12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168 |
- //===-- Execution.cpp - Implement code to simulate the program ------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the actual instruction interpreter.
- //
- //===----------------------------------------------------------------------===//
- #include "Interpreter.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/IntrinsicLowering.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cmath>
- using namespace llvm;
- #define DEBUG_TYPE "interpreter"
- STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
- static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
- cl::desc("make the interpreter print every volatile load and store"));
- //===----------------------------------------------------------------------===//
- // Various Helper Functions
- //===----------------------------------------------------------------------===//
- static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
- SF.Values[V] = Val;
- }
- //===----------------------------------------------------------------------===//
- // Unary Instruction Implementations
- //===----------------------------------------------------------------------===//
- static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- Dest.FloatVal = -Src.FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = -Src.DoubleVal;
- break;
- default:
- llvm_unreachable("Unhandled type for FNeg instruction");
- }
- }
- void Interpreter::visitUnaryOperator(UnaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src = getOperandValue(I.getOperand(0), SF);
- GenericValue R; // Result
- // First process vector operation
- if (Ty->isVectorTy()) {
- R.AggregateVal.resize(Src.AggregateVal.size());
- switch(I.getOpcode()) {
- default:
- llvm_unreachable("Don't know how to handle this unary operator");
- break;
- case Instruction::FNeg:
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
- } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
- } else {
- llvm_unreachable("Unhandled type for FNeg instruction");
- }
- break;
- }
- } else {
- switch (I.getOpcode()) {
- default:
- llvm_unreachable("Don't know how to handle this unary operator");
- break;
- case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
- }
- }
- SetValue(&I, R, SF);
- }
- //===----------------------------------------------------------------------===//
- // Binary Instruction Implementations
- //===----------------------------------------------------------------------===//
- #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
- case Type::TY##TyID: \
- Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
- break
- static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(+, Float);
- IMPLEMENT_BINARY_OPERATOR(+, Double);
- default:
- dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(-, Float);
- IMPLEMENT_BINARY_OPERATOR(-, Double);
- default:
- dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(*, Float);
- IMPLEMENT_BINARY_OPERATOR(*, Double);
- default:
- dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(/, Float);
- IMPLEMENT_BINARY_OPERATOR(/, Double);
- default:
- dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
- break;
- default:
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
- case Type::IntegerTyID: \
- Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
- break;
- #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
- case Type::FixedVectorTyID: \
- case Type::ScalableVectorTyID: { \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize(Src1.AggregateVal.size()); \
- for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
- Dest.AggregateVal[_i].IntVal = APInt( \
- 1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \
- } break;
- // Handle pointers specially because they must be compared with only as much
- // width as the host has. We _do not_ want to be comparing 64 bit values when
- // running on a 32-bit target, otherwise the upper 32 bits might mess up
- // comparisons if they contain garbage.
- #define IMPLEMENT_POINTER_ICMP(OP) \
- case Type::PointerTyID: \
- Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
- (void*)(intptr_t)Src2.PointerVal); \
- break;
- static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_POINTER_ICMP(==);
- default:
- dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_POINTER_ICMP(!=);
- default:
- dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- void Interpreter::visitICmpInst(ICmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
- default:
- dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
- llvm_unreachable(nullptr);
- }
- SetValue(&I, R, SF);
- }
- #define IMPLEMENT_FCMP(OP, TY) \
- case Type::TY##TyID: \
- Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
- break
- #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
- break;
- #define IMPLEMENT_VECTOR_FCMP(OP) \
- case Type::FixedVectorTyID: \
- case Type::ScalableVectorTyID: \
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
- } else { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
- }
- static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(==, Float);
- IMPLEMENT_FCMP(==, Double);
- IMPLEMENT_VECTOR_FCMP(==);
- default:
- dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- } else { \
- if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- }
- #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
- assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
- Dest.AggregateVal.resize( X.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
- if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
- Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
- Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
- else { \
- Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
- } \
- }
- #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
- if (TY->isVectorTy()) { \
- if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
- MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
- } else { \
- MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
- } \
- } \
- static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- Type *Ty)
- {
- GenericValue Dest;
- // if input is scalar value and Src1 or Src2 is NaN return false
- IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
- // if vector input detect NaNs and fill mask
- MASK_VECTOR_NANS(Ty, Src1, Src2, false)
- GenericValue DestMask = Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(!=, Float);
- IMPLEMENT_FCMP(!=, Double);
- IMPLEMENT_VECTOR_FCMP(!=);
- default:
- dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- // in vector case mask out NaN elements
- if (Ty->isVectorTy())
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- if (DestMask.AggregateVal[_i].IntVal == false)
- Dest.AggregateVal[_i].IntVal = APInt(1,false);
- return Dest;
- }
- static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<=, Float);
- IMPLEMENT_FCMP(<=, Double);
- IMPLEMENT_VECTOR_FCMP(<=);
- default:
- dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>=, Float);
- IMPLEMENT_FCMP(>=, Double);
- IMPLEMENT_VECTOR_FCMP(>=);
- default:
- dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<, Float);
- IMPLEMENT_FCMP(<, Double);
- IMPLEMENT_VECTOR_FCMP(<);
- default:
- dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>, Float);
- IMPLEMENT_FCMP(>, Double);
- IMPLEMENT_VECTOR_FCMP(>);
- default:
- dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
- }
- #define IMPLEMENT_UNORDERED(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- } \
- } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- }
- #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
- if (TY->isVectorTy()) { \
- GenericValue DestMask = Dest; \
- Dest = FUNC(Src1, Src2, Ty); \
- for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
- if (DestMask.AggregateVal[_i].IntVal == true) \
- Dest.AggregateVal[_i].IntVal = APInt(1, true); \
- return Dest; \
- }
- static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
- return executeFCMP_OEQ(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
- return executeFCMP_ONE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
- return executeFCMP_OLE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
- return executeFCMP_OGE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
- return executeFCMP_OLT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
- return executeFCMP_OGT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal ==
- Src1.AggregateVal[_i].FloatVal) &&
- (Src2.AggregateVal[_i].FloatVal ==
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal ==
- Src1.AggregateVal[_i].DoubleVal) &&
- (Src2.AggregateVal[_i].DoubleVal ==
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
- Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
- Src2.FloatVal == Src2.FloatVal));
- else {
- Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
- Src2.DoubleVal == Src2.DoubleVal));
- }
- return Dest;
- }
- static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal !=
- Src1.AggregateVal[_i].FloatVal) ||
- (Src2.AggregateVal[_i].FloatVal !=
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal !=
- Src1.AggregateVal[_i].DoubleVal) ||
- (Src2.AggregateVal[_i].DoubleVal !=
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
- Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
- Src2.FloatVal != Src2.FloatVal));
- else {
- Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
- Src2.DoubleVal != Src2.DoubleVal));
- }
- return Dest;
- }
- static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
- Type *Ty, const bool val) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,val);
- } else {
- Dest.IntVal = APInt(1, val);
- }
- return Dest;
- }
- void Interpreter::visitFCmpInst(FCmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
- switch (I.getPredicate()) {
- default:
- dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
- break;
- case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
- break;
- case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
- }
- SetValue(&I, R, SF);
- }
- static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- GenericValue Result;
- switch (predicate) {
- case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
- case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
- case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
- case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
- default:
- dbgs() << "Unhandled Cmp predicate\n";
- llvm_unreachable(nullptr);
- }
- }
- void Interpreter::visitBinaryOperator(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
- // First process vector operation
- if (Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- R.AggregateVal.resize(Src1.AggregateVal.size());
- // Macros to execute binary operation 'OP' over integer vectors
- #define INTEGER_VECTOR_OPERATION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
- // Additional macros to execute binary operations udiv/sdiv/urem/srem since
- // they have different notation.
- #define INTEGER_VECTOR_FUNCTION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
- // Macros to execute binary operation 'OP' over floating point type TY
- // (float or double) vectors
- #define FLOAT_VECTOR_FUNCTION(OP, TY) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].TY = \
- Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
- // Macros to choose appropriate TY: float or double and run operation
- // execution
- #define FLOAT_VECTOR_OP(OP) { \
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
- FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
- else { \
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
- FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
- else { \
- dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
- llvm_unreachable(0); \
- } \
- } \
- }
- switch(I.getOpcode()){
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
- case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
- case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
- case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
- case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
- case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
- case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
- case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
- case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
- case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
- case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
- case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
- case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
- case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
- case Instruction::FRem:
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].FloatVal =
- fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
- else {
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].DoubleVal =
- fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
- else {
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- break;
- }
- } else {
- switch (I.getOpcode()) {
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
- case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
- case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
- case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
- case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
- case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- }
- }
- SetValue(&I, R, SF);
- }
- static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
- GenericValue Src3, Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
- Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
- Src3.AggregateVal[i] : Src2.AggregateVal[i];
- } else {
- Dest = (Src1.IntVal == 0) ? Src3 : Src2;
- }
- return Dest;
- }
- void Interpreter::visitSelectInst(SelectInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type * Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
- SetValue(&I, R, SF);
- }
- //===----------------------------------------------------------------------===//
- // Terminator Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::exitCalled(GenericValue GV) {
- // runAtExitHandlers() assumes there are no stack frames, but
- // if exit() was called, then it had a stack frame. Blow away
- // the stack before interpreting atexit handlers.
- ECStack.clear();
- runAtExitHandlers();
- exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
- }
- /// Pop the last stack frame off of ECStack and then copy the result
- /// back into the result variable if we are not returning void. The
- /// result variable may be the ExitValue, or the Value of the calling
- /// CallInst if there was a previous stack frame. This method may
- /// invalidate any ECStack iterators you have. This method also takes
- /// care of switching to the normal destination BB, if we are returning
- /// from an invoke.
- ///
- void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
- GenericValue Result) {
- // Pop the current stack frame.
- ECStack.pop_back();
- if (ECStack.empty()) { // Finished main. Put result into exit code...
- if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
- ExitValue = Result; // Capture the exit value of the program
- } else {
- memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- }
- } else {
- // If we have a previous stack frame, and we have a previous call,
- // fill in the return value...
- ExecutionContext &CallingSF = ECStack.back();
- if (CallingSF.Caller) {
- // Save result...
- if (!CallingSF.Caller->getType()->isVoidTy())
- SetValue(CallingSF.Caller, Result, CallingSF);
- if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller))
- SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
- CallingSF.Caller = nullptr; // We returned from the call...
- }
- }
- }
- void Interpreter::visitReturnInst(ReturnInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *RetTy = Type::getVoidTy(I.getContext());
- GenericValue Result;
- // Save away the return value... (if we are not 'ret void')
- if (I.getNumOperands()) {
- RetTy = I.getReturnValue()->getType();
- Result = getOperandValue(I.getReturnValue(), SF);
- }
- popStackAndReturnValueToCaller(RetTy, Result);
- }
- void Interpreter::visitUnreachableInst(UnreachableInst &I) {
- report_fatal_error("Program executed an 'unreachable' instruction!");
- }
- void Interpreter::visitBranchInst(BranchInst &I) {
- ExecutionContext &SF = ECStack.back();
- BasicBlock *Dest;
- Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
- if (!I.isUnconditional()) {
- Value *Cond = I.getCondition();
- if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
- Dest = I.getSuccessor(1);
- }
- SwitchToNewBasicBlock(Dest, SF);
- }
- void Interpreter::visitSwitchInst(SwitchInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value* Cond = I.getCondition();
- Type *ElTy = Cond->getType();
- GenericValue CondVal = getOperandValue(Cond, SF);
- // Check to see if any of the cases match...
- BasicBlock *Dest = nullptr;
- for (auto Case : I.cases()) {
- GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
- if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
- Dest = cast<BasicBlock>(Case.getCaseSuccessor());
- break;
- }
- }
- if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
- SwitchToNewBasicBlock(Dest, SF);
- }
- void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
- ExecutionContext &SF = ECStack.back();
- void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
- SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
- }
- // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
- // This function handles the actual updating of block and instruction iterators
- // as well as execution of all of the PHI nodes in the destination block.
- //
- // This method does this because all of the PHI nodes must be executed
- // atomically, reading their inputs before any of the results are updated. Not
- // doing this can cause problems if the PHI nodes depend on other PHI nodes for
- // their inputs. If the input PHI node is updated before it is read, incorrect
- // results can happen. Thus we use a two phase approach.
- //
- void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
- BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
- SF.CurBB = Dest; // Update CurBB to branch destination
- SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
- if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
- // Loop over all of the PHI nodes in the current block, reading their inputs.
- std::vector<GenericValue> ResultValues;
- for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
- // Search for the value corresponding to this previous bb...
- int i = PN->getBasicBlockIndex(PrevBB);
- assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
- Value *IncomingValue = PN->getIncomingValue(i);
- // Save the incoming value for this PHI node...
- ResultValues.push_back(getOperandValue(IncomingValue, SF));
- }
- // Now loop over all of the PHI nodes setting their values...
- SF.CurInst = SF.CurBB->begin();
- for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
- PHINode *PN = cast<PHINode>(SF.CurInst);
- SetValue(PN, ResultValues[i], SF);
- }
- }
- //===----------------------------------------------------------------------===//
- // Memory Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitAllocaInst(AllocaInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getAllocatedType(); // Type to be allocated
- // Get the number of elements being allocated by the array...
- unsigned NumElements =
- getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
- unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
- // Avoid malloc-ing zero bytes, use max()...
- unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
- // Allocate enough memory to hold the type...
- void *Memory = safe_malloc(MemToAlloc);
- LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
- << " bytes) x " << NumElements << " (Total: " << MemToAlloc
- << ") at " << uintptr_t(Memory) << '\n');
- GenericValue Result = PTOGV(Memory);
- assert(Result.PointerVal && "Null pointer returned by malloc!");
- SetValue(&I, Result, SF);
- if (I.getOpcode() == Instruction::Alloca)
- ECStack.back().Allocas.add(Memory);
- }
- // getElementOffset - The workhorse for getelementptr.
- //
- GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E,
- ExecutionContext &SF) {
- assert(Ptr->getType()->isPointerTy() &&
- "Cannot getElementOffset of a nonpointer type!");
- uint64_t Total = 0;
- for (; I != E; ++I) {
- if (StructType *STy = I.getStructTypeOrNull()) {
- const StructLayout *SLO = getDataLayout().getStructLayout(STy);
- const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
- unsigned Index = unsigned(CPU->getZExtValue());
- Total += SLO->getElementOffset(Index);
- } else {
- // Get the index number for the array... which must be long type...
- GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
- int64_t Idx;
- unsigned BitWidth =
- cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
- if (BitWidth == 32)
- Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
- else {
- assert(BitWidth == 64 && "Invalid index type for getelementptr");
- Idx = (int64_t)IdxGV.IntVal.getZExtValue();
- }
- Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
- }
- }
- GenericValue Result;
- Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
- return Result;
- }
- void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeGEPOperation(I.getPointerOperand(),
- gep_type_begin(I), gep_type_end(I), SF), SF);
- }
- void Interpreter::visitLoadInst(LoadInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
- GenericValue Result;
- LoadValueFromMemory(Result, Ptr, I.getType());
- SetValue(&I, Result, SF);
- if (I.isVolatile() && PrintVolatile)
- dbgs() << "Volatile load " << I;
- }
- void Interpreter::visitStoreInst(StoreInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Val = getOperandValue(I.getOperand(0), SF);
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
- I.getOperand(0)->getType());
- if (I.isVolatile() && PrintVolatile)
- dbgs() << "Volatile store: " << I;
- }
- //===----------------------------------------------------------------------===//
- // Miscellaneous Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitVAStartInst(VAStartInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue ArgIndex;
- ArgIndex.UIntPairVal.first = ECStack.size() - 1;
- ArgIndex.UIntPairVal.second = 0;
- SetValue(&I, ArgIndex, SF);
- }
- void Interpreter::visitVAEndInst(VAEndInst &I) {
- // va_end is a noop for the interpreter
- }
- void Interpreter::visitVACopyInst(VACopyInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);
- }
- void Interpreter::visitIntrinsicInst(IntrinsicInst &I) {
- ExecutionContext &SF = ECStack.back();
- // If it is an unknown intrinsic function, use the intrinsic lowering
- // class to transform it into hopefully tasty LLVM code.
- //
- BasicBlock::iterator Me(&I);
- BasicBlock *Parent = I.getParent();
- bool atBegin(Parent->begin() == Me);
- if (!atBegin)
- --Me;
- IL->LowerIntrinsicCall(&I);
- // Restore the CurInst pointer to the first instruction newly inserted, if
- // any.
- if (atBegin) {
- SF.CurInst = Parent->begin();
- } else {
- SF.CurInst = Me;
- ++SF.CurInst;
- }
- }
- void Interpreter::visitCallBase(CallBase &I) {
- ExecutionContext &SF = ECStack.back();
- SF.Caller = &I;
- std::vector<GenericValue> ArgVals;
- const unsigned NumArgs = SF.Caller->arg_size();
- ArgVals.reserve(NumArgs);
- for (Value *V : SF.Caller->args())
- ArgVals.push_back(getOperandValue(V, SF));
- // To handle indirect calls, we must get the pointer value from the argument
- // and treat it as a function pointer.
- GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF);
- callFunction((Function*)GVTOP(SRC), ArgVals);
- }
- // auxiliary function for shift operations
- static unsigned getShiftAmount(uint64_t orgShiftAmount,
- llvm::APInt valueToShift) {
- unsigned valueWidth = valueToShift.getBitWidth();
- if (orgShiftAmount < (uint64_t)valueWidth)
- return orgShiftAmount;
- // according to the llvm documentation, if orgShiftAmount > valueWidth,
- // the result is undfeined. but we do shift by this rule:
- return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
- }
- void Interpreter::visitShl(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- if (Ty->isVectorTy()) {
- uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitLShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- if (Ty->isVectorTy()) {
- uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitAShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- if (Ty->isVectorTy()) {
- size_t src1Size = Src1.AggregateVal.size();
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
- }
- SetValue(&I, Dest, SF);
- }
- GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- Type *SrcTy = SrcVal->getType();
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned NumElts = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(NumElts);
- for (unsigned i = 0; i < NumElts; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
- } else {
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
- }
- return Dest;
- }
- GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
- } else {
- auto *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
- }
- return Dest;
- }
- GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
- } else {
- auto *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcVal->getType())) {
- assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
- DstTy->getScalarType()->isFloatTy() &&
- "Invalid FPTrunc instruction");
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
- } else {
- assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float)Src.DoubleVal;
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcVal->getType())) {
- assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
- DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
- } else {
- assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
- "Invalid FPExt instruction");
- Dest.DoubleVal = (double)Src.FloatVal;
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcTy)) {
- Type *DstVecTy = DstTy->getScalarType();
- Type *SrcVecTy = SrcTy->getScalarType();
- uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- if (SrcVecTy->getTypeID() == Type::FloatTyID) {
- assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
- Src.AggregateVal[i].FloatVal, DBitWidth);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
- Src.AggregateVal[i].DoubleVal, DBitWidth);
- }
- } else {
- // scalar
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else {
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcTy)) {
- Type *DstVecTy = DstTy->getScalarType();
- Type *SrcVecTy = SrcTy->getScalarType();
- uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
- if (SrcVecTy->getTypeID() == Type::FloatTyID) {
- assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
- Src.AggregateVal[i].FloatVal, DBitWidth);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
- Src.AggregateVal[i].DoubleVal, DBitWidth);
- }
- } else {
- // scalar
- unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else {
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcVal->getType())) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
- if (DstVecTy->getTypeID() == Type::FloatTyID) {
- assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal =
- APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal =
- APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
- }
- } else {
- // scalar
- assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else {
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcVal->getType())) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
- if (DstVecTy->getTypeID() == Type::FloatTyID) {
- assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal =
- APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal =
- APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
- }
- } else {
- // scalar
- assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else {
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- }
- }
- return Dest;
- }
- GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
- Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
- return Dest;
- }
- GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
- uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
- if (PtrSize != Src.IntVal.getBitWidth())
- Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
- Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
- return Dest;
- }
- GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- // This instruction supports bitwise conversion of vectors to integers and
- // to vectors of other types (as long as they have the same size)
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) {
- // vector src bitcast to vector dst or vector src bitcast to scalar dst or
- // scalar src bitcast to vector dst
- bool isLittleEndian = getDataLayout().isLittleEndian();
- GenericValue TempDst, TempSrc, SrcVec;
- Type *SrcElemTy;
- Type *DstElemTy;
- unsigned SrcBitSize;
- unsigned DstBitSize;
- unsigned SrcNum;
- unsigned DstNum;
- if (isa<VectorType>(SrcTy)) {
- SrcElemTy = SrcTy->getScalarType();
- SrcBitSize = SrcTy->getScalarSizeInBits();
- SrcNum = Src.AggregateVal.size();
- SrcVec = Src;
- } else {
- // if src is scalar value, make it vector <1 x type>
- SrcElemTy = SrcTy;
- SrcBitSize = SrcTy->getPrimitiveSizeInBits();
- SrcNum = 1;
- SrcVec.AggregateVal.push_back(Src);
- }
- if (isa<VectorType>(DstTy)) {
- DstElemTy = DstTy->getScalarType();
- DstBitSize = DstTy->getScalarSizeInBits();
- DstNum = (SrcNum * SrcBitSize) / DstBitSize;
- } else {
- DstElemTy = DstTy;
- DstBitSize = DstTy->getPrimitiveSizeInBits();
- DstNum = 1;
- }
- if (SrcNum * SrcBitSize != DstNum * DstBitSize)
- llvm_unreachable("Invalid BitCast");
- // If src is floating point, cast to integer first.
- TempSrc.AggregateVal.resize(SrcNum);
- if (SrcElemTy->isFloatTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal =
- APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
- } else if (SrcElemTy->isDoubleTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal =
- APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
- } else if (SrcElemTy->isIntegerTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
- } else {
- // Pointers are not allowed as the element type of vector.
- llvm_unreachable("Invalid Bitcast");
- }
- // now TempSrc is integer type vector
- if (DstNum < SrcNum) {
- // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
- unsigned Ratio = SrcNum / DstNum;
- unsigned SrcElt = 0;
- for (unsigned i = 0; i < DstNum; i++) {
- GenericValue Elt;
- Elt.IntVal = 0;
- Elt.IntVal = Elt.IntVal.zext(DstBitSize);
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
- for (unsigned j = 0; j < Ratio; j++) {
- APInt Tmp;
- Tmp = Tmp.zext(SrcBitSize);
- Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
- Tmp = Tmp.zext(DstBitSize);
- Tmp <<= ShiftAmt;
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
- Elt.IntVal |= Tmp;
- }
- TempDst.AggregateVal.push_back(Elt);
- }
- } else {
- // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
- unsigned Ratio = DstNum / SrcNum;
- for (unsigned i = 0; i < SrcNum; i++) {
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
- for (unsigned j = 0; j < Ratio; j++) {
- GenericValue Elt;
- Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
- Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
- Elt.IntVal.lshrInPlace(ShiftAmt);
- // it could be DstBitSize == SrcBitSize, so check it
- if (DstBitSize < SrcBitSize)
- Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- TempDst.AggregateVal.push_back(Elt);
- }
- }
- }
- // convert result from integer to specified type
- if (isa<VectorType>(DstTy)) {
- if (DstElemTy->isDoubleTy()) {
- Dest.AggregateVal.resize(DstNum);
- for (unsigned i = 0; i < DstNum; i++)
- Dest.AggregateVal[i].DoubleVal =
- TempDst.AggregateVal[i].IntVal.bitsToDouble();
- } else if (DstElemTy->isFloatTy()) {
- Dest.AggregateVal.resize(DstNum);
- for (unsigned i = 0; i < DstNum; i++)
- Dest.AggregateVal[i].FloatVal =
- TempDst.AggregateVal[i].IntVal.bitsToFloat();
- } else {
- Dest = TempDst;
- }
- } else {
- if (DstElemTy->isDoubleTy())
- Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
- else if (DstElemTy->isFloatTy()) {
- Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
- } else {
- Dest.IntVal = TempDst.AggregateVal[0].IntVal;
- }
- }
- } else { // if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy))
- // scalar src bitcast to scalar dst
- if (DstTy->isPointerTy()) {
- assert(SrcTy->isPointerTy() && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isIntegerTy()) {
- if (SrcTy->isFloatTy())
- Dest.IntVal = APInt::floatToBits(Src.FloatVal);
- else if (SrcTy->isDoubleTy()) {
- Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isIntegerTy()) {
- Dest.IntVal = Src.IntVal;
- } else {
- llvm_unreachable("Invalid BitCast");
- }
- } else if (DstTy->isFloatTy()) {
- if (SrcTy->isIntegerTy())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else {
- Dest.FloatVal = Src.FloatVal;
- }
- } else if (DstTy->isDoubleTy()) {
- if (SrcTy->isIntegerTy())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else {
- Dest.DoubleVal = Src.DoubleVal;
- }
- } else {
- llvm_unreachable("Invalid Bitcast");
- }
- }
- return Dest;
- }
- void Interpreter::visitTruncInst(TruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSExtInst(SExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitZExtInst(ZExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPTruncInst(FPTruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPExtInst(FPExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitUIToFPInst(UIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSIToFPInst(SIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToUIInst(FPToUIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToSIInst(FPToSIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitBitCastInst(BitCastInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
- }
- #define IMPLEMENT_VAARG(TY) \
- case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
- void Interpreter::visitVAArgInst(VAArgInst &I) {
- ExecutionContext &SF = ECStack.back();
- // Get the incoming valist parameter. LLI treats the valist as a
- // (ec-stack-depth var-arg-index) pair.
- GenericValue VAList = getOperandValue(I.getOperand(0), SF);
- GenericValue Dest;
- GenericValue Src = ECStack[VAList.UIntPairVal.first]
- .VarArgs[VAList.UIntPairVal.second];
- Type *Ty = I.getType();
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- Dest.IntVal = Src.IntVal;
- break;
- IMPLEMENT_VAARG(Pointer);
- IMPLEMENT_VAARG(Float);
- IMPLEMENT_VAARG(Double);
- default:
- dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- // Set the Value of this Instruction.
- SetValue(&I, Dest, SF);
- // Move the pointer to the next vararg.
- ++VAList.UIntPairVal.second;
- }
- void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
- const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
- if(Src1.AggregateVal.size() > indx) {
- switch (Ty->getTypeID()) {
- default:
- dbgs() << "Unhandled destination type for extractelement instruction: "
- << *Ty << "\n";
- llvm_unreachable(nullptr);
- break;
- case Type::IntegerTyID:
- Dest.IntVal = Src1.AggregateVal[indx].IntVal;
- break;
- case Type::FloatTyID:
- Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
- break;
- }
- } else {
- dbgs() << "Invalid index in extractelement instruction\n";
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitInsertElementInst(InsertElementInst &I) {
- ExecutionContext &SF = ECStack.back();
- VectorType *Ty = cast<VectorType>(I.getType());
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue Dest;
- Type *TyContained = Ty->getElementType();
- const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
- Dest.AggregateVal = Src1.AggregateVal;
- if(Src1.AggregateVal.size() <= indx)
- llvm_unreachable("Invalid index in insertelement instruction");
- switch (TyContained->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- case Type::IntegerTyID:
- Dest.AggregateVal[indx].IntVal = Src2.IntVal;
- break;
- case Type::FloatTyID:
- Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
- break;
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
- ExecutionContext &SF = ECStack.back();
- VectorType *Ty = cast<VectorType>(I.getType());
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- // There is no need to check types of src1 and src2, because the compiled
- // bytecode can't contain different types for src1 and src2 for a
- // shufflevector instruction.
- Type *TyContained = Ty->getElementType();
- unsigned src1Size = (unsigned)Src1.AggregateVal.size();
- unsigned src2Size = (unsigned)Src2.AggregateVal.size();
- unsigned src3Size = I.getShuffleMask().size();
- Dest.AggregateVal.resize(src3Size);
- switch (TyContained->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- break;
- case Type::IntegerTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = std::max(0, I.getMaskValue(i));
- if(j < src1Size)
- Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
- else
- // The selector may not be greater than sum of lengths of first and
- // second operands and llasm should not allow situation like
- // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
- // <2 x i32> < i32 0, i32 5 >,
- // where i32 5 is invalid, but let it be additional check here:
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- case Type::FloatTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = std::max(0, I.getMaskValue(i));
- if(j < src1Size)
- Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
- else
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- case Type::DoubleTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = std::max(0, I.getMaskValue(i));
- if(j < src1Size)
- Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].DoubleVal =
- Src2.AggregateVal[j-src1Size].DoubleVal;
- else
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value *Agg = I.getAggregateOperand();
- GenericValue Dest;
- GenericValue Src = getOperandValue(Agg, SF);
- ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
- unsigned Num = I.getNumIndices();
- GenericValue *pSrc = &Src;
- for (unsigned i = 0 ; i < Num; ++i) {
- pSrc = &pSrc->AggregateVal[*IdxBegin];
- ++IdxBegin;
- }
- Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
- switch (IndexedType->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for extractelement instruction");
- break;
- case Type::IntegerTyID:
- Dest.IntVal = pSrc->IntVal;
- break;
- case Type::FloatTyID:
- Dest.FloatVal = pSrc->FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = pSrc->DoubleVal;
- break;
- case Type::ArrayTyID:
- case Type::StructTyID:
- case Type::FixedVectorTyID:
- case Type::ScalableVectorTyID:
- Dest.AggregateVal = pSrc->AggregateVal;
- break;
- case Type::PointerTyID:
- Dest.PointerVal = pSrc->PointerVal;
- break;
- }
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitInsertValueInst(InsertValueInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value *Agg = I.getAggregateOperand();
- GenericValue Src1 = getOperandValue(Agg, SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest = Src1; // Dest is a slightly changed Src1
- ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
- unsigned Num = I.getNumIndices();
- GenericValue *pDest = &Dest;
- for (unsigned i = 0 ; i < Num; ++i) {
- pDest = &pDest->AggregateVal[*IdxBegin];
- ++IdxBegin;
- }
- // pDest points to the target value in the Dest now
- Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
- switch (IndexedType->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- break;
- case Type::IntegerTyID:
- pDest->IntVal = Src2.IntVal;
- break;
- case Type::FloatTyID:
- pDest->FloatVal = Src2.FloatVal;
- break;
- case Type::DoubleTyID:
- pDest->DoubleVal = Src2.DoubleVal;
- break;
- case Type::ArrayTyID:
- case Type::StructTyID:
- case Type::FixedVectorTyID:
- case Type::ScalableVectorTyID:
- pDest->AggregateVal = Src2.AggregateVal;
- break;
- case Type::PointerTyID:
- pDest->PointerVal = Src2.PointerVal;
- break;
- }
- SetValue(&I, Dest, SF);
- }
- GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
- ExecutionContext &SF) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::ZExt:
- return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SExt:
- return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPTrunc:
- return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPExt:
- return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::UIToFP:
- return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SIToFP:
- return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToUI:
- return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToSI:
- return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::PtrToInt:
- return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::IntToPtr:
- return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::BitCast:
- return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::GetElementPtr:
- return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
- gep_type_end(CE), SF);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return executeCmpInst(CE->getPredicate(),
- getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- CE->getOperand(0)->getType());
- case Instruction::Select:
- return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- getOperandValue(CE->getOperand(2), SF),
- CE->getOperand(0)->getType());
- default :
- break;
- }
- // The cases below here require a GenericValue parameter for the result
- // so we initialize one, compute it and then return it.
- GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
- GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
- GenericValue Dest;
- Type * Ty = CE->getOperand(0)->getType();
- switch (CE->getOpcode()) {
- case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
- case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
- case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
- case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
- case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
- case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
- case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
- case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
- case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
- case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
- case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
- case Instruction::Shl:
- Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
- break;
- case Instruction::LShr:
- Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
- break;
- case Instruction::AShr:
- Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
- break;
- default:
- dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
- llvm_unreachable("Unhandled ConstantExpr");
- }
- return Dest;
- }
- GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- return getConstantExprValue(CE, SF);
- } else if (Constant *CPV = dyn_cast<Constant>(V)) {
- return getConstantValue(CPV);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- return PTOGV(getPointerToGlobal(GV));
- } else {
- return SF.Values[V];
- }
- }
- //===----------------------------------------------------------------------===//
- // Dispatch and Execution Code
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // callFunction - Execute the specified function...
- //
- void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
- assert((ECStack.empty() || !ECStack.back().Caller ||
- ECStack.back().Caller->arg_size() == ArgVals.size()) &&
- "Incorrect number of arguments passed into function call!");
- // Make a new stack frame... and fill it in.
- ECStack.emplace_back();
- ExecutionContext &StackFrame = ECStack.back();
- StackFrame.CurFunction = F;
- // Special handling for external functions.
- if (F->isDeclaration()) {
- GenericValue Result = callExternalFunction (F, ArgVals);
- // Simulate a 'ret' instruction of the appropriate type.
- popStackAndReturnValueToCaller (F->getReturnType (), Result);
- return;
- }
- // Get pointers to first LLVM BB & Instruction in function.
- StackFrame.CurBB = &F->front();
- StackFrame.CurInst = StackFrame.CurBB->begin();
- // Run through the function arguments and initialize their values...
- assert((ArgVals.size() == F->arg_size() ||
- (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
- "Invalid number of values passed to function invocation!");
- // Handle non-varargs arguments...
- unsigned i = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++i)
- SetValue(&*AI, ArgVals[i], StackFrame);
- // Handle varargs arguments...
- StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
- }
- void Interpreter::run() {
- while (!ECStack.empty()) {
- // Interpret a single instruction & increment the "PC".
- ExecutionContext &SF = ECStack.back(); // Current stack frame
- Instruction &I = *SF.CurInst++; // Increment before execute
- // Track the number of dynamic instructions executed.
- ++NumDynamicInsts;
- LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
- visit(I); // Dispatch to one of the visit* methods...
- }
- }
|