1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734 |
- //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // The implementation for the loop memory dependence that was originally
- // developed for the loop vectorizer.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/EquivalenceClasses.h"
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "loop-accesses"
- static cl::opt<unsigned, true>
- VectorizationFactor("force-vector-width", cl::Hidden,
- cl::desc("Sets the SIMD width. Zero is autoselect."),
- cl::location(VectorizerParams::VectorizationFactor));
- unsigned VectorizerParams::VectorizationFactor;
- static cl::opt<unsigned, true>
- VectorizationInterleave("force-vector-interleave", cl::Hidden,
- cl::desc("Sets the vectorization interleave count. "
- "Zero is autoselect."),
- cl::location(
- VectorizerParams::VectorizationInterleave));
- unsigned VectorizerParams::VectorizationInterleave;
- static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
- "runtime-memory-check-threshold", cl::Hidden,
- cl::desc("When performing memory disambiguation checks at runtime do not "
- "generate more than this number of comparisons (default = 8)."),
- cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
- unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
- /// The maximum iterations used to merge memory checks
- static cl::opt<unsigned> MemoryCheckMergeThreshold(
- "memory-check-merge-threshold", cl::Hidden,
- cl::desc("Maximum number of comparisons done when trying to merge "
- "runtime memory checks. (default = 100)"),
- cl::init(100));
- /// Maximum SIMD width.
- const unsigned VectorizerParams::MaxVectorWidth = 64;
- /// We collect dependences up to this threshold.
- static cl::opt<unsigned>
- MaxDependences("max-dependences", cl::Hidden,
- cl::desc("Maximum number of dependences collected by "
- "loop-access analysis (default = 100)"),
- cl::init(100));
- /// This enables versioning on the strides of symbolically striding memory
- /// accesses in code like the following.
- /// for (i = 0; i < N; ++i)
- /// A[i * Stride1] += B[i * Stride2] ...
- ///
- /// Will be roughly translated to
- /// if (Stride1 == 1 && Stride2 == 1) {
- /// for (i = 0; i < N; i+=4)
- /// A[i:i+3] += ...
- /// } else
- /// ...
- static cl::opt<bool> EnableMemAccessVersioning(
- "enable-mem-access-versioning", cl::init(true), cl::Hidden,
- cl::desc("Enable symbolic stride memory access versioning"));
- /// Enable store-to-load forwarding conflict detection. This option can
- /// be disabled for correctness testing.
- static cl::opt<bool> EnableForwardingConflictDetection(
- "store-to-load-forwarding-conflict-detection", cl::Hidden,
- cl::desc("Enable conflict detection in loop-access analysis"),
- cl::init(true));
- static cl::opt<unsigned> MaxForkedSCEVDepth(
- "max-forked-scev-depth", cl::Hidden,
- cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
- cl::init(5));
- bool VectorizerParams::isInterleaveForced() {
- return ::VectorizationInterleave.getNumOccurrences() > 0;
- }
- Value *llvm::stripIntegerCast(Value *V) {
- if (auto *CI = dyn_cast<CastInst>(V))
- if (CI->getOperand(0)->getType()->isIntegerTy())
- return CI->getOperand(0);
- return V;
- }
- const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
- const ValueToValueMap &PtrToStride,
- Value *Ptr) {
- const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
- // If there is an entry in the map return the SCEV of the pointer with the
- // symbolic stride replaced by one.
- ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
- if (SI == PtrToStride.end())
- // For a non-symbolic stride, just return the original expression.
- return OrigSCEV;
- Value *StrideVal = stripIntegerCast(SI->second);
- ScalarEvolution *SE = PSE.getSE();
- const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
- const auto *CT =
- static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
- PSE.addPredicate(*SE->getEqualPredicate(U, CT));
- auto *Expr = PSE.getSCEV(Ptr);
- LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
- << " by: " << *Expr << "\n");
- return Expr;
- }
- RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
- unsigned Index, RuntimePointerChecking &RtCheck)
- : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
- AddressSpace(RtCheck.Pointers[Index]
- .PointerValue->getType()
- ->getPointerAddressSpace()),
- NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
- Members.push_back(Index);
- }
- /// Calculate Start and End points of memory access.
- /// Let's assume A is the first access and B is a memory access on N-th loop
- /// iteration. Then B is calculated as:
- /// B = A + Step*N .
- /// Step value may be positive or negative.
- /// N is a calculated back-edge taken count:
- /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
- /// Start and End points are calculated in the following way:
- /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
- /// where SizeOfElt is the size of single memory access in bytes.
- ///
- /// There is no conflict when the intervals are disjoint:
- /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
- void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
- Type *AccessTy, bool WritePtr,
- unsigned DepSetId, unsigned ASId,
- PredicatedScalarEvolution &PSE,
- bool NeedsFreeze) {
- ScalarEvolution *SE = PSE.getSE();
- const SCEV *ScStart;
- const SCEV *ScEnd;
- if (SE->isLoopInvariant(PtrExpr, Lp)) {
- ScStart = ScEnd = PtrExpr;
- } else {
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
- assert(AR && "Invalid addrec expression");
- const SCEV *Ex = PSE.getBackedgeTakenCount();
- ScStart = AR->getStart();
- ScEnd = AR->evaluateAtIteration(Ex, *SE);
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // For expressions with negative step, the upper bound is ScStart and the
- // lower bound is ScEnd.
- if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
- if (CStep->getValue()->isNegative())
- std::swap(ScStart, ScEnd);
- } else {
- // Fallback case: the step is not constant, but we can still
- // get the upper and lower bounds of the interval by using min/max
- // expressions.
- ScStart = SE->getUMinExpr(ScStart, ScEnd);
- ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
- }
- }
- // Add the size of the pointed element to ScEnd.
- auto &DL = Lp->getHeader()->getModule()->getDataLayout();
- Type *IdxTy = DL.getIndexType(Ptr->getType());
- const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
- ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
- Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
- NeedsFreeze);
- }
- void RuntimePointerChecking::tryToCreateDiffCheck(
- const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
- if (!CanUseDiffCheck)
- return;
- // If either group contains multiple different pointers, bail out.
- // TODO: Support multiple pointers by using the minimum or maximum pointer,
- // depending on src & sink.
- if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
- CanUseDiffCheck = false;
- return;
- }
- PointerInfo *Src = &Pointers[CGI.Members[0]];
- PointerInfo *Sink = &Pointers[CGJ.Members[0]];
- // If either pointer is read and written, multiple checks may be needed. Bail
- // out.
- if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
- !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
- CanUseDiffCheck = false;
- return;
- }
- ArrayRef<unsigned> AccSrc =
- DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
- ArrayRef<unsigned> AccSink =
- DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
- // If either pointer is accessed multiple times, there may not be a clear
- // src/sink relation. Bail out for now.
- if (AccSrc.size() != 1 || AccSink.size() != 1) {
- CanUseDiffCheck = false;
- return;
- }
- // If the sink is accessed before src, swap src/sink.
- if (AccSink[0] < AccSrc[0])
- std::swap(Src, Sink);
- auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
- auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
- if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
- SinkAR->getLoop() != DC.getInnermostLoop()) {
- CanUseDiffCheck = false;
- return;
- }
- SmallVector<Instruction *, 4> SrcInsts =
- DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
- SmallVector<Instruction *, 4> SinkInsts =
- DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
- Type *SrcTy = getLoadStoreType(SrcInsts[0]);
- Type *DstTy = getLoadStoreType(SinkInsts[0]);
- if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
- CanUseDiffCheck = false;
- return;
- }
- const DataLayout &DL =
- SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
- unsigned AllocSize =
- std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
- // Only matching constant steps matching the AllocSize are supported at the
- // moment. This simplifies the difference computation. Can be extended in the
- // future.
- auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
- if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
- Step->getAPInt().abs() != AllocSize) {
- CanUseDiffCheck = false;
- return;
- }
- IntegerType *IntTy =
- IntegerType::get(Src->PointerValue->getContext(),
- DL.getPointerSizeInBits(CGI.AddressSpace));
- // When counting down, the dependence distance needs to be swapped.
- if (Step->getValue()->isNegative())
- std::swap(SinkAR, SrcAR);
- const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
- const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
- if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
- isa<SCEVCouldNotCompute>(SrcStartInt)) {
- CanUseDiffCheck = false;
- return;
- }
- DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
- Src->NeedsFreeze || Sink->NeedsFreeze);
- }
- SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
- SmallVector<RuntimePointerCheck, 4> Checks;
- for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
- for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
- const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
- const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
- if (needsChecking(CGI, CGJ)) {
- tryToCreateDiffCheck(CGI, CGJ);
- Checks.push_back(std::make_pair(&CGI, &CGJ));
- }
- }
- }
- return Checks;
- }
- void RuntimePointerChecking::generateChecks(
- MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
- assert(Checks.empty() && "Checks is not empty");
- groupChecks(DepCands, UseDependencies);
- Checks = generateChecks();
- }
- bool RuntimePointerChecking::needsChecking(
- const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
- for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
- for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
- if (needsChecking(M.Members[I], N.Members[J]))
- return true;
- return false;
- }
- /// Compare \p I and \p J and return the minimum.
- /// Return nullptr in case we couldn't find an answer.
- static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
- ScalarEvolution *SE) {
- const SCEV *Diff = SE->getMinusSCEV(J, I);
- const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
- if (!C)
- return nullptr;
- if (C->getValue()->isNegative())
- return J;
- return I;
- }
- bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
- RuntimePointerChecking &RtCheck) {
- return addPointer(
- Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
- RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
- RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
- }
- bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
- const SCEV *End, unsigned AS,
- bool NeedsFreeze,
- ScalarEvolution &SE) {
- assert(AddressSpace == AS &&
- "all pointers in a checking group must be in the same address space");
- // Compare the starts and ends with the known minimum and maximum
- // of this set. We need to know how we compare against the min/max
- // of the set in order to be able to emit memchecks.
- const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
- if (!Min0)
- return false;
- const SCEV *Min1 = getMinFromExprs(End, High, &SE);
- if (!Min1)
- return false;
- // Update the low bound expression if we've found a new min value.
- if (Min0 == Start)
- Low = Start;
- // Update the high bound expression if we've found a new max value.
- if (Min1 != End)
- High = End;
- Members.push_back(Index);
- this->NeedsFreeze |= NeedsFreeze;
- return true;
- }
- void RuntimePointerChecking::groupChecks(
- MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
- // We build the groups from dependency candidates equivalence classes
- // because:
- // - We know that pointers in the same equivalence class share
- // the same underlying object and therefore there is a chance
- // that we can compare pointers
- // - We wouldn't be able to merge two pointers for which we need
- // to emit a memcheck. The classes in DepCands are already
- // conveniently built such that no two pointers in the same
- // class need checking against each other.
- // We use the following (greedy) algorithm to construct the groups
- // For every pointer in the equivalence class:
- // For each existing group:
- // - if the difference between this pointer and the min/max bounds
- // of the group is a constant, then make the pointer part of the
- // group and update the min/max bounds of that group as required.
- CheckingGroups.clear();
- // If we need to check two pointers to the same underlying object
- // with a non-constant difference, we shouldn't perform any pointer
- // grouping with those pointers. This is because we can easily get
- // into cases where the resulting check would return false, even when
- // the accesses are safe.
- //
- // The following example shows this:
- // for (i = 0; i < 1000; ++i)
- // a[5000 + i * m] = a[i] + a[i + 9000]
- //
- // Here grouping gives a check of (5000, 5000 + 1000 * m) against
- // (0, 10000) which is always false. However, if m is 1, there is no
- // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
- // us to perform an accurate check in this case.
- //
- // The above case requires that we have an UnknownDependence between
- // accesses to the same underlying object. This cannot happen unless
- // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
- // is also false. In this case we will use the fallback path and create
- // separate checking groups for all pointers.
- // If we don't have the dependency partitions, construct a new
- // checking pointer group for each pointer. This is also required
- // for correctness, because in this case we can have checking between
- // pointers to the same underlying object.
- if (!UseDependencies) {
- for (unsigned I = 0; I < Pointers.size(); ++I)
- CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
- return;
- }
- unsigned TotalComparisons = 0;
- DenseMap<Value *, SmallVector<unsigned>> PositionMap;
- for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
- auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
- Iter.first->second.push_back(Index);
- }
- // We need to keep track of what pointers we've already seen so we
- // don't process them twice.
- SmallSet<unsigned, 2> Seen;
- // Go through all equivalence classes, get the "pointer check groups"
- // and add them to the overall solution. We use the order in which accesses
- // appear in 'Pointers' to enforce determinism.
- for (unsigned I = 0; I < Pointers.size(); ++I) {
- // We've seen this pointer before, and therefore already processed
- // its equivalence class.
- if (Seen.count(I))
- continue;
- MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
- Pointers[I].IsWritePtr);
- SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
- auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
- // Because DepCands is constructed by visiting accesses in the order in
- // which they appear in alias sets (which is deterministic) and the
- // iteration order within an equivalence class member is only dependent on
- // the order in which unions and insertions are performed on the
- // equivalence class, the iteration order is deterministic.
- for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
- MI != ME; ++MI) {
- auto PointerI = PositionMap.find(MI->getPointer());
- assert(PointerI != PositionMap.end() &&
- "pointer in equivalence class not found in PositionMap");
- for (unsigned Pointer : PointerI->second) {
- bool Merged = false;
- // Mark this pointer as seen.
- Seen.insert(Pointer);
- // Go through all the existing sets and see if we can find one
- // which can include this pointer.
- for (RuntimeCheckingPtrGroup &Group : Groups) {
- // Don't perform more than a certain amount of comparisons.
- // This should limit the cost of grouping the pointers to something
- // reasonable. If we do end up hitting this threshold, the algorithm
- // will create separate groups for all remaining pointers.
- if (TotalComparisons > MemoryCheckMergeThreshold)
- break;
- TotalComparisons++;
- if (Group.addPointer(Pointer, *this)) {
- Merged = true;
- break;
- }
- }
- if (!Merged)
- // We couldn't add this pointer to any existing set or the threshold
- // for the number of comparisons has been reached. Create a new group
- // to hold the current pointer.
- Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
- }
- }
- // We've computed the grouped checks for this partition.
- // Save the results and continue with the next one.
- llvm::copy(Groups, std::back_inserter(CheckingGroups));
- }
- }
- bool RuntimePointerChecking::arePointersInSamePartition(
- const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
- unsigned PtrIdx2) {
- return (PtrToPartition[PtrIdx1] != -1 &&
- PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
- }
- bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
- const PointerInfo &PointerI = Pointers[I];
- const PointerInfo &PointerJ = Pointers[J];
- // No need to check if two readonly pointers intersect.
- if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
- return false;
- // Only need to check pointers between two different dependency sets.
- if (PointerI.DependencySetId == PointerJ.DependencySetId)
- return false;
- // Only need to check pointers in the same alias set.
- if (PointerI.AliasSetId != PointerJ.AliasSetId)
- return false;
- return true;
- }
- void RuntimePointerChecking::printChecks(
- raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
- unsigned Depth) const {
- unsigned N = 0;
- for (const auto &Check : Checks) {
- const auto &First = Check.first->Members, &Second = Check.second->Members;
- OS.indent(Depth) << "Check " << N++ << ":\n";
- OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
- for (unsigned K = 0; K < First.size(); ++K)
- OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
- OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
- for (unsigned K = 0; K < Second.size(); ++K)
- OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
- }
- }
- void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
- OS.indent(Depth) << "Run-time memory checks:\n";
- printChecks(OS, Checks, Depth);
- OS.indent(Depth) << "Grouped accesses:\n";
- for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
- const auto &CG = CheckingGroups[I];
- OS.indent(Depth + 2) << "Group " << &CG << ":\n";
- OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
- << ")\n";
- for (unsigned J = 0; J < CG.Members.size(); ++J) {
- OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
- << "\n";
- }
- }
- }
- namespace {
- /// Analyses memory accesses in a loop.
- ///
- /// Checks whether run time pointer checks are needed and builds sets for data
- /// dependence checking.
- class AccessAnalysis {
- public:
- /// Read or write access location.
- typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
- typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
- AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
- MemoryDepChecker::DepCandidates &DA,
- PredicatedScalarEvolution &PSE)
- : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) {
- // We're analyzing dependences across loop iterations.
- BAA.enableCrossIterationMode();
- }
- /// Register a load and whether it is only read from.
- void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
- Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
- Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
- if (IsReadOnly)
- ReadOnlyPtr.insert(Ptr);
- }
- /// Register a store.
- void addStore(MemoryLocation &Loc, Type *AccessTy) {
- Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
- Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
- }
- /// Check if we can emit a run-time no-alias check for \p Access.
- ///
- /// Returns true if we can emit a run-time no alias check for \p Access.
- /// If we can check this access, this also adds it to a dependence set and
- /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
- /// we will attempt to use additional run-time checks in order to get
- /// the bounds of the pointer.
- bool createCheckForAccess(RuntimePointerChecking &RtCheck,
- MemAccessInfo Access, Type *AccessTy,
- const ValueToValueMap &Strides,
- DenseMap<Value *, unsigned> &DepSetId,
- Loop *TheLoop, unsigned &RunningDepId,
- unsigned ASId, bool ShouldCheckStride, bool Assume);
- /// Check whether we can check the pointers at runtime for
- /// non-intersection.
- ///
- /// Returns true if we need no check or if we do and we can generate them
- /// (i.e. the pointers have computable bounds).
- bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
- Loop *TheLoop, const ValueToValueMap &Strides,
- Value *&UncomputablePtr, bool ShouldCheckWrap = false);
- /// Goes over all memory accesses, checks whether a RT check is needed
- /// and builds sets of dependent accesses.
- void buildDependenceSets() {
- processMemAccesses();
- }
- /// Initial processing of memory accesses determined that we need to
- /// perform dependency checking.
- ///
- /// Note that this can later be cleared if we retry memcheck analysis without
- /// dependency checking (i.e. FoundNonConstantDistanceDependence).
- bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
- /// We decided that no dependence analysis would be used. Reset the state.
- void resetDepChecks(MemoryDepChecker &DepChecker) {
- CheckDeps.clear();
- DepChecker.clearDependences();
- }
- MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
- private:
- typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
- /// Go over all memory access and check whether runtime pointer checks
- /// are needed and build sets of dependency check candidates.
- void processMemAccesses();
- /// Map of all accesses. Values are the types used to access memory pointed to
- /// by the pointer.
- PtrAccessMap Accesses;
- /// The loop being checked.
- const Loop *TheLoop;
- /// List of accesses that need a further dependence check.
- MemAccessInfoList CheckDeps;
- /// Set of pointers that are read only.
- SmallPtrSet<Value*, 16> ReadOnlyPtr;
- /// Batched alias analysis results.
- BatchAAResults BAA;
- /// An alias set tracker to partition the access set by underlying object and
- //intrinsic property (such as TBAA metadata).
- AliasSetTracker AST;
- LoopInfo *LI;
- /// Sets of potentially dependent accesses - members of one set share an
- /// underlying pointer. The set "CheckDeps" identfies which sets really need a
- /// dependence check.
- MemoryDepChecker::DepCandidates &DepCands;
- /// Initial processing of memory accesses determined that we may need
- /// to add memchecks. Perform the analysis to determine the necessary checks.
- ///
- /// Note that, this is different from isDependencyCheckNeeded. When we retry
- /// memcheck analysis without dependency checking
- /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
- /// cleared while this remains set if we have potentially dependent accesses.
- bool IsRTCheckAnalysisNeeded = false;
- /// The SCEV predicate containing all the SCEV-related assumptions.
- PredicatedScalarEvolution &PSE;
- };
- } // end anonymous namespace
- /// Check whether a pointer can participate in a runtime bounds check.
- /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
- /// by adding run-time checks (overflow checks) if necessary.
- static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
- const SCEV *PtrScev, Loop *L, bool Assume) {
- // The bounds for loop-invariant pointer is trivial.
- if (PSE.getSE()->isLoopInvariant(PtrScev, L))
- return true;
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
- if (!AR && Assume)
- AR = PSE.getAsAddRec(Ptr);
- if (!AR)
- return false;
- return AR->isAffine();
- }
- /// Check whether a pointer address cannot wrap.
- static bool isNoWrap(PredicatedScalarEvolution &PSE,
- const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy,
- Loop *L) {
- const SCEV *PtrScev = PSE.getSCEV(Ptr);
- if (PSE.getSE()->isLoopInvariant(PtrScev, L))
- return true;
- int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
- if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
- return true;
- return false;
- }
- static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
- function_ref<void(Value *)> AddPointer) {
- SmallPtrSet<Value *, 8> Visited;
- SmallVector<Value *> WorkList;
- WorkList.push_back(StartPtr);
- while (!WorkList.empty()) {
- Value *Ptr = WorkList.pop_back_val();
- if (!Visited.insert(Ptr).second)
- continue;
- auto *PN = dyn_cast<PHINode>(Ptr);
- // SCEV does not look through non-header PHIs inside the loop. Such phis
- // can be analyzed by adding separate accesses for each incoming pointer
- // value.
- if (PN && InnermostLoop.contains(PN->getParent()) &&
- PN->getParent() != InnermostLoop.getHeader()) {
- for (const Use &Inc : PN->incoming_values())
- WorkList.push_back(Inc);
- } else
- AddPointer(Ptr);
- }
- }
- // Walk back through the IR for a pointer, looking for a select like the
- // following:
- //
- // %offset = select i1 %cmp, i64 %a, i64 %b
- // %addr = getelementptr double, double* %base, i64 %offset
- // %ld = load double, double* %addr, align 8
- //
- // We won't be able to form a single SCEVAddRecExpr from this since the
- // address for each loop iteration depends on %cmp. We could potentially
- // produce multiple valid SCEVAddRecExprs, though, and check all of them for
- // memory safety/aliasing if needed.
- //
- // If we encounter some IR we don't yet handle, or something obviously fine
- // like a constant, then we just add the SCEV for that term to the list passed
- // in by the caller. If we have a node that may potentially yield a valid
- // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
- // ourselves before adding to the list.
- static void findForkedSCEVs(
- ScalarEvolution *SE, const Loop *L, Value *Ptr,
- SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
- unsigned Depth) {
- // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
- // we've exceeded our limit on recursion, just return whatever we have
- // regardless of whether it can be used for a forked pointer or not, along
- // with an indication of whether it might be a poison or undef value.
- const SCEV *Scev = SE->getSCEV(Ptr);
- if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
- !isa<Instruction>(Ptr) || Depth == 0) {
- ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
- return;
- }
- Depth--;
- auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
- return get<1>(S);
- };
- auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
- switch (Opcode) {
- case Instruction::Add:
- return SE->getAddExpr(L, R);
- case Instruction::Sub:
- return SE->getMinusSCEV(L, R);
- default:
- llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
- }
- };
- Instruction *I = cast<Instruction>(Ptr);
- unsigned Opcode = I->getOpcode();
- switch (Opcode) {
- case Instruction::GetElementPtr: {
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- Type *SourceTy = GEP->getSourceElementType();
- // We only handle base + single offset GEPs here for now.
- // Not dealing with preexisting gathers yet, so no vectors.
- if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
- ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
- break;
- }
- SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
- SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
- findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
- findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
- // See if we need to freeze our fork...
- bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
- any_of(OffsetScevs, UndefPoisonCheck);
- // Check that we only have a single fork, on either the base or the offset.
- // Copy the SCEV across for the one without a fork in order to generate
- // the full SCEV for both sides of the GEP.
- if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
- BaseScevs.push_back(BaseScevs[0]);
- else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
- OffsetScevs.push_back(OffsetScevs[0]);
- else {
- ScevList.emplace_back(Scev, NeedsFreeze);
- break;
- }
- // Find the pointer type we need to extend to.
- Type *IntPtrTy = SE->getEffectiveSCEVType(
- SE->getSCEV(GEP->getPointerOperand())->getType());
- // Find the size of the type being pointed to. We only have a single
- // index term (guarded above) so we don't need to index into arrays or
- // structures, just get the size of the scalar value.
- const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
- // Scale up the offsets by the size of the type, then add to the bases.
- const SCEV *Scaled1 = SE->getMulExpr(
- Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
- const SCEV *Scaled2 = SE->getMulExpr(
- Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
- ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
- NeedsFreeze);
- ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
- NeedsFreeze);
- break;
- }
- case Instruction::Select: {
- SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
- // A select means we've found a forked pointer, but we currently only
- // support a single select per pointer so if there's another behind this
- // then we just bail out and return the generic SCEV.
- findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
- findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
- if (ChildScevs.size() == 2) {
- ScevList.push_back(ChildScevs[0]);
- ScevList.push_back(ChildScevs[1]);
- } else
- ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
- break;
- }
- case Instruction::Add:
- case Instruction::Sub: {
- SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
- SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
- findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
- findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
- // See if we need to freeze our fork...
- bool NeedsFreeze =
- any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
- // Check that we only have a single fork, on either the left or right side.
- // Copy the SCEV across for the one without a fork in order to generate
- // the full SCEV for both sides of the BinOp.
- if (LScevs.size() == 2 && RScevs.size() == 1)
- RScevs.push_back(RScevs[0]);
- else if (RScevs.size() == 2 && LScevs.size() == 1)
- LScevs.push_back(LScevs[0]);
- else {
- ScevList.emplace_back(Scev, NeedsFreeze);
- break;
- }
- ScevList.emplace_back(
- GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
- NeedsFreeze);
- ScevList.emplace_back(
- GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
- NeedsFreeze);
- break;
- }
- default:
- // Just return the current SCEV if we haven't handled the instruction yet.
- LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
- ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
- break;
- }
- }
- static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
- findForkedPointer(PredicatedScalarEvolution &PSE,
- const ValueToValueMap &StridesMap, Value *Ptr,
- const Loop *L) {
- ScalarEvolution *SE = PSE.getSE();
- assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
- SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
- findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
- // For now, we will only accept a forked pointer with two possible SCEVs
- // that are either SCEVAddRecExprs or loop invariant.
- if (Scevs.size() == 2 &&
- (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
- SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
- (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
- SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
- LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
- LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
- LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
- return Scevs;
- }
- return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
- }
- bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
- MemAccessInfo Access, Type *AccessTy,
- const ValueToValueMap &StridesMap,
- DenseMap<Value *, unsigned> &DepSetId,
- Loop *TheLoop, unsigned &RunningDepId,
- unsigned ASId, bool ShouldCheckWrap,
- bool Assume) {
- Value *Ptr = Access.getPointer();
- SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
- findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
- for (auto &P : TranslatedPtrs) {
- const SCEV *PtrExpr = get<0>(P);
- if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
- return false;
- // When we run after a failing dependency check we have to make sure
- // we don't have wrapping pointers.
- if (ShouldCheckWrap) {
- // Skip wrap checking when translating pointers.
- if (TranslatedPtrs.size() > 1)
- return false;
- if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
- auto *Expr = PSE.getSCEV(Ptr);
- if (!Assume || !isa<SCEVAddRecExpr>(Expr))
- return false;
- PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
- }
- }
- // If there's only one option for Ptr, look it up after bounds and wrap
- // checking, because assumptions might have been added to PSE.
- if (TranslatedPtrs.size() == 1)
- TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
- false};
- }
- for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
- // The id of the dependence set.
- unsigned DepId;
- if (isDependencyCheckNeeded()) {
- Value *Leader = DepCands.getLeaderValue(Access).getPointer();
- unsigned &LeaderId = DepSetId[Leader];
- if (!LeaderId)
- LeaderId = RunningDepId++;
- DepId = LeaderId;
- } else
- // Each access has its own dependence set.
- DepId = RunningDepId++;
- bool IsWrite = Access.getInt();
- RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
- NeedsFreeze);
- LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
- }
- return true;
- }
- bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
- ScalarEvolution *SE, Loop *TheLoop,
- const ValueToValueMap &StridesMap,
- Value *&UncomputablePtr, bool ShouldCheckWrap) {
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- bool CanDoRT = true;
- bool MayNeedRTCheck = false;
- if (!IsRTCheckAnalysisNeeded) return true;
- bool IsDepCheckNeeded = isDependencyCheckNeeded();
- // We assign a consecutive id to access from different alias sets.
- // Accesses between different groups doesn't need to be checked.
- unsigned ASId = 0;
- for (auto &AS : AST) {
- int NumReadPtrChecks = 0;
- int NumWritePtrChecks = 0;
- bool CanDoAliasSetRT = true;
- ++ASId;
- // We assign consecutive id to access from different dependence sets.
- // Accesses within the same set don't need a runtime check.
- unsigned RunningDepId = 1;
- DenseMap<Value *, unsigned> DepSetId;
- SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
- // First, count how many write and read accesses are in the alias set. Also
- // collect MemAccessInfos for later.
- SmallVector<MemAccessInfo, 4> AccessInfos;
- for (const auto &A : AS) {
- Value *Ptr = A.getValue();
- bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
- if (IsWrite)
- ++NumWritePtrChecks;
- else
- ++NumReadPtrChecks;
- AccessInfos.emplace_back(Ptr, IsWrite);
- }
- // We do not need runtime checks for this alias set, if there are no writes
- // or a single write and no reads.
- if (NumWritePtrChecks == 0 ||
- (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
- assert((AS.size() <= 1 ||
- all_of(AS,
- [this](auto AC) {
- MemAccessInfo AccessWrite(AC.getValue(), true);
- return DepCands.findValue(AccessWrite) == DepCands.end();
- })) &&
- "Can only skip updating CanDoRT below, if all entries in AS "
- "are reads or there is at most 1 entry");
- continue;
- }
- for (auto &Access : AccessInfos) {
- for (const auto &AccessTy : Accesses[Access]) {
- if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
- DepSetId, TheLoop, RunningDepId, ASId,
- ShouldCheckWrap, false)) {
- LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
- << *Access.getPointer() << '\n');
- Retries.push_back({Access, AccessTy});
- CanDoAliasSetRT = false;
- }
- }
- }
- // Note that this function computes CanDoRT and MayNeedRTCheck
- // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
- // we have a pointer for which we couldn't find the bounds but we don't
- // actually need to emit any checks so it does not matter.
- //
- // We need runtime checks for this alias set, if there are at least 2
- // dependence sets (in which case RunningDepId > 2) or if we need to re-try
- // any bound checks (because in that case the number of dependence sets is
- // incomplete).
- bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
- // We need to perform run-time alias checks, but some pointers had bounds
- // that couldn't be checked.
- if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
- // Reset the CanDoSetRt flag and retry all accesses that have failed.
- // We know that we need these checks, so we can now be more aggressive
- // and add further checks if required (overflow checks).
- CanDoAliasSetRT = true;
- for (auto Retry : Retries) {
- MemAccessInfo Access = Retry.first;
- Type *AccessTy = Retry.second;
- if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
- DepSetId, TheLoop, RunningDepId, ASId,
- ShouldCheckWrap, /*Assume=*/true)) {
- CanDoAliasSetRT = false;
- UncomputablePtr = Access.getPointer();
- break;
- }
- }
- }
- CanDoRT &= CanDoAliasSetRT;
- MayNeedRTCheck |= NeedsAliasSetRTCheck;
- ++ASId;
- }
- // If the pointers that we would use for the bounds comparison have different
- // address spaces, assume the values aren't directly comparable, so we can't
- // use them for the runtime check. We also have to assume they could
- // overlap. In the future there should be metadata for whether address spaces
- // are disjoint.
- unsigned NumPointers = RtCheck.Pointers.size();
- for (unsigned i = 0; i < NumPointers; ++i) {
- for (unsigned j = i + 1; j < NumPointers; ++j) {
- // Only need to check pointers between two different dependency sets.
- if (RtCheck.Pointers[i].DependencySetId ==
- RtCheck.Pointers[j].DependencySetId)
- continue;
- // Only need to check pointers in the same alias set.
- if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
- continue;
- Value *PtrI = RtCheck.Pointers[i].PointerValue;
- Value *PtrJ = RtCheck.Pointers[j].PointerValue;
- unsigned ASi = PtrI->getType()->getPointerAddressSpace();
- unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
- if (ASi != ASj) {
- LLVM_DEBUG(
- dbgs() << "LAA: Runtime check would require comparison between"
- " different address spaces\n");
- return false;
- }
- }
- }
- if (MayNeedRTCheck && CanDoRT)
- RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
- LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
- << " pointer comparisons.\n");
- // If we can do run-time checks, but there are no checks, no runtime checks
- // are needed. This can happen when all pointers point to the same underlying
- // object for example.
- RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
- bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
- if (!CanDoRTIfNeeded)
- RtCheck.reset();
- return CanDoRTIfNeeded;
- }
- void AccessAnalysis::processMemAccesses() {
- // We process the set twice: first we process read-write pointers, last we
- // process read-only pointers. This allows us to skip dependence tests for
- // read-only pointers.
- LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
- LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
- LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
- LLVM_DEBUG({
- for (auto A : Accesses)
- dbgs() << "\t" << *A.first.getPointer() << " ("
- << (A.first.getInt()
- ? "write"
- : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
- : "read"))
- << ")\n";
- });
- // The AliasSetTracker has nicely partitioned our pointers by metadata
- // compatibility and potential for underlying-object overlap. As a result, we
- // only need to check for potential pointer dependencies within each alias
- // set.
- for (const auto &AS : AST) {
- // Note that both the alias-set tracker and the alias sets themselves used
- // linked lists internally and so the iteration order here is deterministic
- // (matching the original instruction order within each set).
- bool SetHasWrite = false;
- // Map of pointers to last access encountered.
- typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
- UnderlyingObjToAccessMap ObjToLastAccess;
- // Set of access to check after all writes have been processed.
- PtrAccessMap DeferredAccesses;
- // Iterate over each alias set twice, once to process read/write pointers,
- // and then to process read-only pointers.
- for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
- bool UseDeferred = SetIteration > 0;
- PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
- for (const auto &AV : AS) {
- Value *Ptr = AV.getValue();
- // For a single memory access in AliasSetTracker, Accesses may contain
- // both read and write, and they both need to be handled for CheckDeps.
- for (const auto &AC : S) {
- if (AC.first.getPointer() != Ptr)
- continue;
- bool IsWrite = AC.first.getInt();
- // If we're using the deferred access set, then it contains only
- // reads.
- bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
- if (UseDeferred && !IsReadOnlyPtr)
- continue;
- // Otherwise, the pointer must be in the PtrAccessSet, either as a
- // read or a write.
- assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
- S.count(MemAccessInfo(Ptr, false))) &&
- "Alias-set pointer not in the access set?");
- MemAccessInfo Access(Ptr, IsWrite);
- DepCands.insert(Access);
- // Memorize read-only pointers for later processing and skip them in
- // the first round (they need to be checked after we have seen all
- // write pointers). Note: we also mark pointer that are not
- // consecutive as "read-only" pointers (so that we check
- // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
- if (!UseDeferred && IsReadOnlyPtr) {
- // We only use the pointer keys, the types vector values don't
- // matter.
- DeferredAccesses.insert({Access, {}});
- continue;
- }
- // If this is a write - check other reads and writes for conflicts. If
- // this is a read only check other writes for conflicts (but only if
- // there is no other write to the ptr - this is an optimization to
- // catch "a[i] = a[i] + " without having to do a dependence check).
- if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
- CheckDeps.push_back(Access);
- IsRTCheckAnalysisNeeded = true;
- }
- if (IsWrite)
- SetHasWrite = true;
- // Create sets of pointers connected by a shared alias set and
- // underlying object.
- typedef SmallVector<const Value *, 16> ValueVector;
- ValueVector TempObjects;
- getUnderlyingObjects(Ptr, TempObjects, LI);
- LLVM_DEBUG(dbgs()
- << "Underlying objects for pointer " << *Ptr << "\n");
- for (const Value *UnderlyingObj : TempObjects) {
- // nullptr never alias, don't join sets for pointer that have "null"
- // in their UnderlyingObjects list.
- if (isa<ConstantPointerNull>(UnderlyingObj) &&
- !NullPointerIsDefined(
- TheLoop->getHeader()->getParent(),
- UnderlyingObj->getType()->getPointerAddressSpace()))
- continue;
- UnderlyingObjToAccessMap::iterator Prev =
- ObjToLastAccess.find(UnderlyingObj);
- if (Prev != ObjToLastAccess.end())
- DepCands.unionSets(Access, Prev->second);
- ObjToLastAccess[UnderlyingObj] = Access;
- LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
- }
- }
- }
- }
- }
- }
- static bool isInBoundsGep(Value *Ptr) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
- return GEP->isInBounds();
- return false;
- }
- /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
- /// i.e. monotonically increasing/decreasing.
- static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
- PredicatedScalarEvolution &PSE, const Loop *L) {
- // FIXME: This should probably only return true for NUW.
- if (AR->getNoWrapFlags(SCEV::NoWrapMask))
- return true;
- // Scalar evolution does not propagate the non-wrapping flags to values that
- // are derived from a non-wrapping induction variable because non-wrapping
- // could be flow-sensitive.
- //
- // Look through the potentially overflowing instruction to try to prove
- // non-wrapping for the *specific* value of Ptr.
- // The arithmetic implied by an inbounds GEP can't overflow.
- auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
- if (!GEP || !GEP->isInBounds())
- return false;
- // Make sure there is only one non-const index and analyze that.
- Value *NonConstIndex = nullptr;
- for (Value *Index : GEP->indices())
- if (!isa<ConstantInt>(Index)) {
- if (NonConstIndex)
- return false;
- NonConstIndex = Index;
- }
- if (!NonConstIndex)
- // The recurrence is on the pointer, ignore for now.
- return false;
- // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
- // AddRec using a NSW operation.
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
- if (OBO->hasNoSignedWrap() &&
- // Assume constant for other the operand so that the AddRec can be
- // easily found.
- isa<ConstantInt>(OBO->getOperand(1))) {
- auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
- if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
- return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
- }
- return false;
- }
- /// Check whether the access through \p Ptr has a constant stride.
- std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
- Type *AccessTy, Value *Ptr,
- const Loop *Lp,
- const ValueToValueMap &StridesMap,
- bool Assume, bool ShouldCheckWrap) {
- Type *Ty = Ptr->getType();
- assert(Ty->isPointerTy() && "Unexpected non-ptr");
- if (isa<ScalableVectorType>(AccessTy)) {
- LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
- << "\n");
- return std::nullopt;
- }
- const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
- if (Assume && !AR)
- AR = PSE.getAsAddRec(Ptr);
- if (!AR) {
- LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
- << " SCEV: " << *PtrScev << "\n");
- return std::nullopt;
- }
- // The access function must stride over the innermost loop.
- if (Lp != AR->getLoop()) {
- LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
- << *Ptr << " SCEV: " << *AR << "\n");
- return std::nullopt;
- }
- // The address calculation must not wrap. Otherwise, a dependence could be
- // inverted.
- // An inbounds getelementptr that is a AddRec with a unit stride
- // cannot wrap per definition. The unit stride requirement is checked later.
- // An getelementptr without an inbounds attribute and unit stride would have
- // to access the pointer value "0" which is undefined behavior in address
- // space 0, therefore we can also vectorize this case.
- unsigned AddrSpace = Ty->getPointerAddressSpace();
- bool IsInBoundsGEP = isInBoundsGep(Ptr);
- bool IsNoWrapAddRec = !ShouldCheckWrap ||
- PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
- isNoWrapAddRec(Ptr, AR, PSE, Lp);
- if (!IsNoWrapAddRec && !IsInBoundsGEP &&
- NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
- if (Assume) {
- PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
- IsNoWrapAddRec = true;
- LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
- << "LAA: Pointer: " << *Ptr << "\n"
- << "LAA: SCEV: " << *AR << "\n"
- << "LAA: Added an overflow assumption\n");
- } else {
- LLVM_DEBUG(
- dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
- << *Ptr << " SCEV: " << *AR << "\n");
- return std::nullopt;
- }
- }
- // Check the step is constant.
- const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
- // Calculate the pointer stride and check if it is constant.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C) {
- LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
- << " SCEV: " << *AR << "\n");
- return std::nullopt;
- }
- auto &DL = Lp->getHeader()->getModule()->getDataLayout();
- TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
- int64_t Size = AllocSize.getFixedValue();
- const APInt &APStepVal = C->getAPInt();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return std::nullopt;
- int64_t StepVal = APStepVal.getSExtValue();
- // Strided access.
- int64_t Stride = StepVal / Size;
- int64_t Rem = StepVal % Size;
- if (Rem)
- return std::nullopt;
- // If the SCEV could wrap but we have an inbounds gep with a unit stride we
- // know we can't "wrap around the address space". In case of address space
- // zero we know that this won't happen without triggering undefined behavior.
- if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
- (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
- AddrSpace))) {
- if (Assume) {
- // We can avoid this case by adding a run-time check.
- LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
- << "inbounds or in address space 0 may wrap:\n"
- << "LAA: Pointer: " << *Ptr << "\n"
- << "LAA: SCEV: " << *AR << "\n"
- << "LAA: Added an overflow assumption\n");
- PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
- } else
- return std::nullopt;
- }
- return Stride;
- }
- std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
- Type *ElemTyB, Value *PtrB,
- const DataLayout &DL,
- ScalarEvolution &SE, bool StrictCheck,
- bool CheckType) {
- assert(PtrA && PtrB && "Expected non-nullptr pointers.");
- assert(cast<PointerType>(PtrA->getType())
- ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
- assert(cast<PointerType>(PtrB->getType())
- ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
- // Make sure that A and B are different pointers.
- if (PtrA == PtrB)
- return 0;
- // Make sure that the element types are the same if required.
- if (CheckType && ElemTyA != ElemTyB)
- return std::nullopt;
- unsigned ASA = PtrA->getType()->getPointerAddressSpace();
- unsigned ASB = PtrB->getType()->getPointerAddressSpace();
- // Check that the address spaces match.
- if (ASA != ASB)
- return std::nullopt;
- unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
- APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
- Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
- Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
- int Val;
- if (PtrA1 == PtrB1) {
- // Retrieve the address space again as pointer stripping now tracks through
- // `addrspacecast`.
- ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
- ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
- // Check that the address spaces match and that the pointers are valid.
- if (ASA != ASB)
- return std::nullopt;
- IdxWidth = DL.getIndexSizeInBits(ASA);
- OffsetA = OffsetA.sextOrTrunc(IdxWidth);
- OffsetB = OffsetB.sextOrTrunc(IdxWidth);
- OffsetB -= OffsetA;
- Val = OffsetB.getSExtValue();
- } else {
- // Otherwise compute the distance with SCEV between the base pointers.
- const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
- const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
- const auto *Diff =
- dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
- if (!Diff)
- return std::nullopt;
- Val = Diff->getAPInt().getSExtValue();
- }
- int Size = DL.getTypeStoreSize(ElemTyA);
- int Dist = Val / Size;
- // Ensure that the calculated distance matches the type-based one after all
- // the bitcasts removal in the provided pointers.
- if (!StrictCheck || Dist * Size == Val)
- return Dist;
- return std::nullopt;
- }
- bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
- const DataLayout &DL, ScalarEvolution &SE,
- SmallVectorImpl<unsigned> &SortedIndices) {
- assert(llvm::all_of(
- VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
- "Expected list of pointer operands.");
- // Walk over the pointers, and map each of them to an offset relative to
- // first pointer in the array.
- Value *Ptr0 = VL[0];
- using DistOrdPair = std::pair<int64_t, int>;
- auto Compare = llvm::less_first();
- std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
- Offsets.emplace(0, 0);
- int Cnt = 1;
- bool IsConsecutive = true;
- for (auto *Ptr : VL.drop_front()) {
- std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
- /*StrictCheck=*/true);
- if (!Diff)
- return false;
- // Check if the pointer with the same offset is found.
- int64_t Offset = *Diff;
- auto Res = Offsets.emplace(Offset, Cnt);
- if (!Res.second)
- return false;
- // Consecutive order if the inserted element is the last one.
- IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
- ++Cnt;
- }
- SortedIndices.clear();
- if (!IsConsecutive) {
- // Fill SortedIndices array only if it is non-consecutive.
- SortedIndices.resize(VL.size());
- Cnt = 0;
- for (const std::pair<int64_t, int> &Pair : Offsets) {
- SortedIndices[Cnt] = Pair.second;
- ++Cnt;
- }
- }
- return true;
- }
- /// Returns true if the memory operations \p A and \p B are consecutive.
- bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
- ScalarEvolution &SE, bool CheckType) {
- Value *PtrA = getLoadStorePointerOperand(A);
- Value *PtrB = getLoadStorePointerOperand(B);
- if (!PtrA || !PtrB)
- return false;
- Type *ElemTyA = getLoadStoreType(A);
- Type *ElemTyB = getLoadStoreType(B);
- std::optional<int> Diff =
- getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
- /*StrictCheck=*/true, CheckType);
- return Diff && *Diff == 1;
- }
- void MemoryDepChecker::addAccess(StoreInst *SI) {
- visitPointers(SI->getPointerOperand(), *InnermostLoop,
- [this, SI](Value *Ptr) {
- Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
- InstMap.push_back(SI);
- ++AccessIdx;
- });
- }
- void MemoryDepChecker::addAccess(LoadInst *LI) {
- visitPointers(LI->getPointerOperand(), *InnermostLoop,
- [this, LI](Value *Ptr) {
- Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
- InstMap.push_back(LI);
- ++AccessIdx;
- });
- }
- MemoryDepChecker::VectorizationSafetyStatus
- MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
- switch (Type) {
- case NoDep:
- case Forward:
- case BackwardVectorizable:
- return VectorizationSafetyStatus::Safe;
- case Unknown:
- return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
- case ForwardButPreventsForwarding:
- case Backward:
- case BackwardVectorizableButPreventsForwarding:
- return VectorizationSafetyStatus::Unsafe;
- }
- llvm_unreachable("unexpected DepType!");
- }
- bool MemoryDepChecker::Dependence::isBackward() const {
- switch (Type) {
- case NoDep:
- case Forward:
- case ForwardButPreventsForwarding:
- case Unknown:
- return false;
- case BackwardVectorizable:
- case Backward:
- case BackwardVectorizableButPreventsForwarding:
- return true;
- }
- llvm_unreachable("unexpected DepType!");
- }
- bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
- return isBackward() || Type == Unknown;
- }
- bool MemoryDepChecker::Dependence::isForward() const {
- switch (Type) {
- case Forward:
- case ForwardButPreventsForwarding:
- return true;
- case NoDep:
- case Unknown:
- case BackwardVectorizable:
- case Backward:
- case BackwardVectorizableButPreventsForwarding:
- return false;
- }
- llvm_unreachable("unexpected DepType!");
- }
- bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
- uint64_t TypeByteSize) {
- // If loads occur at a distance that is not a multiple of a feasible vector
- // factor store-load forwarding does not take place.
- // Positive dependences might cause troubles because vectorizing them might
- // prevent store-load forwarding making vectorized code run a lot slower.
- // a[i] = a[i-3] ^ a[i-8];
- // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
- // hence on your typical architecture store-load forwarding does not take
- // place. Vectorizing in such cases does not make sense.
- // Store-load forwarding distance.
- // After this many iterations store-to-load forwarding conflicts should not
- // cause any slowdowns.
- const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
- // Maximum vector factor.
- uint64_t MaxVFWithoutSLForwardIssues = std::min(
- VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
- // Compute the smallest VF at which the store and load would be misaligned.
- for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
- VF *= 2) {
- // If the number of vector iteration between the store and the load are
- // small we could incur conflicts.
- if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
- MaxVFWithoutSLForwardIssues = (VF >> 1);
- break;
- }
- }
- if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
- LLVM_DEBUG(
- dbgs() << "LAA: Distance " << Distance
- << " that could cause a store-load forwarding conflict\n");
- return true;
- }
- if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
- MaxVFWithoutSLForwardIssues !=
- VectorizerParams::MaxVectorWidth * TypeByteSize)
- MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
- return false;
- }
- void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
- if (Status < S)
- Status = S;
- }
- /// Given a dependence-distance \p Dist between two
- /// memory accesses, that have the same stride whose absolute value is given
- /// in \p Stride, and that have the same type size \p TypeByteSize,
- /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
- /// possible to prove statically that the dependence distance is larger
- /// than the range that the accesses will travel through the execution of
- /// the loop. If so, return true; false otherwise. This is useful for
- /// example in loops such as the following (PR31098):
- /// for (i = 0; i < D; ++i) {
- /// = out[i];
- /// out[i+D] =
- /// }
- static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
- const SCEV &BackedgeTakenCount,
- const SCEV &Dist, uint64_t Stride,
- uint64_t TypeByteSize) {
- // If we can prove that
- // (**) |Dist| > BackedgeTakenCount * Step
- // where Step is the absolute stride of the memory accesses in bytes,
- // then there is no dependence.
- //
- // Rationale:
- // We basically want to check if the absolute distance (|Dist/Step|)
- // is >= the loop iteration count (or > BackedgeTakenCount).
- // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
- // Section 4.2.1); Note, that for vectorization it is sufficient to prove
- // that the dependence distance is >= VF; This is checked elsewhere.
- // But in some cases we can prune dependence distances early, and
- // even before selecting the VF, and without a runtime test, by comparing
- // the distance against the loop iteration count. Since the vectorized code
- // will be executed only if LoopCount >= VF, proving distance >= LoopCount
- // also guarantees that distance >= VF.
- //
- const uint64_t ByteStride = Stride * TypeByteSize;
- const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
- const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
- const SCEV *CastedDist = &Dist;
- const SCEV *CastedProduct = Product;
- uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
- uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
- // The dependence distance can be positive/negative, so we sign extend Dist;
- // The multiplication of the absolute stride in bytes and the
- // backedgeTakenCount is non-negative, so we zero extend Product.
- if (DistTypeSizeBits > ProductTypeSizeBits)
- CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
- else
- CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
- // Is Dist - (BackedgeTakenCount * Step) > 0 ?
- // (If so, then we have proven (**) because |Dist| >= Dist)
- const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
- if (SE.isKnownPositive(Minus))
- return true;
- // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
- // (If so, then we have proven (**) because |Dist| >= -1*Dist)
- const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
- Minus = SE.getMinusSCEV(NegDist, CastedProduct);
- if (SE.isKnownPositive(Minus))
- return true;
- return false;
- }
- /// Check the dependence for two accesses with the same stride \p Stride.
- /// \p Distance is the positive distance and \p TypeByteSize is type size in
- /// bytes.
- ///
- /// \returns true if they are independent.
- static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
- uint64_t TypeByteSize) {
- assert(Stride > 1 && "The stride must be greater than 1");
- assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
- assert(Distance > 0 && "The distance must be non-zero");
- // Skip if the distance is not multiple of type byte size.
- if (Distance % TypeByteSize)
- return false;
- uint64_t ScaledDist = Distance / TypeByteSize;
- // No dependence if the scaled distance is not multiple of the stride.
- // E.g.
- // for (i = 0; i < 1024 ; i += 4)
- // A[i+2] = A[i] + 1;
- //
- // Two accesses in memory (scaled distance is 2, stride is 4):
- // | A[0] | | | | A[4] | | | |
- // | | | A[2] | | | | A[6] | |
- //
- // E.g.
- // for (i = 0; i < 1024 ; i += 3)
- // A[i+4] = A[i] + 1;
- //
- // Two accesses in memory (scaled distance is 4, stride is 3):
- // | A[0] | | | A[3] | | | A[6] | | |
- // | | | | | A[4] | | | A[7] | |
- return ScaledDist % Stride;
- }
- MemoryDepChecker::Dependence::DepType
- MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
- const MemAccessInfo &B, unsigned BIdx,
- const ValueToValueMap &Strides) {
- assert (AIdx < BIdx && "Must pass arguments in program order");
- auto [APtr, AIsWrite] = A;
- auto [BPtr, BIsWrite] = B;
- Type *ATy = getLoadStoreType(InstMap[AIdx]);
- Type *BTy = getLoadStoreType(InstMap[BIdx]);
- // Two reads are independent.
- if (!AIsWrite && !BIsWrite)
- return Dependence::NoDep;
- // We cannot check pointers in different address spaces.
- if (APtr->getType()->getPointerAddressSpace() !=
- BPtr->getType()->getPointerAddressSpace())
- return Dependence::Unknown;
- int64_t StrideAPtr =
- getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
- int64_t StrideBPtr =
- getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);
- const SCEV *Src = PSE.getSCEV(APtr);
- const SCEV *Sink = PSE.getSCEV(BPtr);
- // If the induction step is negative we have to invert source and sink of the
- // dependence.
- if (StrideAPtr < 0) {
- std::swap(APtr, BPtr);
- std::swap(ATy, BTy);
- std::swap(Src, Sink);
- std::swap(AIsWrite, BIsWrite);
- std::swap(AIdx, BIdx);
- std::swap(StrideAPtr, StrideBPtr);
- }
- ScalarEvolution &SE = *PSE.getSE();
- const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
- LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
- << "(Induction step: " << StrideAPtr << ")\n");
- LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
- << *InstMap[BIdx] << ": " << *Dist << "\n");
- // Need accesses with constant stride. We don't want to vectorize
- // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
- // the address space.
- if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
- LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
- return Dependence::Unknown;
- }
- auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
- uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
- bool HasSameSize =
- DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
- uint64_t Stride = std::abs(StrideAPtr);
- if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
- isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
- Stride, TypeByteSize))
- return Dependence::NoDep;
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
- if (!C) {
- LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
- FoundNonConstantDistanceDependence = true;
- return Dependence::Unknown;
- }
- const APInt &Val = C->getAPInt();
- int64_t Distance = Val.getSExtValue();
- // Attempt to prove strided accesses independent.
- if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
- areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
- LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
- return Dependence::NoDep;
- }
- // Negative distances are not plausible dependencies.
- if (Val.isNegative()) {
- bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
- if (IsTrueDataDependence && EnableForwardingConflictDetection &&
- (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
- !HasSameSize)) {
- LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
- return Dependence::ForwardButPreventsForwarding;
- }
- LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
- return Dependence::Forward;
- }
- // Write to the same location with the same size.
- if (Val == 0) {
- if (HasSameSize)
- return Dependence::Forward;
- LLVM_DEBUG(
- dbgs() << "LAA: Zero dependence difference but different type sizes\n");
- return Dependence::Unknown;
- }
- assert(Val.isStrictlyPositive() && "Expect a positive value");
- if (!HasSameSize) {
- LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
- "different type sizes\n");
- return Dependence::Unknown;
- }
- // Bail out early if passed-in parameters make vectorization not feasible.
- unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
- VectorizerParams::VectorizationFactor : 1);
- unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
- VectorizerParams::VectorizationInterleave : 1);
- // The minimum number of iterations for a vectorized/unrolled version.
- unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
- // It's not vectorizable if the distance is smaller than the minimum distance
- // needed for a vectroized/unrolled version. Vectorizing one iteration in
- // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
- // TypeByteSize (No need to plus the last gap distance).
- //
- // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
- // foo(int *A) {
- // int *B = (int *)((char *)A + 14);
- // for (i = 0 ; i < 1024 ; i += 2)
- // B[i] = A[i] + 1;
- // }
- //
- // Two accesses in memory (stride is 2):
- // | A[0] | | A[2] | | A[4] | | A[6] | |
- // | B[0] | | B[2] | | B[4] |
- //
- // Distance needs for vectorizing iterations except the last iteration:
- // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
- // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
- //
- // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
- // 12, which is less than distance.
- //
- // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
- // the minimum distance needed is 28, which is greater than distance. It is
- // not safe to do vectorization.
- uint64_t MinDistanceNeeded =
- TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
- if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
- LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
- << Distance << '\n');
- return Dependence::Backward;
- }
- // Unsafe if the minimum distance needed is greater than max safe distance.
- if (MinDistanceNeeded > MaxSafeDepDistBytes) {
- LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
- << MinDistanceNeeded << " size in bytes\n");
- return Dependence::Backward;
- }
- // Positive distance bigger than max vectorization factor.
- // FIXME: Should use max factor instead of max distance in bytes, which could
- // not handle different types.
- // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
- // void foo (int *A, char *B) {
- // for (unsigned i = 0; i < 1024; i++) {
- // A[i+2] = A[i] + 1;
- // B[i+2] = B[i] + 1;
- // }
- // }
- //
- // This case is currently unsafe according to the max safe distance. If we
- // analyze the two accesses on array B, the max safe dependence distance
- // is 2. Then we analyze the accesses on array A, the minimum distance needed
- // is 8, which is less than 2 and forbidden vectorization, But actually
- // both A and B could be vectorized by 2 iterations.
- MaxSafeDepDistBytes =
- std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
- bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
- if (IsTrueDataDependence && EnableForwardingConflictDetection &&
- couldPreventStoreLoadForward(Distance, TypeByteSize))
- return Dependence::BackwardVectorizableButPreventsForwarding;
- uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
- LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
- << " with max VF = " << MaxVF << '\n');
- uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
- MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
- return Dependence::BackwardVectorizable;
- }
- bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
- MemAccessInfoList &CheckDeps,
- const ValueToValueMap &Strides) {
- MaxSafeDepDistBytes = -1;
- SmallPtrSet<MemAccessInfo, 8> Visited;
- for (MemAccessInfo CurAccess : CheckDeps) {
- if (Visited.count(CurAccess))
- continue;
- // Get the relevant memory access set.
- EquivalenceClasses<MemAccessInfo>::iterator I =
- AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
- // Check accesses within this set.
- EquivalenceClasses<MemAccessInfo>::member_iterator AI =
- AccessSets.member_begin(I);
- EquivalenceClasses<MemAccessInfo>::member_iterator AE =
- AccessSets.member_end();
- // Check every access pair.
- while (AI != AE) {
- Visited.insert(*AI);
- bool AIIsWrite = AI->getInt();
- // Check loads only against next equivalent class, but stores also against
- // other stores in the same equivalence class - to the same address.
- EquivalenceClasses<MemAccessInfo>::member_iterator OI =
- (AIIsWrite ? AI : std::next(AI));
- while (OI != AE) {
- // Check every accessing instruction pair in program order.
- for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
- I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
- // Scan all accesses of another equivalence class, but only the next
- // accesses of the same equivalent class.
- for (std::vector<unsigned>::iterator
- I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
- I2E = (OI == AI ? I1E : Accesses[*OI].end());
- I2 != I2E; ++I2) {
- auto A = std::make_pair(&*AI, *I1);
- auto B = std::make_pair(&*OI, *I2);
- assert(*I1 != *I2);
- if (*I1 > *I2)
- std::swap(A, B);
- Dependence::DepType Type =
- isDependent(*A.first, A.second, *B.first, B.second, Strides);
- mergeInStatus(Dependence::isSafeForVectorization(Type));
- // Gather dependences unless we accumulated MaxDependences
- // dependences. In that case return as soon as we find the first
- // unsafe dependence. This puts a limit on this quadratic
- // algorithm.
- if (RecordDependences) {
- if (Type != Dependence::NoDep)
- Dependences.push_back(Dependence(A.second, B.second, Type));
- if (Dependences.size() >= MaxDependences) {
- RecordDependences = false;
- Dependences.clear();
- LLVM_DEBUG(dbgs()
- << "Too many dependences, stopped recording\n");
- }
- }
- if (!RecordDependences && !isSafeForVectorization())
- return false;
- }
- ++OI;
- }
- AI++;
- }
- }
- LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
- return isSafeForVectorization();
- }
- SmallVector<Instruction *, 4>
- MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
- MemAccessInfo Access(Ptr, isWrite);
- auto &IndexVector = Accesses.find(Access)->second;
- SmallVector<Instruction *, 4> Insts;
- transform(IndexVector,
- std::back_inserter(Insts),
- [&](unsigned Idx) { return this->InstMap[Idx]; });
- return Insts;
- }
- const char *MemoryDepChecker::Dependence::DepName[] = {
- "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
- "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
- void MemoryDepChecker::Dependence::print(
- raw_ostream &OS, unsigned Depth,
- const SmallVectorImpl<Instruction *> &Instrs) const {
- OS.indent(Depth) << DepName[Type] << ":\n";
- OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
- OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
- }
- bool LoopAccessInfo::canAnalyzeLoop() {
- // We need to have a loop header.
- LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
- << TheLoop->getHeader()->getParent()->getName() << ": "
- << TheLoop->getHeader()->getName() << '\n');
- // We can only analyze innermost loops.
- if (!TheLoop->isInnermost()) {
- LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
- recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
- return false;
- }
- // We must have a single backedge.
- if (TheLoop->getNumBackEdges() != 1) {
- LLVM_DEBUG(
- dbgs() << "LAA: loop control flow is not understood by analyzer\n");
- recordAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by analyzer";
- return false;
- }
- // ScalarEvolution needs to be able to find the exit count.
- const SCEV *ExitCount = PSE->getBackedgeTakenCount();
- if (isa<SCEVCouldNotCompute>(ExitCount)) {
- recordAnalysis("CantComputeNumberOfIterations")
- << "could not determine number of loop iterations";
- LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
- return false;
- }
- return true;
- }
- void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
- const TargetLibraryInfo *TLI,
- DominatorTree *DT) {
- // Holds the Load and Store instructions.
- SmallVector<LoadInst *, 16> Loads;
- SmallVector<StoreInst *, 16> Stores;
- // Holds all the different accesses in the loop.
- unsigned NumReads = 0;
- unsigned NumReadWrites = 0;
- bool HasComplexMemInst = false;
- // A runtime check is only legal to insert if there are no convergent calls.
- HasConvergentOp = false;
- PtrRtChecking->Pointers.clear();
- PtrRtChecking->Need = false;
- const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
- const bool EnableMemAccessVersioningOfLoop =
- EnableMemAccessVersioning &&
- !TheLoop->getHeader()->getParent()->hasOptSize();
- // Traverse blocks in fixed RPOT order, regardless of their storage in the
- // loop info, as it may be arbitrary.
- LoopBlocksRPO RPOT(TheLoop);
- RPOT.perform(LI);
- for (BasicBlock *BB : RPOT) {
- // Scan the BB and collect legal loads and stores. Also detect any
- // convergent instructions.
- for (Instruction &I : *BB) {
- if (auto *Call = dyn_cast<CallBase>(&I)) {
- if (Call->isConvergent())
- HasConvergentOp = true;
- }
- // With both a non-vectorizable memory instruction and a convergent
- // operation, found in this loop, no reason to continue the search.
- if (HasComplexMemInst && HasConvergentOp) {
- CanVecMem = false;
- return;
- }
- // Avoid hitting recordAnalysis multiple times.
- if (HasComplexMemInst)
- continue;
- // If this is a load, save it. If this instruction can read from memory
- // but is not a load, then we quit. Notice that we don't handle function
- // calls that read or write.
- if (I.mayReadFromMemory()) {
- // Many math library functions read the rounding mode. We will only
- // vectorize a loop if it contains known function calls that don't set
- // the flag. Therefore, it is safe to ignore this read from memory.
- auto *Call = dyn_cast<CallInst>(&I);
- if (Call && getVectorIntrinsicIDForCall(Call, TLI))
- continue;
- // If the function has an explicit vectorized counterpart, we can safely
- // assume that it can be vectorized.
- if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
- !VFDatabase::getMappings(*Call).empty())
- continue;
- auto *Ld = dyn_cast<LoadInst>(&I);
- if (!Ld) {
- recordAnalysis("CantVectorizeInstruction", Ld)
- << "instruction cannot be vectorized";
- HasComplexMemInst = true;
- continue;
- }
- if (!Ld->isSimple() && !IsAnnotatedParallel) {
- recordAnalysis("NonSimpleLoad", Ld)
- << "read with atomic ordering or volatile read";
- LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
- HasComplexMemInst = true;
- continue;
- }
- NumLoads++;
- Loads.push_back(Ld);
- DepChecker->addAccess(Ld);
- if (EnableMemAccessVersioningOfLoop)
- collectStridedAccess(Ld);
- continue;
- }
- // Save 'store' instructions. Abort if other instructions write to memory.
- if (I.mayWriteToMemory()) {
- auto *St = dyn_cast<StoreInst>(&I);
- if (!St) {
- recordAnalysis("CantVectorizeInstruction", St)
- << "instruction cannot be vectorized";
- HasComplexMemInst = true;
- continue;
- }
- if (!St->isSimple() && !IsAnnotatedParallel) {
- recordAnalysis("NonSimpleStore", St)
- << "write with atomic ordering or volatile write";
- LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
- HasComplexMemInst = true;
- continue;
- }
- NumStores++;
- Stores.push_back(St);
- DepChecker->addAccess(St);
- if (EnableMemAccessVersioningOfLoop)
- collectStridedAccess(St);
- }
- } // Next instr.
- } // Next block.
- if (HasComplexMemInst) {
- CanVecMem = false;
- return;
- }
- // Now we have two lists that hold the loads and the stores.
- // Next, we find the pointers that they use.
- // Check if we see any stores. If there are no stores, then we don't
- // care if the pointers are *restrict*.
- if (!Stores.size()) {
- LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
- CanVecMem = true;
- return;
- }
- MemoryDepChecker::DepCandidates DependentAccesses;
- AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
- // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
- // multiple times on the same object. If the ptr is accessed twice, once
- // for read and once for write, it will only appear once (on the write
- // list). This is okay, since we are going to check for conflicts between
- // writes and between reads and writes, but not between reads and reads.
- SmallSet<std::pair<Value *, Type *>, 16> Seen;
- // Record uniform store addresses to identify if we have multiple stores
- // to the same address.
- SmallPtrSet<Value *, 16> UniformStores;
- for (StoreInst *ST : Stores) {
- Value *Ptr = ST->getPointerOperand();
- if (isUniform(Ptr)) {
- // Record store instructions to loop invariant addresses
- StoresToInvariantAddresses.push_back(ST);
- HasDependenceInvolvingLoopInvariantAddress |=
- !UniformStores.insert(Ptr).second;
- }
- // If we did *not* see this pointer before, insert it to the read-write
- // list. At this phase it is only a 'write' list.
- Type *AccessTy = getLoadStoreType(ST);
- if (Seen.insert({Ptr, AccessTy}).second) {
- ++NumReadWrites;
- MemoryLocation Loc = MemoryLocation::get(ST);
- // The TBAA metadata could have a control dependency on the predication
- // condition, so we cannot rely on it when determining whether or not we
- // need runtime pointer checks.
- if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
- Loc.AATags.TBAA = nullptr;
- visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
- [&Accesses, AccessTy, Loc](Value *Ptr) {
- MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
- Accesses.addStore(NewLoc, AccessTy);
- });
- }
- }
- if (IsAnnotatedParallel) {
- LLVM_DEBUG(
- dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
- << "checks.\n");
- CanVecMem = true;
- return;
- }
- for (LoadInst *LD : Loads) {
- Value *Ptr = LD->getPointerOperand();
- // If we did *not* see this pointer before, insert it to the
- // read list. If we *did* see it before, then it is already in
- // the read-write list. This allows us to vectorize expressions
- // such as A[i] += x; Because the address of A[i] is a read-write
- // pointer. This only works if the index of A[i] is consecutive.
- // If the address of i is unknown (for example A[B[i]]) then we may
- // read a few words, modify, and write a few words, and some of the
- // words may be written to the same address.
- bool IsReadOnlyPtr = false;
- Type *AccessTy = getLoadStoreType(LD);
- if (Seen.insert({Ptr, AccessTy}).second ||
- !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
- ++NumReads;
- IsReadOnlyPtr = true;
- }
- // See if there is an unsafe dependency between a load to a uniform address and
- // store to the same uniform address.
- if (UniformStores.count(Ptr)) {
- LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
- "load and uniform store to the same address!\n");
- HasDependenceInvolvingLoopInvariantAddress = true;
- }
- MemoryLocation Loc = MemoryLocation::get(LD);
- // The TBAA metadata could have a control dependency on the predication
- // condition, so we cannot rely on it when determining whether or not we
- // need runtime pointer checks.
- if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
- Loc.AATags.TBAA = nullptr;
- visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
- [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
- MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
- Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
- });
- }
- // If we write (or read-write) to a single destination and there are no
- // other reads in this loop then is it safe to vectorize.
- if (NumReadWrites == 1 && NumReads == 0) {
- LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
- CanVecMem = true;
- return;
- }
- // Build dependence sets and check whether we need a runtime pointer bounds
- // check.
- Accesses.buildDependenceSets();
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- Value *UncomputablePtr = nullptr;
- bool CanDoRTIfNeeded =
- Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
- SymbolicStrides, UncomputablePtr, false);
- if (!CanDoRTIfNeeded) {
- auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
- recordAnalysis("CantIdentifyArrayBounds", I)
- << "cannot identify array bounds";
- LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
- << "the array bounds.\n");
- CanVecMem = false;
- return;
- }
- LLVM_DEBUG(
- dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
- CanVecMem = true;
- if (Accesses.isDependencyCheckNeeded()) {
- LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
- CanVecMem = DepChecker->areDepsSafe(
- DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
- MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
- if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
- LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
- // Clear the dependency checks. We assume they are not needed.
- Accesses.resetDepChecks(*DepChecker);
- PtrRtChecking->reset();
- PtrRtChecking->Need = true;
- auto *SE = PSE->getSE();
- UncomputablePtr = nullptr;
- CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
- *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
- // Check that we found the bounds for the pointer.
- if (!CanDoRTIfNeeded) {
- auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
- recordAnalysis("CantCheckMemDepsAtRunTime", I)
- << "cannot check memory dependencies at runtime";
- LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
- CanVecMem = false;
- return;
- }
- CanVecMem = true;
- }
- }
- if (HasConvergentOp) {
- recordAnalysis("CantInsertRuntimeCheckWithConvergent")
- << "cannot add control dependency to convergent operation";
- LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
- "would be needed with a convergent operation\n");
- CanVecMem = false;
- return;
- }
- if (CanVecMem)
- LLVM_DEBUG(
- dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
- << (PtrRtChecking->Need ? "" : " don't")
- << " need runtime memory checks.\n");
- else
- emitUnsafeDependenceRemark();
- }
- void LoopAccessInfo::emitUnsafeDependenceRemark() {
- auto Deps = getDepChecker().getDependences();
- if (!Deps)
- return;
- auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
- return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
- MemoryDepChecker::VectorizationSafetyStatus::Safe;
- });
- if (Found == Deps->end())
- return;
- MemoryDepChecker::Dependence Dep = *Found;
- LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
- // Emit remark for first unsafe dependence
- OptimizationRemarkAnalysis &R =
- recordAnalysis("UnsafeDep", Dep.getDestination(*this))
- << "unsafe dependent memory operations in loop. Use "
- "#pragma loop distribute(enable) to allow loop distribution "
- "to attempt to isolate the offending operations into a separate "
- "loop";
- switch (Dep.Type) {
- case MemoryDepChecker::Dependence::NoDep:
- case MemoryDepChecker::Dependence::Forward:
- case MemoryDepChecker::Dependence::BackwardVectorizable:
- llvm_unreachable("Unexpected dependence");
- case MemoryDepChecker::Dependence::Backward:
- R << "\nBackward loop carried data dependence.";
- break;
- case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
- R << "\nForward loop carried data dependence that prevents "
- "store-to-load forwarding.";
- break;
- case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
- R << "\nBackward loop carried data dependence that prevents "
- "store-to-load forwarding.";
- break;
- case MemoryDepChecker::Dependence::Unknown:
- R << "\nUnknown data dependence.";
- break;
- }
- if (Instruction *I = Dep.getSource(*this)) {
- DebugLoc SourceLoc = I->getDebugLoc();
- if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
- SourceLoc = DD->getDebugLoc();
- if (SourceLoc)
- R << " Memory location is the same as accessed at "
- << ore::NV("Location", SourceLoc);
- }
- }
- bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
- DominatorTree *DT) {
- assert(TheLoop->contains(BB) && "Unknown block used");
- // Blocks that do not dominate the latch need predication.
- BasicBlock* Latch = TheLoop->getLoopLatch();
- return !DT->dominates(BB, Latch);
- }
- OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
- Instruction *I) {
- assert(!Report && "Multiple reports generated");
- Value *CodeRegion = TheLoop->getHeader();
- DebugLoc DL = TheLoop->getStartLoc();
- if (I) {
- CodeRegion = I->getParent();
- // If there is no debug location attached to the instruction, revert back to
- // using the loop's.
- if (I->getDebugLoc())
- DL = I->getDebugLoc();
- }
- Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
- CodeRegion);
- return *Report;
- }
- bool LoopAccessInfo::isUniform(Value *V) const {
- auto *SE = PSE->getSE();
- // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
- // never considered uniform.
- // TODO: Is this really what we want? Even without FP SCEV, we may want some
- // trivially loop-invariant FP values to be considered uniform.
- if (!SE->isSCEVable(V->getType()))
- return false;
- return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
- }
- void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
- Value *Ptr = getLoadStorePointerOperand(MemAccess);
- if (!Ptr)
- return;
- Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
- if (!Stride)
- return;
- LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
- "versioning:");
- LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
- // Avoid adding the "Stride == 1" predicate when we know that
- // Stride >= Trip-Count. Such a predicate will effectively optimize a single
- // or zero iteration loop, as Trip-Count <= Stride == 1.
- //
- // TODO: We are currently not making a very informed decision on when it is
- // beneficial to apply stride versioning. It might make more sense that the
- // users of this analysis (such as the vectorizer) will trigger it, based on
- // their specific cost considerations; For example, in cases where stride
- // versioning does not help resolving memory accesses/dependences, the
- // vectorizer should evaluate the cost of the runtime test, and the benefit
- // of various possible stride specializations, considering the alternatives
- // of using gather/scatters (if available).
- const SCEV *StrideExpr = PSE->getSCEV(Stride);
- const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
- // Match the types so we can compare the stride and the BETakenCount.
- // The Stride can be positive/negative, so we sign extend Stride;
- // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
- const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
- uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
- uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
- const SCEV *CastedStride = StrideExpr;
- const SCEV *CastedBECount = BETakenCount;
- ScalarEvolution *SE = PSE->getSE();
- if (BETypeSizeBits >= StrideTypeSizeBits)
- CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
- else
- CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
- const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
- // Since TripCount == BackEdgeTakenCount + 1, checking:
- // "Stride >= TripCount" is equivalent to checking:
- // Stride - BETakenCount > 0
- if (SE->isKnownPositive(StrideMinusBETaken)) {
- LLVM_DEBUG(
- dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
- "Stride==1 predicate will imply that the loop executes "
- "at most once.\n");
- return;
- }
- LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
- SymbolicStrides[Ptr] = Stride;
- StrideSet.insert(Stride);
- }
- LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
- const TargetLibraryInfo *TLI, AAResults *AA,
- DominatorTree *DT, LoopInfo *LI)
- : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
- PtrRtChecking(nullptr),
- DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
- PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
- if (canAnalyzeLoop()) {
- analyzeLoop(AA, LI, TLI, DT);
- }
- }
- void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
- if (CanVecMem) {
- OS.indent(Depth) << "Memory dependences are safe";
- if (MaxSafeDepDistBytes != -1ULL)
- OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
- << " bytes";
- if (PtrRtChecking->Need)
- OS << " with run-time checks";
- OS << "\n";
- }
- if (HasConvergentOp)
- OS.indent(Depth) << "Has convergent operation in loop\n";
- if (Report)
- OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
- if (auto *Dependences = DepChecker->getDependences()) {
- OS.indent(Depth) << "Dependences:\n";
- for (const auto &Dep : *Dependences) {
- Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
- OS << "\n";
- }
- } else
- OS.indent(Depth) << "Too many dependences, not recorded\n";
- // List the pair of accesses need run-time checks to prove independence.
- PtrRtChecking->print(OS, Depth);
- OS << "\n";
- OS.indent(Depth) << "Non vectorizable stores to invariant address were "
- << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
- << "found in loop.\n";
- OS.indent(Depth) << "SCEV assumptions:\n";
- PSE->getPredicate().print(OS, Depth);
- OS << "\n";
- OS.indent(Depth) << "Expressions re-written:\n";
- PSE->print(OS, Depth);
- }
- const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
- auto I = LoopAccessInfoMap.insert({&L, nullptr});
- if (I.second)
- I.first->second =
- std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);
- return *I.first->second;
- }
- LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
- initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
- }
- bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
- auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- LAIs = std::make_unique<LoopAccessInfoManager>(SE, AA, DT, LI, TLI);
- return false;
- }
- void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
- AU.addRequiredTransitive<AAResultsWrapperPass>();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequiredTransitive<LoopInfoWrapperPass>();
- AU.setPreservesAll();
- }
- LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
- FunctionAnalysisManager &AM) {
- return LoopAccessInfoManager(
- AM.getResult<ScalarEvolutionAnalysis>(F), AM.getResult<AAManager>(F),
- AM.getResult<DominatorTreeAnalysis>(F), AM.getResult<LoopAnalysis>(F),
- &AM.getResult<TargetLibraryAnalysis>(F));
- }
- char LoopAccessLegacyAnalysis::ID = 0;
- static const char laa_name[] = "Loop Access Analysis";
- #define LAA_NAME "loop-accesses"
- INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
- AnalysisKey LoopAccessAnalysis::Key;
- namespace llvm {
- Pass *createLAAPass() {
- return new LoopAccessLegacyAnalysis();
- }
- } // end namespace llvm
|