123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- //===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements feature and label extraction for offline supervised learning
- // of a IR to native size model.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
- #ifdef LLVM_HAVE_TFLITE
- #include "llvm/Analysis/Utils/TFUtils.h"
- #endif
- #include "llvm/IR/Function.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- AnalysisKey InlineSizeEstimatorAnalysis::Key;
- #ifdef LLVM_HAVE_TFLITE
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/MC/MCAsmLayout.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include <algorithm>
- #include <deque>
- #include <optional>
- cl::opt<std::string> TFIR2NativeModelPath(
- "ml-inliner-ir2native-model", cl::Hidden,
- cl::desc("Path to saved model evaluating native size from IR."));
- #define DEBUG_TYPE "inline-size-estimator"
- namespace {
- unsigned getMaxInstructionID() {
- #define LAST_OTHER_INST(NR) return NR;
- #include "llvm/IR/Instruction.def"
- }
- class IRToNativeSizeLearning {
- public:
- enum class NamedFeatureIndex : size_t {
- InitialSize,
- Blocks,
- Calls,
- IsLocal,
- IsLinkOnceODR,
- IsLinkOnce,
- Loops,
- MaxLoopDepth,
- MaxDomTreeLevel,
- NumNamedFeatures
- };
- static const size_t NumNamedFeatures =
- static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
- struct FunctionFeatures {
- static const size_t FeatureCount;
- std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
- std::vector<int32_t> InstructionHistogram;
- std::vector<int32_t> InstructionPairHistogram;
- void fillTensor(int32_t *Ptr) const;
- int32_t &operator[](NamedFeatureIndex Pos) {
- return NamedFeatures[static_cast<size_t>(Pos)];
- }
- };
- IRToNativeSizeLearning() = default;
- static FunctionFeatures getFunctionFeatures(Function &F,
- FunctionAnalysisManager &FAM);
- };
- // This is a point in time - we determined including these pairs of
- // consecutive instructions (in the IR layout available at inline time) as
- // features improves the model performance. We want to move away from manual
- // feature selection.
- // The array is given in opcode pairs rather than labels because 1) labels
- // weren't readily available, and 2) the successions were hand - extracted.
- //
- // This array must be sorted.
- static const std::array<std::pair<size_t, size_t>, 137>
- ImportantInstructionSuccessions{
- {{1, 1}, {1, 4}, {1, 5}, {1, 7}, {1, 8}, {1, 9}, {1, 11},
- {1, 12}, {1, 13}, {1, 14}, {1, 18}, {1, 20}, {1, 22}, {1, 24},
- {1, 25}, {1, 26}, {1, 27}, {1, 28}, {1, 29}, {1, 30}, {1, 31},
- {1, 32}, {1, 33}, {1, 34}, {1, 39}, {1, 40}, {1, 42}, {1, 45},
- {2, 1}, {2, 2}, {2, 13}, {2, 28}, {2, 29}, {2, 32}, {2, 33},
- {2, 34}, {2, 38}, {2, 48}, {2, 49}, {2, 53}, {2, 55}, {2, 56},
- {13, 2}, {13, 13}, {13, 26}, {13, 33}, {13, 34}, {13, 56}, {15, 27},
- {28, 2}, {28, 48}, {28, 53}, {29, 2}, {29, 33}, {29, 56}, {31, 31},
- {31, 33}, {31, 34}, {31, 49}, {32, 1}, {32, 2}, {32, 13}, {32, 15},
- {32, 28}, {32, 29}, {32, 32}, {32, 33}, {32, 34}, {32, 39}, {32, 40},
- {32, 48}, {32, 49}, {32, 53}, {32, 56}, {33, 1}, {33, 2}, {33, 32},
- {33, 33}, {33, 34}, {33, 49}, {33, 53}, {33, 56}, {34, 1}, {34, 2},
- {34, 32}, {34, 33}, {34, 34}, {34, 49}, {34, 53}, {34, 56}, {38, 34},
- {39, 57}, {40, 34}, {47, 15}, {47, 49}, {48, 2}, {48, 34}, {48, 56},
- {49, 1}, {49, 2}, {49, 28}, {49, 32}, {49, 33}, {49, 34}, {49, 39},
- {49, 49}, {49, 56}, {53, 1}, {53, 2}, {53, 28}, {53, 34}, {53, 53},
- {53, 57}, {55, 1}, {55, 28}, {55, 34}, {55, 53}, {55, 55}, {55, 56},
- {56, 1}, {56, 2}, {56, 7}, {56, 13}, {56, 32}, {56, 33}, {56, 34},
- {56, 49}, {56, 53}, {56, 56}, {56, 64}, {57, 34}, {57, 56}, {57, 57},
- {64, 1}, {64, 64}, {65, 1}, {65, 65}}};
- // We have: 9 calculated features (the features here); 1 feature for each
- // instruction opcode; and 1 feature for each manually-identified sequence.
- // For the latter 2, we build a histogram: we count the number of
- // occurrences of each instruction opcode or succession of instructions,
- // respectively.
- // Note that instruction opcodes start from 1. For convenience, we also have an
- // always 0 feature for the '0' opcode, hence the extra 1.
- const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
- ImportantInstructionSuccessions.size() + getMaxInstructionID() + 1 +
- IRToNativeSizeLearning::NumNamedFeatures;
- size_t getSize(Function &F, TargetTransformInfo &TTI) {
- size_t Ret = 0;
- for (const auto &BB : F)
- for (const auto &I : BB)
- Ret += *(TTI.getInstructionCost(
- &I, TargetTransformInfo::TargetCostKind::TCK_CodeSize).getValue());
- return Ret;
- }
- size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
- auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
- return getSize(F, TTI);
- }
- unsigned getMaxDominatorTreeDepth(const Function &F,
- const DominatorTree &Tree) {
- unsigned Ret = 0;
- for (const auto &BB : F)
- if (const auto *TN = Tree.getNode(&BB))
- Ret = std::max(Ret, TN->getLevel());
- return Ret;
- }
- } // namespace
- IRToNativeSizeLearning::FunctionFeatures
- IRToNativeSizeLearning::getFunctionFeatures(Function &F,
- FunctionAnalysisManager &FAM) {
- assert(llvm::is_sorted(ImportantInstructionSuccessions) &&
- "expected function features are sorted");
- auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
- FunctionFeatures FF;
- size_t InstrCount = getMaxInstructionID() + 1;
- FF.InstructionHistogram.resize(InstrCount);
- FF.InstructionPairHistogram.resize(ImportantInstructionSuccessions.size());
- int StartID = 0;
- int LastID = StartID;
- auto getPairIndex = [](size_t a, size_t b) {
- auto I = llvm::find(ImportantInstructionSuccessions, std::make_pair(a, b));
- if (I == ImportantInstructionSuccessions.end())
- return -1;
- return static_cast<int>(
- std::distance(ImportantInstructionSuccessions.begin(), I));
- };
- // We don't want debug calls, because they'd just add noise.
- for (const auto &BB : F) {
- for (const auto &I : BB.instructionsWithoutDebug()) {
- auto ID = I.getOpcode();
- ++FF.InstructionHistogram[ID];
- int PairIndex = getPairIndex(LastID, ID);
- if (PairIndex >= 0)
- ++FF.InstructionPairHistogram[PairIndex];
- LastID = ID;
- if (isa<CallBase>(I))
- ++FF[NamedFeatureIndex::Calls];
- }
- }
- FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
- FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
- FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
- FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
- FF[NamedFeatureIndex::Blocks] = F.size();
- auto &LI = FAM.getResult<LoopAnalysis>(F);
- FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
- for (auto &L : LI)
- FF[NamedFeatureIndex::MaxLoopDepth] =
- std::max(FF[NamedFeatureIndex::MaxLoopDepth],
- static_cast<int32_t>(L->getLoopDepth()));
- FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
- return FF;
- }
- void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
- std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
- Ptr += NamedFeatures.size();
- std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
- Ptr += InstructionHistogram.size();
- std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
- Ptr);
- }
- bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
- return !TFIR2NativeModelPath.empty();
- }
- InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
- if (!isEvaluatorRequested()) {
- return;
- }
- std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
- "serving_default_input_1",
- {1, static_cast<int64_t>(
- IRToNativeSizeLearning::FunctionFeatures::FeatureCount)})};
- std::vector<TensorSpec> OutputSpecs{
- TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
- Evaluator = std::make_unique<TFModelEvaluator>(
- TFIR2NativeModelPath.getValue().c_str(), InputSpecs, OutputSpecs);
- if (!Evaluator || !Evaluator->isValid()) {
- Evaluator.reset();
- return;
- }
- }
- InlineSizeEstimatorAnalysis::Result
- InlineSizeEstimatorAnalysis::run(const Function &F,
- FunctionAnalysisManager &FAM) {
- if (!Evaluator)
- return std::nullopt;
- auto Features = IRToNativeSizeLearning::getFunctionFeatures(
- const_cast<Function &>(F), FAM);
- int32_t *V = Evaluator->getInput<int32_t>(0);
- Features.fillTensor(V);
- auto ER = Evaluator->evaluate();
- if (!ER)
- return std::nullopt;
- float Ret = *ER->getTensorValue<float>(0);
- if (Ret < 0.0)
- Ret = 0.0;
- return static_cast<size_t>(Ret);
- }
- InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
- InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
- InlineSizeEstimatorAnalysis &&Other)
- : Evaluator(std::move(Other.Evaluator)) {}
- #else
- namespace llvm {
- class TFModelEvaluator {};
- } // namespace llvm
- InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() = default;
- InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
- InlineSizeEstimatorAnalysis &&) {}
- InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() = default;
- InlineSizeEstimatorAnalysis::Result
- InlineSizeEstimatorAnalysis::run(const Function &F,
- FunctionAnalysisManager &FAM) {
- return std::nullopt;
- }
- bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
- #endif
- PreservedAnalyses
- InlineSizeEstimatorAnalysisPrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- OS << "[InlineSizeEstimatorAnalysis] size estimate for " << F.getName()
- << ": " << AM.getResult<InlineSizeEstimatorAnalysis>(F) << "\n";
- return PreservedAnalyses::all();
- }
|