1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065 |
- //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the interface for lazy computation of value constraint
- // information.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LazyValueInfo.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueLattice.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/AssemblyAnnotationWriter.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/FormattedStream.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include <optional>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "lazy-value-info"
- // This is the number of worklist items we will process to try to discover an
- // answer for a given value.
- static const unsigned MaxProcessedPerValue = 500;
- char LazyValueInfoWrapperPass::ID = 0;
- LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
- initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
- "Lazy Value Information Analysis", false, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
- "Lazy Value Information Analysis", false, true)
- namespace llvm {
- FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
- }
- AnalysisKey LazyValueAnalysis::Key;
- /// Returns true if this lattice value represents at most one possible value.
- /// This is as precise as any lattice value can get while still representing
- /// reachable code.
- static bool hasSingleValue(const ValueLatticeElement &Val) {
- if (Val.isConstantRange() &&
- Val.getConstantRange().isSingleElement())
- // Integer constants are single element ranges
- return true;
- if (Val.isConstant())
- // Non integer constants
- return true;
- return false;
- }
- /// Combine two sets of facts about the same value into a single set of
- /// facts. Note that this method is not suitable for merging facts along
- /// different paths in a CFG; that's what the mergeIn function is for. This
- /// is for merging facts gathered about the same value at the same location
- /// through two independent means.
- /// Notes:
- /// * This method does not promise to return the most precise possible lattice
- /// value implied by A and B. It is allowed to return any lattice element
- /// which is at least as strong as *either* A or B (unless our facts
- /// conflict, see below).
- /// * Due to unreachable code, the intersection of two lattice values could be
- /// contradictory. If this happens, we return some valid lattice value so as
- /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
- /// we do not make this guarantee. TODO: This would be a useful enhancement.
- static ValueLatticeElement intersect(const ValueLatticeElement &A,
- const ValueLatticeElement &B) {
- // Undefined is the strongest state. It means the value is known to be along
- // an unreachable path.
- if (A.isUnknown())
- return A;
- if (B.isUnknown())
- return B;
- // If we gave up for one, but got a useable fact from the other, use it.
- if (A.isOverdefined())
- return B;
- if (B.isOverdefined())
- return A;
- // Can't get any more precise than constants.
- if (hasSingleValue(A))
- return A;
- if (hasSingleValue(B))
- return B;
- // Could be either constant range or not constant here.
- if (!A.isConstantRange() || !B.isConstantRange()) {
- // TODO: Arbitrary choice, could be improved
- return A;
- }
- // Intersect two constant ranges
- ConstantRange Range =
- A.getConstantRange().intersectWith(B.getConstantRange());
- // Note: An empty range is implicitly converted to unknown or undef depending
- // on MayIncludeUndef internally.
- return ValueLatticeElement::getRange(
- std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() ||
- B.isConstantRangeIncludingUndef());
- }
- //===----------------------------------------------------------------------===//
- // LazyValueInfoCache Decl
- //===----------------------------------------------------------------------===//
- namespace {
- /// A callback value handle updates the cache when values are erased.
- class LazyValueInfoCache;
- struct LVIValueHandle final : public CallbackVH {
- LazyValueInfoCache *Parent;
- LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
- : CallbackVH(V), Parent(P) { }
- void deleted() override;
- void allUsesReplacedWith(Value *V) override {
- deleted();
- }
- };
- } // end anonymous namespace
- namespace {
- using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
- /// This is the cache kept by LazyValueInfo which
- /// maintains information about queries across the clients' queries.
- class LazyValueInfoCache {
- /// This is all of the cached information for one basic block. It contains
- /// the per-value lattice elements, as well as a separate set for
- /// overdefined values to reduce memory usage. Additionally pointers
- /// dereferenced in the block are cached for nullability queries.
- struct BlockCacheEntry {
- SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
- SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
- // None indicates that the nonnull pointers for this basic block
- // block have not been computed yet.
- std::optional<NonNullPointerSet> NonNullPointers;
- };
- /// Cached information per basic block.
- DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
- BlockCache;
- /// Set of value handles used to erase values from the cache on deletion.
- DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
- const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
- auto It = BlockCache.find_as(BB);
- if (It == BlockCache.end())
- return nullptr;
- return It->second.get();
- }
- BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
- auto It = BlockCache.find_as(BB);
- if (It == BlockCache.end())
- It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
- .first;
- return It->second.get();
- }
- void addValueHandle(Value *Val) {
- auto HandleIt = ValueHandles.find_as(Val);
- if (HandleIt == ValueHandles.end())
- ValueHandles.insert({ Val, this });
- }
- public:
- void insertResult(Value *Val, BasicBlock *BB,
- const ValueLatticeElement &Result) {
- BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
- // Insert over-defined values into their own cache to reduce memory
- // overhead.
- if (Result.isOverdefined())
- Entry->OverDefined.insert(Val);
- else
- Entry->LatticeElements.insert({ Val, Result });
- addValueHandle(Val);
- }
- std::optional<ValueLatticeElement>
- getCachedValueInfo(Value *V, BasicBlock *BB) const {
- const BlockCacheEntry *Entry = getBlockEntry(BB);
- if (!Entry)
- return std::nullopt;
- if (Entry->OverDefined.count(V))
- return ValueLatticeElement::getOverdefined();
- auto LatticeIt = Entry->LatticeElements.find_as(V);
- if (LatticeIt == Entry->LatticeElements.end())
- return std::nullopt;
- return LatticeIt->second;
- }
- bool isNonNullAtEndOfBlock(
- Value *V, BasicBlock *BB,
- function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
- BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
- if (!Entry->NonNullPointers) {
- Entry->NonNullPointers = InitFn(BB);
- for (Value *V : *Entry->NonNullPointers)
- addValueHandle(V);
- }
- return Entry->NonNullPointers->count(V);
- }
- /// clear - Empty the cache.
- void clear() {
- BlockCache.clear();
- ValueHandles.clear();
- }
- /// Inform the cache that a given value has been deleted.
- void eraseValue(Value *V);
- /// This is part of the update interface to inform the cache
- /// that a block has been deleted.
- void eraseBlock(BasicBlock *BB);
- /// Updates the cache to remove any influence an overdefined value in
- /// OldSucc might have (unless also overdefined in NewSucc). This just
- /// flushes elements from the cache and does not add any.
- void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
- };
- }
- void LazyValueInfoCache::eraseValue(Value *V) {
- for (auto &Pair : BlockCache) {
- Pair.second->LatticeElements.erase(V);
- Pair.second->OverDefined.erase(V);
- if (Pair.second->NonNullPointers)
- Pair.second->NonNullPointers->erase(V);
- }
- auto HandleIt = ValueHandles.find_as(V);
- if (HandleIt != ValueHandles.end())
- ValueHandles.erase(HandleIt);
- }
- void LVIValueHandle::deleted() {
- // This erasure deallocates *this, so it MUST happen after we're done
- // using any and all members of *this.
- Parent->eraseValue(*this);
- }
- void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
- BlockCache.erase(BB);
- }
- void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
- BasicBlock *NewSucc) {
- // When an edge in the graph has been threaded, values that we could not
- // determine a value for before (i.e. were marked overdefined) may be
- // possible to solve now. We do NOT try to proactively update these values.
- // Instead, we clear their entries from the cache, and allow lazy updating to
- // recompute them when needed.
- // The updating process is fairly simple: we need to drop cached info
- // for all values that were marked overdefined in OldSucc, and for those same
- // values in any successor of OldSucc (except NewSucc) in which they were
- // also marked overdefined.
- std::vector<BasicBlock*> worklist;
- worklist.push_back(OldSucc);
- const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
- if (!Entry || Entry->OverDefined.empty())
- return; // Nothing to process here.
- SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
- Entry->OverDefined.end());
- // Use a worklist to perform a depth-first search of OldSucc's successors.
- // NOTE: We do not need a visited list since any blocks we have already
- // visited will have had their overdefined markers cleared already, and we
- // thus won't loop to their successors.
- while (!worklist.empty()) {
- BasicBlock *ToUpdate = worklist.back();
- worklist.pop_back();
- // Skip blocks only accessible through NewSucc.
- if (ToUpdate == NewSucc) continue;
- // If a value was marked overdefined in OldSucc, and is here too...
- auto OI = BlockCache.find_as(ToUpdate);
- if (OI == BlockCache.end() || OI->second->OverDefined.empty())
- continue;
- auto &ValueSet = OI->second->OverDefined;
- bool changed = false;
- for (Value *V : ValsToClear) {
- if (!ValueSet.erase(V))
- continue;
- // If we removed anything, then we potentially need to update
- // blocks successors too.
- changed = true;
- }
- if (!changed) continue;
- llvm::append_range(worklist, successors(ToUpdate));
- }
- }
- namespace {
- /// An assembly annotator class to print LazyValueCache information in
- /// comments.
- class LazyValueInfoImpl;
- class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
- LazyValueInfoImpl *LVIImpl;
- // While analyzing which blocks we can solve values for, we need the dominator
- // information.
- DominatorTree &DT;
- public:
- LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
- : LVIImpl(L), DT(DTree) {}
- void emitBasicBlockStartAnnot(const BasicBlock *BB,
- formatted_raw_ostream &OS) override;
- void emitInstructionAnnot(const Instruction *I,
- formatted_raw_ostream &OS) override;
- };
- }
- namespace {
- // The actual implementation of the lazy analysis and update. Note that the
- // inheritance from LazyValueInfoCache is intended to be temporary while
- // splitting the code and then transitioning to a has-a relationship.
- class LazyValueInfoImpl {
- /// Cached results from previous queries
- LazyValueInfoCache TheCache;
- /// This stack holds the state of the value solver during a query.
- /// It basically emulates the callstack of the naive
- /// recursive value lookup process.
- SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
- /// Keeps track of which block-value pairs are in BlockValueStack.
- DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
- /// Push BV onto BlockValueStack unless it's already in there.
- /// Returns true on success.
- bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
- if (!BlockValueSet.insert(BV).second)
- return false; // It's already in the stack.
- LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
- << BV.first->getName() << "\n");
- BlockValueStack.push_back(BV);
- return true;
- }
- AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
- const DataLayout &DL; ///< A mandatory DataLayout
- /// Declaration of the llvm.experimental.guard() intrinsic,
- /// if it exists in the module.
- Function *GuardDecl;
- std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB,
- Instruction *CxtI);
- std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
- BasicBlock *T,
- Instruction *CxtI = nullptr);
- // These methods process one work item and may add more. A false value
- // returned means that the work item was not completely processed and must
- // be revisited after going through the new items.
- bool solveBlockValue(Value *Val, BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val,
- BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
- BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
- BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
- BasicBlock *BB);
- std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
- BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
- Instruction *I, BasicBlock *BB,
- std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
- OpFn);
- std::optional<ValueLatticeElement>
- solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
- BasicBlock *BB);
- std::optional<ValueLatticeElement>
- solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB);
- std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
- BasicBlock *BB);
- std::optional<ValueLatticeElement>
- solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB);
- bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
- void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
- ValueLatticeElement &BBLV,
- Instruction *BBI);
- void solve();
- public:
- /// This is the query interface to determine the lattice value for the
- /// specified Value* at the context instruction (if specified) or at the
- /// start of the block.
- ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
- Instruction *CxtI = nullptr);
- /// This is the query interface to determine the lattice value for the
- /// specified Value* at the specified instruction using only information
- /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
- /// recursive query is performed.
- ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
- /// This is the query interface to determine the lattice
- /// value for the specified Value* that is true on the specified edge.
- ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
- BasicBlock *ToBB,
- Instruction *CxtI = nullptr);
- /// Complete flush all previously computed values
- void clear() {
- TheCache.clear();
- }
- /// Printing the LazyValueInfo Analysis.
- void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
- LazyValueInfoAnnotatedWriter Writer(this, DTree);
- F.print(OS, &Writer);
- }
- /// This is part of the update interface to inform the cache
- /// that a block has been deleted.
- void eraseBlock(BasicBlock *BB) {
- TheCache.eraseBlock(BB);
- }
- /// This is the update interface to inform the cache that an edge from
- /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
- void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
- LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
- Function *GuardDecl)
- : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
- };
- } // end anonymous namespace
- void LazyValueInfoImpl::solve() {
- SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
- BlockValueStack.begin(), BlockValueStack.end());
- unsigned processedCount = 0;
- while (!BlockValueStack.empty()) {
- processedCount++;
- // Abort if we have to process too many values to get a result for this one.
- // Because of the design of the overdefined cache currently being per-block
- // to avoid naming-related issues (IE it wants to try to give different
- // results for the same name in different blocks), overdefined results don't
- // get cached globally, which in turn means we will often try to rediscover
- // the same overdefined result again and again. Once something like
- // PredicateInfo is used in LVI or CVP, we should be able to make the
- // overdefined cache global, and remove this throttle.
- if (processedCount > MaxProcessedPerValue) {
- LLVM_DEBUG(
- dbgs() << "Giving up on stack because we are getting too deep\n");
- // Fill in the original values
- while (!StartingStack.empty()) {
- std::pair<BasicBlock *, Value *> &e = StartingStack.back();
- TheCache.insertResult(e.second, e.first,
- ValueLatticeElement::getOverdefined());
- StartingStack.pop_back();
- }
- BlockValueSet.clear();
- BlockValueStack.clear();
- return;
- }
- std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
- assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
- if (solveBlockValue(e.second, e.first)) {
- // The work item was completely processed.
- assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
- #ifndef NDEBUG
- std::optional<ValueLatticeElement> BBLV =
- TheCache.getCachedValueInfo(e.second, e.first);
- assert(BBLV && "Result should be in cache!");
- LLVM_DEBUG(
- dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
- << *BBLV << "\n");
- #endif
- BlockValueStack.pop_back();
- BlockValueSet.erase(e);
- } else {
- // More work needs to be done before revisiting.
- assert(BlockValueStack.back() != e && "Stack should have been pushed!");
- }
- }
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB,
- Instruction *CxtI) {
- // If already a constant, there is nothing to compute.
- if (Constant *VC = dyn_cast<Constant>(Val))
- return ValueLatticeElement::get(VC);
- if (std::optional<ValueLatticeElement> OptLatticeVal =
- TheCache.getCachedValueInfo(Val, BB)) {
- intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
- return OptLatticeVal;
- }
- // We have hit a cycle, assume overdefined.
- if (!pushBlockValue({ BB, Val }))
- return ValueLatticeElement::getOverdefined();
- // Yet to be resolved.
- return std::nullopt;
- }
- static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
- switch (BBI->getOpcode()) {
- default: break;
- case Instruction::Load:
- case Instruction::Call:
- case Instruction::Invoke:
- if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
- if (isa<IntegerType>(BBI->getType())) {
- return ValueLatticeElement::getRange(
- getConstantRangeFromMetadata(*Ranges));
- }
- break;
- };
- // Nothing known - will be intersected with other facts
- return ValueLatticeElement::getOverdefined();
- }
- bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
- assert(!isa<Constant>(Val) && "Value should not be constant");
- assert(!TheCache.getCachedValueInfo(Val, BB) &&
- "Value should not be in cache");
- // Hold off inserting this value into the Cache in case we have to return
- // false and come back later.
- std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
- if (!Res)
- // Work pushed, will revisit
- return false;
- TheCache.insertResult(Val, BB, *Res);
- return true;
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
- Instruction *BBI = dyn_cast<Instruction>(Val);
- if (!BBI || BBI->getParent() != BB)
- return solveBlockValueNonLocal(Val, BB);
- if (PHINode *PN = dyn_cast<PHINode>(BBI))
- return solveBlockValuePHINode(PN, BB);
- if (auto *SI = dyn_cast<SelectInst>(BBI))
- return solveBlockValueSelect(SI, BB);
- // If this value is a nonnull pointer, record it's range and bailout. Note
- // that for all other pointer typed values, we terminate the search at the
- // definition. We could easily extend this to look through geps, bitcasts,
- // and the like to prove non-nullness, but it's not clear that's worth it
- // compile time wise. The context-insensitive value walk done inside
- // isKnownNonZero gets most of the profitable cases at much less expense.
- // This does mean that we have a sensitivity to where the defining
- // instruction is placed, even if it could legally be hoisted much higher.
- // That is unfortunate.
- PointerType *PT = dyn_cast<PointerType>(BBI->getType());
- if (PT && isKnownNonZero(BBI, DL))
- return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
- if (BBI->getType()->isIntegerTy()) {
- if (auto *CI = dyn_cast<CastInst>(BBI))
- return solveBlockValueCast(CI, BB);
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
- return solveBlockValueBinaryOp(BO, BB);
- if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
- return solveBlockValueExtractValue(EVI, BB);
- if (auto *II = dyn_cast<IntrinsicInst>(BBI))
- return solveBlockValueIntrinsic(II, BB);
- }
- LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - unknown inst def found.\n");
- return getFromRangeMetadata(BBI);
- }
- static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
- // TODO: Use NullPointerIsDefined instead.
- if (Ptr->getType()->getPointerAddressSpace() == 0)
- PtrSet.insert(getUnderlyingObject(Ptr));
- }
- static void AddNonNullPointersByInstruction(
- Instruction *I, NonNullPointerSet &PtrSet) {
- if (LoadInst *L = dyn_cast<LoadInst>(I)) {
- AddNonNullPointer(L->getPointerOperand(), PtrSet);
- } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
- AddNonNullPointer(S->getPointerOperand(), PtrSet);
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
- if (MI->isVolatile()) return;
- // FIXME: check whether it has a valuerange that excludes zero?
- ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
- if (!Len || Len->isZero()) return;
- AddNonNullPointer(MI->getRawDest(), PtrSet);
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
- AddNonNullPointer(MTI->getRawSource(), PtrSet);
- }
- }
- bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
- if (NullPointerIsDefined(BB->getParent(),
- Val->getType()->getPointerAddressSpace()))
- return false;
- Val = Val->stripInBoundsOffsets();
- return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
- NonNullPointerSet NonNullPointers;
- for (Instruction &I : *BB)
- AddNonNullPointersByInstruction(&I, NonNullPointers);
- return NonNullPointers;
- });
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) {
- ValueLatticeElement Result; // Start Undefined.
- // If this is the entry block, we must be asking about an argument. The
- // value is overdefined.
- if (BB->isEntryBlock()) {
- assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
- return ValueLatticeElement::getOverdefined();
- }
- // Loop over all of our predecessors, merging what we know from them into
- // result. If we encounter an unexplored predecessor, we eagerly explore it
- // in a depth first manner. In practice, this has the effect of discovering
- // paths we can't analyze eagerly without spending compile times analyzing
- // other paths. This heuristic benefits from the fact that predecessors are
- // frequently arranged such that dominating ones come first and we quickly
- // find a path to function entry. TODO: We should consider explicitly
- // canonicalizing to make this true rather than relying on this happy
- // accident.
- for (BasicBlock *Pred : predecessors(BB)) {
- std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
- if (!EdgeResult)
- // Explore that input, then return here
- return std::nullopt;
- Result.mergeIn(*EdgeResult);
- // If we hit overdefined, exit early. The BlockVals entry is already set
- // to overdefined.
- if (Result.isOverdefined()) {
- LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - overdefined because of pred '"
- << Pred->getName() << "' (non local).\n");
- return Result;
- }
- }
- // Return the merged value, which is more precise than 'overdefined'.
- assert(!Result.isOverdefined());
- return Result;
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) {
- ValueLatticeElement Result; // Start Undefined.
- // Loop over all of our predecessors, merging what we know from them into
- // result. See the comment about the chosen traversal order in
- // solveBlockValueNonLocal; the same reasoning applies here.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *PhiBB = PN->getIncomingBlock(i);
- Value *PhiVal = PN->getIncomingValue(i);
- // Note that we can provide PN as the context value to getEdgeValue, even
- // though the results will be cached, because PN is the value being used as
- // the cache key in the caller.
- std::optional<ValueLatticeElement> EdgeResult =
- getEdgeValue(PhiVal, PhiBB, BB, PN);
- if (!EdgeResult)
- // Explore that input, then return here
- return std::nullopt;
- Result.mergeIn(*EdgeResult);
- // If we hit overdefined, exit early. The BlockVals entry is already set
- // to overdefined.
- if (Result.isOverdefined()) {
- LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - overdefined because of pred (local).\n");
- return Result;
- }
- }
- // Return the merged value, which is more precise than 'overdefined'.
- assert(!Result.isOverdefined() && "Possible PHI in entry block?");
- return Result;
- }
- static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
- bool isTrueDest = true);
- // If we can determine a constraint on the value given conditions assumed by
- // the program, intersect those constraints with BBLV
- void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
- Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
- BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
- if (!BBI)
- return;
- BasicBlock *BB = BBI->getParent();
- for (auto &AssumeVH : AC->assumptionsFor(Val)) {
- if (!AssumeVH)
- continue;
- // Only check assumes in the block of the context instruction. Other
- // assumes will have already been taken into account when the value was
- // propagated from predecessor blocks.
- auto *I = cast<CallInst>(AssumeVH);
- if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
- continue;
- BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
- }
- // If guards are not used in the module, don't spend time looking for them
- if (GuardDecl && !GuardDecl->use_empty() &&
- BBI->getIterator() != BB->begin()) {
- for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
- BB->rend())) {
- Value *Cond = nullptr;
- if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
- BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
- }
- }
- if (BBLV.isOverdefined()) {
- // Check whether we're checking at the terminator, and the pointer has
- // been dereferenced in this block.
- PointerType *PTy = dyn_cast<PointerType>(Val->getType());
- if (PTy && BB->getTerminator() == BBI &&
- isNonNullAtEndOfBlock(Val, BB))
- BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
- }
- }
- static ConstantRange getConstantRangeOrFull(const ValueLatticeElement &Val,
- Type *Ty, const DataLayout &DL) {
- if (Val.isConstantRange())
- return Val.getConstantRange();
- return ConstantRange::getFull(DL.getTypeSizeInBits(Ty));
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) {
- // Recurse on our inputs if needed
- std::optional<ValueLatticeElement> OptTrueVal =
- getBlockValue(SI->getTrueValue(), BB, SI);
- if (!OptTrueVal)
- return std::nullopt;
- ValueLatticeElement &TrueVal = *OptTrueVal;
- std::optional<ValueLatticeElement> OptFalseVal =
- getBlockValue(SI->getFalseValue(), BB, SI);
- if (!OptFalseVal)
- return std::nullopt;
- ValueLatticeElement &FalseVal = *OptFalseVal;
- if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) {
- const ConstantRange &TrueCR =
- getConstantRangeOrFull(TrueVal, SI->getType(), DL);
- const ConstantRange &FalseCR =
- getConstantRangeOrFull(FalseVal, SI->getType(), DL);
- Value *LHS = nullptr;
- Value *RHS = nullptr;
- SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
- // Is this a min specifically of our two inputs? (Avoid the risk of
- // ValueTracking getting smarter looking back past our immediate inputs.)
- if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
- ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) ||
- (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) {
- ConstantRange ResultCR = [&]() {
- switch (SPR.Flavor) {
- default:
- llvm_unreachable("unexpected minmax type!");
- case SPF_SMIN: /// Signed minimum
- return TrueCR.smin(FalseCR);
- case SPF_UMIN: /// Unsigned minimum
- return TrueCR.umin(FalseCR);
- case SPF_SMAX: /// Signed maximum
- return TrueCR.smax(FalseCR);
- case SPF_UMAX: /// Unsigned maximum
- return TrueCR.umax(FalseCR);
- };
- }();
- return ValueLatticeElement::getRange(
- ResultCR, TrueVal.isConstantRangeIncludingUndef() ||
- FalseVal.isConstantRangeIncludingUndef());
- }
- if (SPR.Flavor == SPF_ABS) {
- if (LHS == SI->getTrueValue())
- return ValueLatticeElement::getRange(
- TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
- if (LHS == SI->getFalseValue())
- return ValueLatticeElement::getRange(
- FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
- }
- if (SPR.Flavor == SPF_NABS) {
- ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth()));
- if (LHS == SI->getTrueValue())
- return ValueLatticeElement::getRange(
- Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
- if (LHS == SI->getFalseValue())
- return ValueLatticeElement::getRange(
- Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
- }
- }
- // Can we constrain the facts about the true and false values by using the
- // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
- // TODO: We could potentially refine an overdefined true value above.
- Value *Cond = SI->getCondition();
- TrueVal = intersect(TrueVal,
- getValueFromCondition(SI->getTrueValue(), Cond, true));
- FalseVal = intersect(FalseVal,
- getValueFromCondition(SI->getFalseValue(), Cond, false));
- ValueLatticeElement Result = TrueVal;
- Result.mergeIn(FalseVal);
- return Result;
- }
- std::optional<ConstantRange>
- LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) {
- std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
- if (!OptVal)
- return std::nullopt;
- return getConstantRangeOrFull(*OptVal, V->getType(), DL);
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
- // Without knowing how wide the input is, we can't analyze it in any useful
- // way.
- if (!CI->getOperand(0)->getType()->isSized())
- return ValueLatticeElement::getOverdefined();
- // Filter out casts we don't know how to reason about before attempting to
- // recurse on our operand. This can cut a long search short if we know we're
- // not going to be able to get any useful information anways.
- switch (CI->getOpcode()) {
- case Instruction::Trunc:
- case Instruction::SExt:
- case Instruction::ZExt:
- case Instruction::BitCast:
- break;
- default:
- // Unhandled instructions are overdefined.
- LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - overdefined (unknown cast).\n");
- return ValueLatticeElement::getOverdefined();
- }
- // Figure out the range of the LHS. If that fails, we still apply the
- // transfer rule on the full set since we may be able to locally infer
- // interesting facts.
- std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
- if (!LHSRes)
- // More work to do before applying this transfer rule.
- return std::nullopt;
- const ConstantRange &LHSRange = *LHSRes;
- const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
- // NOTE: We're currently limited by the set of operations that ConstantRange
- // can evaluate symbolically. Enhancing that set will allows us to analyze
- // more definitions.
- return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
- ResultBitWidth));
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
- Instruction *I, BasicBlock *BB,
- std::function<ConstantRange(const ConstantRange &, const ConstantRange &)>
- OpFn) {
- // Figure out the ranges of the operands. If that fails, use a
- // conservative range, but apply the transfer rule anyways. This
- // lets us pick up facts from expressions like "and i32 (call i32
- // @foo()), 32"
- std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
- std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
- if (!LHSRes || !RHSRes)
- // More work to do before applying this transfer rule.
- return std::nullopt;
- const ConstantRange &LHSRange = *LHSRes;
- const ConstantRange &RHSRange = *RHSRes;
- return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) {
- assert(BO->getOperand(0)->getType()->isSized() &&
- "all operands to binary operators are sized");
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
- unsigned NoWrapKind = 0;
- if (OBO->hasNoUnsignedWrap())
- NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
- if (OBO->hasNoSignedWrap())
- NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
- return solveBlockValueBinaryOpImpl(
- BO, BB,
- [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
- return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
- });
- }
- return solveBlockValueBinaryOpImpl(
- BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
- return CR1.binaryOp(BO->getOpcode(), CR2);
- });
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
- BasicBlock *BB) {
- return solveBlockValueBinaryOpImpl(
- WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
- return CR1.binaryOp(WO->getBinaryOp(), CR2);
- });
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) {
- if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
- LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - unknown intrinsic.\n");
- return getFromRangeMetadata(II);
- }
- SmallVector<ConstantRange, 2> OpRanges;
- for (Value *Op : II->args()) {
- std::optional<ConstantRange> Range = getRangeFor(Op, II, BB);
- if (!Range)
- return std::nullopt;
- OpRanges.push_back(*Range);
- }
- return ValueLatticeElement::getRange(
- ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges));
- }
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI,
- BasicBlock *BB) {
- if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
- if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
- return solveBlockValueOverflowIntrinsic(WO, BB);
- // Handle extractvalue of insertvalue to allow further simplification
- // based on replaced with.overflow intrinsics.
- if (Value *V = simplifyExtractValueInst(
- EVI->getAggregateOperand(), EVI->getIndices(),
- EVI->getModule()->getDataLayout()))
- return getBlockValue(V, BB, EVI);
- LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
- << "' - overdefined (unknown extractvalue).\n");
- return ValueLatticeElement::getOverdefined();
- }
- static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
- ICmpInst::Predicate Pred) {
- if (LHS == Val)
- return true;
- // Handle range checking idiom produced by InstCombine. We will subtract the
- // offset from the allowed range for RHS in this case.
- const APInt *C;
- if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
- Offset = *C;
- return true;
- }
- // Handle the symmetric case. This appears in saturation patterns like
- // (x == 16) ? 16 : (x + 1).
- if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
- Offset = -*C;
- return true;
- }
- // If (x | y) < C, then (x < C) && (y < C).
- if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
- (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
- return true;
- // If (x & y) > C, then (x > C) && (y > C).
- if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
- (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
- return true;
- return false;
- }
- /// Get value range for a "(Val + Offset) Pred RHS" condition.
- static ValueLatticeElement getValueFromSimpleICmpCondition(
- CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) {
- ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
- /*isFullSet=*/true);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
- RHSRange = ConstantRange(CI->getValue());
- else if (Instruction *I = dyn_cast<Instruction>(RHS))
- if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
- RHSRange = getConstantRangeFromMetadata(*Ranges);
- ConstantRange TrueValues =
- ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
- return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
- }
- static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
- bool isTrueDest) {
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
- // Get the predicate that must hold along the considered edge.
- CmpInst::Predicate EdgePred =
- isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
- if (isa<Constant>(RHS)) {
- if (ICI->isEquality() && LHS == Val) {
- if (EdgePred == ICmpInst::ICMP_EQ)
- return ValueLatticeElement::get(cast<Constant>(RHS));
- else if (!isa<UndefValue>(RHS))
- return ValueLatticeElement::getNot(cast<Constant>(RHS));
- }
- }
- Type *Ty = Val->getType();
- if (!Ty->isIntegerTy())
- return ValueLatticeElement::getOverdefined();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- APInt Offset(BitWidth, 0);
- if (matchICmpOperand(Offset, LHS, Val, EdgePred))
- return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
- CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
- if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
- return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
- const APInt *Mask, *C;
- if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
- match(RHS, m_APInt(C))) {
- // If (Val & Mask) == C then all the masked bits are known and we can
- // compute a value range based on that.
- if (EdgePred == ICmpInst::ICMP_EQ) {
- KnownBits Known;
- Known.Zero = ~*C & *Mask;
- Known.One = *C & *Mask;
- return ValueLatticeElement::getRange(
- ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
- }
- // If (Val & Mask) != 0 then the value must be larger than the lowest set
- // bit of Mask.
- if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) {
- return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
- APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()),
- APInt::getZero(BitWidth)));
- }
- }
- // If (X urem Modulus) >= C, then X >= C.
- // If trunc X >= C, then X >= C.
- // TODO: An upper bound could be computed as well.
- if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()),
- m_Trunc(m_Specific(Val)))) &&
- match(RHS, m_APInt(C))) {
- // Use the icmp region so we don't have to deal with different predicates.
- ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C);
- if (!CR.isEmptySet())
- return ValueLatticeElement::getRange(ConstantRange::getNonEmpty(
- CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0)));
- }
- return ValueLatticeElement::getOverdefined();
- }
- // Handle conditions of the form
- // extractvalue(op.with.overflow(%x, C), 1).
- static ValueLatticeElement getValueFromOverflowCondition(
- Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
- // TODO: This only works with a constant RHS for now. We could also compute
- // the range of the RHS, but this doesn't fit into the current structure of
- // the edge value calculation.
- const APInt *C;
- if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
- return ValueLatticeElement::getOverdefined();
- // Calculate the possible values of %x for which no overflow occurs.
- ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
- WO->getBinaryOp(), *C, WO->getNoWrapKind());
- // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
- // constrained to it's inverse (all values that might cause overflow).
- if (IsTrueDest)
- NWR = NWR.inverse();
- return ValueLatticeElement::getRange(NWR);
- }
- // Tracks a Value * condition and whether we're interested in it or its inverse
- typedef PointerIntPair<Value *, 1, bool> CondValue;
- static std::optional<ValueLatticeElement> getValueFromConditionImpl(
- Value *Val, CondValue CondVal, bool isRevisit,
- SmallDenseMap<CondValue, ValueLatticeElement> &Visited,
- SmallVectorImpl<CondValue> &Worklist) {
- Value *Cond = CondVal.getPointer();
- bool isTrueDest = CondVal.getInt();
- if (!isRevisit) {
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
- return getValueFromICmpCondition(Val, ICI, isTrueDest);
- if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
- if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
- if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
- return getValueFromOverflowCondition(Val, WO, isTrueDest);
- }
- Value *N;
- if (match(Cond, m_Not(m_Value(N)))) {
- CondValue NKey(N, !isTrueDest);
- auto NV = Visited.find(NKey);
- if (NV == Visited.end()) {
- Worklist.push_back(NKey);
- return std::nullopt;
- }
- return NV->second;
- }
- Value *L, *R;
- bool IsAnd;
- if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
- IsAnd = true;
- else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
- IsAnd = false;
- else
- return ValueLatticeElement::getOverdefined();
- auto LV = Visited.find(CondValue(L, isTrueDest));
- auto RV = Visited.find(CondValue(R, isTrueDest));
- // if (L && R) -> intersect L and R
- // if (!(L || R)) -> intersect !L and !R
- // if (L || R) -> union L and R
- // if (!(L && R)) -> union !L and !R
- if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) {
- ValueLatticeElement V = LV->second;
- if (V.isOverdefined())
- return V;
- if (RV != Visited.end()) {
- V.mergeIn(RV->second);
- return V;
- }
- }
- if (LV == Visited.end() || RV == Visited.end()) {
- assert(!isRevisit);
- if (LV == Visited.end())
- Worklist.push_back(CondValue(L, isTrueDest));
- if (RV == Visited.end())
- Worklist.push_back(CondValue(R, isTrueDest));
- return std::nullopt;
- }
- return intersect(LV->second, RV->second);
- }
- ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
- bool isTrueDest) {
- assert(Cond && "precondition");
- SmallDenseMap<CondValue, ValueLatticeElement> Visited;
- SmallVector<CondValue> Worklist;
- CondValue CondKey(Cond, isTrueDest);
- Worklist.push_back(CondKey);
- do {
- CondValue CurrentCond = Worklist.back();
- // Insert an Overdefined placeholder into the set to prevent
- // infinite recursion if there exists IRs that use not
- // dominated by its def as in this example:
- // "%tmp3 = or i1 undef, %tmp4"
- // "%tmp4 = or i1 undef, %tmp3"
- auto Iter =
- Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined());
- bool isRevisit = !Iter.second;
- std::optional<ValueLatticeElement> Result = getValueFromConditionImpl(
- Val, CurrentCond, isRevisit, Visited, Worklist);
- if (Result) {
- Visited[CurrentCond] = *Result;
- Worklist.pop_back();
- }
- } while (!Worklist.empty());
- auto Result = Visited.find(CondKey);
- assert(Result != Visited.end());
- return Result->second;
- }
- // Return true if Usr has Op as an operand, otherwise false.
- static bool usesOperand(User *Usr, Value *Op) {
- return is_contained(Usr->operands(), Op);
- }
- // Return true if the instruction type of Val is supported by
- // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
- // Call this before calling constantFoldUser() to find out if it's even worth
- // attempting to call it.
- static bool isOperationFoldable(User *Usr) {
- return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
- }
- // Check if Usr can be simplified to an integer constant when the value of one
- // of its operands Op is an integer constant OpConstVal. If so, return it as an
- // lattice value range with a single element or otherwise return an overdefined
- // lattice value.
- static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
- const APInt &OpConstVal,
- const DataLayout &DL) {
- assert(isOperationFoldable(Usr) && "Precondition");
- Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
- // Check if Usr can be simplified to a constant.
- if (auto *CI = dyn_cast<CastInst>(Usr)) {
- assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
- if (auto *C = dyn_cast_or_null<ConstantInt>(
- simplifyCastInst(CI->getOpcode(), OpConst,
- CI->getDestTy(), DL))) {
- return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
- }
- } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
- bool Op0Match = BO->getOperand(0) == Op;
- bool Op1Match = BO->getOperand(1) == Op;
- assert((Op0Match || Op1Match) &&
- "Operand 0 nor Operand 1 isn't a match");
- Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
- Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
- if (auto *C = dyn_cast_or_null<ConstantInt>(
- simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
- return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
- }
- } else if (isa<FreezeInst>(Usr)) {
- assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op");
- return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
- }
- return ValueLatticeElement::getOverdefined();
- }
- /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
- /// Val is not constrained on the edge. Result is unspecified if return value
- /// is false.
- static std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
- BasicBlock *BBFrom,
- BasicBlock *BBTo) {
- // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
- // know that v != 0.
- if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
- // If this is a conditional branch and only one successor goes to BBTo, then
- // we may be able to infer something from the condition.
- if (BI->isConditional() &&
- BI->getSuccessor(0) != BI->getSuccessor(1)) {
- bool isTrueDest = BI->getSuccessor(0) == BBTo;
- assert(BI->getSuccessor(!isTrueDest) == BBTo &&
- "BBTo isn't a successor of BBFrom");
- Value *Condition = BI->getCondition();
- // If V is the condition of the branch itself, then we know exactly what
- // it is.
- if (Condition == Val)
- return ValueLatticeElement::get(ConstantInt::get(
- Type::getInt1Ty(Val->getContext()), isTrueDest));
- // If the condition of the branch is an equality comparison, we may be
- // able to infer the value.
- ValueLatticeElement Result = getValueFromCondition(Val, Condition,
- isTrueDest);
- if (!Result.isOverdefined())
- return Result;
- if (User *Usr = dyn_cast<User>(Val)) {
- assert(Result.isOverdefined() && "Result isn't overdefined");
- // Check with isOperationFoldable() first to avoid linearly iterating
- // over the operands unnecessarily which can be expensive for
- // instructions with many operands.
- if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
- const DataLayout &DL = BBTo->getModule()->getDataLayout();
- if (usesOperand(Usr, Condition)) {
- // If Val has Condition as an operand and Val can be folded into a
- // constant with either Condition == true or Condition == false,
- // propagate the constant.
- // eg.
- // ; %Val is true on the edge to %then.
- // %Val = and i1 %Condition, true.
- // br %Condition, label %then, label %else
- APInt ConditionVal(1, isTrueDest ? 1 : 0);
- Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
- } else {
- // If one of Val's operand has an inferred value, we may be able to
- // infer the value of Val.
- // eg.
- // ; %Val is 94 on the edge to %then.
- // %Val = add i8 %Op, 1
- // %Condition = icmp eq i8 %Op, 93
- // br i1 %Condition, label %then, label %else
- for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
- Value *Op = Usr->getOperand(i);
- ValueLatticeElement OpLatticeVal =
- getValueFromCondition(Op, Condition, isTrueDest);
- if (std::optional<APInt> OpConst =
- OpLatticeVal.asConstantInteger()) {
- Result = constantFoldUser(Usr, Op, *OpConst, DL);
- break;
- }
- }
- }
- }
- }
- if (!Result.isOverdefined())
- return Result;
- }
- }
- // If the edge was formed by a switch on the value, then we may know exactly
- // what it is.
- if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
- Value *Condition = SI->getCondition();
- if (!isa<IntegerType>(Val->getType()))
- return std::nullopt;
- bool ValUsesConditionAndMayBeFoldable = false;
- if (Condition != Val) {
- // Check if Val has Condition as an operand.
- if (User *Usr = dyn_cast<User>(Val))
- ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
- usesOperand(Usr, Condition);
- if (!ValUsesConditionAndMayBeFoldable)
- return std::nullopt;
- }
- assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
- "Condition != Val nor Val doesn't use Condition");
- bool DefaultCase = SI->getDefaultDest() == BBTo;
- unsigned BitWidth = Val->getType()->getIntegerBitWidth();
- ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
- for (auto Case : SI->cases()) {
- APInt CaseValue = Case.getCaseValue()->getValue();
- ConstantRange EdgeVal(CaseValue);
- if (ValUsesConditionAndMayBeFoldable) {
- User *Usr = cast<User>(Val);
- const DataLayout &DL = BBTo->getModule()->getDataLayout();
- ValueLatticeElement EdgeLatticeVal =
- constantFoldUser(Usr, Condition, CaseValue, DL);
- if (EdgeLatticeVal.isOverdefined())
- return std::nullopt;
- EdgeVal = EdgeLatticeVal.getConstantRange();
- }
- if (DefaultCase) {
- // It is possible that the default destination is the destination of
- // some cases. We cannot perform difference for those cases.
- // We know Condition != CaseValue in BBTo. In some cases we can use
- // this to infer Val == f(Condition) is != f(CaseValue). For now, we
- // only do this when f is identity (i.e. Val == Condition), but we
- // should be able to do this for any injective f.
- if (Case.getCaseSuccessor() != BBTo && Condition == Val)
- EdgesVals = EdgesVals.difference(EdgeVal);
- } else if (Case.getCaseSuccessor() == BBTo)
- EdgesVals = EdgesVals.unionWith(EdgeVal);
- }
- return ValueLatticeElement::getRange(std::move(EdgesVals));
- }
- return std::nullopt;
- }
- /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
- /// the basic block if the edge does not constrain Val.
- std::optional<ValueLatticeElement>
- LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
- BasicBlock *BBTo, Instruction *CxtI) {
- // If already a constant, there is nothing to compute.
- if (Constant *VC = dyn_cast<Constant>(Val))
- return ValueLatticeElement::get(VC);
- ValueLatticeElement LocalResult =
- getEdgeValueLocal(Val, BBFrom, BBTo)
- .value_or(ValueLatticeElement::getOverdefined());
- if (hasSingleValue(LocalResult))
- // Can't get any more precise here
- return LocalResult;
- std::optional<ValueLatticeElement> OptInBlock =
- getBlockValue(Val, BBFrom, BBFrom->getTerminator());
- if (!OptInBlock)
- return std::nullopt;
- ValueLatticeElement &InBlock = *OptInBlock;
- // We can use the context instruction (generically the ultimate instruction
- // the calling pass is trying to simplify) here, even though the result of
- // this function is generally cached when called from the solve* functions
- // (and that cached result might be used with queries using a different
- // context instruction), because when this function is called from the solve*
- // functions, the context instruction is not provided. When called from
- // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
- // but then the result is not cached.
- intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
- return intersect(LocalResult, InBlock);
- }
- ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
- Instruction *CxtI) {
- LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
- << BB->getName() << "'\n");
- assert(BlockValueStack.empty() && BlockValueSet.empty());
- std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
- if (!OptResult) {
- solve();
- OptResult = getBlockValue(V, BB, CxtI);
- assert(OptResult && "Value not available after solving");
- }
- ValueLatticeElement Result = *OptResult;
- LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
- return Result;
- }
- ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
- LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
- << "'\n");
- if (auto *C = dyn_cast<Constant>(V))
- return ValueLatticeElement::get(C);
- ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
- if (auto *I = dyn_cast<Instruction>(V))
- Result = getFromRangeMetadata(I);
- intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
- LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
- return Result;
- }
- ValueLatticeElement LazyValueInfoImpl::
- getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
- Instruction *CxtI) {
- LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
- << FromBB->getName() << "' to '" << ToBB->getName()
- << "'\n");
- std::optional<ValueLatticeElement> Result =
- getEdgeValue(V, FromBB, ToBB, CxtI);
- if (!Result) {
- solve();
- Result = getEdgeValue(V, FromBB, ToBB, CxtI);
- assert(Result && "More work to do after problem solved?");
- }
- LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n");
- return *Result;
- }
- void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
- BasicBlock *NewSucc) {
- TheCache.threadEdgeImpl(OldSucc, NewSucc);
- }
- //===----------------------------------------------------------------------===//
- // LazyValueInfo Impl
- //===----------------------------------------------------------------------===//
- /// This lazily constructs the LazyValueInfoImpl.
- static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
- const Module *M) {
- if (!PImpl) {
- assert(M && "getCache() called with a null Module");
- const DataLayout &DL = M->getDataLayout();
- Function *GuardDecl = M->getFunction(
- Intrinsic::getName(Intrinsic::experimental_guard));
- PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
- }
- return *static_cast<LazyValueInfoImpl*>(PImpl);
- }
- bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
- Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- if (Info.PImpl)
- getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
- // Fully lazy.
- return false;
- }
- void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
- LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
- void LazyValueInfo::releaseMemory() {
- // If the cache was allocated, free it.
- if (PImpl) {
- delete &getImpl(PImpl, AC, nullptr);
- PImpl = nullptr;
- }
- }
- bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // We need to invalidate if we have either failed to preserve this analyses
- // result directly or if any of its dependencies have been invalidated.
- auto PAC = PA.getChecker<LazyValueAnalysis>();
- if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
- return true;
- return false;
- }
- void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
- LazyValueInfo LazyValueAnalysis::run(Function &F,
- FunctionAnalysisManager &FAM) {
- auto &AC = FAM.getResult<AssumptionAnalysis>(F);
- auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
- return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
- }
- /// Returns true if we can statically tell that this value will never be a
- /// "useful" constant. In practice, this means we've got something like an
- /// alloca or a malloc call for which a comparison against a constant can
- /// only be guarding dead code. Note that we are potentially giving up some
- /// precision in dead code (a constant result) in favour of avoiding a
- /// expensive search for a easily answered common query.
- static bool isKnownNonConstant(Value *V) {
- V = V->stripPointerCasts();
- // The return val of alloc cannot be a Constant.
- if (isa<AllocaInst>(V))
- return true;
- return false;
- }
- Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
- // Bail out early if V is known not to be a Constant.
- if (isKnownNonConstant(V))
- return nullptr;
- BasicBlock *BB = CxtI->getParent();
- ValueLatticeElement Result =
- getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
- if (Result.isConstant())
- return Result.getConstant();
- if (Result.isConstantRange()) {
- const ConstantRange &CR = Result.getConstantRange();
- if (const APInt *SingleVal = CR.getSingleElement())
- return ConstantInt::get(V->getContext(), *SingleVal);
- }
- return nullptr;
- }
- ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
- bool UndefAllowed) {
- assert(V->getType()->isIntegerTy());
- unsigned Width = V->getType()->getIntegerBitWidth();
- BasicBlock *BB = CxtI->getParent();
- ValueLatticeElement Result =
- getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
- if (Result.isUnknown())
- return ConstantRange::getEmpty(Width);
- if (Result.isConstantRange(UndefAllowed))
- return Result.getConstantRange(UndefAllowed);
- // We represent ConstantInt constants as constant ranges but other kinds
- // of integer constants, i.e. ConstantExpr will be tagged as constants
- assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
- "ConstantInt value must be represented as constantrange");
- return ConstantRange::getFull(Width);
- }
- ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U,
- bool UndefAllowed) {
- Value *V = U.get();
- ConstantRange CR =
- getConstantRange(V, cast<Instruction>(U.getUser()), UndefAllowed);
- // Check whether the only (possibly transitive) use of the value is in a
- // position where V can be constrained by a select or branch condition.
- const Use *CurrU = &U;
- // TODO: Increase limit?
- const unsigned MaxUsesToInspect = 3;
- for (unsigned I = 0; I < MaxUsesToInspect; ++I) {
- std::optional<ValueLatticeElement> CondVal;
- auto *CurrI = cast<Instruction>(CurrU->getUser());
- if (auto *SI = dyn_cast<SelectInst>(CurrI)) {
- if (CurrU->getOperandNo() == 1)
- CondVal = getValueFromCondition(V, SI->getCondition(), true);
- else if (CurrU->getOperandNo() == 2)
- CondVal = getValueFromCondition(V, SI->getCondition(), false);
- } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) {
- // TODO: Use non-local query?
- CondVal =
- getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), PHI->getParent());
- }
- if (CondVal && CondVal->isConstantRange())
- CR = CR.intersectWith(CondVal->getConstantRange());
- // Only follow one-use chain, to allow direct intersection of conditions.
- // If there are multiple uses, we would have to intersect with the union of
- // all conditions at different uses.
- // Stop walking if we hit a non-speculatable instruction. Even if the
- // result is only used under a specific condition, executing the
- // instruction itself may cause side effects or UB already.
- // This also disallows looking through phi nodes: If the phi node is part
- // of a cycle, we might end up reasoning about values from different cycle
- // iterations (PR60629).
- if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI))
- break;
- CurrU = &*CurrI->use_begin();
- }
- return CR;
- }
- /// Determine whether the specified value is known to be a
- /// constant on the specified edge. Return null if not.
- Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
- BasicBlock *ToBB,
- Instruction *CxtI) {
- Module *M = FromBB->getModule();
- ValueLatticeElement Result =
- getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
- if (Result.isConstant())
- return Result.getConstant();
- if (Result.isConstantRange()) {
- const ConstantRange &CR = Result.getConstantRange();
- if (const APInt *SingleVal = CR.getSingleElement())
- return ConstantInt::get(V->getContext(), *SingleVal);
- }
- return nullptr;
- }
- ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
- BasicBlock *FromBB,
- BasicBlock *ToBB,
- Instruction *CxtI) {
- unsigned Width = V->getType()->getIntegerBitWidth();
- Module *M = FromBB->getModule();
- ValueLatticeElement Result =
- getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
- if (Result.isUnknown())
- return ConstantRange::getEmpty(Width);
- if (Result.isConstantRange())
- return Result.getConstantRange();
- // We represent ConstantInt constants as constant ranges but other kinds
- // of integer constants, i.e. ConstantExpr will be tagged as constants
- assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
- "ConstantInt value must be represented as constantrange");
- return ConstantRange::getFull(Width);
- }
- static LazyValueInfo::Tristate
- getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
- const DataLayout &DL, TargetLibraryInfo *TLI) {
- // If we know the value is a constant, evaluate the conditional.
- Constant *Res = nullptr;
- if (Val.isConstant()) {
- Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
- if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
- return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
- return LazyValueInfo::Unknown;
- }
- if (Val.isConstantRange()) {
- ConstantInt *CI = dyn_cast<ConstantInt>(C);
- if (!CI) return LazyValueInfo::Unknown;
- const ConstantRange &CR = Val.getConstantRange();
- if (Pred == ICmpInst::ICMP_EQ) {
- if (!CR.contains(CI->getValue()))
- return LazyValueInfo::False;
- if (CR.isSingleElement())
- return LazyValueInfo::True;
- } else if (Pred == ICmpInst::ICMP_NE) {
- if (!CR.contains(CI->getValue()))
- return LazyValueInfo::True;
- if (CR.isSingleElement())
- return LazyValueInfo::False;
- } else {
- // Handle more complex predicates.
- ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
- (ICmpInst::Predicate)Pred, CI->getValue());
- if (TrueValues.contains(CR))
- return LazyValueInfo::True;
- if (TrueValues.inverse().contains(CR))
- return LazyValueInfo::False;
- }
- return LazyValueInfo::Unknown;
- }
- if (Val.isNotConstant()) {
- // If this is an equality comparison, we can try to fold it knowing that
- // "V != C1".
- if (Pred == ICmpInst::ICMP_EQ) {
- // !C1 == C -> false iff C1 == C.
- Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
- Val.getNotConstant(), C, DL,
- TLI);
- if (Res->isNullValue())
- return LazyValueInfo::False;
- } else if (Pred == ICmpInst::ICMP_NE) {
- // !C1 != C -> true iff C1 == C.
- Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
- Val.getNotConstant(), C, DL,
- TLI);
- if (Res->isNullValue())
- return LazyValueInfo::True;
- }
- return LazyValueInfo::Unknown;
- }
- return LazyValueInfo::Unknown;
- }
- /// Determine whether the specified value comparison with a constant is known to
- /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
- LazyValueInfo::Tristate
- LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
- BasicBlock *FromBB, BasicBlock *ToBB,
- Instruction *CxtI) {
- Module *M = FromBB->getModule();
- ValueLatticeElement Result =
- getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
- return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
- }
- LazyValueInfo::Tristate
- LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
- Instruction *CxtI, bool UseBlockValue) {
- // Is or is not NonNull are common predicates being queried. If
- // isKnownNonZero can tell us the result of the predicate, we can
- // return it quickly. But this is only a fastpath, and falling
- // through would still be correct.
- Module *M = CxtI->getModule();
- const DataLayout &DL = M->getDataLayout();
- if (V->getType()->isPointerTy() && C->isNullValue() &&
- isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
- if (Pred == ICmpInst::ICMP_EQ)
- return LazyValueInfo::False;
- else if (Pred == ICmpInst::ICMP_NE)
- return LazyValueInfo::True;
- }
- ValueLatticeElement Result = UseBlockValue
- ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
- : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
- Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
- if (Ret != Unknown)
- return Ret;
- // Note: The following bit of code is somewhat distinct from the rest of LVI;
- // LVI as a whole tries to compute a lattice value which is conservatively
- // correct at a given location. In this case, we have a predicate which we
- // weren't able to prove about the merged result, and we're pushing that
- // predicate back along each incoming edge to see if we can prove it
- // separately for each input. As a motivating example, consider:
- // bb1:
- // %v1 = ... ; constantrange<1, 5>
- // br label %merge
- // bb2:
- // %v2 = ... ; constantrange<10, 20>
- // br label %merge
- // merge:
- // %phi = phi [%v1, %v2] ; constantrange<1,20>
- // %pred = icmp eq i32 %phi, 8
- // We can't tell from the lattice value for '%phi' that '%pred' is false
- // along each path, but by checking the predicate over each input separately,
- // we can.
- // We limit the search to one step backwards from the current BB and value.
- // We could consider extending this to search further backwards through the
- // CFG and/or value graph, but there are non-obvious compile time vs quality
- // tradeoffs.
- BasicBlock *BB = CxtI->getParent();
- // Function entry or an unreachable block. Bail to avoid confusing
- // analysis below.
- pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
- if (PI == PE)
- return Unknown;
- // If V is a PHI node in the same block as the context, we need to ask
- // questions about the predicate as applied to the incoming value along
- // each edge. This is useful for eliminating cases where the predicate is
- // known along all incoming edges.
- if (auto *PHI = dyn_cast<PHINode>(V))
- if (PHI->getParent() == BB) {
- Tristate Baseline = Unknown;
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
- Value *Incoming = PHI->getIncomingValue(i);
- BasicBlock *PredBB = PHI->getIncomingBlock(i);
- // Note that PredBB may be BB itself.
- Tristate Result =
- getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI);
- // Keep going as long as we've seen a consistent known result for
- // all inputs.
- Baseline = (i == 0) ? Result /* First iteration */
- : (Baseline == Result ? Baseline
- : Unknown); /* All others */
- if (Baseline == Unknown)
- break;
- }
- if (Baseline != Unknown)
- return Baseline;
- }
- // For a comparison where the V is outside this block, it's possible
- // that we've branched on it before. Look to see if the value is known
- // on all incoming edges.
- if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) {
- // For predecessor edge, determine if the comparison is true or false
- // on that edge. If they're all true or all false, we can conclude
- // the value of the comparison in this block.
- Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
- if (Baseline != Unknown) {
- // Check that all remaining incoming values match the first one.
- while (++PI != PE) {
- Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
- if (Ret != Baseline)
- break;
- }
- // If we terminated early, then one of the values didn't match.
- if (PI == PE) {
- return Baseline;
- }
- }
- }
- return Unknown;
- }
- LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS,
- Value *RHS,
- Instruction *CxtI,
- bool UseBlockValue) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)P;
- if (auto *C = dyn_cast<Constant>(RHS))
- return getPredicateAt(P, LHS, C, CxtI, UseBlockValue);
- if (auto *C = dyn_cast<Constant>(LHS))
- return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI,
- UseBlockValue);
- // Got two non-Constant values. Try to determine the comparison results based
- // on the block values of the two operands, e.g. because they have
- // non-overlapping ranges.
- if (UseBlockValue) {
- Module *M = CxtI->getModule();
- ValueLatticeElement L =
- getImpl(PImpl, AC, M).getValueInBlock(LHS, CxtI->getParent(), CxtI);
- if (L.isOverdefined())
- return LazyValueInfo::Unknown;
- ValueLatticeElement R =
- getImpl(PImpl, AC, M).getValueInBlock(RHS, CxtI->getParent(), CxtI);
- Type *Ty = CmpInst::makeCmpResultType(LHS->getType());
- if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R,
- M->getDataLayout())) {
- if (Res->isNullValue())
- return LazyValueInfo::False;
- if (Res->isOneValue())
- return LazyValueInfo::True;
- }
- }
- return LazyValueInfo::Unknown;
- }
- void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
- BasicBlock *NewSucc) {
- if (PImpl) {
- getImpl(PImpl, AC, PredBB->getModule())
- .threadEdge(PredBB, OldSucc, NewSucc);
- }
- }
- void LazyValueInfo::eraseBlock(BasicBlock *BB) {
- if (PImpl) {
- getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
- }
- }
- void LazyValueInfo::clear(const Module *M) {
- if (PImpl) {
- getImpl(PImpl, AC, M).clear();
- }
- }
- void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
- if (PImpl) {
- getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
- }
- }
- // Print the LVI for the function arguments at the start of each basic block.
- void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
- const BasicBlock *BB, formatted_raw_ostream &OS) {
- // Find if there are latticevalues defined for arguments of the function.
- auto *F = BB->getParent();
- for (const auto &Arg : F->args()) {
- ValueLatticeElement Result = LVIImpl->getValueInBlock(
- const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
- if (Result.isUnknown())
- continue;
- OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
- }
- }
- // This function prints the LVI analysis for the instruction I at the beginning
- // of various basic blocks. It relies on calculated values that are stored in
- // the LazyValueInfoCache, and in the absence of cached values, recalculate the
- // LazyValueInfo for `I`, and print that info.
- void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
- const Instruction *I, formatted_raw_ostream &OS) {
- auto *ParentBB = I->getParent();
- SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
- // We can generate (solve) LVI values only for blocks that are dominated by
- // the I's parent. However, to avoid generating LVI for all dominating blocks,
- // that contain redundant/uninteresting information, we print LVI for
- // blocks that may use this LVI information (such as immediate successor
- // blocks, and blocks that contain uses of `I`).
- auto printResult = [&](const BasicBlock *BB) {
- if (!BlocksContainingLVI.insert(BB).second)
- return;
- ValueLatticeElement Result = LVIImpl->getValueInBlock(
- const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
- OS << "; LatticeVal for: '" << *I << "' in BB: '";
- BB->printAsOperand(OS, false);
- OS << "' is: " << Result << "\n";
- };
- printResult(ParentBB);
- // Print the LVI analysis results for the immediate successor blocks, that
- // are dominated by `ParentBB`.
- for (const auto *BBSucc : successors(ParentBB))
- if (DT.dominates(ParentBB, BBSucc))
- printResult(BBSucc);
- // Print LVI in blocks where `I` is used.
- for (const auto *U : I->users())
- if (auto *UseI = dyn_cast<Instruction>(U))
- if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
- printResult(UseI->getParent());
- }
- namespace {
- // Printer class for LazyValueInfo results.
- class LazyValueInfoPrinter : public FunctionPass {
- public:
- static char ID; // Pass identification, replacement for typeid
- LazyValueInfoPrinter() : FunctionPass(ID) {
- initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<LazyValueInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- }
- // Get the mandatory dominator tree analysis and pass this in to the
- // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
- bool runOnFunction(Function &F) override {
- dbgs() << "LVI for function '" << F.getName() << "':\n";
- auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
- auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LVI.printLVI(F, DTree, dbgs());
- return false;
- }
- };
- }
- char LazyValueInfoPrinter::ID = 0;
- INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
- "Lazy Value Info Printer Pass", false, false)
- INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
- INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
- "Lazy Value Info Printer Pass", false, false)
|