12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535 |
- //===- ValueTracking.cpp - Walk computations to compute properties --------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains routines that help analyze properties that chains of
- // computations have.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumeBundleQueries.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsAArch64.h"
- #include "llvm/IR/IntrinsicsRISCV.h"
- #include "llvm/IR/IntrinsicsX86.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <optional>
- #include <utility>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- // Controls the number of uses of the value searched for possible
- // dominating comparisons.
- static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
- cl::Hidden, cl::init(20));
- /// Returns the bitwidth of the given scalar or pointer type. For vector types,
- /// returns the element type's bitwidth.
- static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
- if (unsigned BitWidth = Ty->getScalarSizeInBits())
- return BitWidth;
- return DL.getPointerTypeSizeInBits(Ty);
- }
- namespace {
- // Simplifying using an assume can only be done in a particular control-flow
- // context (the context instruction provides that context). If an assume and
- // the context instruction are not in the same block then the DT helps in
- // figuring out if we can use it.
- struct Query {
- const DataLayout &DL;
- AssumptionCache *AC;
- const Instruction *CxtI;
- const DominatorTree *DT;
- // Unlike the other analyses, this may be a nullptr because not all clients
- // provide it currently.
- OptimizationRemarkEmitter *ORE;
- /// If true, it is safe to use metadata during simplification.
- InstrInfoQuery IIQ;
- Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo,
- OptimizationRemarkEmitter *ORE = nullptr)
- : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
- };
- } // end anonymous namespace
- // Given the provided Value and, potentially, a context instruction, return
- // the preferred context instruction (if any).
- static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
- // If we've been provided with a context instruction, then use that (provided
- // it has been inserted).
- if (CxtI && CxtI->getParent())
- return CxtI;
- // If the value is really an already-inserted instruction, then use that.
- CxtI = dyn_cast<Instruction>(V);
- if (CxtI && CxtI->getParent())
- return CxtI;
- return nullptr;
- }
- static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
- // If we've been provided with a context instruction, then use that (provided
- // it has been inserted).
- if (CxtI && CxtI->getParent())
- return CxtI;
- // If the value is really an already-inserted instruction, then use that.
- CxtI = dyn_cast<Instruction>(V1);
- if (CxtI && CxtI->getParent())
- return CxtI;
- CxtI = dyn_cast<Instruction>(V2);
- if (CxtI && CxtI->getParent())
- return CxtI;
- return nullptr;
- }
- static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
- const APInt &DemandedElts,
- APInt &DemandedLHS, APInt &DemandedRHS) {
- if (isa<ScalableVectorType>(Shuf->getType())) {
- assert(DemandedElts == APInt(1,1));
- DemandedLHS = DemandedRHS = DemandedElts;
- return true;
- }
- int NumElts =
- cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
- return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
- DemandedElts, DemandedLHS, DemandedRHS);
- }
- static void computeKnownBits(const Value *V, const APInt &DemandedElts,
- KnownBits &Known, unsigned Depth, const Query &Q);
- static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
- const Query &Q) {
- // Since the number of lanes in a scalable vector is unknown at compile time,
- // we track one bit which is implicitly broadcast to all lanes. This means
- // that all lanes in a scalable vector are considered demanded.
- auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
- APInt DemandedElts =
- FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
- computeKnownBits(V, DemandedElts, Known, Depth, Q);
- }
- void llvm::computeKnownBits(const Value *V, KnownBits &Known,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
- ::computeKnownBits(V, Known, Depth,
- Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
- }
- void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
- KnownBits &Known, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
- ::computeKnownBits(V, DemandedElts, Known, Depth,
- Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
- }
- static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
- unsigned Depth, const Query &Q);
- static KnownBits computeKnownBits(const Value *V, unsigned Depth,
- const Query &Q);
- KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE,
- bool UseInstrInfo) {
- return ::computeKnownBits(
- V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
- }
- KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE,
- bool UseInstrInfo) {
- return ::computeKnownBits(
- V, DemandedElts, Depth,
- Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
- }
- bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
- const DataLayout &DL, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- assert(LHS->getType() == RHS->getType() &&
- "LHS and RHS should have the same type");
- assert(LHS->getType()->isIntOrIntVectorTy() &&
- "LHS and RHS should be integers");
- // Look for an inverted mask: (X & ~M) op (Y & M).
- {
- Value *M;
- if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
- match(RHS, m_c_And(m_Specific(M), m_Value())))
- return true;
- if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
- match(LHS, m_c_And(m_Specific(M), m_Value())))
- return true;
- }
- // X op (Y & ~X)
- if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
- match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
- return true;
- // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
- // for constant Y.
- Value *Y;
- if (match(RHS,
- m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
- match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
- return true;
- // Peek through extends to find a 'not' of the other side:
- // (ext Y) op ext(~Y)
- // (ext ~Y) op ext(Y)
- if ((match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
- match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))) ||
- (match(RHS, m_ZExtOrSExt(m_Value(Y))) &&
- match(LHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))))
- return true;
- // Look for: (A & B) op ~(A | B)
- {
- Value *A, *B;
- if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
- match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
- return true;
- if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
- match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
- return true;
- }
- IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
- KnownBits LHSKnown(IT->getBitWidth());
- KnownBits RHSKnown(IT->getBitWidth());
- computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
- computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
- return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
- }
- bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
- return !I->user_empty() && all_of(I->users(), [](const User *U) {
- ICmpInst::Predicate P;
- return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
- });
- }
- static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
- const Query &Q);
- bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
- bool OrZero, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::isKnownToBeAPowerOfTwo(
- V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
- }
- static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
- unsigned Depth, const Query &Q);
- static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
- bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::isKnownNonZero(V, Depth,
- Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
- }
- bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- KnownBits Known =
- computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
- return Known.isNonNegative();
- }
- bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- if (auto *CI = dyn_cast<ConstantInt>(V))
- return CI->getValue().isStrictlyPositive();
- // TODO: We'd doing two recursive queries here. We should factor this such
- // that only a single query is needed.
- return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
- isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
- }
- bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- KnownBits Known =
- computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
- return Known.isNegative();
- }
- static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
- const Query &Q);
- bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
- const DataLayout &DL, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- return ::isKnownNonEqual(V1, V2, 0,
- Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
- UseInstrInfo, /*ORE=*/nullptr));
- }
- static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
- const Query &Q);
- bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::MaskedValueIsZero(
- V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
- }
- static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
- unsigned Depth, const Query &Q);
- static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
- const Query &Q) {
- auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
- APInt DemandedElts =
- FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
- return ComputeNumSignBits(V, DemandedElts, Depth, Q);
- }
- unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::ComputeNumSignBits(
- V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
- }
- unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
- return V->getType()->getScalarSizeInBits() - SignBits + 1;
- }
- static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
- bool NSW, const APInt &DemandedElts,
- KnownBits &KnownOut, KnownBits &Known2,
- unsigned Depth, const Query &Q) {
- computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
- // If one operand is unknown and we have no nowrap information,
- // the result will be unknown independently of the second operand.
- if (KnownOut.isUnknown() && !NSW)
- return;
- computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
- KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
- }
- static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
- const APInt &DemandedElts, KnownBits &Known,
- KnownBits &Known2, unsigned Depth,
- const Query &Q) {
- computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
- computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
- bool isKnownNegative = false;
- bool isKnownNonNegative = false;
- // If the multiplication is known not to overflow, compute the sign bit.
- if (NSW) {
- if (Op0 == Op1) {
- // The product of a number with itself is non-negative.
- isKnownNonNegative = true;
- } else {
- bool isKnownNonNegativeOp1 = Known.isNonNegative();
- bool isKnownNonNegativeOp0 = Known2.isNonNegative();
- bool isKnownNegativeOp1 = Known.isNegative();
- bool isKnownNegativeOp0 = Known2.isNegative();
- // The product of two numbers with the same sign is non-negative.
- isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
- (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
- // The product of a negative number and a non-negative number is either
- // negative or zero.
- if (!isKnownNonNegative)
- isKnownNegative =
- (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- Known2.isNonZero()) ||
- (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
- }
- }
- bool SelfMultiply = Op0 == Op1;
- // TODO: SelfMultiply can be poison, but not undef.
- if (SelfMultiply)
- SelfMultiply &=
- isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
- Known = KnownBits::mul(Known, Known2, SelfMultiply);
- // Only make use of no-wrap flags if we failed to compute the sign bit
- // directly. This matters if the multiplication always overflows, in
- // which case we prefer to follow the result of the direct computation,
- // though as the program is invoking undefined behaviour we can choose
- // whatever we like here.
- if (isKnownNonNegative && !Known.isNegative())
- Known.makeNonNegative();
- else if (isKnownNegative && !Known.isNonNegative())
- Known.makeNegative();
- }
- void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
- KnownBits &Known) {
- unsigned BitWidth = Known.getBitWidth();
- unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1);
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- // The first CommonPrefixBits of all values in Range are equal.
- unsigned CommonPrefixBits =
- (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
- APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
- APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
- Known.One &= UnsignedMax & Mask;
- Known.Zero &= ~UnsignedMax & Mask;
- }
- }
- static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
- SmallVector<const Value *, 16> WorkSet(1, I);
- SmallPtrSet<const Value *, 32> Visited;
- SmallPtrSet<const Value *, 16> EphValues;
- // The instruction defining an assumption's condition itself is always
- // considered ephemeral to that assumption (even if it has other
- // non-ephemeral users). See r246696's test case for an example.
- if (is_contained(I->operands(), E))
- return true;
- while (!WorkSet.empty()) {
- const Value *V = WorkSet.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
- // If all uses of this value are ephemeral, then so is this value.
- if (llvm::all_of(V->users(), [&](const User *U) {
- return EphValues.count(U);
- })) {
- if (V == E)
- return true;
- if (V == I || (isa<Instruction>(V) &&
- !cast<Instruction>(V)->mayHaveSideEffects() &&
- !cast<Instruction>(V)->isTerminator())) {
- EphValues.insert(V);
- if (const User *U = dyn_cast<User>(V))
- append_range(WorkSet, U->operands());
- }
- }
- }
- return false;
- }
- // Is this an intrinsic that cannot be speculated but also cannot trap?
- bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
- if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
- return CI->isAssumeLikeIntrinsic();
- return false;
- }
- bool llvm::isValidAssumeForContext(const Instruction *Inv,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // There are two restrictions on the use of an assume:
- // 1. The assume must dominate the context (or the control flow must
- // reach the assume whenever it reaches the context).
- // 2. The context must not be in the assume's set of ephemeral values
- // (otherwise we will use the assume to prove that the condition
- // feeding the assume is trivially true, thus causing the removal of
- // the assume).
- if (Inv->getParent() == CxtI->getParent()) {
- // If Inv and CtxI are in the same block, check if the assume (Inv) is first
- // in the BB.
- if (Inv->comesBefore(CxtI))
- return true;
- // Don't let an assume affect itself - this would cause the problems
- // `isEphemeralValueOf` is trying to prevent, and it would also make
- // the loop below go out of bounds.
- if (Inv == CxtI)
- return false;
- // The context comes first, but they're both in the same block.
- // Make sure there is nothing in between that might interrupt
- // the control flow, not even CxtI itself.
- // We limit the scan distance between the assume and its context instruction
- // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
- // it can be adjusted if needed (could be turned into a cl::opt).
- auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
- if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
- return false;
- return !isEphemeralValueOf(Inv, CxtI);
- }
- // Inv and CxtI are in different blocks.
- if (DT) {
- if (DT->dominates(Inv, CxtI))
- return true;
- } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
- // We don't have a DT, but this trivially dominates.
- return true;
- }
- return false;
- }
- static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
- // v u> y implies v != 0.
- if (Pred == ICmpInst::ICMP_UGT)
- return true;
- // Special-case v != 0 to also handle v != null.
- if (Pred == ICmpInst::ICMP_NE)
- return match(RHS, m_Zero());
- // All other predicates - rely on generic ConstantRange handling.
- const APInt *C;
- if (!match(RHS, m_APInt(C)))
- return false;
- ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
- return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
- }
- static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
- // Use of assumptions is context-sensitive. If we don't have a context, we
- // cannot use them!
- if (!Q.AC || !Q.CxtI)
- return false;
- if (Q.CxtI && V->getType()->isPointerTy()) {
- SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
- if (!NullPointerIsDefined(Q.CxtI->getFunction(),
- V->getType()->getPointerAddressSpace()))
- AttrKinds.push_back(Attribute::Dereferenceable);
- if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
- return true;
- }
- for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
- if (!AssumeVH)
- continue;
- CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
- assert(I->getFunction() == Q.CxtI->getFunction() &&
- "Got assumption for the wrong function!");
- // Warning: This loop can end up being somewhat performance sensitive.
- // We're running this loop for once for each value queried resulting in a
- // runtime of ~O(#assumes * #values).
- Value *RHS;
- CmpInst::Predicate Pred;
- auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
- if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
- return false;
- if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
- return true;
- }
- return false;
- }
- static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
- unsigned Depth, const Query &Q) {
- // Use of assumptions is context-sensitive. If we don't have a context, we
- // cannot use them!
- if (!Q.AC || !Q.CxtI)
- return;
- unsigned BitWidth = Known.getBitWidth();
- // Refine Known set if the pointer alignment is set by assume bundles.
- if (V->getType()->isPointerTy()) {
- if (RetainedKnowledge RK = getKnowledgeValidInContext(
- V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
- if (isPowerOf2_64(RK.ArgValue))
- Known.Zero.setLowBits(Log2_64(RK.ArgValue));
- }
- }
- // Note that the patterns below need to be kept in sync with the code
- // in AssumptionCache::updateAffectedValues.
- for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
- if (!AssumeVH)
- continue;
- CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
- assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
- "Got assumption for the wrong function!");
- // Warning: This loop can end up being somewhat performance sensitive.
- // We're running this loop for once for each value queried resulting in a
- // runtime of ~O(#assumes * #values).
- Value *Arg = I->getArgOperand(0);
- if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- assert(BitWidth == 1 && "assume operand is not i1?");
- Known.setAllOnes();
- return;
- }
- if (match(Arg, m_Not(m_Specific(V))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- assert(BitWidth == 1 && "assume operand is not i1?");
- Known.setAllZero();
- return;
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth == MaxAnalysisRecursionDepth)
- continue;
- ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
- if (!Cmp)
- continue;
- // We are attempting to compute known bits for the operands of an assume.
- // Do not try to use other assumptions for those recursive calls because
- // that can lead to mutual recursion and a compile-time explosion.
- // An example of the mutual recursion: computeKnownBits can call
- // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
- // and so on.
- Query QueryNoAC = Q;
- QueryNoAC.AC = nullptr;
- // Note that ptrtoint may change the bitwidth.
- Value *A, *B;
- auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
- CmpInst::Predicate Pred;
- uint64_t C;
- switch (Cmp->getPredicate()) {
- default:
- break;
- case ICmpInst::ICMP_EQ:
- // assume(v = a)
- if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- Known.Zero |= RHSKnown.Zero;
- Known.One |= RHSKnown.One;
- // assume(v & b = a)
- } else if (match(Cmp,
- m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- KnownBits MaskKnown =
- computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in the mask that are known to be one, we can propagate
- // known bits from the RHS to V.
- Known.Zero |= RHSKnown.Zero & MaskKnown.One;
- Known.One |= RHSKnown.One & MaskKnown.One;
- // assume(~(v & b) = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- KnownBits MaskKnown =
- computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in the mask that are known to be one, we can propagate
- // inverted known bits from the RHS to V.
- Known.Zero |= RHSKnown.One & MaskKnown.One;
- Known.One |= RHSKnown.Zero & MaskKnown.One;
- // assume(v | b = a)
- } else if (match(Cmp,
- m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- KnownBits BKnown =
- computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V.
- Known.Zero |= RHSKnown.Zero & BKnown.Zero;
- Known.One |= RHSKnown.One & BKnown.Zero;
- // assume(~(v | b) = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- KnownBits BKnown =
- computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V.
- Known.Zero |= RHSKnown.One & BKnown.Zero;
- Known.One |= RHSKnown.Zero & BKnown.Zero;
- // assume(v ^ b = a)
- } else if (match(Cmp,
- m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- KnownBits BKnown =
- computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V. For those bits in B that are known to be one,
- // we can propagate inverted known bits from the RHS to V.
- Known.Zero |= RHSKnown.Zero & BKnown.Zero;
- Known.One |= RHSKnown.One & BKnown.Zero;
- Known.Zero |= RHSKnown.One & BKnown.One;
- Known.One |= RHSKnown.Zero & BKnown.One;
- // assume(~(v ^ b) = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- KnownBits BKnown =
- computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V. For those bits in B that are
- // known to be one, we can propagate known bits from the RHS to V.
- Known.Zero |= RHSKnown.One & BKnown.Zero;
- Known.One |= RHSKnown.Zero & BKnown.Zero;
- Known.Zero |= RHSKnown.Zero & BKnown.One;
- Known.One |= RHSKnown.One & BKnown.One;
- // assume(v << c = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- RHSKnown.Zero.lshrInPlace(C);
- Known.Zero |= RHSKnown.Zero;
- RHSKnown.One.lshrInPlace(C);
- Known.One |= RHSKnown.One;
- // assume(~(v << c) = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- RHSKnown.One.lshrInPlace(C);
- Known.Zero |= RHSKnown.One;
- RHSKnown.Zero.lshrInPlace(C);
- Known.One |= RHSKnown.Zero;
- // assume(v >> c = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- Known.Zero |= RHSKnown.Zero << C;
- Known.One |= RHSKnown.One << C;
- // assume(~(v >> c) = a)
- } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- Known.Zero |= RHSKnown.One << C;
- Known.One |= RHSKnown.Zero << C;
- }
- break;
- case ICmpInst::ICMP_SGE:
- // assume(v >=_s c) where c is non-negative
- if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
- if (RHSKnown.isNonNegative()) {
- // We know that the sign bit is zero.
- Known.makeNonNegative();
- }
- }
- break;
- case ICmpInst::ICMP_SGT:
- // assume(v >_s c) where c is at least -1.
- if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
- if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
- // We know that the sign bit is zero.
- Known.makeNonNegative();
- }
- }
- break;
- case ICmpInst::ICMP_SLE:
- // assume(v <=_s c) where c is negative
- if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
- if (RHSKnown.isNegative()) {
- // We know that the sign bit is one.
- Known.makeNegative();
- }
- }
- break;
- case ICmpInst::ICMP_SLT:
- // assume(v <_s c) where c is non-positive
- if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- if (RHSKnown.isZero() || RHSKnown.isNegative()) {
- // We know that the sign bit is one.
- Known.makeNegative();
- }
- }
- break;
- case ICmpInst::ICMP_ULE:
- // assume(v <=_u c)
- if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // Whatever high bits in c are zero are known to be zero.
- Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
- }
- break;
- case ICmpInst::ICMP_ULT:
- // assume(v <_u c)
- if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown =
- computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
- // If the RHS is known zero, then this assumption must be wrong (nothing
- // is unsigned less than zero). Signal a conflict and get out of here.
- if (RHSKnown.isZero()) {
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- break;
- }
- // Whatever high bits in c are zero are known to be zero (if c is a power
- // of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
- Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
- else
- Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
- }
- break;
- case ICmpInst::ICMP_NE: {
- // assume (v & b != 0) where b is a power of 2
- const APInt *BPow2;
- if (match(Cmp, m_ICmp(Pred, m_c_And(m_V, m_Power2(BPow2)), m_Zero())) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- Known.One |= BPow2->zextOrTrunc(BitWidth);
- }
- } break;
- }
- }
- // If assumptions conflict with each other or previous known bits, then we
- // have a logical fallacy. It's possible that the assumption is not reachable,
- // so this isn't a real bug. On the other hand, the program may have undefined
- // behavior, or we might have a bug in the compiler. We can't assert/crash, so
- // clear out the known bits, try to warn the user, and hope for the best.
- if (Known.Zero.intersects(Known.One)) {
- Known.resetAll();
- if (Q.ORE)
- Q.ORE->emit([&]() {
- auto *CxtI = const_cast<Instruction *>(Q.CxtI);
- return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
- CxtI)
- << "Detected conflicting code assumptions. Program may "
- "have undefined behavior, or compiler may have "
- "internal error.";
- });
- }
- }
- /// Compute known bits from a shift operator, including those with a
- /// non-constant shift amount. Known is the output of this function. Known2 is a
- /// pre-allocated temporary with the same bit width as Known and on return
- /// contains the known bit of the shift value source. KF is an
- /// operator-specific function that, given the known-bits and a shift amount,
- /// compute the implied known-bits of the shift operator's result respectively
- /// for that shift amount. The results from calling KF are conservatively
- /// combined for all permitted shift amounts.
- static void computeKnownBitsFromShiftOperator(
- const Operator *I, const APInt &DemandedElts, KnownBits &Known,
- KnownBits &Known2, unsigned Depth, const Query &Q,
- function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
- unsigned BitWidth = Known.getBitWidth();
- computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
- // Note: We cannot use Known.Zero.getLimitedValue() here, because if
- // BitWidth > 64 and any upper bits are known, we'll end up returning the
- // limit value (which implies all bits are known).
- uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
- uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
- bool ShiftAmtIsConstant = Known.isConstant();
- bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
- if (ShiftAmtIsConstant) {
- Known = KF(Known2, Known);
- // If the known bits conflict, this must be an overflowing left shift, so
- // the shift result is poison. We can return anything we want. Choose 0 for
- // the best folding opportunity.
- if (Known.hasConflict())
- Known.setAllZero();
- return;
- }
- // If the shift amount could be greater than or equal to the bit-width of the
- // LHS, the value could be poison, but bail out because the check below is
- // expensive.
- // TODO: Should we just carry on?
- if (MaxShiftAmtIsOutOfRange) {
- Known.resetAll();
- return;
- }
- // It would be more-clearly correct to use the two temporaries for this
- // calculation. Reusing the APInts here to prevent unnecessary allocations.
- Known.resetAll();
- // If we know the shifter operand is nonzero, we can sometimes infer more
- // known bits. However this is expensive to compute, so be lazy about it and
- // only compute it when absolutely necessary.
- std::optional<bool> ShifterOperandIsNonZero;
- // Early exit if we can't constrain any well-defined shift amount.
- if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
- !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
- ShifterOperandIsNonZero =
- isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
- if (!*ShifterOperandIsNonZero)
- return;
- }
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
- // Combine the shifted known input bits only for those shift amounts
- // compatible with its known constraints.
- if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
- continue;
- if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
- continue;
- // If we know the shifter is nonzero, we may be able to infer more known
- // bits. This check is sunk down as far as possible to avoid the expensive
- // call to isKnownNonZero if the cheaper checks above fail.
- if (ShiftAmt == 0) {
- if (!ShifterOperandIsNonZero)
- ShifterOperandIsNonZero =
- isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
- if (*ShifterOperandIsNonZero)
- continue;
- }
- Known = KnownBits::commonBits(
- Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
- }
- // If the known bits conflict, the result is poison. Return a 0 and hope the
- // caller can further optimize that.
- if (Known.hasConflict())
- Known.setAllZero();
- }
- static void computeKnownBitsFromOperator(const Operator *I,
- const APInt &DemandedElts,
- KnownBits &Known, unsigned Depth,
- const Query &Q) {
- unsigned BitWidth = Known.getBitWidth();
- KnownBits Known2(BitWidth);
- switch (I->getOpcode()) {
- default: break;
- case Instruction::Load:
- if (MDNode *MD =
- Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, Known);
- break;
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
- Known &= Known2;
- // and(x, add (x, -1)) is a common idiom that always clears the low bit;
- // here we handle the more general case of adding any odd number by
- // matching the form add(x, add(x, y)) where y is odd.
- // TODO: This could be generalized to clearing any bit set in y where the
- // following bit is known to be unset in y.
- Value *X = nullptr, *Y = nullptr;
- if (!Known.Zero[0] && !Known.One[0] &&
- match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
- Known2.resetAll();
- computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
- if (Known2.countMinTrailingOnes() > 0)
- Known.Zero.setBit(0);
- }
- break;
- }
- case Instruction::Or:
- computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
- Known |= Known2;
- break;
- case Instruction::Xor:
- computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
- Known ^= Known2;
- break;
- case Instruction::Mul: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
- Known, Known2, Depth, Q);
- break;
- }
- case Instruction::UDiv: {
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::udiv(Known, Known2);
- break;
- }
- case Instruction::Select: {
- const Value *LHS = nullptr, *RHS = nullptr;
- SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
- if (SelectPatternResult::isMinOrMax(SPF)) {
- computeKnownBits(RHS, Known, Depth + 1, Q);
- computeKnownBits(LHS, Known2, Depth + 1, Q);
- switch (SPF) {
- default:
- llvm_unreachable("Unhandled select pattern flavor!");
- case SPF_SMAX:
- Known = KnownBits::smax(Known, Known2);
- break;
- case SPF_SMIN:
- Known = KnownBits::smin(Known, Known2);
- break;
- case SPF_UMAX:
- Known = KnownBits::umax(Known, Known2);
- break;
- case SPF_UMIN:
- Known = KnownBits::umin(Known, Known2);
- break;
- }
- break;
- }
- computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(Known, Known2);
- if (SPF == SPF_ABS) {
- // RHS from matchSelectPattern returns the negation part of abs pattern.
- // If the negate has an NSW flag we can assume the sign bit of the result
- // will be 0 because that makes abs(INT_MIN) undefined.
- if (match(RHS, m_Neg(m_Specific(LHS))) &&
- Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
- Known.Zero.setSignBit();
- }
- break;
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- break; // Can't work with floating point.
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- // Fall through and handle them the same as zext/trunc.
- [[fallthrough]];
- case Instruction::ZExt:
- case Instruction::Trunc: {
- Type *SrcTy = I->getOperand(0)->getType();
- unsigned SrcBitWidth;
- // Note that we handle pointer operands here because of inttoptr/ptrtoint
- // which fall through here.
- Type *ScalarTy = SrcTy->getScalarType();
- SrcBitWidth = ScalarTy->isPointerTy() ?
- Q.DL.getPointerTypeSizeInBits(ScalarTy) :
- Q.DL.getTypeSizeInBits(ScalarTy);
- assert(SrcBitWidth && "SrcBitWidth can't be zero");
- Known = Known.anyextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- Known = Known.zextOrTrunc(BitWidth);
- break;
- }
- case Instruction::BitCast: {
- Type *SrcTy = I->getOperand(0)->getType();
- if (SrcTy->isIntOrPtrTy() &&
- // TODO: For now, not handling conversions like:
- // (bitcast i64 %x to <2 x i32>)
- !I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- break;
- }
- // Handle cast from vector integer type to scalar or vector integer.
- auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
- if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
- !I->getType()->isIntOrIntVectorTy() ||
- isa<ScalableVectorType>(I->getType()))
- break;
- // Look through a cast from narrow vector elements to wider type.
- // Examples: v4i32 -> v2i64, v3i8 -> v24
- unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
- if (BitWidth % SubBitWidth == 0) {
- // Known bits are automatically intersected across demanded elements of a
- // vector. So for example, if a bit is computed as known zero, it must be
- // zero across all demanded elements of the vector.
- //
- // For this bitcast, each demanded element of the output is sub-divided
- // across a set of smaller vector elements in the source vector. To get
- // the known bits for an entire element of the output, compute the known
- // bits for each sub-element sequentially. This is done by shifting the
- // one-set-bit demanded elements parameter across the sub-elements for
- // consecutive calls to computeKnownBits. We are using the demanded
- // elements parameter as a mask operator.
- //
- // The known bits of each sub-element are then inserted into place
- // (dependent on endian) to form the full result of known bits.
- unsigned NumElts = DemandedElts.getBitWidth();
- unsigned SubScale = BitWidth / SubBitWidth;
- APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
- for (unsigned i = 0; i != NumElts; ++i) {
- if (DemandedElts[i])
- SubDemandedElts.setBit(i * SubScale);
- }
- KnownBits KnownSrc(SubBitWidth);
- for (unsigned i = 0; i != SubScale; ++i) {
- computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
- Depth + 1, Q);
- unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
- Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
- }
- }
- break;
- }
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- Known = Known.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- Known = Known.sext(BitWidth);
- break;
- }
- case Instruction::Shl: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
- KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
- // If this shift has "nsw" keyword, then the result is either a poison
- // value or has the same sign bit as the first operand.
- if (NSW) {
- if (KnownVal.Zero.isSignBitSet())
- Result.Zero.setSignBit();
- if (KnownVal.One.isSignBitSet())
- Result.One.setSignBit();
- }
- return Result;
- };
- computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
- KF);
- // Trailing zeros of a right-shifted constant never decrease.
- const APInt *C;
- if (match(I->getOperand(0), m_APInt(C)))
- Known.Zero.setLowBits(C->countTrailingZeros());
- break;
- }
- case Instruction::LShr: {
- auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
- return KnownBits::lshr(KnownVal, KnownAmt);
- };
- computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
- KF);
- // Leading zeros of a left-shifted constant never decrease.
- const APInt *C;
- if (match(I->getOperand(0), m_APInt(C)))
- Known.Zero.setHighBits(C->countLeadingZeros());
- break;
- }
- case Instruction::AShr: {
- auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
- return KnownBits::ashr(KnownVal, KnownAmt);
- };
- computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
- KF);
- break;
- }
- case Instruction::Sub: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- DemandedElts, Known, Known2, Depth, Q);
- break;
- }
- case Instruction::Add: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- DemandedElts, Known, Known2, Depth, Q);
- break;
- }
- case Instruction::SRem:
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::srem(Known, Known2);
- break;
- case Instruction::URem:
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::urem(Known, Known2);
- break;
- case Instruction::Alloca:
- Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
- break;
- case Instruction::GetElementPtr: {
- // Analyze all of the subscripts of this getelementptr instruction
- // to determine if we can prove known low zero bits.
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- // Accumulate the constant indices in a separate variable
- // to minimize the number of calls to computeForAddSub.
- APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
- gep_type_iterator GTI = gep_type_begin(I);
- for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
- // TrailZ can only become smaller, short-circuit if we hit zero.
- if (Known.isUnknown())
- break;
- Value *Index = I->getOperand(i);
- // Handle case when index is zero.
- Constant *CIndex = dyn_cast<Constant>(Index);
- if (CIndex && CIndex->isZeroValue())
- continue;
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- // Handle struct member offset arithmetic.
- assert(CIndex &&
- "Access to structure field must be known at compile time");
- if (CIndex->getType()->isVectorTy())
- Index = CIndex->getSplatValue();
- unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = Q.DL.getStructLayout(STy);
- uint64_t Offset = SL->getElementOffset(Idx);
- AccConstIndices += Offset;
- continue;
- }
- // Handle array index arithmetic.
- Type *IndexedTy = GTI.getIndexedType();
- if (!IndexedTy->isSized()) {
- Known.resetAll();
- break;
- }
- unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
- KnownBits IndexBits(IndexBitWidth);
- computeKnownBits(Index, IndexBits, Depth + 1, Q);
- TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
- uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
- KnownBits ScalingFactor(IndexBitWidth);
- // Multiply by current sizeof type.
- // &A[i] == A + i * sizeof(*A[i]).
- if (IndexTypeSize.isScalable()) {
- // For scalable types the only thing we know about sizeof is
- // that this is a multiple of the minimum size.
- ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
- } else if (IndexBits.isConstant()) {
- APInt IndexConst = IndexBits.getConstant();
- APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
- IndexConst *= ScalingFactor;
- AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
- continue;
- } else {
- ScalingFactor =
- KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
- }
- IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
- // If the offsets have a different width from the pointer, according
- // to the language reference we need to sign-extend or truncate them
- // to the width of the pointer.
- IndexBits = IndexBits.sextOrTrunc(BitWidth);
- // Note that inbounds does *not* guarantee nsw for the addition, as only
- // the offset is signed, while the base address is unsigned.
- Known = KnownBits::computeForAddSub(
- /*Add=*/true, /*NSW=*/false, Known, IndexBits);
- }
- if (!Known.isUnknown() && !AccConstIndices.isZero()) {
- KnownBits Index = KnownBits::makeConstant(AccConstIndices);
- Known = KnownBits::computeForAddSub(
- /*Add=*/true, /*NSW=*/false, Known, Index);
- }
- break;
- }
- case Instruction::PHI: {
- const PHINode *P = cast<PHINode>(I);
- BinaryOperator *BO = nullptr;
- Value *R = nullptr, *L = nullptr;
- if (matchSimpleRecurrence(P, BO, R, L)) {
- // Handle the case of a simple two-predecessor recurrence PHI.
- // There's a lot more that could theoretically be done here, but
- // this is sufficient to catch some interesting cases.
- unsigned Opcode = BO->getOpcode();
- // If this is a shift recurrence, we know the bits being shifted in.
- // We can combine that with information about the start value of the
- // recurrence to conclude facts about the result.
- if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
- Opcode == Instruction::Shl) &&
- BO->getOperand(0) == I) {
- // We have matched a recurrence of the form:
- // %iv = [R, %entry], [%iv.next, %backedge]
- // %iv.next = shift_op %iv, L
- // Recurse with the phi context to avoid concern about whether facts
- // inferred hold at original context instruction. TODO: It may be
- // correct to use the original context. IF warranted, explore and
- // add sufficient tests to cover.
- Query RecQ = Q;
- RecQ.CxtI = P;
- computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
- switch (Opcode) {
- case Instruction::Shl:
- // A shl recurrence will only increase the tailing zeros
- Known.Zero.setLowBits(Known2.countMinTrailingZeros());
- break;
- case Instruction::LShr:
- // A lshr recurrence will preserve the leading zeros of the
- // start value
- Known.Zero.setHighBits(Known2.countMinLeadingZeros());
- break;
- case Instruction::AShr:
- // An ashr recurrence will extend the initial sign bit
- Known.Zero.setHighBits(Known2.countMinLeadingZeros());
- Known.One.setHighBits(Known2.countMinLeadingOnes());
- break;
- };
- }
- // Check for operations that have the property that if
- // both their operands have low zero bits, the result
- // will have low zero bits.
- if (Opcode == Instruction::Add ||
- Opcode == Instruction::Sub ||
- Opcode == Instruction::And ||
- Opcode == Instruction::Or ||
- Opcode == Instruction::Mul) {
- // Change the context instruction to the "edge" that flows into the
- // phi. This is important because that is where the value is actually
- // "evaluated" even though it is used later somewhere else. (see also
- // D69571).
- Query RecQ = Q;
- unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
- Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
- Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
- // Ok, we have a PHI of the form L op= R. Check for low
- // zero bits.
- RecQ.CxtI = RInst;
- computeKnownBits(R, Known2, Depth + 1, RecQ);
- // We need to take the minimum number of known bits
- KnownBits Known3(BitWidth);
- RecQ.CxtI = LInst;
- computeKnownBits(L, Known3, Depth + 1, RecQ);
- Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
- Known3.countMinTrailingZeros()));
- auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
- if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
- // If initial value of recurrence is nonnegative, and we are adding
- // a nonnegative number with nsw, the result can only be nonnegative
- // or poison value regardless of the number of times we execute the
- // add in phi recurrence. If initial value is negative and we are
- // adding a negative number with nsw, the result can only be
- // negative or poison value. Similar arguments apply to sub and mul.
- //
- // (add non-negative, non-negative) --> non-negative
- // (add negative, negative) --> negative
- if (Opcode == Instruction::Add) {
- if (Known2.isNonNegative() && Known3.isNonNegative())
- Known.makeNonNegative();
- else if (Known2.isNegative() && Known3.isNegative())
- Known.makeNegative();
- }
- // (sub nsw non-negative, negative) --> non-negative
- // (sub nsw negative, non-negative) --> negative
- else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
- if (Known2.isNonNegative() && Known3.isNegative())
- Known.makeNonNegative();
- else if (Known2.isNegative() && Known3.isNonNegative())
- Known.makeNegative();
- }
- // (mul nsw non-negative, non-negative) --> non-negative
- else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
- Known3.isNonNegative())
- Known.makeNonNegative();
- }
- break;
- }
- }
- // Unreachable blocks may have zero-operand PHI nodes.
- if (P->getNumIncomingValues() == 0)
- break;
- // Otherwise take the unions of the known bit sets of the operands,
- // taking conservative care to avoid excessive recursion.
- if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
- // Skip if every incoming value references to ourself.
- if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
- break;
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
- Value *IncValue = P->getIncomingValue(u);
- // Skip direct self references.
- if (IncValue == P) continue;
- // Change the context instruction to the "edge" that flows into the
- // phi. This is important because that is where the value is actually
- // "evaluated" even though it is used later somewhere else. (see also
- // D69571).
- Query RecQ = Q;
- RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
- Known2 = KnownBits(BitWidth);
- // Recurse, but cap the recursion to one level, because we don't
- // want to waste time spinning around in loops.
- computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
- // If this failed, see if we can use a conditional branch into the phi
- // to help us determine the range of the value.
- if (Known2.isUnknown()) {
- ICmpInst::Predicate Pred;
- const APInt *RHSC;
- BasicBlock *TrueSucc, *FalseSucc;
- // TODO: Use RHS Value and compute range from its known bits.
- if (match(RecQ.CxtI,
- m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
- m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
- // Check for cases of duplicate successors.
- if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
- // If we're using the false successor, invert the predicate.
- if (FalseSucc == P->getParent())
- Pred = CmpInst::getInversePredicate(Pred);
- switch (Pred) {
- case CmpInst::Predicate::ICMP_EQ:
- Known2 = KnownBits::makeConstant(*RHSC);
- break;
- case CmpInst::Predicate::ICMP_ULE:
- Known2.Zero.setHighBits(RHSC->countLeadingZeros());
- break;
- case CmpInst::Predicate::ICMP_ULT:
- Known2.Zero.setHighBits((*RHSC - 1).countLeadingZeros());
- break;
- default:
- // TODO - add additional integer predicate handling.
- break;
- }
- }
- }
- }
- Known = KnownBits::commonBits(Known, Known2);
- // If all bits have been ruled out, there's no need to check
- // more operands.
- if (Known.isUnknown())
- break;
- }
- }
- break;
- }
- case Instruction::Call:
- case Instruction::Invoke:
- // If range metadata is attached to this call, set known bits from that,
- // and then intersect with known bits based on other properties of the
- // function.
- if (MDNode *MD =
- Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, Known);
- if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
- computeKnownBits(RV, Known2, Depth + 1, Q);
- Known.Zero |= Known2.Zero;
- Known.One |= Known2.One;
- }
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::abs: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
- Known = Known2.abs(IntMinIsPoison);
- break;
- }
- case Intrinsic::bitreverse:
- computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
- Known.Zero |= Known2.Zero.reverseBits();
- Known.One |= Known2.One.reverseBits();
- break;
- case Intrinsic::bswap:
- computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
- Known.Zero |= Known2.Zero.byteSwap();
- Known.One |= Known2.One.byteSwap();
- break;
- case Intrinsic::ctlz: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleLZ = Known2.countMaxLeadingZeros();
- // If this call is poison for 0 input, the result will be less than 2^n.
- if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
- PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
- unsigned LowBits = llvm::bit_width(PossibleLZ);
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case Intrinsic::cttz: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleTZ = Known2.countMaxTrailingZeros();
- // If this call is poison for 0 input, the result will be less than 2^n.
- if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
- PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
- unsigned LowBits = llvm::bit_width(PossibleTZ);
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case Intrinsic::ctpop: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // We can bound the space the count needs. Also, bits known to be zero
- // can't contribute to the population.
- unsigned BitsPossiblySet = Known2.countMaxPopulation();
- unsigned LowBits = llvm::bit_width(BitsPossiblySet);
- Known.Zero.setBitsFrom(LowBits);
- // TODO: we could bound KnownOne using the lower bound on the number
- // of bits which might be set provided by popcnt KnownOne2.
- break;
- }
- case Intrinsic::fshr:
- case Intrinsic::fshl: {
- const APInt *SA;
- if (!match(I->getOperand(2), m_APInt(SA)))
- break;
- // Normalize to funnel shift left.
- uint64_t ShiftAmt = SA->urem(BitWidth);
- if (II->getIntrinsicID() == Intrinsic::fshr)
- ShiftAmt = BitWidth - ShiftAmt;
- KnownBits Known3(BitWidth);
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
- Known.Zero =
- Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
- Known.One =
- Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
- break;
- }
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat: {
- bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- // Add: Leading ones of either operand are preserved.
- // Sub: Leading zeros of LHS and leading ones of RHS are preserved
- // as leading zeros in the result.
- unsigned LeadingKnown;
- if (IsAdd)
- LeadingKnown = std::max(Known.countMinLeadingOnes(),
- Known2.countMinLeadingOnes());
- else
- LeadingKnown = std::max(Known.countMinLeadingZeros(),
- Known2.countMinLeadingOnes());
- Known = KnownBits::computeForAddSub(
- IsAdd, /* NSW */ false, Known, Known2);
- // We select between the operation result and all-ones/zero
- // respectively, so we can preserve known ones/zeros.
- if (IsAdd) {
- Known.One.setHighBits(LeadingKnown);
- Known.Zero.clearAllBits();
- } else {
- Known.Zero.setHighBits(LeadingKnown);
- Known.One.clearAllBits();
- }
- break;
- }
- case Intrinsic::umin:
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::umin(Known, Known2);
- break;
- case Intrinsic::umax:
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::umax(Known, Known2);
- break;
- case Intrinsic::smin:
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::smin(Known, Known2);
- break;
- case Intrinsic::smax:
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- Known = KnownBits::smax(Known, Known2);
- break;
- case Intrinsic::x86_sse42_crc32_64_64:
- Known.Zero.setBitsFrom(32);
- break;
- case Intrinsic::riscv_vsetvli:
- case Intrinsic::riscv_vsetvlimax:
- // Assume that VL output is positive and would fit in an int32_t.
- // TODO: VLEN might be capped at 16 bits in a future V spec update.
- if (BitWidth >= 32)
- Known.Zero.setBitsFrom(31);
- break;
- case Intrinsic::vscale: {
- if (!II->getParent() || !II->getFunction() ||
- !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
- break;
- auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
- std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
- if (!VScaleMax)
- break;
- unsigned VScaleMin = Attr.getVScaleRangeMin();
- // If vscale min = max then we know the exact value at compile time
- // and hence we know the exact bits.
- if (VScaleMin == VScaleMax) {
- Known.One = VScaleMin;
- Known.Zero = VScaleMin;
- Known.Zero.flipAllBits();
- break;
- }
- unsigned FirstZeroHighBit = llvm::bit_width(*VScaleMax);
- if (FirstZeroHighBit < BitWidth)
- Known.Zero.setBitsFrom(FirstZeroHighBit);
- break;
- }
- }
- }
- break;
- case Instruction::ShuffleVector: {
- auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
- // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
- if (!Shuf) {
- Known.resetAll();
- return;
- }
- // For undef elements, we don't know anything about the common state of
- // the shuffle result.
- APInt DemandedLHS, DemandedRHS;
- if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
- Known.resetAll();
- return;
- }
- Known.One.setAllBits();
- Known.Zero.setAllBits();
- if (!!DemandedLHS) {
- const Value *LHS = Shuf->getOperand(0);
- computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- if (!!DemandedRHS) {
- const Value *RHS = Shuf->getOperand(1);
- computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
- Known = KnownBits::commonBits(Known, Known2);
- }
- break;
- }
- case Instruction::InsertElement: {
- if (isa<ScalableVectorType>(I->getType())) {
- Known.resetAll();
- return;
- }
- const Value *Vec = I->getOperand(0);
- const Value *Elt = I->getOperand(1);
- auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
- // Early out if the index is non-constant or out-of-range.
- unsigned NumElts = DemandedElts.getBitWidth();
- if (!CIdx || CIdx->getValue().uge(NumElts)) {
- Known.resetAll();
- return;
- }
- Known.One.setAllBits();
- Known.Zero.setAllBits();
- unsigned EltIdx = CIdx->getZExtValue();
- // Do we demand the inserted element?
- if (DemandedElts[EltIdx]) {
- computeKnownBits(Elt, Known, Depth + 1, Q);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- // We don't need the base vector element that has been inserted.
- APInt DemandedVecElts = DemandedElts;
- DemandedVecElts.clearBit(EltIdx);
- if (!!DemandedVecElts) {
- computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
- Known = KnownBits::commonBits(Known, Known2);
- }
- break;
- }
- case Instruction::ExtractElement: {
- // Look through extract element. If the index is non-constant or
- // out-of-range demand all elements, otherwise just the extracted element.
- const Value *Vec = I->getOperand(0);
- const Value *Idx = I->getOperand(1);
- auto *CIdx = dyn_cast<ConstantInt>(Idx);
- if (isa<ScalableVectorType>(Vec->getType())) {
- // FIXME: there's probably *something* we can do with scalable vectors
- Known.resetAll();
- break;
- }
- unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
- APInt DemandedVecElts = APInt::getAllOnes(NumElts);
- if (CIdx && CIdx->getValue().ult(NumElts))
- DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
- computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
- break;
- }
- case Instruction::ExtractValue:
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
- const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
- if (EVI->getNumIndices() != 1) break;
- if (EVI->getIndices()[0] == 0) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- computeKnownBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, DemandedElts,
- Known, Known2, Depth, Q);
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- computeKnownBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, DemandedElts,
- Known, Known2, Depth, Q);
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
- DemandedElts, Known, Known2, Depth, Q);
- break;
- }
- }
- }
- break;
- case Instruction::Freeze:
- if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
- Depth + 1))
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- break;
- }
- }
- /// Determine which bits of V are known to be either zero or one and return
- /// them.
- KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
- unsigned Depth, const Query &Q) {
- KnownBits Known(getBitWidth(V->getType(), Q.DL));
- computeKnownBits(V, DemandedElts, Known, Depth, Q);
- return Known;
- }
- /// Determine which bits of V are known to be either zero or one and return
- /// them.
- KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
- KnownBits Known(getBitWidth(V->getType(), Q.DL));
- computeKnownBits(V, Known, Depth, Q);
- return Known;
- }
- /// Determine which bits of V are known to be either zero or one and return
- /// them in the Known bit set.
- ///
- /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
- /// we cannot optimize based on the assumption that it is zero without changing
- /// it to be an explicit zero. If we don't change it to zero, other code could
- /// optimized based on the contradictory assumption that it is non-zero.
- /// Because instcombine aggressively folds operations with undef args anyway,
- /// this won't lose us code quality.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the demanded elements in the vector specified by DemandedElts.
- void computeKnownBits(const Value *V, const APInt &DemandedElts,
- KnownBits &Known, unsigned Depth, const Query &Q) {
- if (!DemandedElts) {
- // No demanded elts, better to assume we don't know anything.
- Known.resetAll();
- return;
- }
- assert(V && "No Value?");
- assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
- #ifndef NDEBUG
- Type *Ty = V->getType();
- unsigned BitWidth = Known.getBitWidth();
- assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
- "Not integer or pointer type!");
- if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
- assert(
- FVTy->getNumElements() == DemandedElts.getBitWidth() &&
- "DemandedElt width should equal the fixed vector number of elements");
- } else {
- assert(DemandedElts == APInt(1, 1) &&
- "DemandedElt width should be 1 for scalars or scalable vectors");
- }
- Type *ScalarTy = Ty->getScalarType();
- if (ScalarTy->isPointerTy()) {
- assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
- "V and Known should have same BitWidth");
- } else {
- assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
- "V and Known should have same BitWidth");
- }
- #endif
- const APInt *C;
- if (match(V, m_APInt(C))) {
- // We know all of the bits for a scalar constant or a splat vector constant!
- Known = KnownBits::makeConstant(*C);
- return;
- }
- // Null and aggregate-zero are all-zeros.
- if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
- Known.setAllZero();
- return;
- }
- // Handle a constant vector by taking the intersection of the known bits of
- // each element.
- if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
- assert(!isa<ScalableVectorType>(V->getType()));
- // We know that CDV must be a vector of integers. Take the intersection of
- // each element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- APInt Elt = CDV->getElementAsAPInt(i);
- Known.Zero &= ~Elt;
- Known.One &= Elt;
- }
- return;
- }
- if (const auto *CV = dyn_cast<ConstantVector>(V)) {
- assert(!isa<ScalableVectorType>(V->getType()));
- // We know that CV must be a vector of integers. Take the intersection of
- // each element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- Constant *Element = CV->getAggregateElement(i);
- auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
- if (!ElementCI) {
- Known.resetAll();
- return;
- }
- const APInt &Elt = ElementCI->getValue();
- Known.Zero &= ~Elt;
- Known.One &= Elt;
- }
- return;
- }
- // Start out not knowing anything.
- Known.resetAll();
- // We can't imply anything about undefs.
- if (isa<UndefValue>(V))
- return;
- // There's no point in looking through other users of ConstantData for
- // assumptions. Confirm that we've handled them all.
- assert(!isa<ConstantData>(V) && "Unhandled constant data!");
- // All recursive calls that increase depth must come after this.
- if (Depth == MaxAnalysisRecursionDepth)
- return;
- // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
- // the bits of its aliasee.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->isInterposable())
- computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
- return;
- }
- if (const Operator *I = dyn_cast<Operator>(V))
- computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
- // Aligned pointers have trailing zeros - refine Known.Zero set
- if (isa<PointerType>(V->getType())) {
- Align Alignment = V->getPointerAlignment(Q.DL);
- Known.Zero.setLowBits(Log2(Alignment));
- }
- // computeKnownBitsFromAssume strictly refines Known.
- // Therefore, we run them after computeKnownBitsFromOperator.
- // Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, Known, Depth, Q);
- assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
- }
- /// Try to detect a recurrence that the value of the induction variable is
- /// always a power of two (or zero).
- static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
- unsigned Depth, Query &Q) {
- BinaryOperator *BO = nullptr;
- Value *Start = nullptr, *Step = nullptr;
- if (!matchSimpleRecurrence(PN, BO, Start, Step))
- return false;
- // Initial value must be a power of two.
- for (const Use &U : PN->operands()) {
- if (U.get() == Start) {
- // Initial value comes from a different BB, need to adjust context
- // instruction for analysis.
- Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
- if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
- return false;
- }
- }
- // Except for Mul, the induction variable must be on the left side of the
- // increment expression, otherwise its value can be arbitrary.
- if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
- return false;
- Q.CxtI = BO->getParent()->getTerminator();
- switch (BO->getOpcode()) {
- case Instruction::Mul:
- // Power of two is closed under multiplication.
- return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
- Q.IIQ.hasNoSignedWrap(BO)) &&
- isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
- case Instruction::SDiv:
- // Start value must not be signmask for signed division, so simply being a
- // power of two is not sufficient, and it has to be a constant.
- if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
- return false;
- [[fallthrough]];
- case Instruction::UDiv:
- // Divisor must be a power of two.
- // If OrZero is false, cannot guarantee induction variable is non-zero after
- // division, same for Shr, unless it is exact division.
- return (OrZero || Q.IIQ.isExact(BO)) &&
- isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
- case Instruction::Shl:
- return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
- case Instruction::AShr:
- if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
- return false;
- [[fallthrough]];
- case Instruction::LShr:
- return OrZero || Q.IIQ.isExact(BO);
- default:
- return false;
- }
- }
- /// Return true if the given value is known to have exactly one
- /// bit set when defined. For vectors return true if every element is known to
- /// be a power of two when defined. Supports values with integer or pointer
- /// types and vectors of integers.
- bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
- const Query &Q) {
- assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
- // Attempt to match against constants.
- if (OrZero && match(V, m_Power2OrZero()))
- return true;
- if (match(V, m_Power2()))
- return true;
- // 1 << X is clearly a power of two if the one is not shifted off the end. If
- // it is shifted off the end then the result is undefined.
- if (match(V, m_Shl(m_One(), m_Value())))
- return true;
- // (signmask) >>l X is clearly a power of two if the one is not shifted off
- // the bottom. If it is shifted off the bottom then the result is undefined.
- if (match(V, m_LShr(m_SignMask(), m_Value())))
- return true;
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxAnalysisRecursionDepth)
- return false;
- Value *X = nullptr, *Y = nullptr;
- // A shift left or a logical shift right of a power of two is a power of two
- // or zero.
- if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
- match(V, m_LShr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
- if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
- if (const SelectInst *SI = dyn_cast<SelectInst>(V))
- return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
- // Peek through min/max.
- if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
- return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
- isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
- }
- if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
- // A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
- return true;
- // X & (-X) is always a power of two or zero.
- if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
- return true;
- return false;
- }
- // Adding a power-of-two or zero to the same power-of-two or zero yields
- // either the original power-of-two, a larger power-of-two or zero.
- if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
- if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
- Q.IIQ.hasNoSignedWrap(VOBO)) {
- if (match(X, m_And(m_Specific(Y), m_Value())) ||
- match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
- return true;
- if (match(Y, m_And(m_Specific(X), m_Value())) ||
- match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
- return true;
- unsigned BitWidth = V->getType()->getScalarSizeInBits();
- KnownBits LHSBits(BitWidth);
- computeKnownBits(X, LHSBits, Depth, Q);
- KnownBits RHSBits(BitWidth);
- computeKnownBits(Y, RHSBits, Depth, Q);
- // If i8 V is a power of two or zero:
- // ZeroBits: 1 1 1 0 1 1 1 1
- // ~ZeroBits: 0 0 0 1 0 0 0 0
- if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
- // If OrZero isn't set, we cannot give back a zero result.
- // Make sure either the LHS or RHS has a bit set.
- if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
- return true;
- }
- }
- // A PHI node is power of two if all incoming values are power of two, or if
- // it is an induction variable where in each step its value is a power of two.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- Query RecQ = Q;
- // Check if it is an induction variable and always power of two.
- if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
- return true;
- // Recursively check all incoming values. Limit recursion to 2 levels, so
- // that search complexity is limited to number of operands^2.
- unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
- return llvm::all_of(PN->operands(), [&](const Use &U) {
- // Value is power of 2 if it is coming from PHI node itself by induction.
- if (U.get() == PN)
- return true;
- // Change the context instruction to the incoming block where it is
- // evaluated.
- RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
- return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
- });
- }
- // An exact divide or right shift can only shift off zero bits, so the result
- // is a power of two only if the first operand is a power of two and not
- // copying a sign bit (sdiv int_min, 2).
- if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
- match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
- return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q);
- }
- return false;
- }
- /// Test whether a GEP's result is known to be non-null.
- ///
- /// Uses properties inherent in a GEP to try to determine whether it is known
- /// to be non-null.
- ///
- /// Currently this routine does not support vector GEPs.
- static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
- const Query &Q) {
- const Function *F = nullptr;
- if (const Instruction *I = dyn_cast<Instruction>(GEP))
- F = I->getFunction();
- if (!GEP->isInBounds() ||
- NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
- return false;
- // FIXME: Support vector-GEPs.
- assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
- // If the base pointer is non-null, we cannot walk to a null address with an
- // inbounds GEP in address space zero.
- if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
- return true;
- // Walk the GEP operands and see if any operand introduces a non-zero offset.
- // If so, then the GEP cannot produce a null pointer, as doing so would
- // inherently violate the inbounds contract within address space zero.
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- // Struct types are easy -- they must always be indexed by a constant.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = Q.DL.getStructLayout(STy);
- uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
- if (ElementOffset > 0)
- return true;
- continue;
- }
- // If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).isZero())
- continue;
- // Fast path the constant operand case both for efficiency and so we don't
- // increment Depth when just zipping down an all-constant GEP.
- if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
- if (!OpC->isZero())
- return true;
- continue;
- }
- // We post-increment Depth here because while isKnownNonZero increments it
- // as well, when we pop back up that increment won't persist. We don't want
- // to recurse 10k times just because we have 10k GEP operands. We don't
- // bail completely out because we want to handle constant GEPs regardless
- // of depth.
- if (Depth++ >= MaxAnalysisRecursionDepth)
- continue;
- if (isKnownNonZero(GTI.getOperand(), Depth, Q))
- return true;
- }
- return false;
- }
- static bool isKnownNonNullFromDominatingCondition(const Value *V,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- if (isa<Constant>(V))
- return false;
- if (!CtxI || !DT)
- return false;
- unsigned NumUsesExplored = 0;
- for (const auto *U : V->users()) {
- // Avoid massive lists
- if (NumUsesExplored >= DomConditionsMaxUses)
- break;
- NumUsesExplored++;
- // If the value is used as an argument to a call or invoke, then argument
- // attributes may provide an answer about null-ness.
- if (const auto *CB = dyn_cast<CallBase>(U))
- if (auto *CalledFunc = CB->getCalledFunction())
- for (const Argument &Arg : CalledFunc->args())
- if (CB->getArgOperand(Arg.getArgNo()) == V &&
- Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
- DT->dominates(CB, CtxI))
- return true;
- // If the value is used as a load/store, then the pointer must be non null.
- if (V == getLoadStorePointerOperand(U)) {
- const Instruction *I = cast<Instruction>(U);
- if (!NullPointerIsDefined(I->getFunction(),
- V->getType()->getPointerAddressSpace()) &&
- DT->dominates(I, CtxI))
- return true;
- }
- // Consider only compare instructions uniquely controlling a branch
- Value *RHS;
- CmpInst::Predicate Pred;
- if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
- continue;
- bool NonNullIfTrue;
- if (cmpExcludesZero(Pred, RHS))
- NonNullIfTrue = true;
- else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
- NonNullIfTrue = false;
- else
- continue;
- SmallVector<const User *, 4> WorkList;
- SmallPtrSet<const User *, 4> Visited;
- for (const auto *CmpU : U->users()) {
- assert(WorkList.empty() && "Should be!");
- if (Visited.insert(CmpU).second)
- WorkList.push_back(CmpU);
- while (!WorkList.empty()) {
- auto *Curr = WorkList.pop_back_val();
- // If a user is an AND, add all its users to the work list. We only
- // propagate "pred != null" condition through AND because it is only
- // correct to assume that all conditions of AND are met in true branch.
- // TODO: Support similar logic of OR and EQ predicate?
- if (NonNullIfTrue)
- if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
- for (const auto *CurrU : Curr->users())
- if (Visited.insert(CurrU).second)
- WorkList.push_back(CurrU);
- continue;
- }
- if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
- assert(BI->isConditional() && "uses a comparison!");
- BasicBlock *NonNullSuccessor =
- BI->getSuccessor(NonNullIfTrue ? 0 : 1);
- BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
- if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
- return true;
- } else if (NonNullIfTrue && isGuard(Curr) &&
- DT->dominates(cast<Instruction>(Curr), CtxI)) {
- return true;
- }
- }
- }
- }
- return false;
- }
- /// Does the 'Range' metadata (which must be a valid MD_range operand list)
- /// ensure that the value it's attached to is never Value? 'RangeType' is
- /// is the type of the value described by the range.
- static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
- const unsigned NumRanges = Ranges->getNumOperands() / 2;
- assert(NumRanges >= 1);
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- if (Range.contains(Value))
- return false;
- }
- return true;
- }
- /// Try to detect a recurrence that monotonically increases/decreases from a
- /// non-zero starting value. These are common as induction variables.
- static bool isNonZeroRecurrence(const PHINode *PN) {
- BinaryOperator *BO = nullptr;
- Value *Start = nullptr, *Step = nullptr;
- const APInt *StartC, *StepC;
- if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
- !match(Start, m_APInt(StartC)) || StartC->isZero())
- return false;
- switch (BO->getOpcode()) {
- case Instruction::Add:
- // Starting from non-zero and stepping away from zero can never wrap back
- // to zero.
- return BO->hasNoUnsignedWrap() ||
- (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
- StartC->isNegative() == StepC->isNegative());
- case Instruction::Mul:
- return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
- match(Step, m_APInt(StepC)) && !StepC->isZero();
- case Instruction::Shl:
- return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
- case Instruction::AShr:
- case Instruction::LShr:
- return BO->isExact();
- default:
- return false;
- }
- }
- /// Return true if the given value is known to be non-zero when defined. For
- /// vectors, return true if every demanded element is known to be non-zero when
- /// defined. For pointers, if the context instruction and dominator tree are
- /// specified, perform context-sensitive analysis and return true if the
- /// pointer couldn't possibly be null at the specified instruction.
- /// Supports values with integer or pointer type and vectors of integers.
- bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
- const Query &Q) {
- #ifndef NDEBUG
- Type *Ty = V->getType();
- assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
- if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
- assert(
- FVTy->getNumElements() == DemandedElts.getBitWidth() &&
- "DemandedElt width should equal the fixed vector number of elements");
- } else {
- assert(DemandedElts == APInt(1, 1) &&
- "DemandedElt width should be 1 for scalars");
- }
- #endif
- if (auto *C = dyn_cast<Constant>(V)) {
- if (C->isNullValue())
- return false;
- if (isa<ConstantInt>(C))
- // Must be non-zero due to null test above.
- return true;
- // For constant vectors, check that all elements are undefined or known
- // non-zero to determine that the whole vector is known non-zero.
- if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
- for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt || Elt->isNullValue())
- return false;
- if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
- return false;
- }
- return true;
- }
- // A global variable in address space 0 is non null unless extern weak
- // or an absolute symbol reference. Other address spaces may have null as a
- // valid address for a global, so we can't assume anything.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
- GV->getType()->getAddressSpace() == 0)
- return true;
- }
- // For constant expressions, fall through to the Operator code below.
- if (!isa<ConstantExpr>(V))
- return false;
- }
- if (auto *I = dyn_cast<Instruction>(V)) {
- if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
- // If the possible ranges don't contain zero, then the value is
- // definitely non-zero.
- if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
- const APInt ZeroValue(Ty->getBitWidth(), 0);
- if (rangeMetadataExcludesValue(Ranges, ZeroValue))
- return true;
- }
- }
- }
- if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
- return true;
- // Some of the tests below are recursive, so bail out if we hit the limit.
- if (Depth++ >= MaxAnalysisRecursionDepth)
- return false;
- // Check for pointer simplifications.
- if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
- // Alloca never returns null, malloc might.
- if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
- return true;
- // A byval, inalloca may not be null in a non-default addres space. A
- // nonnull argument is assumed never 0.
- if (const Argument *A = dyn_cast<Argument>(V)) {
- if (((A->hasPassPointeeByValueCopyAttr() &&
- !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
- A->hasNonNullAttr()))
- return true;
- }
- // A Load tagged with nonnull metadata is never null.
- if (const LoadInst *LI = dyn_cast<LoadInst>(V))
- if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
- return true;
- if (const auto *Call = dyn_cast<CallBase>(V)) {
- if (Call->isReturnNonNull())
- return true;
- if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
- return isKnownNonZero(RP, Depth, Q);
- }
- }
- if (!isa<Constant>(V) &&
- isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
- return true;
- const Operator *I = dyn_cast<Operator>(V);
- if (!I)
- return false;
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- if (I->getType()->isPointerTy())
- return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
- break;
- case Instruction::BitCast:
- if (I->getType()->isPointerTy())
- return isKnownNonZero(I->getOperand(0), Depth, Q);
- break;
- case Instruction::IntToPtr:
- // Note that we have to take special care to avoid looking through
- // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
- // as casts that can alter the value, e.g., AddrSpaceCasts.
- if (!isa<ScalableVectorType>(I->getType()) &&
- Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
- Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
- return isKnownNonZero(I->getOperand(0), Depth, Q);
- break;
- case Instruction::PtrToInt:
- // Similar to int2ptr above, we can look through ptr2int here if the cast
- // is a no-op or an extend and not a truncate.
- if (!isa<ScalableVectorType>(I->getType()) &&
- Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
- Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
- return isKnownNonZero(I->getOperand(0), Depth, Q);
- break;
- case Instruction::Or:
- // X | Y != 0 if X != 0 or Y != 0.
- return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
- isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q);
- case Instruction::SExt:
- case Instruction::ZExt:
- // ext X != 0 if X != 0.
- return isKnownNonZero(I->getOperand(0), Depth, Q);
- case Instruction::Shl: {
- // shl nuw can't remove any non-zero bits.
- const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- if (Q.IIQ.hasNoUnsignedWrap(BO))
- return isKnownNonZero(I->getOperand(0), Depth, Q);
- // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
- // if the lowest bit is shifted off the end.
- KnownBits Known(BitWidth);
- computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
- if (Known.One[0])
- return true;
- break;
- }
- case Instruction::LShr:
- case Instruction::AShr: {
- // shr exact can only shift out zero bits.
- const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
- if (BO->isExact())
- return isKnownNonZero(I->getOperand(0), Depth, Q);
- // shr X, Y != 0 if X is negative. Note that the value of the shift is not
- // defined if the sign bit is shifted off the end.
- KnownBits Known =
- computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
- if (Known.isNegative())
- return true;
- // If the shifter operand is a constant, and all of the bits shifted
- // out are known to be zero, and X is known non-zero then at least one
- // non-zero bit must remain.
- if (ConstantInt *Shift = dyn_cast<ConstantInt>(I->getOperand(1))) {
- auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
- // Is there a known one in the portion not shifted out?
- if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
- return true;
- // Are all the bits to be shifted out known zero?
- if (Known.countMinTrailingZeros() >= ShiftVal)
- return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
- }
- break;
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- // div exact can only produce a zero if the dividend is zero.
- if (cast<PossiblyExactOperator>(I)->isExact())
- return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
- break;
- case Instruction::Add: {
- // X + Y.
- KnownBits XKnown =
- computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
- KnownBits YKnown =
- computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
- // If X and Y are both non-negative (as signed values) then their sum is not
- // zero unless both X and Y are zero.
- if (XKnown.isNonNegative() && YKnown.isNonNegative())
- if (isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
- isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
- return true;
- // If X and Y are both negative (as signed values) then their sum is not
- // zero unless both X and Y equal INT_MIN.
- if (XKnown.isNegative() && YKnown.isNegative()) {
- APInt Mask = APInt::getSignedMaxValue(BitWidth);
- // The sign bit of X is set. If some other bit is set then X is not equal
- // to INT_MIN.
- if (XKnown.One.intersects(Mask))
- return true;
- // The sign bit of Y is set. If some other bit is set then Y is not equal
- // to INT_MIN.
- if (YKnown.One.intersects(Mask))
- return true;
- }
- // The sum of a non-negative number and a power of two is not zero.
- if (XKnown.isNonNegative() &&
- isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ false, Depth, Q))
- return true;
- if (YKnown.isNonNegative() &&
- isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ false, Depth, Q))
- return true;
- break;
- }
- case Instruction::Mul: {
- // If X and Y are non-zero then so is X * Y as long as the multiplication
- // does not overflow.
- const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
- isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) &&
- isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
- return true;
- break;
- }
- case Instruction::Select:
- // (C ? X : Y) != 0 if X != 0 and Y != 0.
- if (isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) &&
- isKnownNonZero(I->getOperand(2), DemandedElts, Depth, Q))
- return true;
- break;
- case Instruction::PHI: {
- auto *PN = cast<PHINode>(I);
- if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
- return true;
- // Check if all incoming values are non-zero using recursion.
- Query RecQ = Q;
- unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
- return llvm::all_of(PN->operands(), [&](const Use &U) {
- if (U.get() == PN)
- return true;
- RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
- return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
- });
- }
- case Instruction::ExtractElement:
- if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
- const Value *Vec = EEI->getVectorOperand();
- const Value *Idx = EEI->getIndexOperand();
- auto *CIdx = dyn_cast<ConstantInt>(Idx);
- if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
- unsigned NumElts = VecTy->getNumElements();
- APInt DemandedVecElts = APInt::getAllOnes(NumElts);
- if (CIdx && CIdx->getValue().ult(NumElts))
- DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
- return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
- }
- }
- break;
- case Instruction::Freeze:
- return isKnownNonZero(I->getOperand(0), Depth, Q) &&
- isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
- Depth);
- case Instruction::Call:
- if (cast<CallInst>(I)->getIntrinsicID() == Intrinsic::vscale)
- return true;
- break;
- }
- KnownBits Known(BitWidth);
- computeKnownBits(V, DemandedElts, Known, Depth, Q);
- return Known.One != 0;
- }
- bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
- auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
- APInt DemandedElts =
- FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
- return isKnownNonZero(V, DemandedElts, Depth, Q);
- }
- /// If the pair of operators are the same invertible function, return the
- /// the operands of the function corresponding to each input. Otherwise,
- /// return std::nullopt. An invertible function is one that is 1-to-1 and maps
- /// every input value to exactly one output value. This is equivalent to
- /// saying that Op1 and Op2 are equal exactly when the specified pair of
- /// operands are equal, (except that Op1 and Op2 may be poison more often.)
- static std::optional<std::pair<Value*, Value*>>
- getInvertibleOperands(const Operator *Op1,
- const Operator *Op2) {
- if (Op1->getOpcode() != Op2->getOpcode())
- return std::nullopt;
- auto getOperands = [&](unsigned OpNum) -> auto {
- return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
- };
- switch (Op1->getOpcode()) {
- default:
- break;
- case Instruction::Add:
- case Instruction::Sub:
- if (Op1->getOperand(0) == Op2->getOperand(0))
- return getOperands(1);
- if (Op1->getOperand(1) == Op2->getOperand(1))
- return getOperands(0);
- break;
- case Instruction::Mul: {
- // invertible if A * B == (A * B) mod 2^N where A, and B are integers
- // and N is the bitwdith. The nsw case is non-obvious, but proven by
- // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
- auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
- auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
- if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
- (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
- break;
- // Assume operand order has been canonicalized
- if (Op1->getOperand(1) == Op2->getOperand(1) &&
- isa<ConstantInt>(Op1->getOperand(1)) &&
- !cast<ConstantInt>(Op1->getOperand(1))->isZero())
- return getOperands(0);
- break;
- }
- case Instruction::Shl: {
- // Same as multiplies, with the difference that we don't need to check
- // for a non-zero multiply. Shifts always multiply by non-zero.
- auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
- auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
- if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
- (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
- break;
- if (Op1->getOperand(1) == Op2->getOperand(1))
- return getOperands(0);
- break;
- }
- case Instruction::AShr:
- case Instruction::LShr: {
- auto *PEO1 = cast<PossiblyExactOperator>(Op1);
- auto *PEO2 = cast<PossiblyExactOperator>(Op2);
- if (!PEO1->isExact() || !PEO2->isExact())
- break;
- if (Op1->getOperand(1) == Op2->getOperand(1))
- return getOperands(0);
- break;
- }
- case Instruction::SExt:
- case Instruction::ZExt:
- if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
- return getOperands(0);
- break;
- case Instruction::PHI: {
- const PHINode *PN1 = cast<PHINode>(Op1);
- const PHINode *PN2 = cast<PHINode>(Op2);
- // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
- // are a single invertible function of the start values? Note that repeated
- // application of an invertible function is also invertible
- BinaryOperator *BO1 = nullptr;
- Value *Start1 = nullptr, *Step1 = nullptr;
- BinaryOperator *BO2 = nullptr;
- Value *Start2 = nullptr, *Step2 = nullptr;
- if (PN1->getParent() != PN2->getParent() ||
- !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
- !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
- break;
- auto Values = getInvertibleOperands(cast<Operator>(BO1),
- cast<Operator>(BO2));
- if (!Values)
- break;
- // We have to be careful of mutually defined recurrences here. Ex:
- // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
- // * X_i = Y_i = X_(i-1) OP Y_(i-1)
- // The invertibility of these is complicated, and not worth reasoning
- // about (yet?).
- if (Values->first != PN1 || Values->second != PN2)
- break;
- return std::make_pair(Start1, Start2);
- }
- }
- return std::nullopt;
- }
- /// Return true if V2 == V1 + X, where X is known non-zero.
- static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
- const Query &Q) {
- const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
- if (!BO || BO->getOpcode() != Instruction::Add)
- return false;
- Value *Op = nullptr;
- if (V2 == BO->getOperand(0))
- Op = BO->getOperand(1);
- else if (V2 == BO->getOperand(1))
- Op = BO->getOperand(0);
- else
- return false;
- return isKnownNonZero(Op, Depth + 1, Q);
- }
- /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
- /// the multiplication is nuw or nsw.
- static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
- const Query &Q) {
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
- const APInt *C;
- return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
- (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
- !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
- }
- return false;
- }
- /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
- /// the shift is nuw or nsw.
- static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
- const Query &Q) {
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
- const APInt *C;
- return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
- (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
- !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
- }
- return false;
- }
- static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
- unsigned Depth, const Query &Q) {
- // Check two PHIs are in same block.
- if (PN1->getParent() != PN2->getParent())
- return false;
- SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
- bool UsedFullRecursion = false;
- for (const BasicBlock *IncomBB : PN1->blocks()) {
- if (!VisitedBBs.insert(IncomBB).second)
- continue; // Don't reprocess blocks that we have dealt with already.
- const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
- const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
- const APInt *C1, *C2;
- if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
- continue;
- // Only one pair of phi operands is allowed for full recursion.
- if (UsedFullRecursion)
- return false;
- Query RecQ = Q;
- RecQ.CxtI = IncomBB->getTerminator();
- if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
- return false;
- UsedFullRecursion = true;
- }
- return true;
- }
- /// Return true if it is known that V1 != V2.
- static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
- const Query &Q) {
- if (V1 == V2)
- return false;
- if (V1->getType() != V2->getType())
- // We can't look through casts yet.
- return false;
- if (Depth >= MaxAnalysisRecursionDepth)
- return false;
- // See if we can recurse through (exactly one of) our operands. This
- // requires our operation be 1-to-1 and map every input value to exactly
- // one output value. Such an operation is invertible.
- auto *O1 = dyn_cast<Operator>(V1);
- auto *O2 = dyn_cast<Operator>(V2);
- if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
- if (auto Values = getInvertibleOperands(O1, O2))
- return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
- if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
- const PHINode *PN2 = cast<PHINode>(V2);
- // FIXME: This is missing a generalization to handle the case where one is
- // a PHI and another one isn't.
- if (isNonEqualPHIs(PN1, PN2, Depth, Q))
- return true;
- };
- }
- if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
- return true;
- if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
- return true;
- if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
- return true;
- if (V1->getType()->isIntOrIntVectorTy()) {
- // Are any known bits in V1 contradictory to known bits in V2? If V1
- // has a known zero where V2 has a known one, they must not be equal.
- KnownBits Known1 = computeKnownBits(V1, Depth, Q);
- KnownBits Known2 = computeKnownBits(V2, Depth, Q);
- if (Known1.Zero.intersects(Known2.One) ||
- Known2.Zero.intersects(Known1.One))
- return true;
- }
- return false;
- }
- /// Return true if 'V & Mask' is known to be zero. We use this predicate to
- /// simplify operations downstream. Mask is known to be zero for bits that V
- /// cannot have.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the mask, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
- const Query &Q) {
- KnownBits Known(Mask.getBitWidth());
- computeKnownBits(V, Known, Depth, Q);
- return Mask.isSubsetOf(Known.Zero);
- }
- // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
- // Returns the input and lower/upper bounds.
- static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
- const APInt *&CLow, const APInt *&CHigh) {
- assert(isa<Operator>(Select) &&
- cast<Operator>(Select)->getOpcode() == Instruction::Select &&
- "Input should be a Select!");
- const Value *LHS = nullptr, *RHS = nullptr;
- SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
- if (SPF != SPF_SMAX && SPF != SPF_SMIN)
- return false;
- if (!match(RHS, m_APInt(CLow)))
- return false;
- const Value *LHS2 = nullptr, *RHS2 = nullptr;
- SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
- if (getInverseMinMaxFlavor(SPF) != SPF2)
- return false;
- if (!match(RHS2, m_APInt(CHigh)))
- return false;
- if (SPF == SPF_SMIN)
- std::swap(CLow, CHigh);
- In = LHS2;
- return CLow->sle(*CHigh);
- }
- static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
- const APInt *&CLow,
- const APInt *&CHigh) {
- assert((II->getIntrinsicID() == Intrinsic::smin ||
- II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
- Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
- auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
- if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
- !match(II->getArgOperand(1), m_APInt(CLow)) ||
- !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
- return false;
- if (II->getIntrinsicID() == Intrinsic::smin)
- std::swap(CLow, CHigh);
- return CLow->sle(*CHigh);
- }
- /// For vector constants, loop over the elements and find the constant with the
- /// minimum number of sign bits. Return 0 if the value is not a vector constant
- /// or if any element was not analyzed; otherwise, return the count for the
- /// element with the minimum number of sign bits.
- static unsigned computeNumSignBitsVectorConstant(const Value *V,
- const APInt &DemandedElts,
- unsigned TyBits) {
- const auto *CV = dyn_cast<Constant>(V);
- if (!CV || !isa<FixedVectorType>(CV->getType()))
- return 0;
- unsigned MinSignBits = TyBits;
- unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- // If we find a non-ConstantInt, bail out.
- auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
- if (!Elt)
- return 0;
- MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
- }
- return MinSignBits;
- }
- static unsigned ComputeNumSignBitsImpl(const Value *V,
- const APInt &DemandedElts,
- unsigned Depth, const Query &Q);
- static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
- unsigned Depth, const Query &Q) {
- unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
- assert(Result > 0 && "At least one sign bit needs to be present!");
- return Result;
- }
- /// Return the number of times the sign bit of the register is replicated into
- /// the other bits. We know that at least 1 bit is always equal to the sign bit
- /// (itself), but other cases can give us information. For example, immediately
- /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
- /// other, so we return 3. For vectors, return the number of sign bits for the
- /// vector element with the minimum number of known sign bits of the demanded
- /// elements in the vector specified by DemandedElts.
- static unsigned ComputeNumSignBitsImpl(const Value *V,
- const APInt &DemandedElts,
- unsigned Depth, const Query &Q) {
- Type *Ty = V->getType();
- #ifndef NDEBUG
- assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
- if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
- assert(
- FVTy->getNumElements() == DemandedElts.getBitWidth() &&
- "DemandedElt width should equal the fixed vector number of elements");
- } else {
- assert(DemandedElts == APInt(1, 1) &&
- "DemandedElt width should be 1 for scalars");
- }
- #endif
- // We return the minimum number of sign bits that are guaranteed to be present
- // in V, so for undef we have to conservatively return 1. We don't have the
- // same behavior for poison though -- that's a FIXME today.
- Type *ScalarTy = Ty->getScalarType();
- unsigned TyBits = ScalarTy->isPointerTy() ?
- Q.DL.getPointerTypeSizeInBits(ScalarTy) :
- Q.DL.getTypeSizeInBits(ScalarTy);
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- // Note that ConstantInt is handled by the general computeKnownBits case
- // below.
- if (Depth == MaxAnalysisRecursionDepth)
- return 1;
- if (auto *U = dyn_cast<Operator>(V)) {
- switch (Operator::getOpcode(V)) {
- default: break;
- case Instruction::SExt:
- Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
- case Instruction::SDiv: {
- const APInt *Denominator;
- // sdiv X, C -> adds log(C) sign bits.
- if (match(U->getOperand(1), m_APInt(Denominator))) {
- // Ignore non-positive denominator.
- if (!Denominator->isStrictlyPositive())
- break;
- // Calculate the incoming numerator bits.
- unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- // Add floor(log(C)) bits to the numerator bits.
- return std::min(TyBits, NumBits + Denominator->logBase2());
- }
- break;
- }
- case Instruction::SRem: {
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- const APInt *Denominator;
- // srem X, C -> we know that the result is within [-C+1,C) when C is a
- // positive constant. This let us put a lower bound on the number of sign
- // bits.
- if (match(U->getOperand(1), m_APInt(Denominator))) {
- // Ignore non-positive denominator.
- if (Denominator->isStrictlyPositive()) {
- // Calculate the leading sign bit constraints by examining the
- // denominator. Given that the denominator is positive, there are two
- // cases:
- //
- // 1. The numerator is positive. The result range is [0,C) and
- // [0,C) u< (1 << ceilLogBase2(C)).
- //
- // 2. The numerator is negative. Then the result range is (-C,0] and
- // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
- //
- // Thus a lower bound on the number of sign bits is `TyBits -
- // ceilLogBase2(C)`.
- unsigned ResBits = TyBits - Denominator->ceilLogBase2();
- Tmp = std::max(Tmp, ResBits);
- }
- }
- return Tmp;
- }
- case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- // ashr X, C -> adds C sign bits. Vectors too.
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- if (ShAmt->uge(TyBits))
- break; // Bad shift.
- unsigned ShAmtLimited = ShAmt->getZExtValue();
- Tmp += ShAmtLimited;
- if (Tmp > TyBits) Tmp = TyBits;
- }
- return Tmp;
- }
- case Instruction::Shl: {
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (ShAmt->uge(TyBits) || // Bad shift.
- ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
- Tmp2 = ShAmt->getZExtValue();
- return Tmp - Tmp2;
- }
- break;
- }
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
- case Instruction::Select: {
- // If we have a clamp pattern, we know that the number of sign bits will
- // be the minimum of the clamp min/max range.
- const Value *X;
- const APInt *CLow, *CHigh;
- if (isSignedMinMaxClamp(U, X, CLow, CHigh))
- return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
- Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (Tmp == 1) break;
- Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
- return std::min(Tmp, Tmp2);
- }
- case Instruction::Add:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp == 1) break;
- // Special case decrementing a value (ADD X, -1):
- if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- KnownBits Known(TyBits);
- computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is
- // all sign bits set.
- if ((Known.Zero | 1).isAllOnes())
- return TyBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (Known.isNonNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (Tmp2 == 1) break;
- return std::min(Tmp, Tmp2) - 1;
- case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (Tmp2 == 1) break;
- // Handle NEG.
- if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
- if (CLHS->isNullValue()) {
- KnownBits Known(TyBits);
- computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is
- // all sign bits set.
- if ((Known.Zero | 1).isAllOnes())
- return TyBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the
- // input.
- if (Known.isNonNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp == 1) break;
- return std::min(Tmp, Tmp2) - 1;
- case Instruction::Mul: {
- // The output of the Mul can be at most twice the valid bits in the
- // inputs.
- unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (SignBitsOp0 == 1) break;
- unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (SignBitsOp1 == 1) break;
- unsigned OutValidBits =
- (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
- return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
- }
- case Instruction::PHI: {
- const PHINode *PN = cast<PHINode>(U);
- unsigned NumIncomingValues = PN->getNumIncomingValues();
- // Don't analyze large in-degree PHIs.
- if (NumIncomingValues > 4) break;
- // Unreachable blocks may have zero-operand PHI nodes.
- if (NumIncomingValues == 0) break;
- // Take the minimum of all incoming values. This can't infinitely loop
- // because of our depth threshold.
- Query RecQ = Q;
- Tmp = TyBits;
- for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
- if (Tmp == 1) return Tmp;
- RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
- Tmp = std::min(
- Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
- }
- return Tmp;
- }
- case Instruction::Trunc: {
- // If the input contained enough sign bits that some remain after the
- // truncation, then we can make use of that. Otherwise we don't know
- // anything.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
- if (Tmp > (OperandTyBits - TyBits))
- return Tmp - (OperandTyBits - TyBits);
- return 1;
- }
- case Instruction::ExtractElement:
- // Look through extract element. At the moment we keep this simple and
- // skip tracking the specific element. But at least we might find
- // information valid for all elements of the vector (for example if vector
- // is sign extended, shifted, etc).
- return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- case Instruction::ShuffleVector: {
- // Collect the minimum number of sign bits that are shared by every vector
- // element referenced by the shuffle.
- auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
- if (!Shuf) {
- // FIXME: Add support for shufflevector constant expressions.
- return 1;
- }
- APInt DemandedLHS, DemandedRHS;
- // For undef elements, we don't know anything about the common state of
- // the shuffle result.
- if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
- return 1;
- Tmp = std::numeric_limits<unsigned>::max();
- if (!!DemandedLHS) {
- const Value *LHS = Shuf->getOperand(0);
- Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
- }
- // If we don't know anything, early out and try computeKnownBits
- // fall-back.
- if (Tmp == 1)
- break;
- if (!!DemandedRHS) {
- const Value *RHS = Shuf->getOperand(1);
- Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
- Tmp = std::min(Tmp, Tmp2);
- }
- // If we don't know anything, early out and try computeKnownBits
- // fall-back.
- if (Tmp == 1)
- break;
- assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case Instruction::Call: {
- if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::abs:
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp == 1) break;
- // Absolute value reduces number of sign bits by at most 1.
- return Tmp - 1;
- case Intrinsic::smin:
- case Intrinsic::smax: {
- const APInt *CLow, *CHigh;
- if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
- return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
- }
- }
- }
- }
- }
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- // If we can examine all elements of a vector constant successfully, we're
- // done (we can't do any better than that). If not, keep trying.
- if (unsigned VecSignBits =
- computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
- return VecSignBits;
- KnownBits Known(TyBits);
- computeKnownBits(V, DemandedElts, Known, Depth, Q);
- // If we know that the sign bit is either zero or one, determine the number of
- // identical bits in the top of the input value.
- return std::max(FirstAnswer, Known.countMinSignBits());
- }
- Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
- const TargetLibraryInfo *TLI) {
- const Function *F = CB.getCalledFunction();
- if (!F)
- return Intrinsic::not_intrinsic;
- if (F->isIntrinsic())
- return F->getIntrinsicID();
- // We are going to infer semantics of a library function based on mapping it
- // to an LLVM intrinsic. Check that the library function is available from
- // this callbase and in this environment.
- LibFunc Func;
- if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
- !CB.onlyReadsMemory())
- return Intrinsic::not_intrinsic;
- switch (Func) {
- default:
- break;
- case LibFunc_sin:
- case LibFunc_sinf:
- case LibFunc_sinl:
- return Intrinsic::sin;
- case LibFunc_cos:
- case LibFunc_cosf:
- case LibFunc_cosl:
- return Intrinsic::cos;
- case LibFunc_exp:
- case LibFunc_expf:
- case LibFunc_expl:
- return Intrinsic::exp;
- case LibFunc_exp2:
- case LibFunc_exp2f:
- case LibFunc_exp2l:
- return Intrinsic::exp2;
- case LibFunc_log:
- case LibFunc_logf:
- case LibFunc_logl:
- return Intrinsic::log;
- case LibFunc_log10:
- case LibFunc_log10f:
- case LibFunc_log10l:
- return Intrinsic::log10;
- case LibFunc_log2:
- case LibFunc_log2f:
- case LibFunc_log2l:
- return Intrinsic::log2;
- case LibFunc_fabs:
- case LibFunc_fabsf:
- case LibFunc_fabsl:
- return Intrinsic::fabs;
- case LibFunc_fmin:
- case LibFunc_fminf:
- case LibFunc_fminl:
- return Intrinsic::minnum;
- case LibFunc_fmax:
- case LibFunc_fmaxf:
- case LibFunc_fmaxl:
- return Intrinsic::maxnum;
- case LibFunc_copysign:
- case LibFunc_copysignf:
- case LibFunc_copysignl:
- return Intrinsic::copysign;
- case LibFunc_floor:
- case LibFunc_floorf:
- case LibFunc_floorl:
- return Intrinsic::floor;
- case LibFunc_ceil:
- case LibFunc_ceilf:
- case LibFunc_ceill:
- return Intrinsic::ceil;
- case LibFunc_trunc:
- case LibFunc_truncf:
- case LibFunc_truncl:
- return Intrinsic::trunc;
- case LibFunc_rint:
- case LibFunc_rintf:
- case LibFunc_rintl:
- return Intrinsic::rint;
- case LibFunc_nearbyint:
- case LibFunc_nearbyintf:
- case LibFunc_nearbyintl:
- return Intrinsic::nearbyint;
- case LibFunc_round:
- case LibFunc_roundf:
- case LibFunc_roundl:
- return Intrinsic::round;
- case LibFunc_roundeven:
- case LibFunc_roundevenf:
- case LibFunc_roundevenl:
- return Intrinsic::roundeven;
- case LibFunc_pow:
- case LibFunc_powf:
- case LibFunc_powl:
- return Intrinsic::pow;
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- case LibFunc_sqrtl:
- return Intrinsic::sqrt;
- }
- return Intrinsic::not_intrinsic;
- }
- /// Return true if we can prove that the specified FP value is never equal to
- /// -0.0.
- /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
- /// that a value is not -0.0. It only guarantees that -0.0 may be treated
- /// the same as +0.0 in floating-point ops.
- bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth) {
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->getValueAPF().isNegZero();
- if (Depth == MaxAnalysisRecursionDepth)
- return false;
- auto *Op = dyn_cast<Operator>(V);
- if (!Op)
- return false;
- // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
- if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
- return true;
- // sitofp and uitofp turn into +0.0 for zero.
- if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
- return true;
- if (auto *Call = dyn_cast<CallInst>(Op)) {
- Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
- switch (IID) {
- default:
- break;
- // sqrt(-0.0) = -0.0, no other negative results are possible.
- case Intrinsic::sqrt:
- case Intrinsic::canonicalize:
- return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
- case Intrinsic::experimental_constrained_sqrt: {
- // NOTE: This rounding mode restriction may be too strict.
- const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
- if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
- return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
- else
- return false;
- }
- // fabs(x) != -0.0
- case Intrinsic::fabs:
- return true;
- // sitofp and uitofp turn into +0.0 for zero.
- case Intrinsic::experimental_constrained_sitofp:
- case Intrinsic::experimental_constrained_uitofp:
- return true;
- }
- }
- return false;
- }
- /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
- /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
- /// bit despite comparing equal.
- static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
- const TargetLibraryInfo *TLI,
- bool SignBitOnly,
- unsigned Depth) {
- // TODO: This function does not do the right thing when SignBitOnly is true
- // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
- // which flips the sign bits of NaNs. See
- // https://llvm.org/bugs/show_bug.cgi?id=31702.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- return !CFP->getValueAPF().isNegative() ||
- (!SignBitOnly && CFP->getValueAPF().isZero());
- }
- // Handle vector of constants.
- if (auto *CV = dyn_cast<Constant>(V)) {
- if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
- unsigned NumElts = CVFVTy->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
- if (!CFP)
- return false;
- if (CFP->getValueAPF().isNegative() &&
- (SignBitOnly || !CFP->getValueAPF().isZero()))
- return false;
- }
- // All non-negative ConstantFPs.
- return true;
- }
- }
- if (Depth == MaxAnalysisRecursionDepth)
- return false;
- const Operator *I = dyn_cast<Operator>(V);
- if (!I)
- return false;
- switch (I->getOpcode()) {
- default:
- break;
- // Unsigned integers are always nonnegative.
- case Instruction::UIToFP:
- return true;
- case Instruction::FDiv:
- // X / X is always exactly 1.0 or a NaN.
- if (I->getOperand(0) == I->getOperand(1) &&
- (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
- return true;
- // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
- /*SignBitOnly*/ true, Depth + 1);
- case Instruction::FMul:
- // X * X is always non-negative or a NaN.
- if (I->getOperand(0) == I->getOperand(1) &&
- (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
- return true;
- [[fallthrough]];
- case Instruction::FAdd:
- case Instruction::FRem:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::Select:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::FPExt:
- case Instruction::FPTrunc:
- // Widening/narrowing never change sign.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::ExtractElement:
- // Look through extract element. At the moment we keep this simple and skip
- // tracking the specific element. But at least we might find information
- // valid for all elements of the vector.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::Call:
- const auto *CI = cast<CallInst>(I);
- Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
- switch (IID) {
- default:
- break;
- case Intrinsic::canonicalize:
- case Intrinsic::arithmetic_fence:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::fptrunc_round:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1);
- case Intrinsic::maxnum: {
- Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
- auto isPositiveNum = [&](Value *V) {
- if (SignBitOnly) {
- // With SignBitOnly, this is tricky because the result of
- // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
- // a constant strictly greater than 0.0.
- const APFloat *C;
- return match(V, m_APFloat(C)) &&
- *C > APFloat::getZero(C->getSemantics());
- }
- // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
- // maxnum can't be ordered-less-than-zero.
- return isKnownNeverNaN(V, TLI) &&
- cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
- };
- // TODO: This could be improved. We could also check that neither operand
- // has its sign bit set (and at least 1 is not-NAN?).
- return isPositiveNum(V0) || isPositiveNum(V1);
- }
- case Intrinsic::maximum:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) ||
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1);
- case Intrinsic::minnum:
- case Intrinsic::minimum:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1);
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::fabs:
- return true;
- case Intrinsic::copysign:
- // Only the sign operand matters.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, true,
- Depth + 1);
- case Intrinsic::sqrt:
- // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
- if (!SignBitOnly)
- return true;
- return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
- CannotBeNegativeZero(CI->getOperand(0), TLI));
- case Intrinsic::powi:
- if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // powi(x,n) is non-negative if n is even.
- if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
- return true;
- }
- // TODO: This is not correct. Given that exp is an integer, here are the
- // ways that pow can return a negative value:
- //
- // pow(x, exp) --> negative if exp is odd and x is negative.
- // pow(-0, exp) --> -inf if exp is negative odd.
- // pow(-0, exp) --> -0 if exp is positive odd.
- // pow(-inf, exp) --> -0 if exp is negative odd.
- // pow(-inf, exp) --> -inf if exp is positive odd.
- //
- // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
- // but we must return false if x == -0. Unfortunately we do not currently
- // have a way of expressing this constraint. See details in
- // https://llvm.org/bugs/show_bug.cgi?id=31702.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1);
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- // x*x+y is non-negative if y is non-negative.
- return I->getOperand(0) == I->getOperand(1) &&
- (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
- Depth + 1);
- }
- break;
- }
- return false;
- }
- bool llvm::CannotBeOrderedLessThanZero(const Value *V,
- const TargetLibraryInfo *TLI) {
- return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
- }
- bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
- return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
- }
- bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth) {
- assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
- // If we're told that infinities won't happen, assume they won't.
- if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
- if (FPMathOp->hasNoInfs())
- return true;
- // Handle scalar constants.
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->isInfinity();
- if (Depth == MaxAnalysisRecursionDepth)
- return false;
- if (auto *Inst = dyn_cast<Instruction>(V)) {
- switch (Inst->getOpcode()) {
- case Instruction::Select: {
- return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
- isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
- }
- case Instruction::SIToFP:
- case Instruction::UIToFP: {
- // Get width of largest magnitude integer (remove a bit if signed).
- // This still works for a signed minimum value because the largest FP
- // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
- int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
- if (Inst->getOpcode() == Instruction::SIToFP)
- --IntSize;
- // If the exponent of the largest finite FP value can hold the largest
- // integer, the result of the cast must be finite.
- Type *FPTy = Inst->getType()->getScalarType();
- return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
- }
- case Instruction::FNeg:
- case Instruction::FPExt: {
- // Peek through to source op. If it is not infinity, this is not infinity.
- return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
- }
- case Instruction::FPTrunc: {
- // Need a range check.
- return false;
- }
- default:
- break;
- }
- if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::sin:
- case Intrinsic::cos:
- // Return NaN on infinite inputs.
- return true;
- case Intrinsic::fabs:
- case Intrinsic::sqrt:
- case Intrinsic::canonicalize:
- case Intrinsic::copysign:
- case Intrinsic::arithmetic_fence:
- case Intrinsic::trunc:
- return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- // PPC_FP128 is a special case.
- if (V->getType()->isMultiUnitFPType())
- return false;
- return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
- case Intrinsic::fptrunc_round:
- // Requires knowing the value range.
- return false;
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::minimum:
- case Intrinsic::maximum:
- return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
- isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- // log(+inf) -> +inf
- // log([+-]0.0) -> -inf
- // log(-inf) -> nan
- // log(-x) -> nan
- // TODO: We lack API to check the == 0 case.
- return false;
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::pow:
- case Intrinsic::powi:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- // These can return infinities on overflow cases, so it's hard to prove
- // anything about it.
- return false;
- default:
- break;
- }
- }
- }
- // try to handle fixed width vector constants
- auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
- if (VFVTy && isa<Constant>(V)) {
- // For vectors, verify that each element is not infinity.
- unsigned NumElts = VFVTy->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
- if (!Elt)
- return false;
- if (isa<UndefValue>(Elt))
- continue;
- auto *CElt = dyn_cast<ConstantFP>(Elt);
- if (!CElt || CElt->isInfinity())
- return false;
- }
- // All elements were confirmed non-infinity or undefined.
- return true;
- }
- // was not able to prove that V never contains infinity
- return false;
- }
- bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth) {
- assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
- // If we're told that NaNs won't happen, assume they won't.
- if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
- if (FPMathOp->hasNoNaNs())
- return true;
- // Handle scalar constants.
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->isNaN();
- if (Depth == MaxAnalysisRecursionDepth)
- return false;
- if (auto *Inst = dyn_cast<Instruction>(V)) {
- switch (Inst->getOpcode()) {
- case Instruction::FAdd:
- case Instruction::FSub:
- // Adding positive and negative infinity produces NaN.
- return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
- isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
- (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
- isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
- case Instruction::FMul:
- // Zero multiplied with infinity produces NaN.
- // FIXME: If neither side can be zero fmul never produces NaN.
- return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
- isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
- isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
- isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
- case Instruction::FDiv:
- case Instruction::FRem:
- // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
- return false;
- case Instruction::Select: {
- return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
- isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
- }
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- return true;
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FNeg:
- return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
- default:
- break;
- }
- }
- if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::canonicalize:
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::arithmetic_fence:
- return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
- case Intrinsic::sqrt:
- return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
- CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- // If either operand is not NaN, the result is not NaN.
- return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
- isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
- default:
- return false;
- }
- }
- // Try to handle fixed width vector constants
- auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
- if (VFVTy && isa<Constant>(V)) {
- // For vectors, verify that each element is not NaN.
- unsigned NumElts = VFVTy->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
- if (!Elt)
- return false;
- if (isa<UndefValue>(Elt))
- continue;
- auto *CElt = dyn_cast<ConstantFP>(Elt);
- if (!CElt || CElt->isNaN())
- return false;
- }
- // All elements were confirmed not-NaN or undefined.
- return true;
- }
- // Was not able to prove that V never contains NaN
- return false;
- }
- Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
- // All byte-wide stores are splatable, even of arbitrary variables.
- if (V->getType()->isIntegerTy(8))
- return V;
- LLVMContext &Ctx = V->getContext();
- // Undef don't care.
- auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
- if (isa<UndefValue>(V))
- return UndefInt8;
- // Return Undef for zero-sized type.
- if (!DL.getTypeStoreSize(V->getType()).isNonZero())
- return UndefInt8;
- Constant *C = dyn_cast<Constant>(V);
- if (!C) {
- // Conceptually, we could handle things like:
- // %a = zext i8 %X to i16
- // %b = shl i16 %a, 8
- // %c = or i16 %a, %b
- // but until there is an example that actually needs this, it doesn't seem
- // worth worrying about.
- return nullptr;
- }
- // Handle 'null' ConstantArrayZero etc.
- if (C->isNullValue())
- return Constant::getNullValue(Type::getInt8Ty(Ctx));
- // Constant floating-point values can be handled as integer values if the
- // corresponding integer value is "byteable". An important case is 0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- Type *Ty = nullptr;
- if (CFP->getType()->isHalfTy())
- Ty = Type::getInt16Ty(Ctx);
- else if (CFP->getType()->isFloatTy())
- Ty = Type::getInt32Ty(Ctx);
- else if (CFP->getType()->isDoubleTy())
- Ty = Type::getInt64Ty(Ctx);
- // Don't handle long double formats, which have strange constraints.
- return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
- : nullptr;
- }
- // We can handle constant integers that are multiple of 8 bits.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getBitWidth() % 8 == 0) {
- assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
- if (!CI->getValue().isSplat(8))
- return nullptr;
- return ConstantInt::get(Ctx, CI->getValue().trunc(8));
- }
- }
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
- unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
- return isBytewiseValue(
- ConstantExpr::getIntegerCast(CE->getOperand(0),
- Type::getIntNTy(Ctx, BitWidth), false),
- DL);
- }
- }
- }
- auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
- if (LHS == RHS)
- return LHS;
- if (!LHS || !RHS)
- return nullptr;
- if (LHS == UndefInt8)
- return RHS;
- if (RHS == UndefInt8)
- return LHS;
- return nullptr;
- };
- if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
- Value *Val = UndefInt8;
- for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
- if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
- return nullptr;
- return Val;
- }
- if (isa<ConstantAggregate>(C)) {
- Value *Val = UndefInt8;
- for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
- if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
- return nullptr;
- return Val;
- }
- // Don't try to handle the handful of other constants.
- return nullptr;
- }
- // This is the recursive version of BuildSubAggregate. It takes a few different
- // arguments. Idxs is the index within the nested struct From that we are
- // looking at now (which is of type IndexedType). IdxSkip is the number of
- // indices from Idxs that should be left out when inserting into the resulting
- // struct. To is the result struct built so far, new insertvalue instructions
- // build on that.
- static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
- SmallVectorImpl<unsigned> &Idxs,
- unsigned IdxSkip,
- Instruction *InsertBefore) {
- StructType *STy = dyn_cast<StructType>(IndexedType);
- if (STy) {
- // Save the original To argument so we can modify it
- Value *OrigTo = To;
- // General case, the type indexed by Idxs is a struct
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // Process each struct element recursively
- Idxs.push_back(i);
- Value *PrevTo = To;
- To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
- InsertBefore);
- Idxs.pop_back();
- if (!To) {
- // Couldn't find any inserted value for this index? Cleanup
- while (PrevTo != OrigTo) {
- InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
- PrevTo = Del->getAggregateOperand();
- Del->eraseFromParent();
- }
- // Stop processing elements
- break;
- }
- }
- // If we successfully found a value for each of our subaggregates
- if (To)
- return To;
- }
- // Base case, the type indexed by SourceIdxs is not a struct, or not all of
- // the struct's elements had a value that was inserted directly. In the latter
- // case, perhaps we can't determine each of the subelements individually, but
- // we might be able to find the complete struct somewhere.
- // Find the value that is at that particular spot
- Value *V = FindInsertedValue(From, Idxs);
- if (!V)
- return nullptr;
- // Insert the value in the new (sub) aggregate
- return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
- InsertBefore);
- }
- // This helper takes a nested struct and extracts a part of it (which is again a
- // struct) into a new value. For example, given the struct:
- // { a, { b, { c, d }, e } }
- // and the indices "1, 1" this returns
- // { c, d }.
- //
- // It does this by inserting an insertvalue for each element in the resulting
- // struct, as opposed to just inserting a single struct. This will only work if
- // each of the elements of the substruct are known (ie, inserted into From by an
- // insertvalue instruction somewhere).
- //
- // All inserted insertvalue instructions are inserted before InsertBefore
- static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- assert(InsertBefore && "Must have someplace to insert!");
- Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
- idx_range);
- Value *To = PoisonValue::get(IndexedType);
- SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
- unsigned IdxSkip = Idxs.size();
- return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
- }
- /// Given an aggregate and a sequence of indices, see if the scalar value
- /// indexed is already around as a register, for example if it was inserted
- /// directly into the aggregate.
- ///
- /// If InsertBefore is not null, this function will duplicate (modified)
- /// insertvalues when a part of a nested struct is extracted.
- Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- // Nothing to index? Just return V then (this is useful at the end of our
- // recursion).
- if (idx_range.empty())
- return V;
- // We have indices, so V should have an indexable type.
- assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
- "Not looking at a struct or array?");
- assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
- "Invalid indices for type?");
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = C->getAggregateElement(idx_range[0]);
- if (!C) return nullptr;
- return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
- }
- if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
- // Loop the indices for the insertvalue instruction in parallel with the
- // requested indices
- const unsigned *req_idx = idx_range.begin();
- for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
- i != e; ++i, ++req_idx) {
- if (req_idx == idx_range.end()) {
- // We can't handle this without inserting insertvalues
- if (!InsertBefore)
- return nullptr;
- // The requested index identifies a part of a nested aggregate. Handle
- // this specially. For example,
- // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
- // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
- // %C = extractvalue {i32, { i32, i32 } } %B, 1
- // This can be changed into
- // %A = insertvalue {i32, i32 } undef, i32 10, 0
- // %C = insertvalue {i32, i32 } %A, i32 11, 1
- // which allows the unused 0,0 element from the nested struct to be
- // removed.
- return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
- InsertBefore);
- }
- // This insert value inserts something else than what we are looking for.
- // See if the (aggregate) value inserted into has the value we are
- // looking for, then.
- if (*req_idx != *i)
- return FindInsertedValue(I->getAggregateOperand(), idx_range,
- InsertBefore);
- }
- // If we end up here, the indices of the insertvalue match with those
- // requested (though possibly only partially). Now we recursively look at
- // the inserted value, passing any remaining indices.
- return FindInsertedValue(I->getInsertedValueOperand(),
- ArrayRef(req_idx, idx_range.end()), InsertBefore);
- }
- if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
- // If we're extracting a value from an aggregate that was extracted from
- // something else, we can extract from that something else directly instead.
- // However, we will need to chain I's indices with the requested indices.
- // Calculate the number of indices required
- unsigned size = I->getNumIndices() + idx_range.size();
- // Allocate some space to put the new indices in
- SmallVector<unsigned, 5> Idxs;
- Idxs.reserve(size);
- // Add indices from the extract value instruction
- Idxs.append(I->idx_begin(), I->idx_end());
- // Add requested indices
- Idxs.append(idx_range.begin(), idx_range.end());
- assert(Idxs.size() == size
- && "Number of indices added not correct?");
- return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
- }
- // Otherwise, we don't know (such as, extracting from a function return value
- // or load instruction)
- return nullptr;
- }
- bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
- unsigned CharSize) {
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return false;
- // Make sure the index-ee is a pointer to array of \p CharSize integers.
- // CharSize.
- ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
- if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
- return false;
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (!FirstIdx || !FirstIdx->isZero())
- return false;
- return true;
- }
- // If V refers to an initialized global constant, set Slice either to
- // its initializer if the size of its elements equals ElementSize, or,
- // for ElementSize == 8, to its representation as an array of unsiged
- // char. Return true on success.
- // Offset is in the unit "nr of ElementSize sized elements".
- bool llvm::getConstantDataArrayInfo(const Value *V,
- ConstantDataArraySlice &Slice,
- unsigned ElementSize, uint64_t Offset) {
- assert(V && "V should not be null.");
- assert((ElementSize % 8) == 0 &&
- "ElementSize expected to be a multiple of the size of a byte.");
- unsigned ElementSizeInBytes = ElementSize / 8;
- // Drill down into the pointer expression V, ignoring any intervening
- // casts, and determine the identity of the object it references along
- // with the cumulative byte offset into it.
- const GlobalVariable *GV =
- dyn_cast<GlobalVariable>(getUnderlyingObject(V));
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
- // Fail if V is not based on constant global object.
- return false;
- const DataLayout &DL = GV->getParent()->getDataLayout();
- APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
- if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
- /*AllowNonInbounds*/ true))
- // Fail if a constant offset could not be determined.
- return false;
- uint64_t StartIdx = Off.getLimitedValue();
- if (StartIdx == UINT64_MAX)
- // Fail if the constant offset is excessive.
- return false;
- // Off/StartIdx is in the unit of bytes. So we need to convert to number of
- // elements. Simply bail out if that isn't possible.
- if ((StartIdx % ElementSizeInBytes) != 0)
- return false;
- Offset += StartIdx / ElementSizeInBytes;
- ConstantDataArray *Array = nullptr;
- ArrayType *ArrayTy = nullptr;
- if (GV->getInitializer()->isNullValue()) {
- Type *GVTy = GV->getValueType();
- uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
- uint64_t Length = SizeInBytes / ElementSizeInBytes;
- Slice.Array = nullptr;
- Slice.Offset = 0;
- // Return an empty Slice for undersized constants to let callers
- // transform even undefined library calls into simpler, well-defined
- // expressions. This is preferable to making the calls although it
- // prevents sanitizers from detecting such calls.
- Slice.Length = Length < Offset ? 0 : Length - Offset;
- return true;
- }
- auto *Init = const_cast<Constant *>(GV->getInitializer());
- if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
- Type *InitElTy = ArrayInit->getElementType();
- if (InitElTy->isIntegerTy(ElementSize)) {
- // If Init is an initializer for an array of the expected type
- // and size, use it as is.
- Array = ArrayInit;
- ArrayTy = ArrayInit->getType();
- }
- }
- if (!Array) {
- if (ElementSize != 8)
- // TODO: Handle conversions to larger integral types.
- return false;
- // Otherwise extract the portion of the initializer starting
- // at Offset as an array of bytes, and reset Offset.
- Init = ReadByteArrayFromGlobal(GV, Offset);
- if (!Init)
- return false;
- Offset = 0;
- Array = dyn_cast<ConstantDataArray>(Init);
- ArrayTy = dyn_cast<ArrayType>(Init->getType());
- }
- uint64_t NumElts = ArrayTy->getArrayNumElements();
- if (Offset > NumElts)
- return false;
- Slice.Array = Array;
- Slice.Offset = Offset;
- Slice.Length = NumElts - Offset;
- return true;
- }
- /// Extract bytes from the initializer of the constant array V, which need
- /// not be a nul-terminated string. On success, store the bytes in Str and
- /// return true. When TrimAtNul is set, Str will contain only the bytes up
- /// to but not including the first nul. Return false on failure.
- bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
- bool TrimAtNul) {
- ConstantDataArraySlice Slice;
- if (!getConstantDataArrayInfo(V, Slice, 8))
- return false;
- if (Slice.Array == nullptr) {
- if (TrimAtNul) {
- // Return a nul-terminated string even for an empty Slice. This is
- // safe because all existing SimplifyLibcalls callers require string
- // arguments and the behavior of the functions they fold is undefined
- // otherwise. Folding the calls this way is preferable to making
- // the undefined library calls, even though it prevents sanitizers
- // from reporting such calls.
- Str = StringRef();
- return true;
- }
- if (Slice.Length == 1) {
- Str = StringRef("", 1);
- return true;
- }
- // We cannot instantiate a StringRef as we do not have an appropriate string
- // of 0s at hand.
- return false;
- }
- // Start out with the entire array in the StringRef.
- Str = Slice.Array->getAsString();
- // Skip over 'offset' bytes.
- Str = Str.substr(Slice.Offset);
- if (TrimAtNul) {
- // Trim off the \0 and anything after it. If the array is not nul
- // terminated, we just return the whole end of string. The client may know
- // some other way that the string is length-bound.
- Str = Str.substr(0, Str.find('\0'));
- }
- return true;
- }
- // These next two are very similar to the above, but also look through PHI
- // nodes.
- // TODO: See if we can integrate these two together.
- /// If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- static uint64_t GetStringLengthH(const Value *V,
- SmallPtrSetImpl<const PHINode*> &PHIs,
- unsigned CharSize) {
- // Look through noop bitcast instructions.
- V = V->stripPointerCasts();
- // If this is a PHI node, there are two cases: either we have already seen it
- // or we haven't.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- if (!PHIs.insert(PN).second)
- return ~0ULL; // already in the set.
- // If it was new, see if all the input strings are the same length.
- uint64_t LenSoFar = ~0ULL;
- for (Value *IncValue : PN->incoming_values()) {
- uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
- if (Len == 0) return 0; // Unknown length -> unknown.
- if (Len == ~0ULL) continue;
- if (Len != LenSoFar && LenSoFar != ~0ULL)
- return 0; // Disagree -> unknown.
- LenSoFar = Len;
- }
- // Success, all agree.
- return LenSoFar;
- }
- // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
- if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
- if (Len1 == 0) return 0;
- uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
- if (Len2 == 0) return 0;
- if (Len1 == ~0ULL) return Len2;
- if (Len2 == ~0ULL) return Len1;
- if (Len1 != Len2) return 0;
- return Len1;
- }
- // Otherwise, see if we can read the string.
- ConstantDataArraySlice Slice;
- if (!getConstantDataArrayInfo(V, Slice, CharSize))
- return 0;
- if (Slice.Array == nullptr)
- // Zeroinitializer (including an empty one).
- return 1;
- // Search for the first nul character. Return a conservative result even
- // when there is no nul. This is safe since otherwise the string function
- // being folded such as strlen is undefined, and can be preferable to
- // making the undefined library call.
- unsigned NullIndex = 0;
- for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
- if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
- break;
- }
- return NullIndex + 1;
- }
- /// If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
- if (!V->getType()->isPointerTy())
- return 0;
- SmallPtrSet<const PHINode*, 32> PHIs;
- uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
- // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
- // an empty string as a length.
- return Len == ~0ULL ? 1 : Len;
- }
- const Value *
- llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
- bool MustPreserveNullness) {
- assert(Call &&
- "getArgumentAliasingToReturnedPointer only works on nonnull calls");
- if (const Value *RV = Call->getReturnedArgOperand())
- return RV;
- // This can be used only as a aliasing property.
- if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
- Call, MustPreserveNullness))
- return Call->getArgOperand(0);
- return nullptr;
- }
- bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
- const CallBase *Call, bool MustPreserveNullness) {
- switch (Call->getIntrinsicID()) {
- case Intrinsic::launder_invariant_group:
- case Intrinsic::strip_invariant_group:
- case Intrinsic::aarch64_irg:
- case Intrinsic::aarch64_tagp:
- return true;
- case Intrinsic::ptrmask:
- return !MustPreserveNullness;
- default:
- return false;
- }
- }
- /// \p PN defines a loop-variant pointer to an object. Check if the
- /// previous iteration of the loop was referring to the same object as \p PN.
- static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
- const LoopInfo *LI) {
- // Find the loop-defined value.
- Loop *L = LI->getLoopFor(PN->getParent());
- if (PN->getNumIncomingValues() != 2)
- return true;
- // Find the value from previous iteration.
- auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
- if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
- PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
- if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
- return true;
- // If a new pointer is loaded in the loop, the pointer references a different
- // object in every iteration. E.g.:
- // for (i)
- // int *p = a[i];
- // ...
- if (auto *Load = dyn_cast<LoadInst>(PrevValue))
- if (!L->isLoopInvariant(Load->getPointerOperand()))
- return false;
- return true;
- }
- const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
- if (!V->getType()->isPointerTy())
- return V;
- for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
- if (auto *GEP = dyn_cast<GEPOperator>(V)) {
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast ||
- Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
- V = cast<Operator>(V)->getOperand(0);
- if (!V->getType()->isPointerTy())
- return V;
- } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->isInterposable())
- return V;
- V = GA->getAliasee();
- } else {
- if (auto *PHI = dyn_cast<PHINode>(V)) {
- // Look through single-arg phi nodes created by LCSSA.
- if (PHI->getNumIncomingValues() == 1) {
- V = PHI->getIncomingValue(0);
- continue;
- }
- } else if (auto *Call = dyn_cast<CallBase>(V)) {
- // CaptureTracking can know about special capturing properties of some
- // intrinsics like launder.invariant.group, that can't be expressed with
- // the attributes, but have properties like returning aliasing pointer.
- // Because some analysis may assume that nocaptured pointer is not
- // returned from some special intrinsic (because function would have to
- // be marked with returns attribute), it is crucial to use this function
- // because it should be in sync with CaptureTracking. Not using it may
- // cause weird miscompilations where 2 aliasing pointers are assumed to
- // noalias.
- if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
- V = RP;
- continue;
- }
- }
- return V;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- }
- return V;
- }
- void llvm::getUnderlyingObjects(const Value *V,
- SmallVectorImpl<const Value *> &Objects,
- LoopInfo *LI, unsigned MaxLookup) {
- SmallPtrSet<const Value *, 4> Visited;
- SmallVector<const Value *, 4> Worklist;
- Worklist.push_back(V);
- do {
- const Value *P = Worklist.pop_back_val();
- P = getUnderlyingObject(P, MaxLookup);
- if (!Visited.insert(P).second)
- continue;
- if (auto *SI = dyn_cast<SelectInst>(P)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- if (auto *PN = dyn_cast<PHINode>(P)) {
- // If this PHI changes the underlying object in every iteration of the
- // loop, don't look through it. Consider:
- // int **A;
- // for (i) {
- // Prev = Curr; // Prev = PHI (Prev_0, Curr)
- // Curr = A[i];
- // *Prev, *Curr;
- //
- // Prev is tracking Curr one iteration behind so they refer to different
- // underlying objects.
- if (!LI || !LI->isLoopHeader(PN->getParent()) ||
- isSameUnderlyingObjectInLoop(PN, LI))
- append_range(Worklist, PN->incoming_values());
- continue;
- }
- Objects.push_back(P);
- } while (!Worklist.empty());
- }
- /// This is the function that does the work of looking through basic
- /// ptrtoint+arithmetic+inttoptr sequences.
- static const Value *getUnderlyingObjectFromInt(const Value *V) {
- do {
- if (const Operator *U = dyn_cast<Operator>(V)) {
- // If we find a ptrtoint, we can transfer control back to the
- // regular getUnderlyingObjectFromInt.
- if (U->getOpcode() == Instruction::PtrToInt)
- return U->getOperand(0);
- // If we find an add of a constant, a multiplied value, or a phi, it's
- // likely that the other operand will lead us to the base
- // object. We don't have to worry about the case where the
- // object address is somehow being computed by the multiply,
- // because our callers only care when the result is an
- // identifiable object.
- if (U->getOpcode() != Instruction::Add ||
- (!isa<ConstantInt>(U->getOperand(1)) &&
- Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
- !isa<PHINode>(U->getOperand(1))))
- return V;
- V = U->getOperand(0);
- } else {
- return V;
- }
- assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
- } while (true);
- }
- /// This is a wrapper around getUnderlyingObjects and adds support for basic
- /// ptrtoint+arithmetic+inttoptr sequences.
- /// It returns false if unidentified object is found in getUnderlyingObjects.
- bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
- SmallVectorImpl<Value *> &Objects) {
- SmallPtrSet<const Value *, 16> Visited;
- SmallVector<const Value *, 4> Working(1, V);
- do {
- V = Working.pop_back_val();
- SmallVector<const Value *, 4> Objs;
- getUnderlyingObjects(V, Objs);
- for (const Value *V : Objs) {
- if (!Visited.insert(V).second)
- continue;
- if (Operator::getOpcode(V) == Instruction::IntToPtr) {
- const Value *O =
- getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
- if (O->getType()->isPointerTy()) {
- Working.push_back(O);
- continue;
- }
- }
- // If getUnderlyingObjects fails to find an identifiable object,
- // getUnderlyingObjectsForCodeGen also fails for safety.
- if (!isIdentifiedObject(V)) {
- Objects.clear();
- return false;
- }
- Objects.push_back(const_cast<Value *>(V));
- }
- } while (!Working.empty());
- return true;
- }
- AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
- AllocaInst *Result = nullptr;
- SmallPtrSet<Value *, 4> Visited;
- SmallVector<Value *, 4> Worklist;
- auto AddWork = [&](Value *V) {
- if (Visited.insert(V).second)
- Worklist.push_back(V);
- };
- AddWork(V);
- do {
- V = Worklist.pop_back_val();
- assert(Visited.count(V));
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- if (Result && Result != AI)
- return nullptr;
- Result = AI;
- } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
- AddWork(CI->getOperand(0));
- } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
- for (Value *IncValue : PN->incoming_values())
- AddWork(IncValue);
- } else if (auto *SI = dyn_cast<SelectInst>(V)) {
- AddWork(SI->getTrueValue());
- AddWork(SI->getFalseValue());
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
- if (OffsetZero && !GEP->hasAllZeroIndices())
- return nullptr;
- AddWork(GEP->getPointerOperand());
- } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
- Value *Returned = CB->getReturnedArgOperand();
- if (Returned)
- AddWork(Returned);
- else
- return nullptr;
- } else {
- return nullptr;
- }
- } while (!Worklist.empty());
- return Result;
- }
- static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
- const Value *V, bool AllowLifetime, bool AllowDroppable) {
- for (const User *U : V->users()) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- if (!II)
- return false;
- if (AllowLifetime && II->isLifetimeStartOrEnd())
- continue;
- if (AllowDroppable && II->isDroppable())
- continue;
- return false;
- }
- return true;
- }
- bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
- return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
- V, /* AllowLifetime */ true, /* AllowDroppable */ false);
- }
- bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
- return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
- V, /* AllowLifetime */ true, /* AllowDroppable */ true);
- }
- bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
- if (!LI.isUnordered())
- return true;
- const Function &F = *LI.getFunction();
- // Speculative load may create a race that did not exist in the source.
- return F.hasFnAttribute(Attribute::SanitizeThread) ||
- // Speculative load may load data from dirty regions.
- F.hasFnAttribute(Attribute::SanitizeAddress) ||
- F.hasFnAttribute(Attribute::SanitizeHWAddress);
- }
- bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
- const Instruction *CtxI,
- AssumptionCache *AC,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
- AC, DT, TLI);
- }
- bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
- unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
- AssumptionCache *AC, const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- #ifndef NDEBUG
- if (Inst->getOpcode() != Opcode) {
- // Check that the operands are actually compatible with the Opcode override.
- auto hasEqualReturnAndLeadingOperandTypes =
- [](const Instruction *Inst, unsigned NumLeadingOperands) {
- if (Inst->getNumOperands() < NumLeadingOperands)
- return false;
- const Type *ExpectedType = Inst->getType();
- for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
- if (Inst->getOperand(ItOp)->getType() != ExpectedType)
- return false;
- return true;
- };
- assert(!Instruction::isBinaryOp(Opcode) ||
- hasEqualReturnAndLeadingOperandTypes(Inst, 2));
- assert(!Instruction::isUnaryOp(Opcode) ||
- hasEqualReturnAndLeadingOperandTypes(Inst, 1));
- }
- #endif
- switch (Opcode) {
- default:
- return true;
- case Instruction::UDiv:
- case Instruction::URem: {
- // x / y is undefined if y == 0.
- const APInt *V;
- if (match(Inst->getOperand(1), m_APInt(V)))
- return *V != 0;
- return false;
- }
- case Instruction::SDiv:
- case Instruction::SRem: {
- // x / y is undefined if y == 0 or x == INT_MIN and y == -1
- const APInt *Numerator, *Denominator;
- if (!match(Inst->getOperand(1), m_APInt(Denominator)))
- return false;
- // We cannot hoist this division if the denominator is 0.
- if (*Denominator == 0)
- return false;
- // It's safe to hoist if the denominator is not 0 or -1.
- if (!Denominator->isAllOnes())
- return true;
- // At this point we know that the denominator is -1. It is safe to hoist as
- // long we know that the numerator is not INT_MIN.
- if (match(Inst->getOperand(0), m_APInt(Numerator)))
- return !Numerator->isMinSignedValue();
- // The numerator *might* be MinSignedValue.
- return false;
- }
- case Instruction::Load: {
- const LoadInst *LI = dyn_cast<LoadInst>(Inst);
- if (!LI)
- return false;
- if (mustSuppressSpeculation(*LI))
- return false;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
- LI->getType(), LI->getAlign(), DL,
- CtxI, AC, DT, TLI);
- }
- case Instruction::Call: {
- auto *CI = dyn_cast<const CallInst>(Inst);
- if (!CI)
- return false;
- const Function *Callee = CI->getCalledFunction();
- // The called function could have undefined behavior or side-effects, even
- // if marked readnone nounwind.
- return Callee && Callee->isSpeculatable();
- }
- case Instruction::VAArg:
- case Instruction::Alloca:
- case Instruction::Invoke:
- case Instruction::CallBr:
- case Instruction::PHI:
- case Instruction::Store:
- case Instruction::Ret:
- case Instruction::Br:
- case Instruction::IndirectBr:
- case Instruction::Switch:
- case Instruction::Unreachable:
- case Instruction::Fence:
- case Instruction::AtomicRMW:
- case Instruction::AtomicCmpXchg:
- case Instruction::LandingPad:
- case Instruction::Resume:
- case Instruction::CatchSwitch:
- case Instruction::CatchPad:
- case Instruction::CatchRet:
- case Instruction::CleanupPad:
- case Instruction::CleanupRet:
- return false; // Misc instructions which have effects
- }
- }
- bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
- if (I.mayReadOrWriteMemory())
- // Memory dependency possible
- return true;
- if (!isSafeToSpeculativelyExecute(&I))
- // Can't move above a maythrow call or infinite loop. Or if an
- // inalloca alloca, above a stacksave call.
- return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- // 1) Can't reorder two inf-loop calls, even if readonly
- // 2) Also can't reorder an inf-loop call below a instruction which isn't
- // safe to speculative execute. (Inverse of above)
- return true;
- return false;
- }
- /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
- static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
- switch (OR) {
- case ConstantRange::OverflowResult::MayOverflow:
- return OverflowResult::MayOverflow;
- case ConstantRange::OverflowResult::AlwaysOverflowsLow:
- return OverflowResult::AlwaysOverflowsLow;
- case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
- return OverflowResult::AlwaysOverflowsHigh;
- case ConstantRange::OverflowResult::NeverOverflows:
- return OverflowResult::NeverOverflows;
- }
- llvm_unreachable("Unknown OverflowResult");
- }
- /// Combine constant ranges from computeConstantRange() and computeKnownBits().
- static ConstantRange computeConstantRangeIncludingKnownBits(
- const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
- KnownBits Known = computeKnownBits(
- V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
- ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
- ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
- ConstantRange::PreferredRangeType RangeType =
- ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
- return CR1.intersectWith(CR2, RangeType);
- }
- OverflowResult llvm::computeOverflowForUnsignedMul(
- const Value *LHS, const Value *RHS, const DataLayout &DL,
- AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
- ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
- return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
- }
- OverflowResult
- llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
- const DataLayout &DL, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- // This means if we have enough leading sign bits in the operands
- // we can guarantee that the result does not overflow.
- // Ref: "Hacker's Delight" by Henry Warren
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
- // Note that underestimating the number of sign bits gives a more
- // conservative answer.
- unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
- ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
- // First handle the easy case: if we have enough sign bits there's
- // definitely no overflow.
- if (SignBits > BitWidth + 1)
- return OverflowResult::NeverOverflows;
- // There are two ambiguous cases where there can be no overflow:
- // SignBits == BitWidth + 1 and
- // SignBits == BitWidth
- // The second case is difficult to check, therefore we only handle the
- // first case.
- if (SignBits == BitWidth + 1) {
- // It overflows only when both arguments are negative and the true
- // product is exactly the minimum negative number.
- // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
- // For simplicity we just check if at least one side is not negative.
- KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
- return OverflowResult::NeverOverflows;
- }
- return OverflowResult::MayOverflow;
- }
- OverflowResult llvm::computeOverflowForUnsignedAdd(
- const Value *LHS, const Value *RHS, const DataLayout &DL,
- AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
- LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
- RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
- }
- static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
- const Value *RHS,
- const AddOperator *Add,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- if (Add && Add->hasNoSignedWrap()) {
- return OverflowResult::NeverOverflows;
- }
- // If LHS and RHS each have at least two sign bits, the addition will look
- // like
- //
- // XX..... +
- // YY.....
- //
- // If the carry into the most significant position is 0, X and Y can't both
- // be 1 and therefore the carry out of the addition is also 0.
- //
- // If the carry into the most significant position is 1, X and Y can't both
- // be 0 and therefore the carry out of the addition is also 1.
- //
- // Since the carry into the most significant position is always equal to
- // the carry out of the addition, there is no signed overflow.
- if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
- ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
- return OverflowResult::NeverOverflows;
- ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
- LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
- ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
- RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
- OverflowResult OR =
- mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
- if (OR != OverflowResult::MayOverflow)
- return OR;
- // The remaining code needs Add to be available. Early returns if not so.
- if (!Add)
- return OverflowResult::MayOverflow;
- // If the sign of Add is the same as at least one of the operands, this add
- // CANNOT overflow. If this can be determined from the known bits of the
- // operands the above signedAddMayOverflow() check will have already done so.
- // The only other way to improve on the known bits is from an assumption, so
- // call computeKnownBitsFromAssume() directly.
- bool LHSOrRHSKnownNonNegative =
- (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
- bool LHSOrRHSKnownNegative =
- (LHSRange.isAllNegative() || RHSRange.isAllNegative());
- if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
- KnownBits AddKnown(LHSRange.getBitWidth());
- computeKnownBitsFromAssume(
- Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
- if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
- (AddKnown.isNegative() && LHSOrRHSKnownNegative))
- return OverflowResult::NeverOverflows;
- }
- return OverflowResult::MayOverflow;
- }
- OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
- const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // X - (X % ?)
- // The remainder of a value can't have greater magnitude than itself,
- // so the subtraction can't overflow.
- // X - (X -nuw ?)
- // In the minimal case, this would simplify to "?", so there's no subtract
- // at all. But if this analysis is used to peek through casts, for example,
- // then determining no-overflow may allow other transforms.
- // TODO: There are other patterns like this.
- // See simplifyICmpWithBinOpOnLHS() for candidates.
- if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
- match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
- if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
- return OverflowResult::NeverOverflows;
- // Checking for conditions implied by dominating conditions may be expensive.
- // Limit it to usub_with_overflow calls for now.
- if (match(CxtI,
- m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
- if (auto C =
- isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
- if (*C)
- return OverflowResult::NeverOverflows;
- return OverflowResult::AlwaysOverflowsLow;
- }
- ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
- LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
- ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
- RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
- return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
- }
- OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
- const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // X - (X % ?)
- // The remainder of a value can't have greater magnitude than itself,
- // so the subtraction can't overflow.
- // X - (X -nsw ?)
- // In the minimal case, this would simplify to "?", so there's no subtract
- // at all. But if this analysis is used to peek through casts, for example,
- // then determining no-overflow may allow other transforms.
- if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
- match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
- if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
- return OverflowResult::NeverOverflows;
- // If LHS and RHS each have at least two sign bits, the subtraction
- // cannot overflow.
- if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
- ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
- return OverflowResult::NeverOverflows;
- ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
- LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
- ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
- RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
- return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
- }
- bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
- const DominatorTree &DT) {
- SmallVector<const BranchInst *, 2> GuardingBranches;
- SmallVector<const ExtractValueInst *, 2> Results;
- for (const User *U : WO->users()) {
- if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
- assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
- if (EVI->getIndices()[0] == 0)
- Results.push_back(EVI);
- else {
- assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
- for (const auto *U : EVI->users())
- if (const auto *B = dyn_cast<BranchInst>(U)) {
- assert(B->isConditional() && "How else is it using an i1?");
- GuardingBranches.push_back(B);
- }
- }
- } else {
- // We are using the aggregate directly in a way we don't want to analyze
- // here (storing it to a global, say).
- return false;
- }
- }
- auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
- BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
- if (!NoWrapEdge.isSingleEdge())
- return false;
- // Check if all users of the add are provably no-wrap.
- for (const auto *Result : Results) {
- // If the extractvalue itself is not executed on overflow, the we don't
- // need to check each use separately, since domination is transitive.
- if (DT.dominates(NoWrapEdge, Result->getParent()))
- continue;
- for (const auto &RU : Result->uses())
- if (!DT.dominates(NoWrapEdge, RU))
- return false;
- }
- return true;
- };
- return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
- }
- /// Shifts return poison if shiftwidth is larger than the bitwidth.
- static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
- auto *C = dyn_cast<Constant>(ShiftAmount);
- if (!C)
- return false;
- // Shifts return poison if shiftwidth is larger than the bitwidth.
- SmallVector<const Constant *, 4> ShiftAmounts;
- if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
- unsigned NumElts = FVTy->getNumElements();
- for (unsigned i = 0; i < NumElts; ++i)
- ShiftAmounts.push_back(C->getAggregateElement(i));
- } else if (isa<ScalableVectorType>(C->getType()))
- return false; // Can't tell, just return false to be safe
- else
- ShiftAmounts.push_back(C);
- bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
- auto *CI = dyn_cast_or_null<ConstantInt>(C);
- return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
- });
- return Safe;
- }
- static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
- bool ConsiderFlagsAndMetadata) {
- if (ConsiderFlagsAndMetadata && Op->hasPoisonGeneratingFlagsOrMetadata())
- return true;
- unsigned Opcode = Op->getOpcode();
- // Check whether opcode is a poison/undef-generating operation
- switch (Opcode) {
- case Instruction::Shl:
- case Instruction::AShr:
- case Instruction::LShr:
- return !shiftAmountKnownInRange(Op->getOperand(1));
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- // fptosi/ui yields poison if the resulting value does not fit in the
- // destination type.
- return true;
- case Instruction::Call:
- if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
- switch (II->getIntrinsicID()) {
- // TODO: Add more intrinsics.
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::abs:
- if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
- return false;
- break;
- case Intrinsic::ctpop:
- case Intrinsic::bswap:
- case Intrinsic::bitreverse:
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- case Intrinsic::smax:
- case Intrinsic::smin:
- case Intrinsic::umax:
- case Intrinsic::umin:
- case Intrinsic::ptrmask:
- case Intrinsic::fptoui_sat:
- case Intrinsic::fptosi_sat:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::sadd_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::usub_sat:
- return false;
- case Intrinsic::sshl_sat:
- case Intrinsic::ushl_sat:
- return !shiftAmountKnownInRange(II->getArgOperand(1));
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::sqrt:
- case Intrinsic::powi:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::pow:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::fptrunc_round:
- case Intrinsic::canonicalize:
- case Intrinsic::arithmetic_fence:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::minimum:
- case Intrinsic::maximum:
- case Intrinsic::is_fpclass:
- return false;
- case Intrinsic::lround:
- case Intrinsic::llround:
- case Intrinsic::lrint:
- case Intrinsic::llrint:
- // If the value doesn't fit an unspecified value is returned (but this
- // is not poison).
- return false;
- }
- }
- [[fallthrough]];
- case Instruction::CallBr:
- case Instruction::Invoke: {
- const auto *CB = cast<CallBase>(Op);
- return !CB->hasRetAttr(Attribute::NoUndef);
- }
- case Instruction::InsertElement:
- case Instruction::ExtractElement: {
- // If index exceeds the length of the vector, it returns poison
- auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
- unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
- auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
- if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
- return true;
- return false;
- }
- case Instruction::ShuffleVector: {
- // shufflevector may return undef.
- if (PoisonOnly)
- return false;
- ArrayRef<int> Mask = isa<ConstantExpr>(Op)
- ? cast<ConstantExpr>(Op)->getShuffleMask()
- : cast<ShuffleVectorInst>(Op)->getShuffleMask();
- return is_contained(Mask, UndefMaskElem);
- }
- case Instruction::FNeg:
- case Instruction::PHI:
- case Instruction::Select:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::ExtractValue:
- case Instruction::InsertValue:
- case Instruction::Freeze:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- return false;
- case Instruction::GetElementPtr:
- // inbounds is handled above
- // TODO: what about inrange on constexpr?
- return false;
- default: {
- const auto *CE = dyn_cast<ConstantExpr>(Op);
- if (isa<CastInst>(Op) || (CE && CE->isCast()))
- return false;
- else if (Instruction::isBinaryOp(Opcode))
- return false;
- // Be conservative and return true.
- return true;
- }
- }
- }
- bool llvm::canCreateUndefOrPoison(const Operator *Op,
- bool ConsiderFlagsAndMetadata) {
- return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false,
- ConsiderFlagsAndMetadata);
- }
- bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
- return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true,
- ConsiderFlagsAndMetadata);
- }
- static bool directlyImpliesPoison(const Value *ValAssumedPoison,
- const Value *V, unsigned Depth) {
- if (ValAssumedPoison == V)
- return true;
- const unsigned MaxDepth = 2;
- if (Depth >= MaxDepth)
- return false;
- if (const auto *I = dyn_cast<Instruction>(V)) {
- if (any_of(I->operands(), [=](const Use &Op) {
- return propagatesPoison(Op) &&
- directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
- }))
- return true;
- // V = extractvalue V0, idx
- // V2 = extractvalue V0, idx2
- // V0's elements are all poison or not. (e.g., add_with_overflow)
- const WithOverflowInst *II;
- if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
- (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
- llvm::is_contained(II->args(), ValAssumedPoison)))
- return true;
- }
- return false;
- }
- static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
- unsigned Depth) {
- if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
- return true;
- if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
- return true;
- const unsigned MaxDepth = 2;
- if (Depth >= MaxDepth)
- return false;
- const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
- if (I && !canCreatePoison(cast<Operator>(I))) {
- return all_of(I->operands(), [=](const Value *Op) {
- return impliesPoison(Op, V, Depth + 1);
- });
- }
- return false;
- }
- bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
- return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
- }
- static bool programUndefinedIfUndefOrPoison(const Value *V,
- bool PoisonOnly);
- static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
- AssumptionCache *AC,
- const Instruction *CtxI,
- const DominatorTree *DT,
- unsigned Depth, bool PoisonOnly) {
- if (Depth >= MaxAnalysisRecursionDepth)
- return false;
- if (isa<MetadataAsValue>(V))
- return false;
- if (const auto *A = dyn_cast<Argument>(V)) {
- if (A->hasAttribute(Attribute::NoUndef))
- return true;
- }
- if (auto *C = dyn_cast<Constant>(V)) {
- if (isa<UndefValue>(C))
- return PoisonOnly && !isa<PoisonValue>(C);
- if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
- isa<ConstantPointerNull>(C) || isa<Function>(C))
- return true;
- if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
- return (PoisonOnly ? !C->containsPoisonElement()
- : !C->containsUndefOrPoisonElement()) &&
- !C->containsConstantExpression();
- }
- // Strip cast operations from a pointer value.
- // Note that stripPointerCastsSameRepresentation can strip off getelementptr
- // inbounds with zero offset. To guarantee that the result isn't poison, the
- // stripped pointer is checked as it has to be pointing into an allocated
- // object or be null `null` to ensure `inbounds` getelement pointers with a
- // zero offset could not produce poison.
- // It can strip off addrspacecast that do not change bit representation as
- // well. We believe that such addrspacecast is equivalent to no-op.
- auto *StrippedV = V->stripPointerCastsSameRepresentation();
- if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
- isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
- return true;
- auto OpCheck = [&](const Value *V) {
- return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
- PoisonOnly);
- };
- if (auto *Opr = dyn_cast<Operator>(V)) {
- // If the value is a freeze instruction, then it can never
- // be undef or poison.
- if (isa<FreezeInst>(V))
- return true;
- if (const auto *CB = dyn_cast<CallBase>(V)) {
- if (CB->hasRetAttr(Attribute::NoUndef))
- return true;
- }
- if (const auto *PN = dyn_cast<PHINode>(V)) {
- unsigned Num = PN->getNumIncomingValues();
- bool IsWellDefined = true;
- for (unsigned i = 0; i < Num; ++i) {
- auto *TI = PN->getIncomingBlock(i)->getTerminator();
- if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
- DT, Depth + 1, PoisonOnly)) {
- IsWellDefined = false;
- break;
- }
- }
- if (IsWellDefined)
- return true;
- } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
- return true;
- }
- if (auto *I = dyn_cast<LoadInst>(V))
- if (I->hasMetadata(LLVMContext::MD_noundef) ||
- I->hasMetadata(LLVMContext::MD_dereferenceable) ||
- I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
- return true;
- if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
- return true;
- // CxtI may be null or a cloned instruction.
- if (!CtxI || !CtxI->getParent() || !DT)
- return false;
- auto *DNode = DT->getNode(CtxI->getParent());
- if (!DNode)
- // Unreachable block
- return false;
- // If V is used as a branch condition before reaching CtxI, V cannot be
- // undef or poison.
- // br V, BB1, BB2
- // BB1:
- // CtxI ; V cannot be undef or poison here
- auto *Dominator = DNode->getIDom();
- while (Dominator) {
- auto *TI = Dominator->getBlock()->getTerminator();
- Value *Cond = nullptr;
- if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
- if (BI->isConditional())
- Cond = BI->getCondition();
- } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
- Cond = SI->getCondition();
- }
- if (Cond) {
- if (Cond == V)
- return true;
- else if (PoisonOnly && isa<Operator>(Cond)) {
- // For poison, we can analyze further
- auto *Opr = cast<Operator>(Cond);
- if (any_of(Opr->operands(),
- [V](const Use &U) { return V == U && propagatesPoison(U); }))
- return true;
- }
- }
- Dominator = Dominator->getIDom();
- }
- if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
- return true;
- return false;
- }
- bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
- const Instruction *CtxI,
- const DominatorTree *DT,
- unsigned Depth) {
- return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
- }
- bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
- const Instruction *CtxI,
- const DominatorTree *DT, unsigned Depth) {
- return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
- }
- OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
- Add, DL, AC, CxtI, DT);
- }
- OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
- const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
- }
- bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
- // Note: An atomic operation isn't guaranteed to return in a reasonable amount
- // of time because it's possible for another thread to interfere with it for an
- // arbitrary length of time, but programs aren't allowed to rely on that.
- // If there is no successor, then execution can't transfer to it.
- if (isa<ReturnInst>(I))
- return false;
- if (isa<UnreachableInst>(I))
- return false;
- // Note: Do not add new checks here; instead, change Instruction::mayThrow or
- // Instruction::willReturn.
- //
- // FIXME: Move this check into Instruction::willReturn.
- if (isa<CatchPadInst>(I)) {
- switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
- default:
- // A catchpad may invoke exception object constructors and such, which
- // in some languages can be arbitrary code, so be conservative by default.
- return false;
- case EHPersonality::CoreCLR:
- // For CoreCLR, it just involves a type test.
- return true;
- }
- }
- // An instruction that returns without throwing must transfer control flow
- // to a successor.
- return !I->mayThrow() && I->willReturn();
- }
- bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
- // TODO: This is slightly conservative for invoke instruction since exiting
- // via an exception *is* normal control for them.
- for (const Instruction &I : *BB)
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- return false;
- return true;
- }
- bool llvm::isGuaranteedToTransferExecutionToSuccessor(
- BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
- unsigned ScanLimit) {
- return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
- ScanLimit);
- }
- bool llvm::isGuaranteedToTransferExecutionToSuccessor(
- iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
- assert(ScanLimit && "scan limit must be non-zero");
- for (const Instruction &I : Range) {
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- if (--ScanLimit == 0)
- return false;
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- return false;
- }
- return true;
- }
- bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
- const Loop *L) {
- // The loop header is guaranteed to be executed for every iteration.
- //
- // FIXME: Relax this constraint to cover all basic blocks that are
- // guaranteed to be executed at every iteration.
- if (I->getParent() != L->getHeader()) return false;
- for (const Instruction &LI : *L->getHeader()) {
- if (&LI == I) return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
- }
- llvm_unreachable("Instruction not contained in its own parent basic block.");
- }
- bool llvm::propagatesPoison(const Use &PoisonOp) {
- const Operator *I = cast<Operator>(PoisonOp.getUser());
- switch (I->getOpcode()) {
- case Instruction::Freeze:
- case Instruction::PHI:
- case Instruction::Invoke:
- return false;
- case Instruction::Select:
- return PoisonOp.getOperandNo() == 0;
- case Instruction::Call:
- if (auto *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- // TODO: Add more intrinsics.
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::umul_with_overflow:
- // If an input is a vector containing a poison element, the
- // two output vectors (calculated results, overflow bits)'
- // corresponding lanes are poison.
- return true;
- case Intrinsic::ctpop:
- return true;
- }
- }
- return false;
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::GetElementPtr:
- return true;
- default:
- if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
- return true;
- // Be conservative and return false.
- return false;
- }
- }
- void llvm::getGuaranteedWellDefinedOps(
- const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
- switch (I->getOpcode()) {
- case Instruction::Store:
- Operands.push_back(cast<StoreInst>(I)->getPointerOperand());
- break;
- case Instruction::Load:
- Operands.push_back(cast<LoadInst>(I)->getPointerOperand());
- break;
- // Since dereferenceable attribute imply noundef, atomic operations
- // also implicitly have noundef pointers too
- case Instruction::AtomicCmpXchg:
- Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
- break;
- case Instruction::AtomicRMW:
- Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand());
- break;
- case Instruction::Call:
- case Instruction::Invoke: {
- const CallBase *CB = cast<CallBase>(I);
- if (CB->isIndirectCall())
- Operands.push_back(CB->getCalledOperand());
- for (unsigned i = 0; i < CB->arg_size(); ++i) {
- if (CB->paramHasAttr(i, Attribute::NoUndef) ||
- CB->paramHasAttr(i, Attribute::Dereferenceable))
- Operands.push_back(CB->getArgOperand(i));
- }
- break;
- }
- case Instruction::Ret:
- if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
- Operands.push_back(I->getOperand(0));
- break;
- case Instruction::Switch:
- Operands.push_back(cast<SwitchInst>(I)->getCondition());
- break;
- case Instruction::Br: {
- auto *BR = cast<BranchInst>(I);
- if (BR->isConditional())
- Operands.push_back(BR->getCondition());
- break;
- }
- default:
- break;
- }
- }
- void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
- SmallVectorImpl<const Value *> &Operands) {
- getGuaranteedWellDefinedOps(I, Operands);
- switch (I->getOpcode()) {
- // Divisors of these operations are allowed to be partially undef.
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- Operands.push_back(I->getOperand(1));
- break;
- default:
- break;
- }
- }
- bool llvm::mustTriggerUB(const Instruction *I,
- const SmallSet<const Value *, 16>& KnownPoison) {
- SmallVector<const Value *, 4> NonPoisonOps;
- getGuaranteedNonPoisonOps(I, NonPoisonOps);
- for (const auto *V : NonPoisonOps)
- if (KnownPoison.count(V))
- return true;
- return false;
- }
- static bool programUndefinedIfUndefOrPoison(const Value *V,
- bool PoisonOnly) {
- // We currently only look for uses of values within the same basic
- // block, as that makes it easier to guarantee that the uses will be
- // executed given that Inst is executed.
- //
- // FIXME: Expand this to consider uses beyond the same basic block. To do
- // this, look out for the distinction between post-dominance and strong
- // post-dominance.
- const BasicBlock *BB = nullptr;
- BasicBlock::const_iterator Begin;
- if (const auto *Inst = dyn_cast<Instruction>(V)) {
- BB = Inst->getParent();
- Begin = Inst->getIterator();
- Begin++;
- } else if (const auto *Arg = dyn_cast<Argument>(V)) {
- BB = &Arg->getParent()->getEntryBlock();
- Begin = BB->begin();
- } else {
- return false;
- }
- // Limit number of instructions we look at, to avoid scanning through large
- // blocks. The current limit is chosen arbitrarily.
- unsigned ScanLimit = 32;
- BasicBlock::const_iterator End = BB->end();
- if (!PoisonOnly) {
- // Since undef does not propagate eagerly, be conservative & just check
- // whether a value is directly passed to an instruction that must take
- // well-defined operands.
- for (const auto &I : make_range(Begin, End)) {
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- if (--ScanLimit == 0)
- break;
- SmallVector<const Value *, 4> WellDefinedOps;
- getGuaranteedWellDefinedOps(&I, WellDefinedOps);
- if (is_contained(WellDefinedOps, V))
- return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- break;
- }
- return false;
- }
- // Set of instructions that we have proved will yield poison if Inst
- // does.
- SmallSet<const Value *, 16> YieldsPoison;
- SmallSet<const BasicBlock *, 4> Visited;
- YieldsPoison.insert(V);
- Visited.insert(BB);
- while (true) {
- for (const auto &I : make_range(Begin, End)) {
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- if (--ScanLimit == 0)
- return false;
- if (mustTriggerUB(&I, YieldsPoison))
- return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- return false;
- // If an operand is poison and propagates it, mark I as yielding poison.
- for (const Use &Op : I.operands()) {
- if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
- YieldsPoison.insert(&I);
- break;
- }
- }
- }
- BB = BB->getSingleSuccessor();
- if (!BB || !Visited.insert(BB).second)
- break;
- Begin = BB->getFirstNonPHI()->getIterator();
- End = BB->end();
- }
- return false;
- }
- bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
- return ::programUndefinedIfUndefOrPoison(Inst, false);
- }
- bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
- return ::programUndefinedIfUndefOrPoison(Inst, true);
- }
- static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
- if (FMF.noNaNs())
- return true;
- if (auto *C = dyn_cast<ConstantFP>(V))
- return !C->isNaN();
- if (auto *C = dyn_cast<ConstantDataVector>(V)) {
- if (!C->getElementType()->isFloatingPointTy())
- return false;
- for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
- if (C->getElementAsAPFloat(I).isNaN())
- return false;
- }
- return true;
- }
- if (isa<ConstantAggregateZero>(V))
- return true;
- return false;
- }
- static bool isKnownNonZero(const Value *V) {
- if (auto *C = dyn_cast<ConstantFP>(V))
- return !C->isZero();
- if (auto *C = dyn_cast<ConstantDataVector>(V)) {
- if (!C->getElementType()->isFloatingPointTy())
- return false;
- for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
- if (C->getElementAsAPFloat(I).isZero())
- return false;
- }
- return true;
- }
- return false;
- }
- /// Match clamp pattern for float types without care about NaNs or signed zeros.
- /// Given non-min/max outer cmp/select from the clamp pattern this
- /// function recognizes if it can be substitued by a "canonical" min/max
- /// pattern.
- static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS) {
- // Try to match
- // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
- // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
- // and return description of the outer Max/Min.
- // First, check if select has inverse order:
- if (CmpRHS == FalseVal) {
- std::swap(TrueVal, FalseVal);
- Pred = CmpInst::getInversePredicate(Pred);
- }
- // Assume success now. If there's no match, callers should not use these anyway.
- LHS = TrueVal;
- RHS = FalseVal;
- const APFloat *FC1;
- if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
- return {SPF_UNKNOWN, SPNB_NA, false};
- const APFloat *FC2;
- switch (Pred) {
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULT:
- case CmpInst::FCMP_ULE:
- if (match(FalseVal,
- m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
- m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
- *FC1 < *FC2)
- return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
- break;
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGT:
- case CmpInst::FCMP_UGE:
- if (match(FalseVal,
- m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
- m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
- *FC1 > *FC2)
- return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
- break;
- default:
- break;
- }
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- /// Recognize variations of:
- /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
- static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal) {
- // Swap the select operands and predicate to match the patterns below.
- if (CmpRHS != TrueVal) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(TrueVal, FalseVal);
- }
- const APInt *C1;
- if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
- const APInt *C2;
- // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
- if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
- return {SPF_SMAX, SPNB_NA, false};
- // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
- if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
- return {SPF_SMIN, SPNB_NA, false};
- // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
- if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
- return {SPF_UMAX, SPNB_NA, false};
- // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
- if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
- return {SPF_UMIN, SPNB_NA, false};
- }
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- /// Recognize variations of:
- /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
- static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TVal, Value *FVal,
- unsigned Depth) {
- // TODO: Allow FP min/max with nnan/nsz.
- assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
- Value *A = nullptr, *B = nullptr;
- SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
- if (!SelectPatternResult::isMinOrMax(L.Flavor))
- return {SPF_UNKNOWN, SPNB_NA, false};
- Value *C = nullptr, *D = nullptr;
- SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
- if (L.Flavor != R.Flavor)
- return {SPF_UNKNOWN, SPNB_NA, false};
- // We have something like: x Pred y ? min(a, b) : min(c, d).
- // Try to match the compare to the min/max operations of the select operands.
- // First, make sure we have the right compare predicate.
- switch (L.Flavor) {
- case SPF_SMIN:
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- case SPF_SMAX:
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- case SPF_UMIN:
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- case SPF_UMAX:
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- default:
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- // If there is a common operand in the already matched min/max and the other
- // min/max operands match the compare operands (either directly or inverted),
- // then this is min/max of the same flavor.
- // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
- // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
- if (D == B) {
- if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
- match(A, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
- // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
- if (C == B) {
- if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
- match(A, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
- // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
- if (D == A) {
- if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
- match(B, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
- // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
- if (C == A) {
- if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
- match(B, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- /// If the input value is the result of a 'not' op, constant integer, or vector
- /// splat of a constant integer, return the bitwise-not source value.
- /// TODO: This could be extended to handle non-splat vector integer constants.
- static Value *getNotValue(Value *V) {
- Value *NotV;
- if (match(V, m_Not(m_Value(NotV))))
- return NotV;
- const APInt *C;
- if (match(V, m_APInt(C)))
- return ConstantInt::get(V->getType(), ~(*C));
- return nullptr;
- }
- /// Match non-obvious integer minimum and maximum sequences.
- static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS,
- unsigned Depth) {
- // Assume success. If there's no match, callers should not use these anyway.
- LHS = TrueVal;
- RHS = FalseVal;
- SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
- if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
- return SPR;
- SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
- if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
- return SPR;
- // Look through 'not' ops to find disguised min/max.
- // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
- // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
- if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
- switch (Pred) {
- case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
- case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
- case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
- case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
- default: break;
- }
- }
- // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
- // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
- if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
- switch (Pred) {
- case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
- case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
- case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
- case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
- default: break;
- }
- }
- if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
- return {SPF_UNKNOWN, SPNB_NA, false};
- const APInt *C1;
- if (!match(CmpRHS, m_APInt(C1)))
- return {SPF_UNKNOWN, SPNB_NA, false};
- // An unsigned min/max can be written with a signed compare.
- const APInt *C2;
- if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
- (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
- // Is the sign bit set?
- // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
- // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
- if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
- return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
- // Is the sign bit clear?
- // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
- // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
- if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
- return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
- }
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
- assert(X && Y && "Invalid operand");
- // X = sub (0, Y) || X = sub nsw (0, Y)
- if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
- (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
- return true;
- // Y = sub (0, X) || Y = sub nsw (0, X)
- if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
- (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
- return true;
- // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
- Value *A, *B;
- return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
- match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
- (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
- match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
- }
- static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
- FastMathFlags FMF,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS,
- unsigned Depth) {
- bool HasMismatchedZeros = false;
- if (CmpInst::isFPPredicate(Pred)) {
- // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
- // 0.0 operand, set the compare's 0.0 operands to that same value for the
- // purpose of identifying min/max. Disregard vector constants with undefined
- // elements because those can not be back-propagated for analysis.
- Value *OutputZeroVal = nullptr;
- if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
- !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
- OutputZeroVal = TrueVal;
- else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
- !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
- OutputZeroVal = FalseVal;
- if (OutputZeroVal) {
- if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
- HasMismatchedZeros = true;
- CmpLHS = OutputZeroVal;
- }
- if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
- HasMismatchedZeros = true;
- CmpRHS = OutputZeroVal;
- }
- }
- }
- LHS = CmpLHS;
- RHS = CmpRHS;
- // Signed zero may return inconsistent results between implementations.
- // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
- // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
- // Therefore, we behave conservatively and only proceed if at least one of the
- // operands is known to not be zero or if we don't care about signed zero.
- switch (Pred) {
- default: break;
- case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
- if (!HasMismatchedZeros)
- break;
- [[fallthrough]];
- case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
- if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
- !isKnownNonZero(CmpRHS))
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
- bool Ordered = false;
- // When given one NaN and one non-NaN input:
- // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
- // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
- // ordered comparison fails), which could be NaN or non-NaN.
- // so here we discover exactly what NaN behavior is required/accepted.
- if (CmpInst::isFPPredicate(Pred)) {
- bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
- bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
- if (LHSSafe && RHSSafe) {
- // Both operands are known non-NaN.
- NaNBehavior = SPNB_RETURNS_ANY;
- } else if (CmpInst::isOrdered(Pred)) {
- // An ordered comparison will return false when given a NaN, so it
- // returns the RHS.
- Ordered = true;
- if (LHSSafe)
- // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
- NaNBehavior = SPNB_RETURNS_NAN;
- else if (RHSSafe)
- NaNBehavior = SPNB_RETURNS_OTHER;
- else
- // Completely unsafe.
- return {SPF_UNKNOWN, SPNB_NA, false};
- } else {
- Ordered = false;
- // An unordered comparison will return true when given a NaN, so it
- // returns the LHS.
- if (LHSSafe)
- // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
- NaNBehavior = SPNB_RETURNS_OTHER;
- else if (RHSSafe)
- NaNBehavior = SPNB_RETURNS_NAN;
- else
- // Completely unsafe.
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- }
- if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
- std::swap(CmpLHS, CmpRHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- if (NaNBehavior == SPNB_RETURNS_NAN)
- NaNBehavior = SPNB_RETURNS_OTHER;
- else if (NaNBehavior == SPNB_RETURNS_OTHER)
- NaNBehavior = SPNB_RETURNS_NAN;
- Ordered = !Ordered;
- }
- // ([if]cmp X, Y) ? X : Y
- if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
- switch (Pred) {
- default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OGT:
- case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
- case FCmpInst::FCMP_ULT:
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_OLT:
- case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
- }
- }
- if (isKnownNegation(TrueVal, FalseVal)) {
- // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
- // match against either LHS or sext(LHS).
- auto MaybeSExtCmpLHS =
- m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
- auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
- auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
- if (match(TrueVal, MaybeSExtCmpLHS)) {
- // Set the return values. If the compare uses the negated value (-X >s 0),
- // swap the return values because the negated value is always 'RHS'.
- LHS = TrueVal;
- RHS = FalseVal;
- if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
- std::swap(LHS, RHS);
- // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
- // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
- if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
- return {SPF_ABS, SPNB_NA, false};
- // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
- if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
- return {SPF_ABS, SPNB_NA, false};
- // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
- // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
- if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
- return {SPF_NABS, SPNB_NA, false};
- }
- else if (match(FalseVal, MaybeSExtCmpLHS)) {
- // Set the return values. If the compare uses the negated value (-X >s 0),
- // swap the return values because the negated value is always 'RHS'.
- LHS = FalseVal;
- RHS = TrueVal;
- if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
- std::swap(LHS, RHS);
- // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
- // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
- if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
- return {SPF_NABS, SPNB_NA, false};
- // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
- // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
- if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
- return {SPF_ABS, SPNB_NA, false};
- }
- }
- if (CmpInst::isIntPredicate(Pred))
- return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
- // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
- // may return either -0.0 or 0.0, so fcmp/select pair has stricter
- // semantics than minNum. Be conservative in such case.
- if (NaNBehavior != SPNB_RETURNS_ANY ||
- (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
- !isKnownNonZero(CmpRHS)))
- return {SPF_UNKNOWN, SPNB_NA, false};
- return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
- }
- /// Helps to match a select pattern in case of a type mismatch.
- ///
- /// The function processes the case when type of true and false values of a
- /// select instruction differs from type of the cmp instruction operands because
- /// of a cast instruction. The function checks if it is legal to move the cast
- /// operation after "select". If yes, it returns the new second value of
- /// "select" (with the assumption that cast is moved):
- /// 1. As operand of cast instruction when both values of "select" are same cast
- /// instructions.
- /// 2. As restored constant (by applying reverse cast operation) when the first
- /// value of the "select" is a cast operation and the second value is a
- /// constant.
- /// NOTE: We return only the new second value because the first value could be
- /// accessed as operand of cast instruction.
- static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
- Instruction::CastOps *CastOp) {
- auto *Cast1 = dyn_cast<CastInst>(V1);
- if (!Cast1)
- return nullptr;
- *CastOp = Cast1->getOpcode();
- Type *SrcTy = Cast1->getSrcTy();
- if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
- // If V1 and V2 are both the same cast from the same type, look through V1.
- if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
- return Cast2->getOperand(0);
- return nullptr;
- }
- auto *C = dyn_cast<Constant>(V2);
- if (!C)
- return nullptr;
- Constant *CastedTo = nullptr;
- switch (*CastOp) {
- case Instruction::ZExt:
- if (CmpI->isUnsigned())
- CastedTo = ConstantExpr::getTrunc(C, SrcTy);
- break;
- case Instruction::SExt:
- if (CmpI->isSigned())
- CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
- break;
- case Instruction::Trunc:
- Constant *CmpConst;
- if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
- CmpConst->getType() == SrcTy) {
- // Here we have the following case:
- //
- // %cond = cmp iN %x, CmpConst
- // %tr = trunc iN %x to iK
- // %narrowsel = select i1 %cond, iK %t, iK C
- //
- // We can always move trunc after select operation:
- //
- // %cond = cmp iN %x, CmpConst
- // %widesel = select i1 %cond, iN %x, iN CmpConst
- // %tr = trunc iN %widesel to iK
- //
- // Note that C could be extended in any way because we don't care about
- // upper bits after truncation. It can't be abs pattern, because it would
- // look like:
- //
- // select i1 %cond, x, -x.
- //
- // So only min/max pattern could be matched. Such match requires widened C
- // == CmpConst. That is why set widened C = CmpConst, condition trunc
- // CmpConst == C is checked below.
- CastedTo = CmpConst;
- } else {
- CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
- }
- break;
- case Instruction::FPTrunc:
- CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
- break;
- case Instruction::FPExt:
- CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
- break;
- case Instruction::FPToUI:
- CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
- break;
- case Instruction::FPToSI:
- CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
- break;
- case Instruction::UIToFP:
- CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
- break;
- case Instruction::SIToFP:
- CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
- break;
- default:
- break;
- }
- if (!CastedTo)
- return nullptr;
- // Make sure the cast doesn't lose any information.
- Constant *CastedBack =
- ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
- if (CastedBack != C)
- return nullptr;
- return CastedTo;
- }
- SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp,
- unsigned Depth) {
- if (Depth >= MaxAnalysisRecursionDepth)
- return {SPF_UNKNOWN, SPNB_NA, false};
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
- CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
- if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
- CastOp, Depth);
- }
- SelectPatternResult llvm::matchDecomposedSelectPattern(
- CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp, unsigned Depth) {
- CmpInst::Predicate Pred = CmpI->getPredicate();
- Value *CmpLHS = CmpI->getOperand(0);
- Value *CmpRHS = CmpI->getOperand(1);
- FastMathFlags FMF;
- if (isa<FPMathOperator>(CmpI))
- FMF = CmpI->getFastMathFlags();
- // Bail out early.
- if (CmpI->isEquality())
- return {SPF_UNKNOWN, SPNB_NA, false};
- // Deal with type mismatches.
- if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
- if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
- // If this is a potential fmin/fmax with a cast to integer, then ignore
- // -0.0 because there is no corresponding integer value.
- if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
- FMF.setNoSignedZeros();
- return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
- cast<CastInst>(TrueVal)->getOperand(0), C,
- LHS, RHS, Depth);
- }
- if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
- // If this is a potential fmin/fmax with a cast to integer, then ignore
- // -0.0 because there is no corresponding integer value.
- if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
- FMF.setNoSignedZeros();
- return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
- C, cast<CastInst>(FalseVal)->getOperand(0),
- LHS, RHS, Depth);
- }
- }
- return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
- LHS, RHS, Depth);
- }
- CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
- if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
- if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
- if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
- if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
- if (SPF == SPF_FMINNUM)
- return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
- if (SPF == SPF_FMAXNUM)
- return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
- llvm_unreachable("unhandled!");
- }
- SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
- if (SPF == SPF_SMIN) return SPF_SMAX;
- if (SPF == SPF_UMIN) return SPF_UMAX;
- if (SPF == SPF_SMAX) return SPF_SMIN;
- if (SPF == SPF_UMAX) return SPF_UMIN;
- llvm_unreachable("unhandled!");
- }
- Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
- switch (MinMaxID) {
- case Intrinsic::smax: return Intrinsic::smin;
- case Intrinsic::smin: return Intrinsic::smax;
- case Intrinsic::umax: return Intrinsic::umin;
- case Intrinsic::umin: return Intrinsic::umax;
- default: llvm_unreachable("Unexpected intrinsic");
- }
- }
- APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
- switch (SPF) {
- case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
- case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
- case SPF_UMAX: return APInt::getMaxValue(BitWidth);
- case SPF_UMIN: return APInt::getMinValue(BitWidth);
- default: llvm_unreachable("Unexpected flavor");
- }
- }
- std::pair<Intrinsic::ID, bool>
- llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
- // Check if VL contains select instructions that can be folded into a min/max
- // vector intrinsic and return the intrinsic if it is possible.
- // TODO: Support floating point min/max.
- bool AllCmpSingleUse = true;
- SelectPatternResult SelectPattern;
- SelectPattern.Flavor = SPF_UNKNOWN;
- if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
- Value *LHS, *RHS;
- auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
- if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
- CurrentPattern.Flavor == SPF_FMINNUM ||
- CurrentPattern.Flavor == SPF_FMAXNUM ||
- !I->getType()->isIntOrIntVectorTy())
- return false;
- if (SelectPattern.Flavor != SPF_UNKNOWN &&
- SelectPattern.Flavor != CurrentPattern.Flavor)
- return false;
- SelectPattern = CurrentPattern;
- AllCmpSingleUse &=
- match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
- return true;
- })) {
- switch (SelectPattern.Flavor) {
- case SPF_SMIN:
- return {Intrinsic::smin, AllCmpSingleUse};
- case SPF_UMIN:
- return {Intrinsic::umin, AllCmpSingleUse};
- case SPF_SMAX:
- return {Intrinsic::smax, AllCmpSingleUse};
- case SPF_UMAX:
- return {Intrinsic::umax, AllCmpSingleUse};
- default:
- llvm_unreachable("unexpected select pattern flavor");
- }
- }
- return {Intrinsic::not_intrinsic, false};
- }
- bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
- Value *&Start, Value *&Step) {
- // Handle the case of a simple two-predecessor recurrence PHI.
- // There's a lot more that could theoretically be done here, but
- // this is sufficient to catch some interesting cases.
- if (P->getNumIncomingValues() != 2)
- return false;
- for (unsigned i = 0; i != 2; ++i) {
- Value *L = P->getIncomingValue(i);
- Value *R = P->getIncomingValue(!i);
- Operator *LU = dyn_cast<Operator>(L);
- if (!LU)
- continue;
- unsigned Opcode = LU->getOpcode();
- switch (Opcode) {
- default:
- continue;
- // TODO: Expand list -- xor, div, gep, uaddo, etc..
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::Shl:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Mul:
- case Instruction::FMul: {
- Value *LL = LU->getOperand(0);
- Value *LR = LU->getOperand(1);
- // Find a recurrence.
- if (LL == P)
- L = LR;
- else if (LR == P)
- L = LL;
- else
- continue; // Check for recurrence with L and R flipped.
- break; // Match!
- }
- };
- // We have matched a recurrence of the form:
- // %iv = [R, %entry], [%iv.next, %backedge]
- // %iv.next = binop %iv, L
- // OR
- // %iv = [R, %entry], [%iv.next, %backedge]
- // %iv.next = binop L, %iv
- BO = cast<BinaryOperator>(LU);
- Start = R;
- Step = L;
- return true;
- }
- return false;
- }
- bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
- Value *&Start, Value *&Step) {
- BinaryOperator *BO = nullptr;
- P = dyn_cast<PHINode>(I->getOperand(0));
- if (!P)
- P = dyn_cast<PHINode>(I->getOperand(1));
- return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
- }
- /// Return true if "icmp Pred LHS RHS" is always true.
- static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
- const Value *RHS, const DataLayout &DL,
- unsigned Depth) {
- if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
- return true;
- switch (Pred) {
- default:
- return false;
- case CmpInst::ICMP_SLE: {
- const APInt *C;
- // LHS s<= LHS +_{nsw} C if C >= 0
- if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
- return !C->isNegative();
- return false;
- }
- case CmpInst::ICMP_ULE: {
- const APInt *C;
- // LHS u<= LHS +_{nuw} C for any C
- if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
- return true;
- // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
- auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
- const Value *&X,
- const APInt *&CA, const APInt *&CB) {
- if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
- match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
- return true;
- // If X & C == 0 then (X | C) == X +_{nuw} C
- if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
- match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
- KnownBits Known(CA->getBitWidth());
- computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
- /*CxtI*/ nullptr, /*DT*/ nullptr);
- if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
- return true;
- }
- return false;
- };
- const Value *X;
- const APInt *CLHS, *CRHS;
- if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
- return CLHS->ule(*CRHS);
- return false;
- }
- }
- }
- /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
- /// ALHS ARHS" is true. Otherwise, return std::nullopt.
- static std::optional<bool>
- isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
- const Value *ARHS, const Value *BLHS, const Value *BRHS,
- const DataLayout &DL, unsigned Depth) {
- switch (Pred) {
- default:
- return std::nullopt;
- case CmpInst::ICMP_SLT:
- case CmpInst::ICMP_SLE:
- if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
- isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
- return true;
- return std::nullopt;
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
- isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
- return true;
- return std::nullopt;
- }
- }
- /// Return true if the operands of two compares (expanded as "L0 pred L1" and
- /// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are
- /// swapped.
- static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0,
- const Value *R1, bool &AreSwappedOps) {
- bool AreMatchingOps = (L0 == R0 && L1 == R1);
- AreSwappedOps = (L0 == R1 && L1 == R0);
- return AreMatchingOps || AreSwappedOps;
- }
- /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
- /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
- /// Otherwise, return std::nullopt if we can't infer anything.
- static std::optional<bool>
- isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
- CmpInst::Predicate RPred, bool AreSwappedOps) {
- // Canonicalize the predicate as if the operands were not commuted.
- if (AreSwappedOps)
- RPred = ICmpInst::getSwappedPredicate(RPred);
- if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
- return true;
- if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
- return false;
- return std::nullopt;
- }
- /// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true.
- /// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false.
- /// Otherwise, return std::nullopt if we can't infer anything.
- static std::optional<bool> isImpliedCondCommonOperandWithConstants(
- CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred,
- const APInt &RC) {
- ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC);
- ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC);
- ConstantRange Intersection = DomCR.intersectWith(CR);
- ConstantRange Difference = DomCR.difference(CR);
- if (Intersection.isEmptySet())
- return false;
- if (Difference.isEmptySet())
- return true;
- return std::nullopt;
- }
- /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
- /// is true. Return false if LHS implies RHS is false. Otherwise, return
- /// std::nullopt if we can't infer anything.
- static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
- CmpInst::Predicate RPred,
- const Value *R0, const Value *R1,
- const DataLayout &DL,
- bool LHSIsTrue, unsigned Depth) {
- Value *L0 = LHS->getOperand(0);
- Value *L1 = LHS->getOperand(1);
- // The rest of the logic assumes the LHS condition is true. If that's not the
- // case, invert the predicate to make it so.
- CmpInst::Predicate LPred =
- LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
- // Can we infer anything when the two compares have matching operands?
- bool AreSwappedOps;
- if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps))
- return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps);
- // Can we infer anything when the 0-operands match and the 1-operands are
- // constants (not necessarily matching)?
- const APInt *LC, *RC;
- if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC)))
- return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC);
- if (LPred == RPred)
- return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth);
- return std::nullopt;
- }
- /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
- /// false. Otherwise, return std::nullopt if we can't infer anything. We
- /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
- /// instruction.
- static std::optional<bool>
- isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
- const Value *RHSOp0, const Value *RHSOp1,
- const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
- // The LHS must be an 'or', 'and', or a 'select' instruction.
- assert((LHS->getOpcode() == Instruction::And ||
- LHS->getOpcode() == Instruction::Or ||
- LHS->getOpcode() == Instruction::Select) &&
- "Expected LHS to be 'and', 'or', or 'select'.");
- assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
- // If the result of an 'or' is false, then we know both legs of the 'or' are
- // false. Similarly, if the result of an 'and' is true, then we know both
- // legs of the 'and' are true.
- const Value *ALHS, *ARHS;
- if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
- (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
- // FIXME: Make this non-recursion.
- if (std::optional<bool> Implication = isImpliedCondition(
- ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
- return Implication;
- if (std::optional<bool> Implication = isImpliedCondition(
- ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
- return Implication;
- return std::nullopt;
- }
- return std::nullopt;
- }
- std::optional<bool>
- llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
- const Value *RHSOp0, const Value *RHSOp1,
- const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
- // Bail out when we hit the limit.
- if (Depth == MaxAnalysisRecursionDepth)
- return std::nullopt;
- // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
- // example.
- if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
- return std::nullopt;
- assert(LHS->getType()->isIntOrIntVectorTy(1) &&
- "Expected integer type only!");
- // Both LHS and RHS are icmps.
- const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
- if (LHSCmp)
- return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
- Depth);
- /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
- /// the RHS to be an icmp.
- /// FIXME: Add support for and/or/select on the RHS.
- if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
- if ((LHSI->getOpcode() == Instruction::And ||
- LHSI->getOpcode() == Instruction::Or ||
- LHSI->getOpcode() == Instruction::Select))
- return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
- Depth);
- }
- return std::nullopt;
- }
- std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
- const DataLayout &DL,
- bool LHSIsTrue, unsigned Depth) {
- // LHS ==> RHS by definition
- if (LHS == RHS)
- return LHSIsTrue;
- if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
- return isImpliedCondition(LHS, RHSCmp->getPredicate(),
- RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
- LHSIsTrue, Depth);
- if (Depth == MaxAnalysisRecursionDepth)
- return std::nullopt;
- // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
- // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
- const Value *RHS1, *RHS2;
- if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
- if (std::optional<bool> Imp =
- isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
- if (*Imp == true)
- return true;
- if (std::optional<bool> Imp =
- isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
- if (*Imp == true)
- return true;
- }
- if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
- if (std::optional<bool> Imp =
- isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
- if (*Imp == false)
- return false;
- if (std::optional<bool> Imp =
- isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
- if (*Imp == false)
- return false;
- }
- return std::nullopt;
- }
- // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
- // condition dominating ContextI or nullptr, if no condition is found.
- static std::pair<Value *, bool>
- getDomPredecessorCondition(const Instruction *ContextI) {
- if (!ContextI || !ContextI->getParent())
- return {nullptr, false};
- // TODO: This is a poor/cheap way to determine dominance. Should we use a
- // dominator tree (eg, from a SimplifyQuery) instead?
- const BasicBlock *ContextBB = ContextI->getParent();
- const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
- if (!PredBB)
- return {nullptr, false};
- // We need a conditional branch in the predecessor.
- Value *PredCond;
- BasicBlock *TrueBB, *FalseBB;
- if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
- return {nullptr, false};
- // The branch should get simplified. Don't bother simplifying this condition.
- if (TrueBB == FalseBB)
- return {nullptr, false};
- assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
- "Predecessor block does not point to successor?");
- // Is this condition implied by the predecessor condition?
- return {PredCond, TrueBB == ContextBB};
- }
- std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
- const Instruction *ContextI,
- const DataLayout &DL) {
- assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
- auto PredCond = getDomPredecessorCondition(ContextI);
- if (PredCond.first)
- return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
- return std::nullopt;
- }
- std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
- const Value *LHS,
- const Value *RHS,
- const Instruction *ContextI,
- const DataLayout &DL) {
- auto PredCond = getDomPredecessorCondition(ContextI);
- if (PredCond.first)
- return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
- PredCond.second);
- return std::nullopt;
- }
- static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
- APInt &Upper, const InstrInfoQuery &IIQ,
- bool PreferSignedRange) {
- unsigned Width = Lower.getBitWidth();
- const APInt *C;
- switch (BO.getOpcode()) {
- case Instruction::Add:
- if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
- bool HasNSW = IIQ.hasNoSignedWrap(&BO);
- bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
- // If the caller expects a signed compare, then try to use a signed range.
- // Otherwise if both no-wraps are set, use the unsigned range because it
- // is never larger than the signed range. Example:
- // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
- if (PreferSignedRange && HasNSW && HasNUW)
- HasNUW = false;
- if (HasNUW) {
- // 'add nuw x, C' produces [C, UINT_MAX].
- Lower = *C;
- } else if (HasNSW) {
- if (C->isNegative()) {
- // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
- Lower = APInt::getSignedMinValue(Width);
- Upper = APInt::getSignedMaxValue(Width) + *C + 1;
- } else {
- // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
- Lower = APInt::getSignedMinValue(Width) + *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- }
- }
- }
- break;
- case Instruction::And:
- if (match(BO.getOperand(1), m_APInt(C)))
- // 'and x, C' produces [0, C].
- Upper = *C + 1;
- break;
- case Instruction::Or:
- if (match(BO.getOperand(1), m_APInt(C)))
- // 'or x, C' produces [C, UINT_MAX].
- Lower = *C;
- break;
- case Instruction::AShr:
- if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
- // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
- Lower = APInt::getSignedMinValue(Width).ashr(*C);
- Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- unsigned ShiftAmount = Width - 1;
- if (!C->isZero() && IIQ.isExact(&BO))
- ShiftAmount = C->countTrailingZeros();
- if (C->isNegative()) {
- // 'ashr C, x' produces [C, C >> (Width-1)]
- Lower = *C;
- Upper = C->ashr(ShiftAmount) + 1;
- } else {
- // 'ashr C, x' produces [C >> (Width-1), C]
- Lower = C->ashr(ShiftAmount);
- Upper = *C + 1;
- }
- }
- break;
- case Instruction::LShr:
- if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
- // 'lshr x, C' produces [0, UINT_MAX >> C].
- Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- // 'lshr C, x' produces [C >> (Width-1), C].
- unsigned ShiftAmount = Width - 1;
- if (!C->isZero() && IIQ.isExact(&BO))
- ShiftAmount = C->countTrailingZeros();
- Lower = C->lshr(ShiftAmount);
- Upper = *C + 1;
- }
- break;
- case Instruction::Shl:
- if (match(BO.getOperand(0), m_APInt(C))) {
- if (IIQ.hasNoUnsignedWrap(&BO)) {
- // 'shl nuw C, x' produces [C, C << CLZ(C)]
- Lower = *C;
- Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
- } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
- if (C->isNegative()) {
- // 'shl nsw C, x' produces [C << CLO(C)-1, C]
- unsigned ShiftAmount = C->countLeadingOnes() - 1;
- Lower = C->shl(ShiftAmount);
- Upper = *C + 1;
- } else {
- // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
- unsigned ShiftAmount = C->countLeadingZeros() - 1;
- Lower = *C;
- Upper = C->shl(ShiftAmount) + 1;
- }
- }
- }
- break;
- case Instruction::SDiv:
- if (match(BO.getOperand(1), m_APInt(C))) {
- APInt IntMin = APInt::getSignedMinValue(Width);
- APInt IntMax = APInt::getSignedMaxValue(Width);
- if (C->isAllOnes()) {
- // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
- // where C != -1 and C != 0 and C != 1
- Lower = IntMin + 1;
- Upper = IntMax + 1;
- } else if (C->countLeadingZeros() < Width - 1) {
- // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
- // where C != -1 and C != 0 and C != 1
- Lower = IntMin.sdiv(*C);
- Upper = IntMax.sdiv(*C);
- if (Lower.sgt(Upper))
- std::swap(Lower, Upper);
- Upper = Upper + 1;
- assert(Upper != Lower && "Upper part of range has wrapped!");
- }
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- if (C->isMinSignedValue()) {
- // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
- Lower = *C;
- Upper = Lower.lshr(1) + 1;
- } else {
- // 'sdiv C, x' produces [-|C|, |C|].
- Upper = C->abs() + 1;
- Lower = (-Upper) + 1;
- }
- }
- break;
- case Instruction::UDiv:
- if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
- // 'udiv x, C' produces [0, UINT_MAX / C].
- Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- // 'udiv C, x' produces [0, C].
- Upper = *C + 1;
- }
- break;
- case Instruction::SRem:
- if (match(BO.getOperand(1), m_APInt(C))) {
- // 'srem x, C' produces (-|C|, |C|).
- Upper = C->abs();
- Lower = (-Upper) + 1;
- }
- break;
- case Instruction::URem:
- if (match(BO.getOperand(1), m_APInt(C)))
- // 'urem x, C' produces [0, C).
- Upper = *C;
- break;
- default:
- break;
- }
- }
- static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
- APInt &Upper) {
- unsigned Width = Lower.getBitWidth();
- const APInt *C;
- switch (II.getIntrinsicID()) {
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- // Maximum of set/clear bits is the bit width.
- assert(Lower == 0 && "Expected lower bound to be zero");
- Upper = Width + 1;
- break;
- case Intrinsic::uadd_sat:
- // uadd.sat(x, C) produces [C, UINT_MAX].
- if (match(II.getOperand(0), m_APInt(C)) ||
- match(II.getOperand(1), m_APInt(C)))
- Lower = *C;
- break;
- case Intrinsic::sadd_sat:
- if (match(II.getOperand(0), m_APInt(C)) ||
- match(II.getOperand(1), m_APInt(C))) {
- if (C->isNegative()) {
- // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
- Lower = APInt::getSignedMinValue(Width);
- Upper = APInt::getSignedMaxValue(Width) + *C + 1;
- } else {
- // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
- Lower = APInt::getSignedMinValue(Width) + *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- }
- }
- break;
- case Intrinsic::usub_sat:
- // usub.sat(C, x) produces [0, C].
- if (match(II.getOperand(0), m_APInt(C)))
- Upper = *C + 1;
- // usub.sat(x, C) produces [0, UINT_MAX - C].
- else if (match(II.getOperand(1), m_APInt(C)))
- Upper = APInt::getMaxValue(Width) - *C + 1;
- break;
- case Intrinsic::ssub_sat:
- if (match(II.getOperand(0), m_APInt(C))) {
- if (C->isNegative()) {
- // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
- Lower = APInt::getSignedMinValue(Width);
- Upper = *C - APInt::getSignedMinValue(Width) + 1;
- } else {
- // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
- Lower = *C - APInt::getSignedMaxValue(Width);
- Upper = APInt::getSignedMaxValue(Width) + 1;
- }
- } else if (match(II.getOperand(1), m_APInt(C))) {
- if (C->isNegative()) {
- // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
- Lower = APInt::getSignedMinValue(Width) - *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- } else {
- // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
- Lower = APInt::getSignedMinValue(Width);
- Upper = APInt::getSignedMaxValue(Width) - *C + 1;
- }
- }
- break;
- case Intrinsic::umin:
- case Intrinsic::umax:
- case Intrinsic::smin:
- case Intrinsic::smax:
- if (!match(II.getOperand(0), m_APInt(C)) &&
- !match(II.getOperand(1), m_APInt(C)))
- break;
- switch (II.getIntrinsicID()) {
- case Intrinsic::umin:
- Upper = *C + 1;
- break;
- case Intrinsic::umax:
- Lower = *C;
- break;
- case Intrinsic::smin:
- Lower = APInt::getSignedMinValue(Width);
- Upper = *C + 1;
- break;
- case Intrinsic::smax:
- Lower = *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- break;
- default:
- llvm_unreachable("Must be min/max intrinsic");
- }
- break;
- case Intrinsic::abs:
- // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
- // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
- if (match(II.getOperand(1), m_One()))
- Upper = APInt::getSignedMaxValue(Width) + 1;
- else
- Upper = APInt::getSignedMinValue(Width) + 1;
- break;
- default:
- break;
- }
- }
- static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
- APInt &Upper, const InstrInfoQuery &IIQ) {
- const Value *LHS = nullptr, *RHS = nullptr;
- SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
- if (R.Flavor == SPF_UNKNOWN)
- return;
- unsigned BitWidth = SI.getType()->getScalarSizeInBits();
- if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
- // If the negation part of the abs (in RHS) has the NSW flag,
- // then the result of abs(X) is [0..SIGNED_MAX],
- // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
- Lower = APInt::getZero(BitWidth);
- if (match(RHS, m_Neg(m_Specific(LHS))) &&
- IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
- Upper = APInt::getSignedMaxValue(BitWidth) + 1;
- else
- Upper = APInt::getSignedMinValue(BitWidth) + 1;
- return;
- }
- if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
- // The result of -abs(X) is <= 0.
- Lower = APInt::getSignedMinValue(BitWidth);
- Upper = APInt(BitWidth, 1);
- return;
- }
- const APInt *C;
- if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
- return;
- switch (R.Flavor) {
- case SPF_UMIN:
- Upper = *C + 1;
- break;
- case SPF_UMAX:
- Lower = *C;
- break;
- case SPF_SMIN:
- Lower = APInt::getSignedMinValue(BitWidth);
- Upper = *C + 1;
- break;
- case SPF_SMAX:
- Lower = *C;
- Upper = APInt::getSignedMaxValue(BitWidth) + 1;
- break;
- default:
- break;
- }
- }
- static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
- // The maximum representable value of a half is 65504. For floats the maximum
- // value is 3.4e38 which requires roughly 129 bits.
- unsigned BitWidth = I->getType()->getScalarSizeInBits();
- if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
- return;
- if (isa<FPToSIInst>(I) && BitWidth >= 17) {
- Lower = APInt(BitWidth, -65504);
- Upper = APInt(BitWidth, 65505);
- }
- if (isa<FPToUIInst>(I) && BitWidth >= 16) {
- // For a fptoui the lower limit is left as 0.
- Upper = APInt(BitWidth, 65505);
- }
- }
- ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
- bool UseInstrInfo, AssumptionCache *AC,
- const Instruction *CtxI,
- const DominatorTree *DT,
- unsigned Depth) {
- assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
- if (Depth == MaxAnalysisRecursionDepth)
- return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
- const APInt *C;
- if (match(V, m_APInt(C)))
- return ConstantRange(*C);
- InstrInfoQuery IIQ(UseInstrInfo);
- unsigned BitWidth = V->getType()->getScalarSizeInBits();
- APInt Lower = APInt(BitWidth, 0);
- APInt Upper = APInt(BitWidth, 0);
- if (auto *BO = dyn_cast<BinaryOperator>(V))
- setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
- else if (auto *II = dyn_cast<IntrinsicInst>(V))
- setLimitsForIntrinsic(*II, Lower, Upper);
- else if (auto *SI = dyn_cast<SelectInst>(V))
- setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
- else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
- setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
- ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
- if (auto *I = dyn_cast<Instruction>(V))
- if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
- CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
- if (CtxI && AC) {
- // Try to restrict the range based on information from assumptions.
- for (auto &AssumeVH : AC->assumptionsFor(V)) {
- if (!AssumeVH)
- continue;
- IntrinsicInst *I = cast<IntrinsicInst>(AssumeVH);
- assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
- "Got assumption for the wrong function!");
- if (!isValidAssumeForContext(I, CtxI, DT))
- continue;
- Value *Arg = I->getArgOperand(0);
- ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
- // Currently we just use information from comparisons.
- if (!Cmp || Cmp->getOperand(0) != V)
- continue;
- // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
- ConstantRange RHS =
- computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
- UseInstrInfo, AC, I, DT, Depth + 1);
- CR = CR.intersectWith(
- ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
- }
- }
- return CR;
- }
- static std::optional<int64_t>
- getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
- // Skip over the first indices.
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (unsigned i = 1; i != Idx; ++i, ++GTI)
- /*skip along*/;
- // Compute the offset implied by the rest of the indices.
- int64_t Offset = 0;
- for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!OpC)
- return std::nullopt;
- if (OpC->isZero())
- continue; // No offset.
- // Handle struct indices, which add their field offset to the pointer.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
- continue;
- }
- // Otherwise, we have a sequential type like an array or fixed-length
- // vector. Multiply the index by the ElementSize.
- TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
- if (Size.isScalable())
- return std::nullopt;
- Offset += Size.getFixedValue() * OpC->getSExtValue();
- }
- return Offset;
- }
- std::optional<int64_t> llvm::isPointerOffset(const Value *Ptr1,
- const Value *Ptr2,
- const DataLayout &DL) {
- APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
- APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
- Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
- Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
- // Handle the trivial case first.
- if (Ptr1 == Ptr2)
- return Offset2.getSExtValue() - Offset1.getSExtValue();
- const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
- const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
- // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
- // base. After that base, they may have some number of common (and
- // potentially variable) indices. After that they handle some constant
- // offset, which determines their offset from each other. At this point, we
- // handle no other case.
- if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
- GEP1->getSourceElementType() != GEP2->getSourceElementType())
- return std::nullopt;
- // Skip any common indices and track the GEP types.
- unsigned Idx = 1;
- for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
- if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
- break;
- auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
- auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
- if (!IOffset1 || !IOffset2)
- return std::nullopt;
- return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
- Offset1.getSExtValue();
- }
|