal cast).
- if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
- if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
- assert(DestPTy->getPrimitiveSizeInBits() ==
- SrcTy->getPrimitiveSizeInBits() &&
- "Not cast between same sized vectors!");
- SrcTy = nullptr;
- // First, check for null. Undef is already handled.
- if (isa<ConstantAggregateZero>(V))
- return Constant::getNullValue(DestTy);
- // Handle ConstantVector and ConstantAggregateVector.
- return BitCastConstantVector(V, DestPTy);
- }
- // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
- // This allows for other simplifications (although some of them
- // can only be handled by Analysis/ConstantFolding.cpp).
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
- return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
- }
- // Finally, implement bitcast folding now. The code below doesn't handle
- // bitcast right.
- if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
- return ConstantPointerNull::get(cast<PointerType>(DestTy));
- // Handle integral constant input.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- if (DestTy->isIntegerTy())
- // Integral -> Integral. This is a no-op because the bit widths must
- // be the same. Consequently, we just fold to V.
- return V;
- // See note below regarding the PPC_FP128 restriction.
- if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
- return ConstantFP::get(DestTy->getContext(),
- APFloat(DestTy->getFltSemantics(),
- CI->getValue()));
- // Otherwise, can't fold this (vector?)
- return nullptr;
- }
- // Handle ConstantFP input: FP -> Integral.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
- // PPC_FP128 is really the sum of two consecutive doubles, where the first
- // double is always stored first in memory, regardless of the target
- // endianness. The memory layout of i128, however, depends on the target
- // endianness, and so we can't fold this without target endianness
- // information. This should instead be handled by
- // Analysis/ConstantFolding.cpp
- if (FP->getType()->isPPC_FP128Ty())
- return nullptr;
- // Make sure dest type is compatible with the folded integer constant.
- if (!DestTy->isIntegerTy())
- return nullptr;
- return ConstantInt::get(FP->getContext(),
- FP->getValueAPF().bitcastToAPInt());
- }
- return nullptr;
- }
- /// V is an integer constant which only has a subset of its bytes used.
- /// The bytes used are indicated by ByteStart (which is the first byte used,
- /// counting from the least significant byte) and ByteSize, which is the number
- /// of bytes used.
- ///
- /// This function analyzes the specified constant to see if the specified byte
- /// range can be returned as a simplified constant. If so, the constant is
- /// returned, otherwise null is returned.
- static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
- unsigned ByteSize) {
- assert(C->getType()->isIntegerTy() &&
- (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
- "Non-byte sized integer input");
- unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
- assert(ByteSize && "Must be accessing some piece");
- assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
- assert(ByteSize != CSize && "Should not extract everything");
- // Constant Integers are simple.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- APInt V = CI->getValue();
- if (ByteStart)
- V.lshrInPlace(ByteStart*8);
- V = V.trunc(ByteSize*8);
- return ConstantInt::get(CI->getContext(), V);
- }
- // In the input is a constant expr, we might be able to recursively simplify.
- // If not, we definitely can't do anything.
- ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return nullptr;
- switch (CE->getOpcode()) {
- default: return nullptr;
- case Instruction::Or: {
- Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
- if (!RHS)
- return nullptr;
- // X | -1 -> -1.
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
- if (RHSC->isMinusOne())
- return RHSC;
- Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
- if (!LHS)
- return nullptr;
- return ConstantExpr::getOr(LHS, RHS);
- }
- case Instruction::And: {
- Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
- if (!RHS)
- return nullptr;
- // X & 0 -> 0.
- if (RHS->isNullValue())
- return RHS;
- Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
- if (!LHS)
- return nullptr;
- return ConstantExpr::getAnd(LHS, RHS);
- }
- case Instruction::LShr: {
- ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
- if (!Amt)
- return nullptr;
- APInt ShAmt = Amt->getValue();
- // Cannot analyze non-byte shifts.
- if ((ShAmt & 7) != 0)
- return nullptr;
- ShAmt.lshrInPlace(3);
- // If the extract is known to be all zeros, return zero.
- if (ShAmt.uge(CSize - ByteStart))
- return Constant::getNullValue(
- IntegerType::get(CE->getContext(), ByteSize * 8));
- // If the extract is known to be fully in the input, extract it.
- if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
- return ExtractConstantBytes(CE->getOperand(0),
- ByteStart + ShAmt.getZExtValue(), ByteSize);
- // TODO: Handle the 'partially zero' case.
- return nullptr;
- }
- case Instruction::Shl: {
- ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
- if (!Amt)
- return nullptr;
- APInt ShAmt = Amt->getValue();
- // Cannot analyze non-byte shifts.
- if ((ShAmt & 7) != 0)
- return nullptr;
- ShAmt.lshrInPlace(3);
- // If the extract is known to be all zeros, return zero.
- if (ShAmt.uge(ByteStart + ByteSize))
- return Constant::getNullValue(
- IntegerType::get(CE->getContext(), ByteSize * 8));
- // If the extract is known to be fully in the input, extract it.
- if (ShAmt.ule(ByteStart))
- return ExtractConstantBytes(CE->getOperand(0),
- ByteStart - ShAmt.getZExtValue(), ByteSize);
- // TODO: Handle the 'partially zero' case.
- return nullptr;
- }
- case Instruction::ZExt: {
- unsigned SrcBitSize =
- cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
- // If extracting something that is completely zero, return 0.
- if (ByteStart*8 >= SrcBitSize)
- return Constant::getNullValue(IntegerType::get(CE->getContext(),
- ByteSize*8));
- // If exactly extracting the input, return it.
- if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
- return CE->getOperand(0);
- // If extracting something completely in the input, if the input is a
- // multiple of 8 bits, recurse.
- if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
- return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
- // Otherwise, if extracting a subset of the input, which is not multiple of
- // 8 bits, do a shift and trunc to get the bits.
- if ((ByteStart+ByteSize)*8 < SrcBitSize) {
- assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
- Constant *Res = CE->getOperand(0);
- if (ByteStart)
- Res = ConstantExpr::getLShr(Res,
- ConstantInt::get(Res->getType(), ByteStart*8));
- return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
- ByteSize*8));
- }
- // TODO: Handle the 'partially zero' case.
- return nullptr;
- }
- }
- }
- Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
- Type *DestTy) {
- if (isa<PoisonValue>(V))
- return PoisonValue::get(DestTy);
- if (isa<UndefValue>(V)) {
- // zext(undef) = 0, because the top bits will be zero.
- // sext(undef) = 0, because the top bits will all be the same.
- // [us]itofp(undef) = 0, because the result value is bounded.
- if (opc == Instruction::ZExt || opc == Instruction::SExt ||
- opc == Instruction::UIToFP || opc == Instruction::SIToFP)
- return Constant::getNullValue(DestTy);
- return UndefValue::get(DestTy);
- }
- if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
- opc != Instruction::AddrSpaceCast)
- return Constant::getNullValue(DestTy);
- // If the cast operand is a constant expression, there's a few things we can
- // do to try to simplify it.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->isCast()) {
- // Try hard to fold cast of cast because they are often eliminable.
- if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
- return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
- } else if (CE->getOpcode() == Instruction::GetElementPtr &&
- // Do not fold addrspacecast (gep 0, .., 0). It might make the
- // addrspacecast uncanonicalized.
- opc != Instruction::AddrSpaceCast &&
- // Do not fold bitcast (gep) with inrange index, as this loses
- // information.
- !cast<GEPOperator>(CE)->getInRangeIndex() &&
- // Do not fold if the gep type is a vector, as bitcasting
- // operand 0 of a vector gep will result in a bitcast between
- // different sizes.
- !CE->getType()->isVectorTy()) {
- // If all of the indexes in the GEP are null values, there is no pointer
- // adjustment going on. We might as well cast the source pointer.
- bool isAllNull = true;
- for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
- if (!CE->getOperand(i)->isNullValue()) {
- isAllNull = false;
- break;
- }
- if (isAllNull)
- // This is casting one pointer type to another, always BitCast
- return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
- }
- }
- // If the cast operand is a constant vector, perform the cast by
- // operating on each element. In the cast of bitcasts, the element
- // count may be mismatched; don't attempt to handle that here.
- if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
- DestTy->isVectorTy() &&
- cast<FixedVectorType>(DestTy)->getNumElements() ==
- cast<FixedVectorType>(V->getType())->getNumElements()) {
- VectorType *DestVecTy = cast<VectorType>(DestTy);
- Type *DstEltTy = DestVecTy->getElementType();
- // Fast path for splatted constants.
- if (Constant *Splat = V->getSplatValue()) {
- return ConstantVector::getSplat(
- cast<VectorType>(DestTy)->getElementCount(),
- ConstantExpr::getCast(opc, Splat, DstEltTy));
- }
- SmallVector<Constant *, 16> res;
- Type *Ty = IntegerType::get(V->getContext(), 32);
- for (unsigned i = 0,
- e = cast<FixedVectorType>(V->getType())->getNumElements();
- i != e; ++i) {
- Constant *C =
- ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
- res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
- }
- return ConstantVector::get(res);
- }
- // We actually have to do a cast now. Perform the cast according to the
- // opcode specified.
- switch (opc) {
- default:
- llvm_unreachable("Failed to cast constant expression");
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
- bool ignored;
- APFloat Val = FPC->getValueAPF();
- Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven,
- &ignored);
- return ConstantFP::get(V->getContext(), Val);
- }
- return nullptr; // Can't fold.
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
- const APFloat &V = FPC->getValueAPF();
- bool ignored;
- uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
- if (APFloat::opInvalidOp ==
- V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
- // Undefined behavior invoked - the destination type can't represent
- // the input constant.
- return PoisonValue::get(DestTy);
- }
- return ConstantInt::get(FPC->getContext(), IntVal);
- }
- return nullptr; // Can't fold.
- case Instruction::IntToPtr: //always treated as unsigned
- if (V->isNullValue()) // Is it an integral null value?
- return ConstantPointerNull::get(cast<PointerType>(DestTy));
- return nullptr; // Other pointer types cannot be casted
- case Instruction::PtrToInt: // always treated as unsigned
- // Is it a null pointer value?
- if (V->isNullValue())
- return ConstantInt::get(DestTy, 0);
- // Other pointer types cannot be casted
- return nullptr;
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- const APInt &api = CI->getValue();
- APFloat apf(DestTy->getFltSemantics(),
- APInt::getZero(DestTy->getPrimitiveSizeInBits()));
- apf.convertFromAPInt(api, opc==Instruction::SIToFP,
- APFloat::rmNearestTiesToEven);
- return ConstantFP::get(V->getContext(), apf);
- }
- return nullptr;
- case Instruction::ZExt:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- return ConstantInt::get(V->getContext(),
- CI->getValue().zext(BitWidth));
- }
- return nullptr;
- case Instruction::SExt:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- return ConstantInt::get(V->getContext(),
- CI->getValue().sext(BitWidth));
- }
- return nullptr;
- case Instruction::Trunc: {
- if (V->getType()->isVectorTy())
- return nullptr;
- uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- return ConstantInt::get(V->getContext(),
- CI->getValue().trunc(DestBitWidth));
- }
- // The input must be a constantexpr. See if we can simplify this based on
- // the bytes we are demanding. Only do this if the source and dest are an
- // even multiple of a byte.
- if ((DestBitWidth & 7) == 0 &&
- (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
- if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
- return Res;
- return nullptr;
- }
- case Instruction::BitCast:
- return FoldBitCast(V, DestTy);
- case Instruction::AddrSpaceCast:
- return nullptr;
- }
- }
- Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
- Constant *V1, Constant *V2) {
- // Check for i1 and vector true/false conditions.
- if (Cond->isNullValue()) return V2;
- if (Cond->isAllOnesValue()) return V1;
- // If the condition is a vector constant, fold the result elementwise.
- if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
- auto *V1VTy = CondV->getType();
- SmallVector<Constant*, 16> Result;
- Type *Ty = IntegerType::get(CondV->getContext(), 32);
- for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
- Constant *V;
- Constant *V1Element = ConstantExpr::getExtractElement(V1,
- ConstantInt::get(Ty, i));
- Constant *V2Element = ConstantExpr::getExtractElement(V2,
- ConstantInt::get(Ty, i));
- auto *Cond = cast<Constant>(CondV->getOperand(i));
- if (isa<PoisonValue>(Cond)) {
- V = PoisonValue::get(V1Element->getType());
- } else if (V1Element == V2Element) {
- V = V1Element;
- } else if (isa<UndefValue>(Cond)) {
- V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
- } else {
- if (!isa<ConstantInt>(Cond)) break;
- V = Cond->isNullValue() ? V2Element : V1Element;
- }
- Result.push_back(V);
- }
- // If we were able to build the vector, return it.
- if (Result.size() == V1VTy->getNumElements())
- return ConstantVector::get(Result);
- }
- if (isa<PoisonValue>(Cond))
- return PoisonValue::get(V1->getType());
- if (isa<UndefValue>(Cond)) {
- if (isa<UndefValue>(V1)) return V1;
- return V2;
- }
- if (V1 == V2) return V1;
- if (isa<PoisonValue>(V1))
- return V2;
- if (isa<PoisonValue>(V2))
- return V1;
- // If the true or false value is undef, we can fold to the other value as
- // long as the other value isn't poison.
- auto NotPoison = [](Constant *C) {
- if (isa<PoisonValue>(C))
- return false;
- // TODO: We can analyze ConstExpr by opcode to determine if there is any
- // possibility of poison.
- if (isa<ConstantExpr>(C))
- return false;
- if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
- isa<ConstantPointerNull>(C) || isa<Function>(C))
- return true;
- if (C->getType()->isVectorTy())
- return !C->containsPoisonElement() && !C->containsConstantExpression();
- // TODO: Recursively analyze aggregates or other constants.
- return false;
- };
- if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
- if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
- if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
- if (TrueVal->getOpcode() == Instruction::Select)
- if (TrueVal->getOperand(0) == Cond)
- return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
- }
- if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
- if (FalseVal->getOpcode() == Instruction::Select)
- if (FalseVal->getOperand(0) == Cond)
- return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
- }
- return nullptr;
- }
- Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
- Constant *Idx) {
- auto *ValVTy = cast<VectorType>(Val->getType());
- // extractelt poison, C -> poison
- // extractelt C, undef -> poison
- if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
- return PoisonValue::get(ValVTy->getElementType());
- // extractelt undef, C -> undef
- if (isa<UndefValue>(Val))
- return UndefValue::get(ValVTy->getElementType());
- auto *CIdx = dyn_cast<ConstantInt>(Idx);
- if (!CIdx)
- return nullptr;
- if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
- // ee({w,x,y,z}, wrong_value) -> poison
- if (CIdx->uge(ValFVTy->getNumElements()))
- return PoisonValue::get(ValFVTy->getElementType());
- }
- // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
- if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
- if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
- SmallVector<Constant *, 8> Ops;
- Ops.reserve(CE->getNumOperands());
- for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
- Constant *Op = CE->getOperand(i);
- if (Op->getType()->isVectorTy()) {
- Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
- if (!ScalarOp)
- return nullptr;
- Ops.push_back(ScalarOp);
- } else
- Ops.push_back(Op);
- }
- return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
- GEP->getSourceElementType());
- } else if (CE->getOpcode() == Instruction::InsertElement) {
- if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
- if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
- APSInt(CIdx->getValue()))) {
- return CE->getOperand(1);
- } else {
- return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
- }
- }
- }
- }
- if (Constant *C = Val->getAggregateElement(CIdx))
- return C;
- // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
- if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
- if (Constant *SplatVal = Val->getSplatValue())
- return SplatVal;
- }
- return nullptr;
- }
- Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
- Constant *Elt,
- Constant *Idx) {
- if (isa<UndefValue>(Idx))
- return PoisonValue::get(Val->getType());
- // Inserting null into all zeros is still all zeros.
- // TODO: This is true for undef and poison splats too.
- if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue())
- return Val;
- ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
- if (!CIdx) return nullptr;
- // Do not iterate on scalable vector. The num of elements is unknown at
- // compile-time.
- if (isa<ScalableVectorType>(Val->getType()))
- return nullptr;
- auto *ValTy = cast<FixedVectorType>(Val->getType());
- unsigned NumElts = ValTy->getNumElements();
- if (CIdx->uge(NumElts))
- return PoisonValue::get(Val->getType());
- SmallVector<Constant*, 16> Result;
- Result.reserve(NumElts);
- auto *Ty = Type::getInt32Ty(Val->getContext());
- uint64_t IdxVal = CIdx->getZExtValue();
- for (unsigned i = 0; i != NumElts; ++i) {
- if (i == IdxVal) {
- Result.push_back(Elt);
- continue;
- }
- Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
- Result.push_back(C);
- }
- return ConstantVector::get(Result);
- }
- Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
- ArrayRef<int> Mask) {
- auto *V1VTy = cast<VectorType>(V1->getType());
- unsigned MaskNumElts = Mask.size();
- auto MaskEltCount =
- ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
- Type *EltTy = V1VTy->getElementType();
- // Undefined shuffle mask -> undefined value.
- if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
- return UndefValue::get(VectorType::get(EltTy, MaskEltCount));
- }
- // If the mask is all zeros this is a splat, no need to go through all
- // elements.
- if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
- Type *Ty = IntegerType::get(V1->getContext(), 32);
- Constant *Elt =
- ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
- if (Elt->isNullValue()) {
- auto *VTy = VectorType::get(EltTy, MaskEltCount);
- return ConstantAggregateZero::get(VTy);
- } else if (!MaskEltCount.isScalable())
- return ConstantVector::getSplat(MaskEltCount, Elt);
- }
- // Do not iterate on scalable vector. The num of elements is unknown at
- // compile-time.
- if (isa<ScalableVectorType>(V1VTy))
- return nullptr;
- unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
- // Loop over the shuffle mask, evaluating each element.
- SmallVector<Constant*, 32> Result;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Elt = Mask[i];
- if (Elt == -1) {
- Result.push_back(UndefValue::get(EltTy));
- continue;
- }
- Constant *InElt;
- if (unsigned(Elt) >= SrcNumElts*2)
- InElt = UndefValue::get(EltTy);
- else if (unsigned(Elt) >= SrcNumElts) {
- Type *Ty = IntegerType::get(V2->getContext(), 32);
- InElt =
- ConstantExpr::getExtractElement(V2,
- ConstantInt::get(Ty, Elt - SrcNumElts));
- } else {
- Type *Ty = IntegerType::get(V1->getContext(), 32);
- InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
- }
- Result.push_back(InElt);
- }
- return ConstantVector::get(Result);
- }
- Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
- ArrayRef<unsigned> Idxs) {
- // Base case: no indices, so return the entire value.
- if (Idxs.empty())
- return Agg;
- if (Constant *C = Agg->getAggregateElement(Idxs[0]))
- return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
- return nullptr;
- }
- Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
- Constant *Val,
- ArrayRef<unsigned> Idxs) {
- // Base case: no indices, so replace the entire value.
- if (Idxs.empty())
- return Val;
- unsigned NumElts;
- if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
- NumElts = ST->getNumElements();
- else
- NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
- SmallVector<Constant*, 32> Result;
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *C = Agg->getAggregateElement(i);
- if (!C) return nullptr;
- if (Idxs[0] == i)
- C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
- Result.push_back(C);
- }
- if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
- return ConstantStruct::get(ST, Result);
- return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
- }
- Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
- assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
- // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
- // vectors are always evaluated per element.
- bool IsScalableVector = isa<ScalableVectorType>(C->getType());
- bool HasScalarUndefOrScalableVectorUndef =
- (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
- if (HasScalarUndefOrScalableVectorUndef) {
- switch (static_cast<Instruction::UnaryOps>(Opcode)) {
- case Instruction::FNeg:
- return C; // -undef -> undef
- case Instruction::UnaryOpsEnd:
- llvm_unreachable("Invalid UnaryOp");
- }
- }
- // Constant should not be UndefValue, unless these are vector constants.
- assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
- // We only have FP UnaryOps right now.
- assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- const APFloat &CV = CFP->getValueAPF();
- switch (Opcode) {
- default:
- break;
- case Instruction::FNeg:
- return ConstantFP::get(C->getContext(), neg(CV));
- }
- } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
- Type *Ty = IntegerType::get(VTy->getContext(), 32);
- // Fast path for splatted constants.
- if (Constant *Splat = C->getSplatValue())
- if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
- return ConstantVector::getSplat(VTy->getElementCount(), Elt);
- // Fold each element and create a vector constant from those constants.
- SmallVector<Constant *, 16> Result;
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *ExtractIdx = ConstantInt::get(Ty, i);
- Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
- Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
- if (!Res)
- return nullptr;
- Result.push_back(Res);
- }
- return ConstantVector::get(Result);
- }
- // We don't know how to fold this.
- return nullptr;
- }
- Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
- Constant *C2) {
- assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
- // Simplify BinOps with their identity values first. They are no-ops and we
- // can always return the other value, including undef or poison values.
- // FIXME: remove unnecessary duplicated identity patterns below.
- // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
- // like X << 0 = X.
- Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
- if (Identity) {
- if (C1 == Identity)
- return C2;
- if (C2 == Identity)
- return C1;
- }
- // Binary operations propagate poison.
- if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
- return PoisonValue::get(C1->getType());
- // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
- // vectors are always evaluated per element.
- bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
- bool HasScalarUndefOrScalableVectorUndef =
- (!C1->getType()->isVectorTy() || IsScalableVector) &&
- (isa<UndefValue>(C1) || isa<UndefValue>(C2));
- if (HasScalarUndefOrScalableVectorUndef) {
- switch (static_cast<Instruction::BinaryOps>(Opcode)) {
- case Instruction::Xor:
- if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return Constant::getNullValue(C1->getType());
- [[fallthrough]];
- case Instruction::Add:
- case Instruction::Sub:
- return UndefValue::get(C1->getType());
- case Instruction::And:
- if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
- return C1;
- return Constant::getNullValue(C1->getType()); // undef & X -> 0
- case Instruction::Mul: {
- // undef * undef -> undef
- if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
- return C1;
- const APInt *CV;
- // X * undef -> undef if X is odd
- if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
- if ((*CV)[0])
- return UndefValue::get(C1->getType());
- // X * undef -> 0 otherwise
- return Constant::getNullValue(C1->getType());
- }
- case Instruction::SDiv:
- case Instruction::UDiv:
- // X / undef -> poison
- // X / 0 -> poison
- if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
- return PoisonValue::get(C2->getType());
- // undef / 1 -> undef
- if (match(C2, m_One()))
- return C1;
- // undef / X -> 0 otherwise
- return Constant::getNullValue(C1->getType());
- case Instruction::URem:
- case Instruction::SRem:
- // X % undef -> poison
- // X % 0 -> poison
- if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
- return PoisonValue::get(C2->getType());
- // undef % X -> 0 otherwise
- return Constant::getNullValue(C1->getType());
- case Instruction::Or: // X | undef -> -1
- if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
- return C1;
- return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
- case Instruction::LShr:
- // X >>l undef -> poison
- if (isa<UndefValue>(C2))
- return PoisonValue::get(C2->getType());
- // undef >>l 0 -> undef
- if (match(C2, m_Zero()))
- return C1;
- // undef >>l X -> 0
- return Constant::getNullValue(C1->getType());
- case Instruction::AShr:
- // X >>a undef -> poison
- if (isa<UndefValue>(C2))
- return PoisonValue::get(C2->getType());
- // undef >>a 0 -> undef
- if (match(C2, m_Zero()))
- return C1;
- // TODO: undef >>a X -> poison if the shift is exact
- // undef >>a X -> 0
- return Constant::getNullValue(C1->getType());
- case Instruction::Shl:
- // X << undef -> undef
- if (isa<UndefValue>(C2))
- return PoisonValue::get(C2->getType());
- // undef << 0 -> undef
- if (match(C2, m_Zero()))
- return C1;
- // undef << X -> 0
- return Constant::getNullValue(C1->getType());
- case Instruction::FSub:
- // -0.0 - undef --> undef (consistent with "fneg undef")
- if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
- return C2;
- [[fallthrough]];
- case Instruction::FAdd:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- // [any flop] undef, undef -> undef
- if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
- return C1;
- // [any flop] C, undef -> NaN
- // [any flop] undef, C -> NaN
- // We could potentially specialize NaN/Inf constants vs. 'normal'
- // constants (possibly differently depending on opcode and operand). This
- // would allow returning undef sometimes. But it is always safe to fold to
- // NaN because we can choose the undef operand as NaN, and any FP opcode
- // with a NaN operand will propagate NaN.
- return ConstantFP::getNaN(C1->getType());
- case Instruction::BinaryOpsEnd:
- llvm_unreachable("Invalid BinaryOp");
- }
- }
- // Neither constant should be UndefValue, unless these are vector constants.
- assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
- // Handle simplifications when the RHS is a constant int.
- if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
- switch (Opcode) {
- case Instruction::Add:
- if (CI2->isZero()) return C1; // X + 0 == X
- break;
- case Instruction::Sub:
- if (CI2->isZero()) return C1; // X - 0 == X
- break;
- case Instruction::Mul:
- if (CI2->isZero()) return C2; // X * 0 == 0
- if (CI2->isOne())
- return C1; // X * 1 == X
- break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- if (CI2->isOne())
- return C1; // X / 1 == X
- if (CI2->isZero())
- return PoisonValue::get(CI2->getType()); // X / 0 == poison
- break;
- case Instruction::URem:
- case Instruction::SRem:
- if (CI2->isOne())
- return Constant::getNullValue(CI2->getType()); // X % 1 == 0
- if (CI2->isZero())
- return PoisonValue::get(CI2->getType()); // X % 0 == poison
- break;
- case Instruction::And:
- if (CI2->isZero()) return C2; // X & 0 == 0
- if (CI2->isMinusOne())
- return C1; // X & -1 == X
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
- // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
- if (CE1->getOpcode() == Instruction::ZExt) {
- unsigned DstWidth = CI2->getType()->getBitWidth();
- unsigned SrcWidth =
- CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
- APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
- if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
- return C1;
- }
- // If and'ing the address of a global with a constant, fold it.
- if (CE1->getOpcode() == Instruction::PtrToInt &&
- isa<GlobalValue>(CE1->getOperand(0))) {
- GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
- MaybeAlign GVAlign;
- if (Module *TheModule = GV->getParent()) {
- const DataLayout &DL = TheModule->getDataLayout();
- GVAlign = GV->getPointerAlignment(DL);
- // If the function alignment is not specified then assume that it
- // is 4.
- // This is dangerous; on x86, the alignment of the pointer
- // corresponds to the alignment of the function, but might be less
- // than 4 if it isn't explicitly specified.
- // However, a fix for this behaviour was reverted because it
- // increased code size (see https://reviews.llvm.org/D55115)
- // FIXME: This code should be deleted once existing targets have
- // appropriate defaults
- if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
- GVAlign = Align(4);
- } else if (isa<Function>(GV)) {
- // Without a datalayout we have to assume the worst case: that the
- // function pointer isn't aligned at all.
- GVAlign = std::nullopt;
- } else if (isa<GlobalVariable>(GV)) {
- GVAlign = cast<GlobalVariable>(GV)->getAlign();
- }
- if (GVAlign && *GVAlign > 1) {
- unsigned DstWidth = CI2->getType()->getBitWidth();
- unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
- APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
- // If checking bits we know are clear, return zero.
- if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
- return Constant::getNullValue(CI2->getType());
- }
- }
- }
- break;
- case Instruction::Or:
- if (CI2->isZero()) return C1; // X | 0 == X
- if (CI2->isMinusOne())
- return C2; // X | -1 == -1
- break;
- case Instruction::Xor:
- if (CI2->isZero()) return C1; // X ^ 0 == X
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
- switch (CE1->getOpcode()) {
- default: break;
- case Instruction::ICmp:
- case Instruction::FCmp:
- // cmp pred ^ true -> cmp !pred
- assert(CI2->isOne());
- CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
- pred = CmpInst::getInversePredicate(pred);
- return ConstantExpr::getCompare(pred, CE1->getOperand(0),
- CE1->getOperand(1));
- }
- }
- break;
- case Instruction::AShr:
- // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
- if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
- return ConstantExpr::getLShr(C1, C2);
- break;
- }
- } else if (isa<ConstantInt>(C1)) {
- // If C1 is a ConstantInt and C2 is not, swap the operands.
- if (Instruction::isCommutative(Opcode))
- return ConstantExpr::get(Opcode, C2, C1);
- }
- if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
- if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
- const APInt &C1V = CI1->getValue();
- const APInt &C2V = CI2->getValue();
- switch (Opcode) {
- default:
- break;
- case Instruction::Add:
- return ConstantInt::get(CI1->getContext(), C1V + C2V);
- case Instruction::Sub:
- return ConstantInt::get(CI1->getContext(), C1V - C2V);
- case Instruction::Mul:
- return ConstantInt::get(CI1->getContext(), C1V * C2V);
- case Instruction::UDiv:
- assert(!CI2->isZero() && "Div by zero handled above");
- return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
- case Instruction::SDiv:
- assert(!CI2->isZero() && "Div by zero handled above");
- if (C2V.isAllOnes() && C1V.isMinSignedValue())
- return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison
- return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
- case Instruction::URem:
- assert(!CI2->isZero() && "Div by zero handled above");
- return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
- case Instruction::SRem:
- assert(!CI2->isZero() && "Div by zero handled above");
- if (C2V.isAllOnes() && C1V.isMinSignedValue())
- return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison
- return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
- case Instruction::And:
- return ConstantInt::get(CI1->getContext(), C1V & C2V);
- case Instruction::Or:
- return ConstantInt::get(CI1->getContext(), C1V | C2V);
- case Instruction::Xor:
- return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
- case Instruction::Shl:
- if (C2V.ult(C1V.getBitWidth()))
- return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
- return PoisonValue::get(C1->getType()); // too big shift is poison
- case Instruction::LShr:
- if (C2V.ult(C1V.getBitWidth()))
- return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
- return PoisonValue::get(C1->getType()); // too big shift is poison
- case Instruction::AShr:
- if (C2V.ult(C1V.getBitWidth()))
- return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
- return PoisonValue::get(C1->getType()); // too big shift is poison
- }
- }
- switch (Opcode) {
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::Shl:
- if (CI1->isZero()) return C1;
- break;
- default:
- break;
- }
- } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
- if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
- const APFloat &C1V = CFP1->getValueAPF();
- const APFloat &C2V = CFP2->getValueAPF();
- APFloat C3V = C1V; // copy for modification
- switch (Opcode) {
- default:
- break;
- case Instruction::FAdd:
- (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C1->getContext(), C3V);
- case Instruction::FSub:
- (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C1->getContext(), C3V);
- case Instruction::FMul:
- (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C1->getContext(), C3V);
- case Instruction::FDiv:
- (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C1->getContext(), C3V);
- case Instruction::FRem:
- (void)C3V.mod(C2V);
- return ConstantFP::get(C1->getContext(), C3V);
- }
- }
- } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
- // Fast path for splatted constants.
- if (Constant *C2Splat = C2->getSplatValue()) {
- if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
- return PoisonValue::get(VTy);
- if (Constant *C1Splat = C1->getSplatValue()) {
- Constant *Res =
- ConstantExpr::isDesirableBinOp(Opcode)
- ? ConstantExpr::get(Opcode, C1Splat, C2Splat)
- : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat);
- if (!Res)
- return nullptr;
- return ConstantVector::getSplat(VTy->getElementCount(), Res);
- }
- }
- if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
- // Fold each element and create a vector constant from those constants.
- SmallVector<Constant*, 16> Result;
- Type *Ty = IntegerType::get(FVTy->getContext(), 32);
- for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
- Constant *ExtractIdx = ConstantInt::get(Ty, i);
- Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
- Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
- // If any element of a divisor vector is zero, the whole op is poison.
- if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
- return PoisonValue::get(VTy);
- Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
- ? ConstantExpr::get(Opcode, LHS, RHS)
- : ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
- if (!Res)
- return nullptr;
- Result.push_back(Res);
- }
- return ConstantVector::get(Result);
- }
- }
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
- // There are many possible foldings we could do here. We should probably
- // at least fold add of a pointer with an integer into the appropriate
- // getelementptr. This will improve alias analysis a bit.
- // Given ((a + b) + c), if (b + c) folds to something interesting, return
- // (a + (b + c)).
- if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
- Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
- if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
- return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
- }
- } else if (isa<ConstantExpr>(C2)) {
- // If C2 is a constant expr and C1 isn't, flop them around and fold the
- // other way if possible.
- if (Instruction::isCommutative(Opcode))
- return ConstantFoldBinaryInstruction(Opcode, C2, C1);
- }
- // i1 can be simplified in many cases.
- if (C1->getType()->isIntegerTy(1)) {
- switch (Opcode) {
- case Instruction::Add:
- case Instruction::Sub:
- return ConstantExpr::getXor(C1, C2);
- case Instruction::Mul:
- return ConstantExpr::getAnd(C1, C2);
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- // We can assume that C2 == 0. If it were one the result would be
- // undefined because the shift value is as large as the bitwidth.
- return C1;
- case Instruction::SDiv:
- case Instruction::UDiv:
- // We can assume that C2 == 1. If it were zero the result would be
- // undefined through division by zero.
- return C1;
- case Instruction::URem:
- case Instruction::SRem:
- // We can assume that C2 == 1. If it were zero the result would be
- // undefined through division by zero.
- return ConstantInt::getFalse(C1->getContext());
- default:
- break;
- }
- }
- // We don't know how to fold this.
- return nullptr;
- }
- /// This function determines if there is anything we can decide about the two
- /// constants provided. This doesn't need to handle simple things like
- /// ConstantFP comparisons, but should instead handle ConstantExprs.
- /// If we can determine that the two constants have a particular relation to
- /// each other, we should return the corresponding FCmpInst predicate,
- /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
- /// ConstantFoldCompareInstruction.
- ///
- /// To simplify this code we canonicalize the relation so that the first
- /// operand is always the most "complex" of the two. We consider ConstantFP
- /// to be the simplest, and ConstantExprs to be the most complex.
- static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
- assert(V1->getType() == V2->getType() &&
- "Cannot compare values of different types!");
- // We do not know if a constant expression will evaluate to a number or NaN.
- // Therefore, we can only say that the relation is unordered or equal.
- if (V1 == V2) return FCmpInst::FCMP_UEQ;
- if (!isa<ConstantExpr>(V1)) {
- if (!isa<ConstantExpr>(V2)) {
- // Simple case, use the standard constant folder.
- ConstantInt *R = nullptr;
- R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
- if (R && !R->isZero())
- return FCmpInst::FCMP_OEQ;
- R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
- if (R && !R->isZero())
- return FCmpInst::FCMP_OLT;
- R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
- if (R && !R->isZero())
- return FCmpInst::FCMP_OGT;
- // Nothing more we can do
- return FCmpInst::BAD_FCMP_PREDICATE;
- }
- // If the first operand is simple and second is ConstantExpr, swap operands.
- FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
- if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
- return FCmpInst::getSwappedPredicate(SwappedRelation);
- } else {
- // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
- // constantexpr or a simple constant.
- ConstantExpr *CE1 = cast<ConstantExpr>(V1);
- switch (CE1->getOpcode()) {
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- // We might be able to do something with these but we don't right now.
- break;
- default:
- break;
- }
- }
- // There are MANY other foldings that we could perform here. They will
- // probably be added on demand, as they seem needed.
- return FCmpInst::BAD_FCMP_PREDICATE;
- }
- static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
- const GlobalValue *GV2) {
- auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
- if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
- return true;
- if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
- Type *Ty = GVar->getValueType();
- // A global with opaque type might end up being zero sized.
- if (!Ty->isSized())
- return true;
- // A global with an empty type might lie at the address of any other
- // global.
- if (Ty->isEmptyTy())
- return true;
- }
- return false;
- };
- // Don't try to decide equality of aliases.
- if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
- if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
- return ICmpInst::ICMP_NE;
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- /// This function determines if there is anything we can decide about the two
- /// constants provided. This doesn't need to handle simple things like integer
- /// comparisons, but should instead handle ConstantExprs and GlobalValues.
- /// If we can determine that the two constants have a particular relation to
- /// each other, we should return the corresponding ICmp predicate, otherwise
- /// return ICmpInst::BAD_ICMP_PREDICATE.
- ///
- /// To simplify this code we canonicalize the relation so that the first
- /// operand is always the most "complex" of the two. We consider simple
- /// constants (like ConstantInt) to be the simplest, followed by
- /// GlobalValues, followed by ConstantExpr's (the most complex).
- ///
- static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
- bool isSigned) {
- assert(V1->getType() == V2->getType() &&
- "Cannot compare different types of values!");
- if (V1 == V2) return ICmpInst::ICMP_EQ;
- if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
- !isa<BlockAddress>(V1)) {
- if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
- !isa<BlockAddress>(V2)) {
- // We distilled this down to a simple case, use the standard constant
- // folder.
- ConstantInt *R = nullptr;
- ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
- if (R && !R->isZero())
- return pred;
- pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
- if (R && !R->isZero())
- return pred;
- pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
- if (R && !R->isZero())
- return pred;
- // If we couldn't figure it out, bail.
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- // If the first operand is simple, swap operands.
- ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
- if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
- return ICmpInst::getSwappedPredicate(SwappedRelation);
- } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
- if (isa<ConstantExpr>(V2)) { // Swap as necessary.
- ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
- if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
- return ICmpInst::getSwappedPredicate(SwappedRelation);
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- // Now we know that the RHS is a GlobalValue, BlockAddress or simple
- // constant (which, since the types must match, means that it's a
- // ConstantPointerNull).
- if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
- return areGlobalsPotentiallyEqual(GV, GV2);
- } else if (isa<BlockAddress>(V2)) {
- return ICmpInst::ICMP_NE; // Globals never equal labels.
- } else {
- assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
- // GlobalVals can never be null unless they have external weak linkage.
- // We don't try to evaluate aliases here.
- // NOTE: We should not be doing this constant folding if null pointer
- // is considered valid for the function. But currently there is no way to
- // query it from the Constant type.
- if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
- !NullPointerIsDefined(nullptr /* F */,
- GV->getType()->getAddressSpace()))
- return ICmpInst::ICMP_UGT;
- }
- } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
- if (isa<ConstantExpr>(V2)) { // Swap as necessary.
- ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
- if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
- return ICmpInst::getSwappedPredicate(SwappedRelation);
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- // Now we know that the RHS is a GlobalValue, BlockAddress or simple
- // constant (which, since the types must match, means that it is a
- // ConstantPointerNull).
- if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
- // Block address in another function can't equal this one, but block
- // addresses in the current function might be the same if blocks are
- // empty.
- if (BA2->getFunction() != BA->getFunction())
- return ICmpInst::ICMP_NE;
- } else {
- // Block addresses aren't null, don't equal the address of globals.
- assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
- "Canonicalization guarantee!");
- return ICmpInst::ICMP_NE;
- }
- } else {
- // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
- // constantexpr, a global, block address, or a simple constant.
- ConstantExpr *CE1 = cast<ConstantExpr>(V1);
- Constant *CE1Op0 = CE1->getOperand(0);
- switch (CE1->getOpcode()) {
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- break; // We can't evaluate floating point casts or truncations.
- case Instruction::BitCast:
- // If this is a global value cast, check to see if the RHS is also a
- // GlobalValue.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0))
- if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2))
- return areGlobalsPotentiallyEqual(GV, GV2);
- [[fallthrough]];
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::ZExt:
- case Instruction::SExt:
- // We can't evaluate floating point casts or truncations.
- if (CE1Op0->getType()->isFPOrFPVectorTy())
- break;
- // If the cast is not actually changing bits, and the second operand is a
- // null pointer, do the comparison with the pre-casted value.
- if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
- if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
- if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
- return evaluateICmpRelation(CE1Op0,
- Constant::getNullValue(CE1Op0->getType()),
- isSigned);
- }
- break;
- case Instruction::GetElementPtr: {
- GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
- // Ok, since this is a getelementptr, we know that the constant has a
- // pointer type. Check the various cases.
- if (isa<ConstantPointerNull>(V2)) {
- // If we are comparing a GEP to a null pointer, check to see if the base
- // of the GEP equals the null pointer.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
- // If its not weak linkage, the GVal must have a non-zero address
- // so the result is greater-than
- if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
- return ICmpInst::ICMP_UGT;
- }
- } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
- if (GV != GV2) {
- if (CE1GEP->hasAllZeroIndices())
- return areGlobalsPotentiallyEqual(GV, GV2);
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- }
- } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
- // By far the most common case to handle is when the base pointers are
- // obviously to the same global.
- const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
- if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
- // Don't know relative ordering, but check for inequality.
- if (CE1Op0 != CE2Op0) {
- if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
- return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
- cast<GlobalValue>(CE2Op0));
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- }
- }
- break;
- }
- default:
- break;
- }
- }
- return ICmpInst::BAD_ICMP_PREDICATE;
- }
- static Constant *constantFoldCompareGlobalToNull(CmpInst::Predicate Predicate,
- Constant *C1, Constant *C2) {
- const GlobalValue *GV = dyn_cast<GlobalValue>(C2);
- if (!GV || !C1->isNullValue())
- return nullptr;
- // Don't try to evaluate aliases. External weak GV can be null.
- if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
- !NullPointerIsDefined(nullptr /* F */,
- GV->getType()->getAddressSpace())) {
- if (Predicate == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(C1->getContext());
- else if (Predicate == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(C1->getContext());
- }
- return nullptr;
- }
- Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
- Constant *C1, Constant *C2) {
- Type *ResultTy;
- if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
- ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
- VT->getElementCount());
- else
- ResultTy = Type::getInt1Ty(C1->getContext());
- // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
- if (Predicate == FCmpInst::FCMP_FALSE)
- return Constant::getNullValue(ResultTy);
- if (Predicate == FCmpInst::FCMP_TRUE)
- return Constant::getAllOnesValue(ResultTy);
- // Handle some degenerate cases first
- if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
- return PoisonValue::get(ResultTy);
- if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
- bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
- // For EQ and NE, we can always pick a value for the undef to make the
- // predicate pass or fail, so we can return undef.
- // Also, if both operands are undef, we can return undef for int comparison.
- if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
- return UndefValue::get(ResultTy);
- // Otherwise, for integer compare, pick the same value as the non-undef
- // operand, and fold it to true or false.
- if (isIntegerPredicate)
- return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
- // Choosing NaN for the undef will always make unordered comparison succeed
- // and ordered comparison fails.
- return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
- }
- // icmp eq/ne(null,GV) -> false/true
- if (Constant *Folded = constantFoldCompareGlobalToNull(Predicate, C1, C2))
- return Folded;
- // icmp eq/ne(GV,null) -> false/true
- if (Constant *Folded = constantFoldCompareGlobalToNull(Predicate, C2, C1))
- return Folded;
- if (C2->isNullValue()) {
- // The caller is expected to commute the operands if the constant expression
- // is C2.
- // C1 >= 0 --> true
- if (Predicate == ICmpInst::ICMP_UGE)
- return Constant::getAllOnesValue(ResultTy);
- // C1 < 0 --> false
- if (Predicate == ICmpInst::ICMP_ULT)
- return Constant::getNullValue(ResultTy);
- }
- // If the comparison is a comparison between two i1's, simplify it.
- if (C1->getType()->isIntegerTy(1)) {
- switch (Predicate) {
- case ICmpInst::ICMP_EQ:
- if (isa<ConstantInt>(C2))
- return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
- return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
- case ICmpInst::ICMP_NE:
- return ConstantExpr::getXor(C1, C2);
- default:
- break;
- }
- }
- if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
- const APInt &V1 = cast<ConstantInt>(C1)->getValue();
- const APInt &V2 = cast<ConstantInt>(C2)->getValue();
- return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
- } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
- const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
- const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
- return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
- } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
- // Fast path for splatted constants.
- if (Constant *C1Splat = C1->getSplatValue())
- if (Constant *C2Splat = C2->getSplatValue())
- return ConstantVector::getSplat(
- C1VTy->getElementCount(),
- ConstantExpr::getCompare(Predicate, C1Splat, C2Splat));
- // Do not iterate on scalable vector. The number of elements is unknown at
- // compile-time.
- if (isa<ScalableVectorType>(C1VTy))
- return nullptr;
- // If we can constant fold the comparison of each element, constant fold
- // the whole vector comparison.
- SmallVector<Constant*, 4> ResElts;
- Type *Ty = IntegerType::get(C1->getContext(), 32);
- // Compare the elements, producing an i1 result or constant expr.
- for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
- I != E; ++I) {
- Constant *C1E =
- ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
- Constant *C2E =
- ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
- ResElts.push_back(ConstantExpr::getCompare(Predicate, C1E, C2E));
- }
- return ConstantVector::get(ResElts);
- }
- if (C1->getType()->isFloatingPointTy() &&
- // Only call evaluateFCmpRelation if we have a constant expr to avoid
- // infinite recursive loop
- (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
- int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateFCmpRelation(C1, C2)) {
- default: llvm_unreachable("Unknown relation!");
- case FCmpInst::FCMP_UNO:
- case FCmpInst::FCMP_ORD:
- case FCmpInst::FCMP_UNE:
- case FCmpInst::FCMP_ULT:
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_TRUE:
- case FCmpInst::FCMP_FALSE:
- case FCmpInst::BAD_FCMP_PREDICATE:
- break; // Couldn't determine anything about these constants.
- case FCmpInst::FCMP_OEQ: // We know that C1 == C2
- Result =
- (Predicate == FCmpInst::FCMP_UEQ || Predicate == FCmpInst::FCMP_OEQ ||
- Predicate == FCmpInst::FCMP_ULE || Predicate == FCmpInst::FCMP_OLE ||
- Predicate == FCmpInst::FCMP_UGE || Predicate == FCmpInst::FCMP_OGE);
- break;
- case FCmpInst::FCMP_OLT: // We know that C1 < C2
- Result =
- (Predicate == FCmpInst::FCMP_UNE || Predicate == FCmpInst::FCMP_ONE ||
- Predicate == FCmpInst::FCMP_ULT || Predicate == FCmpInst::FCMP_OLT ||
- Predicate == FCmpInst::FCMP_ULE || Predicate == FCmpInst::FCMP_OLE);
- break;
- case FCmpInst::FCMP_OGT: // We know that C1 > C2
- Result =
- (Predicate == FCmpInst::FCMP_UNE || Predicate == FCmpInst::FCMP_ONE ||
- Predicate == FCmpInst::FCMP_UGT || Predicate == FCmpInst::FCMP_OGT ||
- Predicate == FCmpInst::FCMP_UGE || Predicate == FCmpInst::FCMP_OGE);
- break;
- case FCmpInst::FCMP_OLE: // We know that C1 <= C2
- // We can only partially decide this relation.
- if (Predicate == FCmpInst::FCMP_UGT || Predicate == FCmpInst::FCMP_OGT)
- Result = 0;
- else if (Predicate == FCmpInst::FCMP_ULT ||
- Predicate == FCmpInst::FCMP_OLT)
- Result = 1;
- break;
- case FCmpInst::FCMP_OGE: // We known that C1 >= C2
- // We can only partially decide this relation.
- if (Predicate == FCmpInst::FCMP_ULT || Predicate == FCmpInst::FCMP_OLT)
- Result = 0;
- else if (Predicate == FCmpInst::FCMP_UGT ||
- Predicate == FCmpInst::FCMP_OGT)
- Result = 1;
- break;
- case FCmpInst::FCMP_ONE: // We know that C1 != C2
- // We can only partially decide this relation.
- if (Predicate == FCmpInst::FCMP_OEQ || Predicate == FCmpInst::FCMP_UEQ)
- Result = 0;
- else if (Predicate == FCmpInst::FCMP_ONE ||
- Predicate == FCmpInst::FCMP_UNE)
- Result = 1;
- break;
- case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
- // We can only partially decide this relation.
- if (Predicate == FCmpInst::FCMP_ONE)
- Result = 0;
- else if (Predicate == FCmpInst::FCMP_UEQ)
- Result = 1;
- break;
- }
- // If we evaluated the result, return it now.
- if (Result != -1)
- return ConstantInt::get(ResultTy, Result);
- } else {
- // Evaluate the relation between the two constants, per the predicate.
- int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(Predicate))) {
- default: llvm_unreachable("Unknown relational!");
- case ICmpInst::BAD_ICMP_PREDICATE:
- break; // Couldn't determine anything about these constants.
- case ICmpInst::ICMP_EQ: // We know the constants are equal!
- // If we know the constants are equal, we can decide the result of this
- // computation precisely.
- Result = ICmpInst::isTrueWhenEqual(Predicate);
- break;
- case ICmpInst::ICMP_ULT:
- switch (Predicate) {
- case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
- Result = 1; break;
- case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
- Result = 0; break;
- default:
- break;
- }
- break;
- case ICmpInst::ICMP_SLT:
- switch (Predicate) {
- case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
- Result = 1; break;
- case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
- Result = 0; break;
- default:
- break;
- }
- break;
- case ICmpInst::ICMP_UGT:
- switch (Predicate) {
- case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
- Result = 1; break;
- case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
- Result = 0; break;
- default:
- break;
- }
- break;
- case ICmpInst::ICMP_SGT:
- switch (Predicate) {
- case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
- Result = 1; break;
- case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
- Result = 0; break;
- default:
- break;
- }
- break;
- case ICmpInst::ICMP_ULE:
- if (Predicate == ICmpInst::ICMP_UGT)
- Result = 0;
- if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
- Result = 1;
- break;
- case ICmpInst::ICMP_SLE:
- if (Predicate == ICmpInst::ICMP_SGT)
- Result = 0;
- if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
- Result = 1;
- break;
- case ICmpInst::ICMP_UGE:
- if (Predicate == ICmpInst::ICMP_ULT)
- Result = 0;
- if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
- Result = 1;
- break;
- case ICmpInst::ICMP_SGE:
- if (Predicate == ICmpInst::ICMP_SLT)
- Result = 0;
- if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
- Result = 1;
- break;
- case ICmpInst::ICMP_NE:
- if (Predicate == ICmpInst::ICMP_EQ)
- Result = 0;
- if (Predicate == ICmpInst::ICMP_NE)
- Result = 1;
- break;
- }
- // If we evaluated the result, return it now.
- if (Result != -1)
- return ConstantInt::get(ResultTy, Result);
- // If the right hand side is a bitcast, try using its inverse to simplify
- // it by moving it to the left hand side. We can't do this if it would turn
- // a vector compare into a scalar compare or visa versa, or if it would turn
- // the operands into FP values.
- if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
- Constant *CE2Op0 = CE2->getOperand(0);
- if (CE2->getOpcode() == Instruction::BitCast &&
- CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
- !CE2Op0->getType()->isFPOrFPVectorTy()) {
- Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
- return ConstantExpr::getICmp(Predicate, Inverse, CE2Op0);
- }
- }
- // If the left hand side is an extension, try eliminating it.
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
- if ((CE1->getOpcode() == Instruction::SExt &&
- ICmpInst::isSigned(Predicate)) ||
- (CE1->getOpcode() == Instruction::ZExt &&
- !ICmpInst::isSigned(Predicate))) {
- Constant *CE1Op0 = CE1->getOperand(0);
- Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
- if (CE1Inverse == CE1Op0) {
- // Check whether we can safely truncate the right hand side.
- Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
- if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
- C2->getType()) == C2)
- return ConstantExpr::getICmp(Predicate, CE1Inverse, C2Inverse);
- }
- }
- }
- if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
- (C1->isNullValue() && !C2->isNullValue())) {
- // If C2 is a constant expr and C1 isn't, flip them around and fold the
- // other way if possible.
- // Also, if C1 is null and C2 isn't, flip them around.
- Predicate = ICmpInst::getSwappedPredicate(Predicate);
- return ConstantExpr::getICmp(Predicate, C2, C1);
- }
- }
- return nullptr;
- }
- /// Test whether the given sequence of *normalized* indices is "inbounds".
- template<typename IndexTy>
- static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
- // No indices means nothing that could be out of bounds.
- if (Idxs.empty()) return true;
- // If the first index is zero, it's in bounds.
- if (cast<Constant>(Idxs[0])->isNullValue()) return true;
- // If the first index is one and all the rest are zero, it's in bounds,
- // by the one-past-the-end rule.
- if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
- if (!CI->isOne())
- return false;
- } else {
- auto *CV = cast<ConstantDataVector>(Idxs[0]);
- CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
- if (!CI || !CI->isOne())
- return false;
- }
- for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
- if (!cast<Constant>(Idxs[i])->isNullValue())
- return false;
- return true;
- }
- /// Test whether a given ConstantInt is in-range for a SequentialType.
- static bool isIndexInRangeOfArrayType(uint64_t NumElements,
- const ConstantInt *CI) {
- // We cannot bounds check the index if it doesn't fit in an int64_t.
- if (CI->getValue().getMinSignedBits() > 64)
- return false;
- // A negative index or an index past the end of our sequential type is
- // considered out-of-range.
- int64_t IndexVal = CI->getSExtValue();
- if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
- return false;
- // Otherwise, it is in-range.
- return true;
- }
- // Combine Indices - If the source pointer to this getelementptr instruction
- // is a getelementptr instruction, combine the indices of the two
- // getelementptr instructions into a single instruction.
- static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds,
- ArrayRef<Value *> Idxs) {
- if (PointeeTy != GEP->getResultElementType())
- return nullptr;
- Constant *Idx0 = cast<Constant>(Idxs[0]);
- if (Idx0->isNullValue()) {
- // Handle the simple case of a zero index.
- SmallVector<Value*, 16> NewIndices;
- NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
- NewIndices.append(GEP->idx_begin(), GEP->idx_end());
- NewIndices.append(Idxs.begin() + 1, Idxs.end());
- return ConstantExpr::getGetElementPtr(
- GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
- NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex());
- }
- gep_type_iterator LastI = gep_type_end(GEP);
- for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
- I != E; ++I)
- LastI = I;
- // We can't combine GEPs if the last index is a struct type.
- if (!LastI.isSequential())
- return nullptr;
- // We could perform the transform with non-constant index, but prefer leaving
- // it as GEP of GEP rather than GEP of add for now.
- ConstantInt *CI = dyn_cast<ConstantInt>(Idx0);
- if (!CI)
- return nullptr;
- // TODO: This code may be extended to handle vectors as well.
- auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1));
- Type *LastIdxTy = LastIdx->getType();
- if (LastIdxTy->isVectorTy())
- return nullptr;
- SmallVector<Value*, 16> NewIndices;
- NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
- NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1);
- // Add the last index of the source with the first index of the new GEP.
- // Make sure to handle the case when they are actually different types.
- if (LastIdxTy != Idx0->getType()) {
- unsigned CommonExtendedWidth =
- std::max(LastIdxTy->getIntegerBitWidth(),
- Idx0->getType()->getIntegerBitWidth());
- CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
- Type *CommonTy =
- Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth);
- Idx0 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
- LastIdx = ConstantExpr::getSExtOrBitCast(LastIdx, CommonTy);
- }
- NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx));
- NewIndices.append(Idxs.begin() + 1, Idxs.end());
- // The combined GEP normally inherits its index inrange attribute from
- // the inner GEP, but if the inner GEP's last index was adjusted by the
- // outer GEP, any inbounds attribute on that index is invalidated.
- std::optional<unsigned> IRIndex = GEP->getInRangeIndex();
- if (IRIndex && *IRIndex == GEP->getNumIndices() - 1)
- IRIndex = std::nullopt;
- return ConstantExpr::getGetElementPtr(
- GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
- NewIndices, InBounds && GEP->isInBounds(), IRIndex);
- }
- Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
- bool InBounds,
- std::optional<unsigned> InRangeIndex,
- ArrayRef<Value *> Idxs) {
- if (Idxs.empty()) return C;
- Type *GEPTy = GetElementPtrInst::getGEPReturnType(
- PointeeTy, C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
- if (isa<PoisonValue>(C))
- return PoisonValue::get(GEPTy);
- if (isa<UndefValue>(C))
- // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
- return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
- auto IsNoOp = [&]() {
- // For non-opaque pointers having multiple indices will change the result
- // type of the GEP.
- if (!C->getType()->getScalarType()->isOpaquePointerTy() && Idxs.size() != 1)
- return false;
- // Avoid losing inrange information.
- if (InRangeIndex)
- return false;
- return all_of(Idxs, [](Value *Idx) {
- Constant *IdxC = cast<Constant>(Idx);
- return IdxC->isNullValue() || isa<UndefValue>(IdxC);
- });
- };
- if (IsNoOp())
- return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
- ? ConstantVector::getSplat(
- cast<VectorType>(GEPTy)->getElementCount(), C)
- : C;
- if (C->isNullValue()) {
- bool isNull = true;
- for (Value *Idx : Idxs)
- if (!isa<UndefValue>(Idx) && !cast<Constant>(Idx)->isNullValue()) {
- isNull = false;
- break;
- }
- if (isNull) {
- PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
- Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
- assert(Ty && "Invalid indices for GEP!");
- Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
- Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
- GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
- // The GEP returns a vector of pointers when one of more of
- // its arguments is a vector.
- for (Value *Idx : Idxs) {
- if (auto *VT = dyn_cast<VectorType>(Idx->getType())) {
- assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) ==
- isa<ScalableVectorType>(VT)) &&
- "Mismatched GEPTy vector types");
- GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
- break;
- }
- }
- return Constant::getNullValue(GEPTy);
- }
- }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- if (auto *GEP = dyn_cast<GEPOperator>(CE))
- if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs))
- return C;
- // Attempt to fold casts to the same type away. For example, folding:
- //
- // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
- // i64 0, i64 0)
- // into:
- //
- // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
- //
- // Don't fold if the cast is changing address spaces.
- Constant *Idx0 = cast<Constant>(Idxs[0]);
- if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
- PointerType *SrcPtrTy =
- dyn_cast<PointerType>(CE->getOperand(0)->getType());
- PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
- if (SrcPtrTy && DstPtrTy && !SrcPtrTy->isOpaque() &&
- !DstPtrTy->isOpaque()) {
- ArrayType *SrcArrayTy =
- dyn_cast<ArrayType>(SrcPtrTy->getNonOpaquePointerElementType());
- ArrayType *DstArrayTy =
- dyn_cast<ArrayType>(DstPtrTy->getNonOpaquePointerElementType());
- if (SrcArrayTy && DstArrayTy
- && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
- && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
- return ConstantExpr::getGetElementPtr(SrcArrayTy,
- (Constant *)CE->getOperand(0),
- Idxs, InBounds, InRangeIndex);
- }
- }
- }
- // Check to see if any array indices are not within the corresponding
- // notional array or vector bounds. If so, try to determine if they can be
- // factored out into preceding dimensions.
- SmallVector<Constant *, 8> NewIdxs;
- Type *Ty = PointeeTy;
- Type *Prev = C->getType();
- auto GEPIter = gep_type_begin(PointeeTy, Idxs);
- bool Unknown =
- !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
- for (unsigned i = 1, e = Idxs.size(); i != e;
- Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
- if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
- // We don't know if it's in range or not.
- Unknown = true;
- continue;
- }
- if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
- // Skip if the type of the previous index is not supported.
- continue;
- if (InRangeIndex && i == *InRangeIndex + 1) {
- // If an index is marked inrange, we cannot apply this canonicalization to
- // the following index, as that will cause the inrange index to point to
- // the wrong element.
- continue;
- }
- if (isa<StructType>(Ty)) {
- // The verify makes sure that GEPs into a struct are in range.
- continue;
- }
- if (isa<VectorType>(Ty)) {
- // There can be awkward padding in after a non-power of two vector.
- Unknown = true;
- continue;
- }
- auto *STy = cast<ArrayType>(Ty);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
- if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
- // It's in range, skip to the next index.
- continue;
- if (CI->isNegative()) {
- // It's out of range and negative, don't try to factor it.
- Unknown = true;
- continue;
- }
- } else {
- auto *CV = cast<ConstantDataVector>(Idxs[i]);
- bool InRange = true;
- for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
- auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
- InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
- if (CI->isNegative()) {
- Unknown = true;
- break;
- }
- }
- if (InRange || Unknown)
- // It's in range, skip to the next index.
- // It's out of range and negative, don't try to factor it.
- continue;
- }
- if (isa<StructType>(Prev)) {
- // It's out of range, but the prior dimension is a struct
- // so we can't do anything about it.
- Unknown = true;
- continue;
- }
- // It's out of range, but we can factor it into the prior
- // dimension.
- NewIdxs.resize(Idxs.size());
- // Determine the number of elements in our sequential type.
- uint64_t NumElements = STy->getArrayNumElements();
- // Expand the current index or the previous index to a vector from a scalar
- // if necessary.
- Constant *CurrIdx = cast<Constant>(Idxs[i]);
- auto *PrevIdx =
- NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
- bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
- bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
- bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
- if (!IsCurrIdxVector && IsPrevIdxVector)
- CurrIdx = ConstantDataVector::getSplat(
- cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
- if (!IsPrevIdxVector && IsCurrIdxVector)
- PrevIdx = ConstantDataVector::getSplat(
- cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
- Constant *Factor =
- ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
- if (UseVector)
- Factor = ConstantDataVector::getSplat(
- IsPrevIdxVector
- ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
- : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
- Factor);
- NewIdxs[i] =
- ConstantFoldBinaryInstruction(Instruction::SRem, CurrIdx, Factor);
- Constant *Div =
- ConstantFoldBinaryInstruction(Instruction::SDiv, CurrIdx, Factor);
- // We're working on either ConstantInt or vectors of ConstantInt,
- // so these should always fold.
- assert(NewIdxs[i] != nullptr && Div != nullptr && "Should have folded");
- unsigned CommonExtendedWidth =
- std::max(PrevIdx->getType()->getScalarSizeInBits(),
- Div->getType()->getScalarSizeInBits());
- CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
- // Before adding, extend both operands to i64 to avoid
- // overflow trouble.
- Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
- if (UseVector)
- ExtendedTy = FixedVectorType::get(
- ExtendedTy,
- IsPrevIdxVector
- ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
- : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
- if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
- PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
- if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
- Div = ConstantExpr::getSExt(Div, ExtendedTy);
- NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
- }
- // If we did any factoring, start over with the adjusted indices.
- if (!NewIdxs.empty()) {
- for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
- if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
- return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
- InRangeIndex);
- }
- // If all indices are known integers and normalized, we can do a simple
- // check for the "inbounds" property.
- if (!Unknown && !InBounds)
- if (auto *GV = dyn_cast<GlobalVariable>(C))
- if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
- return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
- /*InBounds=*/true, InRangeIndex);
- return nullptr;
- }
|