123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883 |
- //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/Passes.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/AssemblyAnnotationWriter.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/FormattedStream.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define DEBUG_TYPE "must-execute"
- const DenseMap<BasicBlock *, ColorVector> &
- LoopSafetyInfo::getBlockColors() const {
- return BlockColors;
- }
- void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
- ColorVector &ColorsForNewBlock = BlockColors[New];
- ColorVector &ColorsForOldBlock = BlockColors[Old];
- ColorsForNewBlock = ColorsForOldBlock;
- }
- bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
- (void)BB;
- return anyBlockMayThrow();
- }
- bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
- return MayThrow;
- }
- void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
- assert(CurLoop != nullptr && "CurLoop can't be null");
- BasicBlock *Header = CurLoop->getHeader();
- // Iterate over header and compute safety info.
- HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
- MayThrow = HeaderMayThrow;
- // Iterate over loop instructions and compute safety info.
- // Skip header as it has been computed and stored in HeaderMayThrow.
- // The first block in loopinfo.Blocks is guaranteed to be the header.
- assert(Header == *CurLoop->getBlocks().begin() &&
- "First block must be header");
- for (const BasicBlock *BB : llvm::drop_begin(CurLoop->blocks())) {
- MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(BB);
- if (MayThrow)
- break;
- }
- computeBlockColors(CurLoop);
- }
- bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
- return ICF.hasICF(BB);
- }
- bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
- return MayThrow;
- }
- void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
- assert(CurLoop != nullptr && "CurLoop can't be null");
- ICF.clear();
- MW.clear();
- MayThrow = false;
- // Figure out the fact that at least one block may throw.
- for (const auto &BB : CurLoop->blocks())
- if (ICF.hasICF(&*BB)) {
- MayThrow = true;
- break;
- }
- computeBlockColors(CurLoop);
- }
- void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
- const BasicBlock *BB) {
- ICF.insertInstructionTo(Inst, BB);
- MW.insertInstructionTo(Inst, BB);
- }
- void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
- ICF.removeInstruction(Inst);
- MW.removeInstruction(Inst);
- }
- void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
- // Compute funclet colors if we might sink/hoist in a function with a funclet
- // personality routine.
- Function *Fn = CurLoop->getHeader()->getParent();
- if (Fn->hasPersonalityFn())
- if (Constant *PersonalityFn = Fn->getPersonalityFn())
- if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
- BlockColors = colorEHFunclets(*Fn);
- }
- /// Return true if we can prove that the given ExitBlock is not reached on the
- /// first iteration of the given loop. That is, the backedge of the loop must
- /// be executed before the ExitBlock is executed in any dynamic execution trace.
- static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
- const DominatorTree *DT,
- const Loop *CurLoop) {
- auto *CondExitBlock = ExitBlock->getSinglePredecessor();
- if (!CondExitBlock)
- // expect unique exits
- return false;
- assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
- auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
- if (!BI || !BI->isConditional())
- return false;
- // If condition is constant and false leads to ExitBlock then we always
- // execute the true branch.
- if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
- return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
- auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
- if (!Cond)
- return false;
- // todo: this would be a lot more powerful if we used scev, but all the
- // plumbing is currently missing to pass a pointer in from the pass
- // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
- auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
- auto *RHS = Cond->getOperand(1);
- if (!LHS || LHS->getParent() != CurLoop->getHeader())
- return false;
- auto DL = ExitBlock->getModule()->getDataLayout();
- auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
- auto *SimpleValOrNull = simplifyCmpInst(Cond->getPredicate(),
- IVStart, RHS,
- {DL, /*TLI*/ nullptr,
- DT, /*AC*/ nullptr, BI});
- auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
- if (!SimpleCst)
- return false;
- if (ExitBlock == BI->getSuccessor(0))
- return SimpleCst->isZeroValue();
- assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
- return SimpleCst->isAllOnesValue();
- }
- /// Collect all blocks from \p CurLoop which lie on all possible paths from
- /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
- /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
- static void collectTransitivePredecessors(
- const Loop *CurLoop, const BasicBlock *BB,
- SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
- assert(Predecessors.empty() && "Garbage in predecessors set?");
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
- if (BB == CurLoop->getHeader())
- return;
- SmallVector<const BasicBlock *, 4> WorkList;
- for (const auto *Pred : predecessors(BB)) {
- Predecessors.insert(Pred);
- WorkList.push_back(Pred);
- }
- while (!WorkList.empty()) {
- auto *Pred = WorkList.pop_back_val();
- assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
- // We are not interested in backedges and we don't want to leave loop.
- if (Pred == CurLoop->getHeader())
- continue;
- // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
- // blocks of this inner loop, even those that are always executed AFTER the
- // BB. It may make our analysis more conservative than it could be, see test
- // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
- // We can ignore backedge of all loops containing BB to get a sligtly more
- // optimistic result.
- for (const auto *PredPred : predecessors(Pred))
- if (Predecessors.insert(PredPred).second)
- WorkList.push_back(PredPred);
- }
- }
- bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
- const BasicBlock *BB,
- const DominatorTree *DT) const {
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
- // Fast path: header is always reached once the loop is entered.
- if (BB == CurLoop->getHeader())
- return true;
- // Collect all transitive predecessors of BB in the same loop. This set will
- // be a subset of the blocks within the loop.
- SmallPtrSet<const BasicBlock *, 4> Predecessors;
- collectTransitivePredecessors(CurLoop, BB, Predecessors);
- // Bail out if a latch block is part of the predecessor set. In this case
- // we may take the backedge to the header and not execute other latch
- // successors.
- for (const BasicBlock *Pred : predecessors(CurLoop->getHeader()))
- // Predecessors only contains loop blocks, so we don't have to worry about
- // preheader predecessors here.
- if (Predecessors.contains(Pred))
- return false;
- // Make sure that all successors of, all predecessors of BB which are not
- // dominated by BB, are either:
- // 1) BB,
- // 2) Also predecessors of BB,
- // 3) Exit blocks which are not taken on 1st iteration.
- // Memoize blocks we've already checked.
- SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
- for (const auto *Pred : Predecessors) {
- // Predecessor block may throw, so it has a side exit.
- if (blockMayThrow(Pred))
- return false;
- // BB dominates Pred, so if Pred runs, BB must run.
- // This is true when Pred is a loop latch.
- if (DT->dominates(BB, Pred))
- continue;
- for (const auto *Succ : successors(Pred))
- if (CheckedSuccessors.insert(Succ).second &&
- Succ != BB && !Predecessors.count(Succ))
- // By discharging conditions that are not executed on the 1st iteration,
- // we guarantee that *at least* on the first iteration all paths from
- // header that *may* execute will lead us to the block of interest. So
- // that if we had virtually peeled one iteration away, in this peeled
- // iteration the set of predecessors would contain only paths from
- // header to BB without any exiting edges that may execute.
- //
- // TODO: We only do it for exiting edges currently. We could use the
- // same function to skip some of the edges within the loop if we know
- // that they will not be taken on the 1st iteration.
- //
- // TODO: If we somehow know the number of iterations in loop, the same
- // check may be done for any arbitrary N-th iteration as long as N is
- // not greater than minimum number of iterations in this loop.
- if (CurLoop->contains(Succ) ||
- !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
- return false;
- }
- // All predecessors can only lead us to BB.
- return true;
- }
- /// Returns true if the instruction in a loop is guaranteed to execute at least
- /// once.
- bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop) const {
- // If the instruction is in the header block for the loop (which is very
- // common), it is always guaranteed to dominate the exit blocks. Since this
- // is a common case, and can save some work, check it now.
- if (Inst.getParent() == CurLoop->getHeader())
- // If there's a throw in the header block, we can't guarantee we'll reach
- // Inst unless we can prove that Inst comes before the potential implicit
- // exit. At the moment, we use a (cheap) hack for the common case where
- // the instruction of interest is the first one in the block.
- return !HeaderMayThrow ||
- Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
- // If there is a path from header to exit or latch that doesn't lead to our
- // instruction's block, return false.
- return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
- }
- bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop) const {
- return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
- allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
- }
- bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
- const Loop *CurLoop) const {
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
- // Fast path: there are no instructions before header.
- if (BB == CurLoop->getHeader())
- return true;
- // Collect all transitive predecessors of BB in the same loop. This set will
- // be a subset of the blocks within the loop.
- SmallPtrSet<const BasicBlock *, 4> Predecessors;
- collectTransitivePredecessors(CurLoop, BB, Predecessors);
- // Find if there any instruction in either predecessor that could write
- // to memory.
- for (const auto *Pred : Predecessors)
- if (MW.mayWriteToMemory(Pred))
- return false;
- return true;
- }
- bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
- const Loop *CurLoop) const {
- auto *BB = I.getParent();
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
- return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
- doesNotWriteMemoryBefore(BB, CurLoop);
- }
- namespace {
- struct MustExecutePrinter : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- MustExecutePrinter() : FunctionPass(ID) {
- initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- }
- bool runOnFunction(Function &F) override;
- };
- struct MustBeExecutedContextPrinter : public ModulePass {
- static char ID;
- MustBeExecutedContextPrinter() : ModulePass(ID) {
- initializeMustBeExecutedContextPrinterPass(
- *PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- }
- bool runOnModule(Module &M) override;
- };
- }
- char MustExecutePrinter::ID = 0;
- INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
- "Instructions which execute on loop entry", false, true)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
- "Instructions which execute on loop entry", false, true)
- FunctionPass *llvm::createMustExecutePrinter() {
- return new MustExecutePrinter();
- }
- char MustBeExecutedContextPrinter::ID = 0;
- INITIALIZE_PASS_BEGIN(MustBeExecutedContextPrinter,
- "print-must-be-executed-contexts",
- "print the must-be-executed-context for all instructions",
- false, true)
- INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
- "print-must-be-executed-contexts",
- "print the must-be-executed-context for all instructions",
- false, true)
- ModulePass *llvm::createMustBeExecutedContextPrinter() {
- return new MustBeExecutedContextPrinter();
- }
- bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
- // We provide non-PM analysis here because the old PM doesn't like to query
- // function passes from a module pass.
- SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
- SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
- SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;
- GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
- DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
- LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
- return LIs.back().get();
- };
- GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
- DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
- return DTs.back().get();
- };
- GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
- PDTs.push_back(
- std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
- return PDTs.back().get();
- };
- MustBeExecutedContextExplorer Explorer(
- /* ExploreInterBlock */ true,
- /* ExploreCFGForward */ true,
- /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
- for (Function &F : M) {
- for (Instruction &I : instructions(F)) {
- dbgs() << "-- Explore context of: " << I << "\n";
- for (const Instruction *CI : Explorer.range(&I))
- dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
- << "\n";
- }
- }
- return false;
- }
- static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
- // TODO: merge these two routines. For the moment, we display the best
- // result obtained by *either* implementation. This is a bit unfair since no
- // caller actually gets the full power at the moment.
- SimpleLoopSafetyInfo LSI;
- LSI.computeLoopSafetyInfo(L);
- return LSI.isGuaranteedToExecute(I, DT, L) ||
- isGuaranteedToExecuteForEveryIteration(&I, L);
- }
- namespace {
- /// An assembly annotator class to print must execute information in
- /// comments.
- class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
- DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
- public:
- MustExecuteAnnotatedWriter(const Function &F,
- DominatorTree &DT, LoopInfo &LI) {
- for (const auto &I: instructions(F)) {
- Loop *L = LI.getLoopFor(I.getParent());
- while (L) {
- if (isMustExecuteIn(I, L, &DT)) {
- MustExec[&I].push_back(L);
- }
- L = L->getParentLoop();
- };
- }
- }
- MustExecuteAnnotatedWriter(const Module &M,
- DominatorTree &DT, LoopInfo &LI) {
- for (const auto &F : M)
- for (const auto &I: instructions(F)) {
- Loop *L = LI.getLoopFor(I.getParent());
- while (L) {
- if (isMustExecuteIn(I, L, &DT)) {
- MustExec[&I].push_back(L);
- }
- L = L->getParentLoop();
- };
- }
- }
- void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
- if (!MustExec.count(&V))
- return;
- const auto &Loops = MustExec.lookup(&V);
- const auto NumLoops = Loops.size();
- if (NumLoops > 1)
- OS << " ; (mustexec in " << NumLoops << " loops: ";
- else
- OS << " ; (mustexec in: ";
- ListSeparator LS;
- for (const Loop *L : Loops)
- OS << LS << L->getHeader()->getName();
- OS << ")";
- }
- };
- } // namespace
- bool MustExecutePrinter::runOnFunction(Function &F) {
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- MustExecuteAnnotatedWriter Writer(F, DT, LI);
- F.print(dbgs(), &Writer);
- return false;
- }
- /// Return true if \p L might be an endless loop.
- static bool maybeEndlessLoop(const Loop &L) {
- if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
- return false;
- // TODO: Actually try to prove it is not.
- // TODO: If maybeEndlessLoop is going to be expensive, cache it.
- return true;
- }
- bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
- if (!LI)
- return false;
- using RPOTraversal = ReversePostOrderTraversal<const Function *>;
- RPOTraversal FuncRPOT(&F);
- return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
- const LoopInfo>(FuncRPOT, *LI);
- }
- /// Lookup \p Key in \p Map and return the result, potentially after
- /// initializing the optional through \p Fn(\p args).
- template <typename K, typename V, typename FnTy, typename... ArgsTy>
- static V getOrCreateCachedOptional(K Key, DenseMap<K, std::optional<V>> &Map,
- FnTy &&Fn, ArgsTy &&...args) {
- std::optional<V> &OptVal = Map[Key];
- if (!OptVal)
- OptVal = Fn(std::forward<ArgsTy>(args)...);
- return *OptVal;
- }
- const BasicBlock *
- MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
- const LoopInfo *LI = LIGetter(*InitBB->getParent());
- const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
- LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
- << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
- const Function &F = *InitBB->getParent();
- const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
- const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
- bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
- (L && !maybeEndlessLoop(*L))) &&
- F.doesNotThrow();
- LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
- << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
- << "\n");
- // Determine the adjacent blocks in the given direction but exclude (self)
- // loops under certain circumstances.
- SmallVector<const BasicBlock *, 8> Worklist;
- for (const BasicBlock *SuccBB : successors(InitBB)) {
- bool IsLatch = SuccBB == HeaderBB;
- // Loop latches are ignored in forward propagation if the loop cannot be
- // endless and may not throw: control has to go somewhere.
- if (!WillReturnAndNoThrow || !IsLatch)
- Worklist.push_back(SuccBB);
- }
- LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
- // If there are no other adjacent blocks, there is no join point.
- if (Worklist.empty())
- return nullptr;
- // If there is one adjacent block, it is the join point.
- if (Worklist.size() == 1)
- return Worklist[0];
- // Try to determine a join block through the help of the post-dominance
- // tree. If no tree was provided, we perform simple pattern matching for one
- // block conditionals and one block loops only.
- const BasicBlock *JoinBB = nullptr;
- if (PDT)
- if (const auto *InitNode = PDT->getNode(InitBB))
- if (const auto *IDomNode = InitNode->getIDom())
- JoinBB = IDomNode->getBlock();
- if (!JoinBB && Worklist.size() == 2) {
- const BasicBlock *Succ0 = Worklist[0];
- const BasicBlock *Succ1 = Worklist[1];
- const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
- const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
- if (Succ0UniqueSucc == InitBB) {
- // InitBB -> Succ0 -> InitBB
- // InitBB -> Succ1 = JoinBB
- JoinBB = Succ1;
- } else if (Succ1UniqueSucc == InitBB) {
- // InitBB -> Succ1 -> InitBB
- // InitBB -> Succ0 = JoinBB
- JoinBB = Succ0;
- } else if (Succ0 == Succ1UniqueSucc) {
- // InitBB -> Succ0 = JoinBB
- // InitBB -> Succ1 -> Succ0 = JoinBB
- JoinBB = Succ0;
- } else if (Succ1 == Succ0UniqueSucc) {
- // InitBB -> Succ0 -> Succ1 = JoinBB
- // InitBB -> Succ1 = JoinBB
- JoinBB = Succ1;
- } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
- // InitBB -> Succ0 -> JoinBB
- // InitBB -> Succ1 -> JoinBB
- JoinBB = Succ0UniqueSucc;
- }
- }
- if (!JoinBB && L)
- JoinBB = L->getUniqueExitBlock();
- if (!JoinBB)
- return nullptr;
- LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
- // In forward direction we check if control will for sure reach JoinBB from
- // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
- // are: infinite loops and instructions that do not necessarily transfer
- // execution to their successor. To check for them we traverse the CFG from
- // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
- // If we know the function is "will-return" and "no-throw" there is no need
- // for futher checks.
- if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
- auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
- return isGuaranteedToTransferExecutionToSuccessor(BB);
- };
- SmallPtrSet<const BasicBlock *, 16> Visited;
- while (!Worklist.empty()) {
- const BasicBlock *ToBB = Worklist.pop_back_val();
- if (ToBB == JoinBB)
- continue;
- // Make sure all loops in-between are finite.
- if (!Visited.insert(ToBB).second) {
- if (!F.hasFnAttribute(Attribute::WillReturn)) {
- if (!LI)
- return nullptr;
- bool MayContainIrreducibleControl = getOrCreateCachedOptional(
- &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
- if (MayContainIrreducibleControl)
- return nullptr;
- const Loop *L = LI->getLoopFor(ToBB);
- if (L && maybeEndlessLoop(*L))
- return nullptr;
- }
- continue;
- }
- // Make sure the block has no instructions that could stop control
- // transfer.
- bool TransfersExecution = getOrCreateCachedOptional(
- ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
- if (!TransfersExecution)
- return nullptr;
- append_range(Worklist, successors(ToBB));
- }
- }
- LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
- return JoinBB;
- }
- const BasicBlock *
- MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
- const LoopInfo *LI = LIGetter(*InitBB->getParent());
- const DominatorTree *DT = DTGetter(*InitBB->getParent());
- LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
- << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));
- // Try to determine a join block through the help of the dominance tree. If no
- // tree was provided, we perform simple pattern matching for one block
- // conditionals only.
- if (DT)
- if (const auto *InitNode = DT->getNode(InitBB))
- if (const auto *IDomNode = InitNode->getIDom())
- return IDomNode->getBlock();
- const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
- const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;
- // Determine the predecessor blocks but ignore backedges.
- SmallVector<const BasicBlock *, 8> Worklist;
- for (const BasicBlock *PredBB : predecessors(InitBB)) {
- bool IsBackedge =
- (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
- // Loop backedges are ignored in backwards propagation: control has to come
- // from somewhere.
- if (!IsBackedge)
- Worklist.push_back(PredBB);
- }
- // If there are no other predecessor blocks, there is no join point.
- if (Worklist.empty())
- return nullptr;
- // If there is one predecessor block, it is the join point.
- if (Worklist.size() == 1)
- return Worklist[0];
- const BasicBlock *JoinBB = nullptr;
- if (Worklist.size() == 2) {
- const BasicBlock *Pred0 = Worklist[0];
- const BasicBlock *Pred1 = Worklist[1];
- const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
- const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
- if (Pred0 == Pred1UniquePred) {
- // InitBB <- Pred0 = JoinBB
- // InitBB <- Pred1 <- Pred0 = JoinBB
- JoinBB = Pred0;
- } else if (Pred1 == Pred0UniquePred) {
- // InitBB <- Pred0 <- Pred1 = JoinBB
- // InitBB <- Pred1 = JoinBB
- JoinBB = Pred1;
- } else if (Pred0UniquePred == Pred1UniquePred) {
- // InitBB <- Pred0 <- JoinBB
- // InitBB <- Pred1 <- JoinBB
- JoinBB = Pred0UniquePred;
- }
- }
- if (!JoinBB && L)
- JoinBB = L->getHeader();
- // In backwards direction there is no need to show termination of previous
- // instructions. If they do not terminate, the code afterward is dead, making
- // any information/transformation correct anyway.
- return JoinBB;
- }
- const Instruction *
- MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
- MustBeExecutedIterator &It, const Instruction *PP) {
- if (!PP)
- return PP;
- LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
- // If we explore only inside a given basic block we stop at terminators.
- if (!ExploreInterBlock && PP->isTerminator()) {
- LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
- return nullptr;
- }
- // If we do not traverse the call graph we check if we can make progress in
- // the current function. First, check if the instruction is guaranteed to
- // transfer execution to the successor.
- bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
- if (!TransfersExecution)
- return nullptr;
- // If this is not a terminator we know that there is a single instruction
- // after this one that is executed next if control is transfered. If not,
- // we can try to go back to a call site we entered earlier. If none exists, we
- // do not know any instruction that has to be executd next.
- if (!PP->isTerminator()) {
- const Instruction *NextPP = PP->getNextNode();
- LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
- return NextPP;
- }
- // Finally, we have to handle terminators, trivial ones first.
- assert(PP->isTerminator() && "Expected a terminator!");
- // A terminator without a successor is not handled yet.
- if (PP->getNumSuccessors() == 0) {
- LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
- return nullptr;
- }
- // A terminator with a single successor, we will continue at the beginning of
- // that one.
- if (PP->getNumSuccessors() == 1) {
- LLVM_DEBUG(
- dbgs() << "\tUnconditional terminator, continue with successor\n");
- return &PP->getSuccessor(0)->front();
- }
- // Multiple successors mean we need to find the join point where control flow
- // converges again. We use the findForwardJoinPoint helper function with
- // information about the function and helper analyses, if available.
- if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
- return &JoinBB->front();
- LLVM_DEBUG(dbgs() << "\tNo join point found\n");
- return nullptr;
- }
- const Instruction *
- MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
- MustBeExecutedIterator &It, const Instruction *PP) {
- if (!PP)
- return PP;
- bool IsFirst = !(PP->getPrevNode());
- LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
- << (IsFirst ? " [IsFirst]" : "") << "\n");
- // If we explore only inside a given basic block we stop at the first
- // instruction.
- if (!ExploreInterBlock && IsFirst) {
- LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
- return nullptr;
- }
- // The block and function that contains the current position.
- const BasicBlock *PPBlock = PP->getParent();
- // If we are inside a block we know what instruction was executed before, the
- // previous one.
- if (!IsFirst) {
- const Instruction *PrevPP = PP->getPrevNode();
- LLVM_DEBUG(
- dbgs() << "\tIntermediate instruction, continue with previous\n");
- // We did not enter a callee so we simply return the previous instruction.
- return PrevPP;
- }
- // Finally, we have to handle the case where the program point is the first in
- // a block but not in the function. We use the findBackwardJoinPoint helper
- // function with information about the function and helper analyses, if
- // available.
- if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
- return &JoinBB->back();
- LLVM_DEBUG(dbgs() << "\tNo join point found\n");
- return nullptr;
- }
- MustBeExecutedIterator::MustBeExecutedIterator(
- MustBeExecutedContextExplorer &Explorer, const Instruction *I)
- : Explorer(Explorer), CurInst(I) {
- reset(I);
- }
- void MustBeExecutedIterator::reset(const Instruction *I) {
- Visited.clear();
- resetInstruction(I);
- }
- void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
- CurInst = I;
- Head = Tail = nullptr;
- Visited.insert({I, ExplorationDirection::FORWARD});
- Visited.insert({I, ExplorationDirection::BACKWARD});
- if (Explorer.ExploreCFGForward)
- Head = I;
- if (Explorer.ExploreCFGBackward)
- Tail = I;
- }
- const Instruction *MustBeExecutedIterator::advance() {
- assert(CurInst && "Cannot advance an end iterator!");
- Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
- if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
- return Head;
- Head = nullptr;
- Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
- if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
- return Tail;
- Tail = nullptr;
- return nullptr;
- }
- PreservedAnalyses MustExecutePrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- MustExecuteAnnotatedWriter Writer(F, DT, LI);
- F.print(OS, &Writer);
- return PreservedAnalyses::all();
- }
- PreservedAnalyses
- MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- GetterTy<const LoopInfo> LIGetter = [&](const Function &F) {
- return &FAM.getResult<LoopAnalysis>(const_cast<Function &>(F));
- };
- GetterTy<const DominatorTree> DTGetter = [&](const Function &F) {
- return &FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F));
- };
- GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) {
- return &FAM.getResult<PostDominatorTreeAnalysis>(const_cast<Function &>(F));
- };
- MustBeExecutedContextExplorer Explorer(
- /* ExploreInterBlock */ true,
- /* ExploreCFGForward */ true,
- /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
- for (Function &F : M) {
- for (Instruction &I : instructions(F)) {
- OS << "-- Explore context of: " << I << "\n";
- for (const Instruction *CI : Explorer.range(&I))
- OS << " [F: " << CI->getFunction()->getName() << "] " << *CI << "\n";
- }
- }
- return PreservedAnalyses::all();
- }
|