1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201 |
- //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // DependenceAnalysis is an LLVM pass that analyses dependences between memory
- // accesses. Currently, it is an (incomplete) implementation of the approach
- // described in
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- //
- // There's a single entry point that analyzes the dependence between a pair
- // of memory references in a function, returning either NULL, for no dependence,
- // or a more-or-less detailed description of the dependence between them.
- //
- // Currently, the implementation cannot propagate constraints between
- // coupled RDIV subscripts and lacks a multi-subscript MIV test.
- // Both of these are conservative weaknesses;
- // that is, not a source of correctness problems.
- //
- // Since Clang linearizes some array subscripts, the dependence
- // analysis is using SCEV->delinearize to recover the representation of multiple
- // subscripts, and thus avoid the more expensive and less precise MIV tests. The
- // delinearization is controlled by the flag -da-delinearize.
- //
- // We should pay some careful attention to the possibility of integer overflow
- // in the implementation of the various tests. This could happen with Add,
- // Subtract, or Multiply, with both APInt's and SCEV's.
- //
- // Some non-linear subscript pairs can be handled by the GCD test
- // (and perhaps other tests).
- // Should explore how often these things occur.
- //
- // Finally, it seems like certain test cases expose weaknesses in the SCEV
- // simplification, especially in the handling of sign and zero extensions.
- // It could be useful to spend time exploring these.
- //
- // Please note that this is work in progress and the interface is subject to
- // change.
- //
- //===----------------------------------------------------------------------===//
- // //
- // In memory of Ken Kennedy, 1945 - 2007 //
- // //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/DependenceAnalysis.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Delinearization.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Module.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define DEBUG_TYPE "da"
- //===----------------------------------------------------------------------===//
- // statistics
- STATISTIC(TotalArrayPairs, "Array pairs tested");
- STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
- STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
- STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
- STATISTIC(ZIVapplications, "ZIV applications");
- STATISTIC(ZIVindependence, "ZIV independence");
- STATISTIC(StrongSIVapplications, "Strong SIV applications");
- STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
- STATISTIC(StrongSIVindependence, "Strong SIV independence");
- STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
- STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
- STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
- STATISTIC(ExactSIVapplications, "Exact SIV applications");
- STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
- STATISTIC(ExactSIVindependence, "Exact SIV independence");
- STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
- STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
- STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
- STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
- STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
- STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
- STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
- STATISTIC(DeltaApplications, "Delta applications");
- STATISTIC(DeltaSuccesses, "Delta successes");
- STATISTIC(DeltaIndependence, "Delta independence");
- STATISTIC(DeltaPropagations, "Delta propagations");
- STATISTIC(GCDapplications, "GCD applications");
- STATISTIC(GCDsuccesses, "GCD successes");
- STATISTIC(GCDindependence, "GCD independence");
- STATISTIC(BanerjeeApplications, "Banerjee applications");
- STATISTIC(BanerjeeIndependence, "Banerjee independence");
- STATISTIC(BanerjeeSuccesses, "Banerjee successes");
- static cl::opt<bool>
- Delinearize("da-delinearize", cl::init(true), cl::Hidden,
- cl::desc("Try to delinearize array references."));
- static cl::opt<bool> DisableDelinearizationChecks(
- "da-disable-delinearization-checks", cl::Hidden,
- cl::desc(
- "Disable checks that try to statically verify validity of "
- "delinearized subscripts. Enabling this option may result in incorrect "
- "dependence vectors for languages that allow the subscript of one "
- "dimension to underflow or overflow into another dimension."));
- static cl::opt<unsigned> MIVMaxLevelThreshold(
- "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
- cl::desc("Maximum depth allowed for the recursive algorithm used to "
- "explore MIV direction vectors."));
- //===----------------------------------------------------------------------===//
- // basics
- DependenceAnalysis::Result
- DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
- auto &AA = FAM.getResult<AAManager>(F);
- auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
- auto &LI = FAM.getResult<LoopAnalysis>(F);
- return DependenceInfo(&F, &AA, &SE, &LI);
- }
- AnalysisKey DependenceAnalysis::Key;
- INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
- "Dependence Analysis", true, true)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
- true, true)
- char DependenceAnalysisWrapperPass::ID = 0;
- DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
- : FunctionPass(ID) {
- initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
- return new DependenceAnalysisWrapperPass();
- }
- bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
- return false;
- }
- DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
- void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
- void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<AAResultsWrapperPass>();
- AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
- AU.addRequiredTransitive<LoopInfoWrapperPass>();
- }
- // Used to test the dependence analyzer.
- // Looks through the function, noting instructions that may access memory.
- // Calls depends() on every possible pair and prints out the result.
- // Ignores all other instructions.
- static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
- ScalarEvolution &SE, bool NormalizeResults) {
- auto *F = DA->getFunction();
- for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
- ++SrcI) {
- if (SrcI->mayReadOrWriteMemory()) {
- for (inst_iterator DstI = SrcI, DstE = inst_end(F);
- DstI != DstE; ++DstI) {
- if (DstI->mayReadOrWriteMemory()) {
- OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
- OS << " da analyze - ";
- if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
- // Normalize negative direction vectors if required by clients.
- if (NormalizeResults && D->normalize(&SE))
- OS << "normalized - ";
- D->dump(OS);
- for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
- if (D->isSplitable(Level)) {
- OS << " da analyze - split level = " << Level;
- OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
- OS << "!\n";
- }
- }
- }
- else
- OS << "none!\n";
- }
- }
- }
- }
- }
- void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
- const Module *) const {
- dumpExampleDependence(OS, info.get(),
- getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
- }
- PreservedAnalyses
- DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
- OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
- dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F),
- FAM.getResult<ScalarEvolutionAnalysis>(F),
- NormalizeResults);
- return PreservedAnalyses::all();
- }
- //===----------------------------------------------------------------------===//
- // Dependence methods
- // Returns true if this is an input dependence.
- bool Dependence::isInput() const {
- return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
- }
- // Returns true if this is an output dependence.
- bool Dependence::isOutput() const {
- return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
- }
- // Returns true if this is an flow (aka true) dependence.
- bool Dependence::isFlow() const {
- return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
- }
- // Returns true if this is an anti dependence.
- bool Dependence::isAnti() const {
- return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
- }
- // Returns true if a particular level is scalar; that is,
- // if no subscript in the source or destination mention the induction
- // variable associated with the loop at this level.
- // Leave this out of line, so it will serve as a virtual method anchor
- bool Dependence::isScalar(unsigned level) const {
- return false;
- }
- //===----------------------------------------------------------------------===//
- // FullDependence methods
- FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
- bool PossiblyLoopIndependent,
- unsigned CommonLevels)
- : Dependence(Source, Destination), Levels(CommonLevels),
- LoopIndependent(PossiblyLoopIndependent) {
- Consistent = true;
- if (CommonLevels)
- DV = std::make_unique<DVEntry[]>(CommonLevels);
- }
- // FIXME: in some cases the meaning of a negative direction vector
- // may not be straightforward, e.g.,
- // for (int i = 0; i < 32; ++i) {
- // Src: A[i] = ...;
- // Dst: use(A[31 - i]);
- // }
- // The dependency is
- // flow { Src[i] -> Dst[31 - i] : when i >= 16 } and
- // anti { Dst[i] -> Src[31 - i] : when i < 16 },
- // -- hence a [<>].
- // As long as a dependence result contains '>' ('<>', '<=>', "*"), it
- // means that a reversed/normalized dependence needs to be considered
- // as well. Nevertheless, current isDirectionNegative() only returns
- // true with a '>' or '>=' dependency for ease of canonicalizing the
- // dependency vector, since the reverse of '<>', '<=>' and "*" is itself.
- bool FullDependence::isDirectionNegative() const {
- for (unsigned Level = 1; Level <= Levels; ++Level) {
- unsigned char Direction = DV[Level - 1].Direction;
- if (Direction == Dependence::DVEntry::EQ)
- continue;
- if (Direction == Dependence::DVEntry::GT ||
- Direction == Dependence::DVEntry::GE)
- return true;
- return false;
- }
- return false;
- }
- bool FullDependence::normalize(ScalarEvolution *SE) {
- if (!isDirectionNegative())
- return false;
- LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n";
- dump(dbgs()););
- std::swap(Src, Dst);
- for (unsigned Level = 1; Level <= Levels; ++Level) {
- unsigned char Direction = DV[Level - 1].Direction;
- // Reverse the direction vector, this means LT becomes GT
- // and GT becomes LT.
- unsigned char RevDirection = Direction & Dependence::DVEntry::EQ;
- if (Direction & Dependence::DVEntry::LT)
- RevDirection |= Dependence::DVEntry::GT;
- if (Direction & Dependence::DVEntry::GT)
- RevDirection |= Dependence::DVEntry::LT;
- DV[Level - 1].Direction = RevDirection;
- // Reverse the dependence distance as well.
- if (DV[Level - 1].Distance != nullptr)
- DV[Level - 1].Distance =
- SE->getNegativeSCEV(DV[Level - 1].Distance);
- }
- LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
- dump(dbgs()););
- return true;
- }
- // The rest are simple getters that hide the implementation.
- // getDirection - Returns the direction associated with a particular level.
- unsigned FullDependence::getDirection(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Direction;
- }
- // Returns the distance (or NULL) associated with a particular level.
- const SCEV *FullDependence::getDistance(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Distance;
- }
- // Returns true if a particular level is scalar; that is,
- // if no subscript in the source or destination mention the induction
- // variable associated with the loop at this level.
- bool FullDependence::isScalar(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Scalar;
- }
- // Returns true if peeling the first iteration from this loop
- // will break this dependence.
- bool FullDependence::isPeelFirst(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].PeelFirst;
- }
- // Returns true if peeling the last iteration from this loop
- // will break this dependence.
- bool FullDependence::isPeelLast(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].PeelLast;
- }
- // Returns true if splitting this loop will break the dependence.
- bool FullDependence::isSplitable(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Splitable;
- }
- //===----------------------------------------------------------------------===//
- // DependenceInfo::Constraint methods
- // If constraint is a point <X, Y>, returns X.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getX() const {
- assert(Kind == Point && "Kind should be Point");
- return A;
- }
- // If constraint is a point <X, Y>, returns Y.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getY() const {
- assert(Kind == Point && "Kind should be Point");
- return B;
- }
- // If constraint is a line AX + BY = C, returns A.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getA() const {
- assert((Kind == Line || Kind == Distance) &&
- "Kind should be Line (or Distance)");
- return A;
- }
- // If constraint is a line AX + BY = C, returns B.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getB() const {
- assert((Kind == Line || Kind == Distance) &&
- "Kind should be Line (or Distance)");
- return B;
- }
- // If constraint is a line AX + BY = C, returns C.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getC() const {
- assert((Kind == Line || Kind == Distance) &&
- "Kind should be Line (or Distance)");
- return C;
- }
- // If constraint is a distance, returns D.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getD() const {
- assert(Kind == Distance && "Kind should be Distance");
- return SE->getNegativeSCEV(C);
- }
- // Returns the loop associated with this constraint.
- const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
- assert((Kind == Distance || Kind == Line || Kind == Point) &&
- "Kind should be Distance, Line, or Point");
- return AssociatedLoop;
- }
- void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
- const Loop *CurLoop) {
- Kind = Point;
- A = X;
- B = Y;
- AssociatedLoop = CurLoop;
- }
- void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
- const SCEV *CC, const Loop *CurLoop) {
- Kind = Line;
- A = AA;
- B = BB;
- C = CC;
- AssociatedLoop = CurLoop;
- }
- void DependenceInfo::Constraint::setDistance(const SCEV *D,
- const Loop *CurLoop) {
- Kind = Distance;
- A = SE->getOne(D->getType());
- B = SE->getNegativeSCEV(A);
- C = SE->getNegativeSCEV(D);
- AssociatedLoop = CurLoop;
- }
- void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
- void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
- SE = NewSE;
- Kind = Any;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- // For debugging purposes. Dumps the constraint out to OS.
- LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
- if (isEmpty())
- OS << " Empty\n";
- else if (isAny())
- OS << " Any\n";
- else if (isPoint())
- OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
- else if (isDistance())
- OS << " Distance is " << *getD() <<
- " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
- else if (isLine())
- OS << " Line is " << *getA() << "*X + " <<
- *getB() << "*Y = " << *getC() << "\n";
- else
- llvm_unreachable("unknown constraint type in Constraint::dump");
- }
- #endif
- // Updates X with the intersection
- // of the Constraints X and Y. Returns true if X has changed.
- // Corresponds to Figure 4 from the paper
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
- ++DeltaApplications;
- LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
- LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
- LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
- assert(!Y->isPoint() && "Y must not be a Point");
- if (X->isAny()) {
- if (Y->isAny())
- return false;
- *X = *Y;
- return true;
- }
- if (X->isEmpty())
- return false;
- if (Y->isEmpty()) {
- X->setEmpty();
- return true;
- }
- if (X->isDistance() && Y->isDistance()) {
- LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
- if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
- return false;
- if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- // Hmmm, interesting situation.
- // I guess if either is constant, keep it and ignore the other.
- if (isa<SCEVConstant>(Y->getD())) {
- *X = *Y;
- return true;
- }
- return false;
- }
- // At this point, the pseudo-code in Figure 4 of the paper
- // checks if (X->isPoint() && Y->isPoint()).
- // This case can't occur in our implementation,
- // since a Point can only arise as the result of intersecting
- // two Line constraints, and the right-hand value, Y, is never
- // the result of an intersection.
- assert(!(X->isPoint() && Y->isPoint()) &&
- "We shouldn't ever see X->isPoint() && Y->isPoint()");
- if (X->isLine() && Y->isLine()) {
- LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
- const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
- const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
- if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
- // slopes are equal, so lines are parallel
- LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
- Prod1 = SE->getMulExpr(X->getC(), Y->getB());
- Prod2 = SE->getMulExpr(X->getB(), Y->getC());
- if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
- return false;
- if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- return false;
- }
- if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
- // slopes differ, so lines intersect
- LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
- const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
- const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
- const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
- const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
- const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
- const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
- const SCEVConstant *C1A2_C2A1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
- const SCEVConstant *C1B2_C2B1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
- const SCEVConstant *A1B2_A2B1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
- const SCEVConstant *A2B1_A1B2 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
- if (!C1B2_C2B1 || !C1A2_C2A1 ||
- !A1B2_A2B1 || !A2B1_A1B2)
- return false;
- APInt Xtop = C1B2_C2B1->getAPInt();
- APInt Xbot = A1B2_A2B1->getAPInt();
- APInt Ytop = C1A2_C2A1->getAPInt();
- APInt Ybot = A2B1_A1B2->getAPInt();
- LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
- LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
- LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
- LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
- APInt Xq = Xtop; // these need to be initialized, even
- APInt Xr = Xtop; // though they're just going to be overwritten
- APInt::sdivrem(Xtop, Xbot, Xq, Xr);
- APInt Yq = Ytop;
- APInt Yr = Ytop;
- APInt::sdivrem(Ytop, Ybot, Yq, Yr);
- if (Xr != 0 || Yr != 0) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
- if (Xq.slt(0) || Yq.slt(0)) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- if (const SCEVConstant *CUB =
- collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
- const APInt &UpperBound = CUB->getAPInt();
- LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
- if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- }
- X->setPoint(SE->getConstant(Xq),
- SE->getConstant(Yq),
- X->getAssociatedLoop());
- ++DeltaSuccesses;
- return true;
- }
- return false;
- }
- // if (X->isLine() && Y->isPoint()) This case can't occur.
- assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
- if (X->isPoint() && Y->isLine()) {
- LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
- const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
- const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
- const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
- if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
- return false;
- if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- return false;
- }
- llvm_unreachable("shouldn't reach the end of Constraint intersection");
- return false;
- }
- //===----------------------------------------------------------------------===//
- // DependenceInfo methods
- // For debugging purposes. Dumps a dependence to OS.
- void Dependence::dump(raw_ostream &OS) const {
- bool Splitable = false;
- if (isConfused())
- OS << "confused";
- else {
- if (isConsistent())
- OS << "consistent ";
- if (isFlow())
- OS << "flow";
- else if (isOutput())
- OS << "output";
- else if (isAnti())
- OS << "anti";
- else if (isInput())
- OS << "input";
- unsigned Levels = getLevels();
- OS << " [";
- for (unsigned II = 1; II <= Levels; ++II) {
- if (isSplitable(II))
- Splitable = true;
- if (isPeelFirst(II))
- OS << 'p';
- const SCEV *Distance = getDistance(II);
- if (Distance)
- OS << *Distance;
- else if (isScalar(II))
- OS << "S";
- else {
- unsigned Direction = getDirection(II);
- if (Direction == DVEntry::ALL)
- OS << "*";
- else {
- if (Direction & DVEntry::LT)
- OS << "<";
- if (Direction & DVEntry::EQ)
- OS << "=";
- if (Direction & DVEntry::GT)
- OS << ">";
- }
- }
- if (isPeelLast(II))
- OS << 'p';
- if (II < Levels)
- OS << " ";
- }
- if (isLoopIndependent())
- OS << "|<";
- OS << "]";
- if (Splitable)
- OS << " splitable";
- }
- OS << "!\n";
- }
- // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
- // underlaying objects. If LocA and LocB are known to not alias (for any reason:
- // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
- // Otherwise the underlying objects are checked to see if they point to
- // different identifiable objects.
- static AliasResult underlyingObjectsAlias(AAResults *AA,
- const DataLayout &DL,
- const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- // Check the original locations (minus size) for noalias, which can happen for
- // tbaa, incompatible underlying object locations, etc.
- MemoryLocation LocAS =
- MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
- MemoryLocation LocBS =
- MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
- if (AA->isNoAlias(LocAS, LocBS))
- return AliasResult::NoAlias;
- // Check the underlying objects are the same
- const Value *AObj = getUnderlyingObject(LocA.Ptr);
- const Value *BObj = getUnderlyingObject(LocB.Ptr);
- // If the underlying objects are the same, they must alias
- if (AObj == BObj)
- return AliasResult::MustAlias;
- // We may have hit the recursion limit for underlying objects, or have
- // underlying objects where we don't know they will alias.
- if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
- return AliasResult::MayAlias;
- // Otherwise we know the objects are different and both identified objects so
- // must not alias.
- return AliasResult::NoAlias;
- }
- // Returns true if the load or store can be analyzed. Atomic and volatile
- // operations have properties which this analysis does not understand.
- static
- bool isLoadOrStore(const Instruction *I) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isUnordered();
- else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isUnordered();
- return false;
- }
- // Examines the loop nesting of the Src and Dst
- // instructions and establishes their shared loops. Sets the variables
- // CommonLevels, SrcLevels, and MaxLevels.
- // The source and destination instructions needn't be contained in the same
- // loop. The routine establishNestingLevels finds the level of most deeply
- // nested loop that contains them both, CommonLevels. An instruction that's
- // not contained in a loop is at level = 0. MaxLevels is equal to the level
- // of the source plus the level of the destination, minus CommonLevels.
- // This lets us allocate vectors MaxLevels in length, with room for every
- // distinct loop referenced in both the source and destination subscripts.
- // The variable SrcLevels is the nesting depth of the source instruction.
- // It's used to help calculate distinct loops referenced by the destination.
- // Here's the map from loops to levels:
- // 0 - unused
- // 1 - outermost common loop
- // ... - other common loops
- // CommonLevels - innermost common loop
- // ... - loops containing Src but not Dst
- // SrcLevels - innermost loop containing Src but not Dst
- // ... - loops containing Dst but not Src
- // MaxLevels - innermost loops containing Dst but not Src
- // Consider the follow code fragment:
- // for (a = ...) {
- // for (b = ...) {
- // for (c = ...) {
- // for (d = ...) {
- // A[] = ...;
- // }
- // }
- // for (e = ...) {
- // for (f = ...) {
- // for (g = ...) {
- // ... = A[];
- // }
- // }
- // }
- // }
- // }
- // If we're looking at the possibility of a dependence between the store
- // to A (the Src) and the load from A (the Dst), we'll note that they
- // have 2 loops in common, so CommonLevels will equal 2 and the direction
- // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
- // A map from loop names to loop numbers would look like
- // a - 1
- // b - 2 = CommonLevels
- // c - 3
- // d - 4 = SrcLevels
- // e - 5
- // f - 6
- // g - 7 = MaxLevels
- void DependenceInfo::establishNestingLevels(const Instruction *Src,
- const Instruction *Dst) {
- const BasicBlock *SrcBlock = Src->getParent();
- const BasicBlock *DstBlock = Dst->getParent();
- unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
- unsigned DstLevel = LI->getLoopDepth(DstBlock);
- const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
- const Loop *DstLoop = LI->getLoopFor(DstBlock);
- SrcLevels = SrcLevel;
- MaxLevels = SrcLevel + DstLevel;
- while (SrcLevel > DstLevel) {
- SrcLoop = SrcLoop->getParentLoop();
- SrcLevel--;
- }
- while (DstLevel > SrcLevel) {
- DstLoop = DstLoop->getParentLoop();
- DstLevel--;
- }
- while (SrcLoop != DstLoop) {
- SrcLoop = SrcLoop->getParentLoop();
- DstLoop = DstLoop->getParentLoop();
- SrcLevel--;
- }
- CommonLevels = SrcLevel;
- MaxLevels -= CommonLevels;
- }
- // Given one of the loops containing the source, return
- // its level index in our numbering scheme.
- unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
- return SrcLoop->getLoopDepth();
- }
- // Given one of the loops containing the destination,
- // return its level index in our numbering scheme.
- unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
- unsigned D = DstLoop->getLoopDepth();
- if (D > CommonLevels)
- // This tries to make sure that we assign unique numbers to src and dst when
- // the memory accesses reside in different loops that have the same depth.
- return D - CommonLevels + SrcLevels;
- else
- return D;
- }
- // Returns true if Expression is loop invariant in LoopNest.
- bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
- const Loop *LoopNest) const {
- // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
- // any loop as invariant, because we only consier expression evaluation at a
- // specific position (where the array access takes place), and not across the
- // entire function.
- if (!LoopNest)
- return true;
- // If the expression is invariant in the outermost loop of the loop nest, it
- // is invariant anywhere in the loop nest.
- return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
- }
- // Finds the set of loops from the LoopNest that
- // have a level <= CommonLevels and are referred to by the SCEV Expression.
- void DependenceInfo::collectCommonLoops(const SCEV *Expression,
- const Loop *LoopNest,
- SmallBitVector &Loops) const {
- while (LoopNest) {
- unsigned Level = LoopNest->getLoopDepth();
- if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
- Loops.set(Level);
- LoopNest = LoopNest->getParentLoop();
- }
- }
- void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
- unsigned widestWidthSeen = 0;
- Type *widestType;
- // Go through each pair and find the widest bit to which we need
- // to extend all of them.
- for (Subscript *Pair : Pairs) {
- const SCEV *Src = Pair->Src;
- const SCEV *Dst = Pair->Dst;
- IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
- IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
- if (SrcTy == nullptr || DstTy == nullptr) {
- assert(SrcTy == DstTy && "This function only unify integer types and "
- "expect Src and Dst share the same type "
- "otherwise.");
- continue;
- }
- if (SrcTy->getBitWidth() > widestWidthSeen) {
- widestWidthSeen = SrcTy->getBitWidth();
- widestType = SrcTy;
- }
- if (DstTy->getBitWidth() > widestWidthSeen) {
- widestWidthSeen = DstTy->getBitWidth();
- widestType = DstTy;
- }
- }
- assert(widestWidthSeen > 0);
- // Now extend each pair to the widest seen.
- for (Subscript *Pair : Pairs) {
- const SCEV *Src = Pair->Src;
- const SCEV *Dst = Pair->Dst;
- IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
- IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
- if (SrcTy == nullptr || DstTy == nullptr) {
- assert(SrcTy == DstTy && "This function only unify integer types and "
- "expect Src and Dst share the same type "
- "otherwise.");
- continue;
- }
- if (SrcTy->getBitWidth() < widestWidthSeen)
- // Sign-extend Src to widestType
- Pair->Src = SE->getSignExtendExpr(Src, widestType);
- if (DstTy->getBitWidth() < widestWidthSeen) {
- // Sign-extend Dst to widestType
- Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
- }
- }
- }
- // removeMatchingExtensions - Examines a subscript pair.
- // If the source and destination are identically sign (or zero)
- // extended, it strips off the extension in an effect to simplify
- // the actual analysis.
- void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
- const SCEV *Src = Pair->Src;
- const SCEV *Dst = Pair->Dst;
- if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
- (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
- const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
- const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
- const SCEV *SrcCastOp = SrcCast->getOperand();
- const SCEV *DstCastOp = DstCast->getOperand();
- if (SrcCastOp->getType() == DstCastOp->getType()) {
- Pair->Src = SrcCastOp;
- Pair->Dst = DstCastOp;
- }
- }
- }
- // Examine the scev and return true iff it's affine.
- // Collect any loops mentioned in the set of "Loops".
- bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
- SmallBitVector &Loops, bool IsSrc) {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec)
- return isLoopInvariant(Expr, LoopNest);
- // The AddRec must depend on one of the containing loops. Otherwise,
- // mapSrcLoop and mapDstLoop return indices outside the intended range. This
- // can happen when a subscript in one loop references an IV from a sibling
- // loop that could not be replaced with a concrete exit value by
- // getSCEVAtScope.
- const Loop *L = LoopNest;
- while (L && AddRec->getLoop() != L)
- L = L->getParentLoop();
- if (!L)
- return false;
- const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*SE);
- const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(UB)) {
- if (SE->getTypeSizeInBits(Start->getType()) <
- SE->getTypeSizeInBits(UB->getType())) {
- if (!AddRec->getNoWrapFlags())
- return false;
- }
- }
- if (!isLoopInvariant(Step, LoopNest))
- return false;
- if (IsSrc)
- Loops.set(mapSrcLoop(AddRec->getLoop()));
- else
- Loops.set(mapDstLoop(AddRec->getLoop()));
- return checkSubscript(Start, LoopNest, Loops, IsSrc);
- }
- // Examine the scev and return true iff it's linear.
- // Collect any loops mentioned in the set of "Loops".
- bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
- SmallBitVector &Loops) {
- return checkSubscript(Src, LoopNest, Loops, true);
- }
- // Examine the scev and return true iff it's linear.
- // Collect any loops mentioned in the set of "Loops".
- bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
- SmallBitVector &Loops) {
- return checkSubscript(Dst, LoopNest, Loops, false);
- }
- // Examines the subscript pair (the Src and Dst SCEVs)
- // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
- // Collects the associated loops in a set.
- DependenceInfo::Subscript::ClassificationKind
- DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
- const SCEV *Dst, const Loop *DstLoopNest,
- SmallBitVector &Loops) {
- SmallBitVector SrcLoops(MaxLevels + 1);
- SmallBitVector DstLoops(MaxLevels + 1);
- if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
- return Subscript::NonLinear;
- if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
- return Subscript::NonLinear;
- Loops = SrcLoops;
- Loops |= DstLoops;
- unsigned N = Loops.count();
- if (N == 0)
- return Subscript::ZIV;
- if (N == 1)
- return Subscript::SIV;
- if (N == 2 && (SrcLoops.count() == 0 ||
- DstLoops.count() == 0 ||
- (SrcLoops.count() == 1 && DstLoops.count() == 1)))
- return Subscript::RDIV;
- return Subscript::MIV;
- }
- // A wrapper around SCEV::isKnownPredicate.
- // Looks for cases where we're interested in comparing for equality.
- // If both X and Y have been identically sign or zero extended,
- // it strips off the (confusing) extensions before invoking
- // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
- // will be similarly updated.
- //
- // If SCEV::isKnownPredicate can't prove the predicate,
- // we try simple subtraction, which seems to help in some cases
- // involving symbolics.
- bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
- const SCEV *Y) const {
- if (Pred == CmpInst::ICMP_EQ ||
- Pred == CmpInst::ICMP_NE) {
- if ((isa<SCEVSignExtendExpr>(X) &&
- isa<SCEVSignExtendExpr>(Y)) ||
- (isa<SCEVZeroExtendExpr>(X) &&
- isa<SCEVZeroExtendExpr>(Y))) {
- const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
- const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
- const SCEV *Xop = CX->getOperand();
- const SCEV *Yop = CY->getOperand();
- if (Xop->getType() == Yop->getType()) {
- X = Xop;
- Y = Yop;
- }
- }
- }
- if (SE->isKnownPredicate(Pred, X, Y))
- return true;
- // If SE->isKnownPredicate can't prove the condition,
- // we try the brute-force approach of subtracting
- // and testing the difference.
- // By testing with SE->isKnownPredicate first, we avoid
- // the possibility of overflow when the arguments are constants.
- const SCEV *Delta = SE->getMinusSCEV(X, Y);
- switch (Pred) {
- case CmpInst::ICMP_EQ:
- return Delta->isZero();
- case CmpInst::ICMP_NE:
- return SE->isKnownNonZero(Delta);
- case CmpInst::ICMP_SGE:
- return SE->isKnownNonNegative(Delta);
- case CmpInst::ICMP_SLE:
- return SE->isKnownNonPositive(Delta);
- case CmpInst::ICMP_SGT:
- return SE->isKnownPositive(Delta);
- case CmpInst::ICMP_SLT:
- return SE->isKnownNegative(Delta);
- default:
- llvm_unreachable("unexpected predicate in isKnownPredicate");
- }
- }
- /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
- /// with some extra checking if S is an AddRec and we can prove less-than using
- /// the loop bounds.
- bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
- // First unify to the same type
- auto *SType = dyn_cast<IntegerType>(S->getType());
- auto *SizeType = dyn_cast<IntegerType>(Size->getType());
- if (!SType || !SizeType)
- return false;
- Type *MaxType =
- (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
- S = SE->getTruncateOrZeroExtend(S, MaxType);
- Size = SE->getTruncateOrZeroExtend(Size, MaxType);
- // Special check for addrecs using BE taken count
- const SCEV *Bound = SE->getMinusSCEV(S, Size);
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
- if (AddRec->isAffine()) {
- const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(BECount)) {
- const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
- if (SE->isKnownNegative(Limit))
- return true;
- }
- }
- }
- // Check using normal isKnownNegative
- const SCEV *LimitedBound =
- SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
- return SE->isKnownNegative(LimitedBound);
- }
- bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
- bool Inbounds = false;
- if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
- Inbounds = SrcGEP->isInBounds();
- if (Inbounds) {
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- if (AddRec->isAffine()) {
- // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
- // If both parts are NonNegative, the end result will be NonNegative
- if (SE->isKnownNonNegative(AddRec->getStart()) &&
- SE->isKnownNonNegative(AddRec->getOperand(1)))
- return true;
- }
- }
- }
- return SE->isKnownNonNegative(S);
- }
- // All subscripts are all the same type.
- // Loop bound may be smaller (e.g., a char).
- // Should zero extend loop bound, since it's always >= 0.
- // This routine collects upper bound and extends or truncates if needed.
- // Truncating is safe when subscripts are known not to wrap. Cases without
- // nowrap flags should have been rejected earlier.
- // Return null if no bound available.
- const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
- if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
- const SCEV *UB = SE->getBackedgeTakenCount(L);
- return SE->getTruncateOrZeroExtend(UB, T);
- }
- return nullptr;
- }
- // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
- // If the cast fails, returns NULL.
- const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
- Type *T) const {
- if (const SCEV *UB = collectUpperBound(L, T))
- return dyn_cast<SCEVConstant>(UB);
- return nullptr;
- }
- // testZIV -
- // When we have a pair of subscripts of the form [c1] and [c2],
- // where c1 and c2 are both loop invariant, we attack it using
- // the ZIV test. Basically, we test by comparing the two values,
- // but there are actually three possible results:
- // 1) the values are equal, so there's a dependence
- // 2) the values are different, so there's no dependence
- // 3) the values might be equal, so we have to assume a dependence.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- ++ZIVapplications;
- if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
- LLVM_DEBUG(dbgs() << " provably dependent\n");
- return false; // provably dependent
- }
- if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
- LLVM_DEBUG(dbgs() << " provably independent\n");
- ++ZIVindependence;
- return true; // provably independent
- }
- LLVM_DEBUG(dbgs() << " possibly dependent\n");
- Result.Consistent = false;
- return false; // possibly dependent
- }
- // strongSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.1
- //
- // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the Strong SIV test.
- //
- // Can prove independence. Failing that, can compute distance (and direction).
- // In the presence of symbolic terms, we can sometimes make progress.
- //
- // If there's a dependence,
- //
- // c1 + a*i = c2 + a*i'
- //
- // The dependence distance is
- //
- // d = i' - i = (c1 - c2)/a
- //
- // A dependence only exists if d is an integer and abs(d) <= U, where U is the
- // loop's upper bound. If a dependence exists, the dependence direction is
- // defined as
- //
- // { < if d > 0
- // direction = { = if d = 0
- // { > if d < 0
- //
- // Return true if dependence disproved.
- bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
- const SCEV *DstConst, const Loop *CurLoop,
- unsigned Level, FullDependence &Result,
- Constraint &NewConstraint) const {
- LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
- LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
- LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
- LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
- LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
- ++StrongSIVapplications;
- assert(0 < Level && Level <= CommonLevels && "level out of range");
- Level--;
- const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
- LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
- // check that |Delta| < iteration count
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
- LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
- const SCEV *AbsDelta =
- SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
- const SCEV *AbsCoeff =
- SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
- const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
- if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
- // Distance greater than trip count - no dependence
- ++StrongSIVindependence;
- ++StrongSIVsuccesses;
- return true;
- }
- }
- // Can we compute distance?
- if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
- APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
- APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
- APInt Distance = ConstDelta; // these need to be initialized
- APInt Remainder = ConstDelta;
- APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
- LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
- LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
- // Make sure Coeff divides Delta exactly
- if (Remainder != 0) {
- // Coeff doesn't divide Distance, no dependence
- ++StrongSIVindependence;
- ++StrongSIVsuccesses;
- return true;
- }
- Result.DV[Level].Distance = SE->getConstant(Distance);
- NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
- if (Distance.sgt(0))
- Result.DV[Level].Direction &= Dependence::DVEntry::LT;
- else if (Distance.slt(0))
- Result.DV[Level].Direction &= Dependence::DVEntry::GT;
- else
- Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
- ++StrongSIVsuccesses;
- }
- else if (Delta->isZero()) {
- // since 0/X == 0
- Result.DV[Level].Distance = Delta;
- NewConstraint.setDistance(Delta, CurLoop);
- Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
- ++StrongSIVsuccesses;
- }
- else {
- if (Coeff->isOne()) {
- LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
- Result.DV[Level].Distance = Delta; // since X/1 == X
- NewConstraint.setDistance(Delta, CurLoop);
- }
- else {
- Result.Consistent = false;
- NewConstraint.setLine(Coeff,
- SE->getNegativeSCEV(Coeff),
- SE->getNegativeSCEV(Delta), CurLoop);
- }
- // maybe we can get a useful direction
- bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
- bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
- bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
- bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
- bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
- // The double negatives above are confusing.
- // It helps to read !SE->isKnownNonZero(Delta)
- // as "Delta might be Zero"
- unsigned NewDirection = Dependence::DVEntry::NONE;
- if ((DeltaMaybePositive && CoeffMaybePositive) ||
- (DeltaMaybeNegative && CoeffMaybeNegative))
- NewDirection = Dependence::DVEntry::LT;
- if (DeltaMaybeZero)
- NewDirection |= Dependence::DVEntry::EQ;
- if ((DeltaMaybeNegative && CoeffMaybePositive) ||
- (DeltaMaybePositive && CoeffMaybeNegative))
- NewDirection |= Dependence::DVEntry::GT;
- if (NewDirection < Result.DV[Level].Direction)
- ++StrongSIVsuccesses;
- Result.DV[Level].Direction &= NewDirection;
- }
- return false;
- }
- // weakCrossingSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.2
- //
- // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the
- // Weak-Crossing SIV test.
- //
- // Given c1 + a*i = c2 - a*i', we can look for the intersection of
- // the two lines, where i = i', yielding
- //
- // c1 + a*i = c2 - a*i
- // 2a*i = c2 - c1
- // i = (c2 - c1)/2a
- //
- // If i < 0, there is no dependence.
- // If i > upperbound, there is no dependence.
- // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
- // If i = upperbound, there's a dependence with distance = 0.
- // If i is integral, there's a dependence (all directions).
- // If the non-integer part = 1/2, there's a dependence (<> directions).
- // Otherwise, there's no dependence.
- //
- // Can prove independence. Failing that,
- // can sometimes refine the directions.
- // Can determine iteration for splitting.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::weakCrossingSIVtest(
- const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level, FullDependence &Result,
- Constraint &NewConstraint, const SCEV *&SplitIter) const {
- LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
- LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++WeakCrossingSIVapplications;
- assert(0 < Level && Level <= CommonLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
- if (Delta->isZero()) {
- Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
- Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
- ++WeakCrossingSIVsuccesses;
- if (!Result.DV[Level].Direction) {
- ++WeakCrossingSIVindependence;
- return true;
- }
- Result.DV[Level].Distance = Delta; // = 0
- return false;
- }
- const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
- if (!ConstCoeff)
- return false;
- Result.DV[Level].Splitable = true;
- if (SE->isKnownNegative(ConstCoeff)) {
- ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
- assert(ConstCoeff &&
- "dynamic cast of negative of ConstCoeff should yield constant");
- Delta = SE->getNegativeSCEV(Delta);
- }
- assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
- // compute SplitIter for use by DependenceInfo::getSplitIteration()
- SplitIter = SE->getUDivExpr(
- SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
- SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
- LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
- const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
- if (!ConstDelta)
- return false;
- // We're certain that ConstCoeff > 0; therefore,
- // if Delta < 0, then no dependence.
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
- if (SE->isKnownNegative(Delta)) {
- // No dependence, Delta < 0
- ++WeakCrossingSIVindependence;
- ++WeakCrossingSIVsuccesses;
- return true;
- }
- // We're certain that Delta > 0 and ConstCoeff > 0.
- // Check Delta/(2*ConstCoeff) against upper loop bound
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
- const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
- const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
- ConstantTwo);
- LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
- // Delta too big, no dependence
- ++WeakCrossingSIVindependence;
- ++WeakCrossingSIVsuccesses;
- return true;
- }
- if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
- // i = i' = UB
- Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
- Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
- ++WeakCrossingSIVsuccesses;
- if (!Result.DV[Level].Direction) {
- ++WeakCrossingSIVindependence;
- return true;
- }
- Result.DV[Level].Splitable = false;
- Result.DV[Level].Distance = SE->getZero(Delta->getType());
- return false;
- }
- }
- // check that Coeff divides Delta
- APInt APDelta = ConstDelta->getAPInt();
- APInt APCoeff = ConstCoeff->getAPInt();
- APInt Distance = APDelta; // these need to be initialzed
- APInt Remainder = APDelta;
- APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
- LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
- if (Remainder != 0) {
- // Coeff doesn't divide Delta, no dependence
- ++WeakCrossingSIVindependence;
- ++WeakCrossingSIVsuccesses;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
- // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
- APInt Two = APInt(Distance.getBitWidth(), 2, true);
- Remainder = Distance.srem(Two);
- LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
- if (Remainder != 0) {
- // Equal direction isn't possible
- Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ;
- ++WeakCrossingSIVsuccesses;
- }
- return false;
- }
- // Kirch's algorithm, from
- //
- // Optimizing Supercompilers for Supercomputers
- // Michael Wolfe
- // MIT Press, 1989
- //
- // Program 2.1, page 29.
- // Computes the GCD of AM and BM.
- // Also finds a solution to the equation ax - by = gcd(a, b).
- // Returns true if dependence disproved; i.e., gcd does not divide Delta.
- static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
- const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
- APInt A0(Bits, 1, true), A1(Bits, 0, true);
- APInt B0(Bits, 0, true), B1(Bits, 1, true);
- APInt G0 = AM.abs();
- APInt G1 = BM.abs();
- APInt Q = G0; // these need to be initialized
- APInt R = G0;
- APInt::sdivrem(G0, G1, Q, R);
- while (R != 0) {
- APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
- APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
- G0 = G1; G1 = R;
- APInt::sdivrem(G0, G1, Q, R);
- }
- G = G1;
- LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
- X = AM.slt(0) ? -A1 : A1;
- Y = BM.slt(0) ? B1 : -B1;
- // make sure gcd divides Delta
- R = Delta.srem(G);
- if (R != 0)
- return true; // gcd doesn't divide Delta, no dependence
- Q = Delta.sdiv(G);
- return false;
- }
- static APInt floorOfQuotient(const APInt &A, const APInt &B) {
- APInt Q = A; // these need to be initialized
- APInt R = A;
- APInt::sdivrem(A, B, Q, R);
- if (R == 0)
- return Q;
- if ((A.sgt(0) && B.sgt(0)) ||
- (A.slt(0) && B.slt(0)))
- return Q;
- else
- return Q - 1;
- }
- static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
- APInt Q = A; // these need to be initialized
- APInt R = A;
- APInt::sdivrem(A, B, Q, R);
- if (R == 0)
- return Q;
- if ((A.sgt(0) && B.sgt(0)) ||
- (A.slt(0) && B.slt(0)))
- return Q + 1;
- else
- return Q;
- }
- // exactSIVtest -
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
- // where i is an induction variable, c1 and c2 are loop invariant, and a1
- // and a2 are constant, we can solve it exactly using an algorithm developed
- // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
- //
- // Dependence Analysis for Supercomputing
- // Utpal Banerjee
- // Kluwer Academic Publishers, 1988
- //
- // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
- // so use them if possible. They're also a bit better with symbolics and,
- // in the case of the strong SIV test, can compute Distances.
- //
- // Return true if dependence disproved.
- //
- // This is a modified version of the original Banerjee algorithm. The original
- // only tested whether Dst depends on Src. This algorithm extends that and
- // returns all the dependencies that exist between Dst and Src.
- bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
- const SCEV *SrcConst, const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const {
- LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
- LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
- LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++ExactSIVapplications;
- assert(0 < Level && Level <= CommonLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
- CurLoop);
- const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
- const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
- const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
- if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
- return false;
- // find gcd
- APInt G, X, Y;
- APInt AM = ConstSrcCoeff->getAPInt();
- APInt BM = ConstDstCoeff->getAPInt();
- APInt CM = ConstDelta->getAPInt();
- unsigned Bits = AM.getBitWidth();
- if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
- // gcd doesn't divide Delta, no dependence
- ++ExactSIVindependence;
- ++ExactSIVsuccesses;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
- // since SCEV construction normalizes, LM = 0
- APInt UM(Bits, 1, true);
- bool UMValid = false;
- // UM is perhaps unavailable, let's check
- if (const SCEVConstant *CUB =
- collectConstantUpperBound(CurLoop, Delta->getType())) {
- UM = CUB->getAPInt();
- LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
- UMValid = true;
- }
- APInt TU(APInt::getSignedMaxValue(Bits));
- APInt TL(APInt::getSignedMinValue(Bits));
- APInt TC = CM.sdiv(G);
- APInt TX = X * TC;
- APInt TY = Y * TC;
- LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
- LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
- LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
- SmallVector<APInt, 2> TLVec, TUVec;
- APInt TB = BM.sdiv(G);
- if (TB.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- // New bound check - modification to Banerjee's e3 check
- if (UMValid) {
- TUVec.push_back(floorOfQuotient(UM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- // New bound check - modification to Banerjee's e3 check
- if (UMValid) {
- TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- APInt TA = AM.sdiv(G);
- if (TA.sgt(0)) {
- if (UMValid) {
- TUVec.push_back(floorOfQuotient(UM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- // New bound check - modification to Banerjee's e3 check
- TLVec.push_back(ceilingOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- } else {
- if (UMValid) {
- TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- // New bound check - modification to Banerjee's e3 check
- TUVec.push_back(floorOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
- LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
- if (TLVec.empty() || TUVec.empty())
- return false;
- TL = APIntOps::smax(TLVec.front(), TLVec.back());
- TU = APIntOps::smin(TUVec.front(), TUVec.back());
- LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
- LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
- if (TL.sgt(TU)) {
- ++ExactSIVindependence;
- ++ExactSIVsuccesses;
- return true;
- }
- // explore directions
- unsigned NewDirection = Dependence::DVEntry::NONE;
- APInt LowerDistance, UpperDistance;
- if (TA.sgt(TB)) {
- LowerDistance = (TY - TX) + (TA - TB) * TL;
- UpperDistance = (TY - TX) + (TA - TB) * TU;
- } else {
- LowerDistance = (TY - TX) + (TA - TB) * TU;
- UpperDistance = (TY - TX) + (TA - TB) * TL;
- }
- LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n");
- LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n");
- APInt Zero(Bits, 0, true);
- if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
- NewDirection |= Dependence::DVEntry::EQ;
- ++ExactSIVsuccesses;
- }
- if (LowerDistance.slt(0)) {
- NewDirection |= Dependence::DVEntry::GT;
- ++ExactSIVsuccesses;
- }
- if (UpperDistance.sgt(0)) {
- NewDirection |= Dependence::DVEntry::LT;
- ++ExactSIVsuccesses;
- }
- // finished
- Result.DV[Level].Direction &= NewDirection;
- if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
- ++ExactSIVindependence;
- LLVM_DEBUG(dbgs() << "\t Result = ");
- LLVM_DEBUG(Result.dump(dbgs()));
- return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
- }
- // Return true if the divisor evenly divides the dividend.
- static
- bool isRemainderZero(const SCEVConstant *Dividend,
- const SCEVConstant *Divisor) {
- const APInt &ConstDividend = Dividend->getAPInt();
- const APInt &ConstDivisor = Divisor->getAPInt();
- return ConstDividend.srem(ConstDivisor) == 0;
- }
- // weakZeroSrcSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.2
- //
- // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the
- // Weak-Zero SIV test.
- //
- // Given
- //
- // c1 = c2 + a*i
- //
- // we get
- //
- // (c1 - c2)/a = i
- //
- // If i is not an integer, there's no dependence.
- // If i < 0 or > UB, there's no dependence.
- // If i = 0, the direction is >= and peeling the
- // 1st iteration will break the dependence.
- // If i = UB, the direction is <= and peeling the
- // last iteration will break the dependence.
- // Otherwise, the direction is *.
- //
- // Can prove independence. Failing that, we can sometimes refine
- // the directions. Can sometimes show that first or last
- // iteration carries all the dependences (so worth peeling).
- //
- // (see also weakZeroDstSIVtest)
- //
- // Return true if dependence disproved.
- bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const {
- // For the WeakSIV test, it's possible the loop isn't common to
- // the Src and Dst loops. If it isn't, then there's no need to
- // record a direction.
- LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
- LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++WeakZeroSIVapplications;
- assert(0 < Level && Level <= MaxLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
- NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
- CurLoop);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::GE;
- Result.DV[Level].PeelFirst = true;
- ++WeakZeroSIVsuccesses;
- }
- return false; // dependences caused by first iteration
- }
- const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
- if (!ConstCoeff)
- return false;
- const SCEV *AbsCoeff =
- SE->isKnownNegative(ConstCoeff) ?
- SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
- const SCEV *NewDelta =
- SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
- // check that Delta/SrcCoeff < iteration count
- // really check NewDelta < count*AbsCoeff
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
- const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
- if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
- // dependences caused by last iteration
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::LE;
- Result.DV[Level].PeelLast = true;
- ++WeakZeroSIVsuccesses;
- }
- return false;
- }
- }
- // check that Delta/SrcCoeff >= 0
- // really check that NewDelta >= 0
- if (SE->isKnownNegative(NewDelta)) {
- // No dependence, newDelta < 0
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- // if SrcCoeff doesn't divide Delta, then no dependence
- if (isa<SCEVConstant>(Delta) &&
- !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- return false;
- }
- // weakZeroDstSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.2
- //
- // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the
- // Weak-Zero SIV test.
- //
- // Given
- //
- // c1 + a*i = c2
- //
- // we get
- //
- // i = (c2 - c1)/a
- //
- // If i is not an integer, there's no dependence.
- // If i < 0 or > UB, there's no dependence.
- // If i = 0, the direction is <= and peeling the
- // 1st iteration will break the dependence.
- // If i = UB, the direction is >= and peeling the
- // last iteration will break the dependence.
- // Otherwise, the direction is *.
- //
- // Can prove independence. Failing that, we can sometimes refine
- // the directions. Can sometimes show that first or last
- // iteration carries all the dependences (so worth peeling).
- //
- // (see also weakZeroSrcSIVtest)
- //
- // Return true if dependence disproved.
- bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const {
- // For the WeakSIV test, it's possible the loop isn't common to the
- // Src and Dst loops. If it isn't, then there's no need to record a direction.
- LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
- LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++WeakZeroSIVapplications;
- assert(0 < Level && Level <= SrcLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
- CurLoop);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::LE;
- Result.DV[Level].PeelFirst = true;
- ++WeakZeroSIVsuccesses;
- }
- return false; // dependences caused by first iteration
- }
- const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
- if (!ConstCoeff)
- return false;
- const SCEV *AbsCoeff =
- SE->isKnownNegative(ConstCoeff) ?
- SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
- const SCEV *NewDelta =
- SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
- // check that Delta/SrcCoeff < iteration count
- // really check NewDelta < count*AbsCoeff
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
- const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
- if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
- // dependences caused by last iteration
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::GE;
- Result.DV[Level].PeelLast = true;
- ++WeakZeroSIVsuccesses;
- }
- return false;
- }
- }
- // check that Delta/SrcCoeff >= 0
- // really check that NewDelta >= 0
- if (SE->isKnownNegative(NewDelta)) {
- // No dependence, newDelta < 0
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- // if SrcCoeff doesn't divide Delta, then no dependence
- if (isa<SCEVConstant>(Delta) &&
- !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- return false;
- }
- // exactRDIVtest - Tests the RDIV subscript pair for dependence.
- // Things of the form [c1 + a*i] and [c2 + b*j],
- // where i and j are induction variable, c1 and c2 are loop invariant,
- // and a and b are constants.
- // Returns true if any possible dependence is disproved.
- // Marks the result as inconsistent.
- // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
- bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
- const SCEV *SrcConst, const SCEV *DstConst,
- const Loop *SrcLoop, const Loop *DstLoop,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
- LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
- LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++ExactRDIVapplications;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
- const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
- const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
- if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
- return false;
- // find gcd
- APInt G, X, Y;
- APInt AM = ConstSrcCoeff->getAPInt();
- APInt BM = ConstDstCoeff->getAPInt();
- APInt CM = ConstDelta->getAPInt();
- unsigned Bits = AM.getBitWidth();
- if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
- // gcd doesn't divide Delta, no dependence
- ++ExactRDIVindependence;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
- // since SCEV construction seems to normalize, LM = 0
- APInt SrcUM(Bits, 1, true);
- bool SrcUMvalid = false;
- // SrcUM is perhaps unavailable, let's check
- if (const SCEVConstant *UpperBound =
- collectConstantUpperBound(SrcLoop, Delta->getType())) {
- SrcUM = UpperBound->getAPInt();
- LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
- SrcUMvalid = true;
- }
- APInt DstUM(Bits, 1, true);
- bool DstUMvalid = false;
- // UM is perhaps unavailable, let's check
- if (const SCEVConstant *UpperBound =
- collectConstantUpperBound(DstLoop, Delta->getType())) {
- DstUM = UpperBound->getAPInt();
- LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
- DstUMvalid = true;
- }
- APInt TU(APInt::getSignedMaxValue(Bits));
- APInt TL(APInt::getSignedMinValue(Bits));
- APInt TC = CM.sdiv(G);
- APInt TX = X * TC;
- APInt TY = Y * TC;
- LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
- LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
- LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
- SmallVector<APInt, 2> TLVec, TUVec;
- APInt TB = BM.sdiv(G);
- if (TB.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- if (SrcUMvalid) {
- TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- if (SrcUMvalid) {
- TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- APInt TA = AM.sdiv(G);
- if (TA.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- if (DstUMvalid) {
- TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- if (DstUMvalid) {
- TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- if (TLVec.empty() || TUVec.empty())
- return false;
- LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
- LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
- TL = APIntOps::smax(TLVec.front(), TLVec.back());
- TU = APIntOps::smin(TUVec.front(), TUVec.back());
- LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
- LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
- if (TL.sgt(TU))
- ++ExactRDIVindependence;
- return TL.sgt(TU);
- }
- // symbolicRDIVtest -
- // In Section 4.5 of the Practical Dependence Testing paper,the authors
- // introduce a special case of Banerjee's Inequalities (also called the
- // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
- // particularly cases with symbolics. Since it's only able to disprove
- // dependence (not compute distances or directions), we'll use it as a
- // fall back for the other tests.
- //
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
- // where i and j are induction variables and c1 and c2 are loop invariants,
- // we can use the symbolic tests to disprove some dependences, serving as a
- // backup for the RDIV test. Note that i and j can be the same variable,
- // letting this test serve as a backup for the various SIV tests.
- //
- // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
- // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
- // loop bounds for the i and j loops, respectively. So, ...
- //
- // c1 + a1*i = c2 + a2*j
- // a1*i - a2*j = c2 - c1
- //
- // To test for a dependence, we compute c2 - c1 and make sure it's in the
- // range of the maximum and minimum possible values of a1*i - a2*j.
- // Considering the signs of a1 and a2, we have 4 possible cases:
- //
- // 1) If a1 >= 0 and a2 >= 0, then
- // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
- // -a2*N2 <= c2 - c1 <= a1*N1
- //
- // 2) If a1 >= 0 and a2 <= 0, then
- // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
- // 0 <= c2 - c1 <= a1*N1 - a2*N2
- //
- // 3) If a1 <= 0 and a2 >= 0, then
- // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
- // a1*N1 - a2*N2 <= c2 - c1 <= 0
- //
- // 4) If a1 <= 0 and a2 <= 0, then
- // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
- // a1*N1 <= c2 - c1 <= -a2*N2
- //
- // return true if dependence disproved
- bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
- const SCEV *C1, const SCEV *C2,
- const Loop *Loop1,
- const Loop *Loop2) const {
- ++SymbolicRDIVapplications;
- LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
- LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
- LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
- LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
- LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
- LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
- const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
- const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
- LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
- LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
- const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
- const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
- LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
- LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
- if (SE->isKnownNonNegative(A1)) {
- if (SE->isKnownNonNegative(A2)) {
- // A1 >= 0 && A2 >= 0
- if (N1) {
- // make sure that c2 - c1 <= a1*N1
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- if (N2) {
- // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- }
- else if (SE->isKnownNonPositive(A2)) {
- // a1 >= 0 && a2 <= 0
- if (N1 && N2) {
- // make sure that c2 - c1 <= a1*N1 - a2*N2
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
- LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- // make sure that 0 <= c2 - c1
- if (SE->isKnownNegative(C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- }
- else if (SE->isKnownNonPositive(A1)) {
- if (SE->isKnownNonNegative(A2)) {
- // a1 <= 0 && a2 >= 0
- if (N1 && N2) {
- // make sure that a1*N1 - a2*N2 <= c2 - c1
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
- LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- // make sure that c2 - c1 <= 0
- if (SE->isKnownPositive(C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- else if (SE->isKnownNonPositive(A2)) {
- // a1 <= 0 && a2 <= 0
- if (N1) {
- // make sure that a1*N1 <= c2 - c1
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- if (N2) {
- // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- }
- }
- return false;
- }
- // testSIV -
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
- // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
- // a2 are constant, we attack it with an SIV test. While they can all be
- // solved with the Exact SIV test, it's worthwhile to use simpler tests when
- // they apply; they're cheaper and sometimes more precise.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
- FullDependence &Result, Constraint &NewConstraint,
- const SCEV *&SplitIter) const {
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
- const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
- if (SrcAddRec && DstAddRec) {
- const SCEV *SrcConst = SrcAddRec->getStart();
- const SCEV *DstConst = DstAddRec->getStart();
- const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
- const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
- const Loop *CurLoop = SrcAddRec->getLoop();
- assert(CurLoop == DstAddRec->getLoop() &&
- "both loops in SIV should be same");
- Level = mapSrcLoop(CurLoop);
- bool disproven;
- if (SrcCoeff == DstCoeff)
- disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint);
- else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
- disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint, SplitIter);
- else
- disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint);
- return disproven ||
- gcdMIVtest(Src, Dst, Result) ||
- symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
- }
- if (SrcAddRec) {
- const SCEV *SrcConst = SrcAddRec->getStart();
- const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
- const SCEV *DstConst = Dst;
- const Loop *CurLoop = SrcAddRec->getLoop();
- Level = mapSrcLoop(CurLoop);
- return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint) ||
- gcdMIVtest(Src, Dst, Result);
- }
- if (DstAddRec) {
- const SCEV *DstConst = DstAddRec->getStart();
- const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
- const SCEV *SrcConst = Src;
- const Loop *CurLoop = DstAddRec->getLoop();
- Level = mapDstLoop(CurLoop);
- return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
- CurLoop, Level, Result, NewConstraint) ||
- gcdMIVtest(Src, Dst, Result);
- }
- llvm_unreachable("SIV test expected at least one AddRec");
- return false;
- }
- // testRDIV -
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
- // where i and j are induction variables, c1 and c2 are loop invariant,
- // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
- // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
- // It doesn't make sense to talk about distance or direction in this case,
- // so there's no point in making special versions of the Strong SIV test or
- // the Weak-crossing SIV test.
- //
- // With minor algebra, this test can also be used for things like
- // [c1 + a1*i + a2*j][c2].
- //
- // Return true if dependence disproved.
- bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
- FullDependence &Result) const {
- // we have 3 possible situations here:
- // 1) [a*i + b] and [c*j + d]
- // 2) [a*i + c*j + b] and [d]
- // 3) [b] and [a*i + c*j + d]
- // We need to find what we've got and get organized
- const SCEV *SrcConst, *DstConst;
- const SCEV *SrcCoeff, *DstCoeff;
- const Loop *SrcLoop, *DstLoop;
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
- const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
- if (SrcAddRec && DstAddRec) {
- SrcConst = SrcAddRec->getStart();
- SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
- SrcLoop = SrcAddRec->getLoop();
- DstConst = DstAddRec->getStart();
- DstCoeff = DstAddRec->getStepRecurrence(*SE);
- DstLoop = DstAddRec->getLoop();
- }
- else if (SrcAddRec) {
- if (const SCEVAddRecExpr *tmpAddRec =
- dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
- SrcConst = tmpAddRec->getStart();
- SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
- SrcLoop = tmpAddRec->getLoop();
- DstConst = Dst;
- DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
- DstLoop = SrcAddRec->getLoop();
- }
- else
- llvm_unreachable("RDIV reached by surprising SCEVs");
- }
- else if (DstAddRec) {
- if (const SCEVAddRecExpr *tmpAddRec =
- dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
- DstConst = tmpAddRec->getStart();
- DstCoeff = tmpAddRec->getStepRecurrence(*SE);
- DstLoop = tmpAddRec->getLoop();
- SrcConst = Src;
- SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
- SrcLoop = DstAddRec->getLoop();
- }
- else
- llvm_unreachable("RDIV reached by surprising SCEVs");
- }
- else
- llvm_unreachable("RDIV expected at least one AddRec");
- return exactRDIVtest(SrcCoeff, DstCoeff,
- SrcConst, DstConst,
- SrcLoop, DstLoop,
- Result) ||
- gcdMIVtest(Src, Dst, Result) ||
- symbolicRDIVtest(SrcCoeff, DstCoeff,
- SrcConst, DstConst,
- SrcLoop, DstLoop);
- }
- // Tests the single-subscript MIV pair (Src and Dst) for dependence.
- // Return true if dependence disproved.
- // Can sometimes refine direction vectors.
- bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
- const SmallBitVector &Loops,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- Result.Consistent = false;
- return gcdMIVtest(Src, Dst, Result) ||
- banerjeeMIVtest(Src, Dst, Loops, Result);
- }
- // Given a product, e.g., 10*X*Y, returns the first constant operand,
- // in this case 10. If there is no constant part, returns NULL.
- static
- const SCEVConstant *getConstantPart(const SCEV *Expr) {
- if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
- return Constant;
- else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
- if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
- return Constant;
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- // gcdMIVtest -
- // Tests an MIV subscript pair for dependence.
- // Returns true if any possible dependence is disproved.
- // Marks the result as inconsistent.
- // Can sometimes disprove the equal direction for 1 or more loops,
- // as discussed in Michael Wolfe's book,
- // High Performance Compilers for Parallel Computing, page 235.
- //
- // We spend some effort (code!) to handle cases like
- // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
- // but M and N are just loop-invariant variables.
- // This should help us handle linearized subscripts;
- // also makes this test a useful backup to the various SIV tests.
- //
- // It occurs to me that the presence of loop-invariant variables
- // changes the nature of the test from "greatest common divisor"
- // to "a common divisor".
- bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << "starting gcd\n");
- ++GCDapplications;
- unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
- APInt RunningGCD = APInt::getZero(BitWidth);
- // Examine Src coefficients.
- // Compute running GCD and record source constant.
- // Because we're looking for the constant at the end of the chain,
- // we can't quit the loop just because the GCD == 1.
- const SCEV *Coefficients = Src;
- while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- const auto *Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- Coefficients = AddRec->getStart();
- }
- const SCEV *SrcConst = Coefficients;
- // Examine Dst coefficients.
- // Compute running GCD and record destination constant.
- // Because we're looking for the constant at the end of the chain,
- // we can't quit the loop just because the GCD == 1.
- Coefficients = Dst;
- while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- const auto *Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- Coefficients = AddRec->getStart();
- }
- const SCEV *DstConst = Coefficients;
- APInt ExtraGCD = APInt::getZero(BitWidth);
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
- const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
- if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
- // If Delta is a sum of products, we may be able to make further progress.
- for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
- const SCEV *Operand = Sum->getOperand(Op);
- if (isa<SCEVConstant>(Operand)) {
- assert(!Constant && "Surprised to find multiple constants");
- Constant = cast<SCEVConstant>(Operand);
- }
- else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
- // Search for constant operand to participate in GCD;
- // If none found; return false.
- const SCEVConstant *ConstOp = getConstantPart(Product);
- if (!ConstOp)
- return false;
- APInt ConstOpValue = ConstOp->getAPInt();
- ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
- ConstOpValue.abs());
- }
- else
- return false;
- }
- }
- if (!Constant)
- return false;
- APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
- LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
- if (ConstDelta == 0)
- return false;
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
- LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
- APInt Remainder = ConstDelta.srem(RunningGCD);
- if (Remainder != 0) {
- ++GCDindependence;
- return true;
- }
- // Try to disprove equal directions.
- // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
- // the code above can't disprove the dependence because the GCD = 1.
- // So we consider what happen if i = i' and what happens if j = j'.
- // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
- // which is infeasible, so we can disallow the = direction for the i level.
- // Setting j = j' doesn't help matters, so we end up with a direction vector
- // of [<>, *]
- //
- // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
- // we need to remember that the constant part is 5 and the RunningGCD should
- // be initialized to ExtraGCD = 30.
- LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
- bool Improved = false;
- Coefficients = Src;
- while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
- Coefficients = AddRec->getStart();
- const Loop *CurLoop = AddRec->getLoop();
- RunningGCD = ExtraGCD;
- const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
- const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
- const SCEV *Inner = Src;
- while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
- AddRec = cast<SCEVAddRecExpr>(Inner);
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- if (CurLoop == AddRec->getLoop())
- ; // SrcCoeff == Coeff
- else {
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- }
- Inner = AddRec->getStart();
- }
- Inner = Dst;
- while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
- AddRec = cast<SCEVAddRecExpr>(Inner);
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- if (CurLoop == AddRec->getLoop())
- DstCoeff = Coeff;
- else {
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- }
- Inner = AddRec->getStart();
- }
- Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- Constant = getConstantPart(Delta);
- if (!Constant)
- // The difference of the two coefficients might not be a product
- // or constant, in which case we give up on this direction.
- continue;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
- if (RunningGCD != 0) {
- Remainder = ConstDelta.srem(RunningGCD);
- LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
- if (Remainder != 0) {
- unsigned Level = mapSrcLoop(CurLoop);
- Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ;
- Improved = true;
- }
- }
- }
- if (Improved)
- ++GCDsuccesses;
- LLVM_DEBUG(dbgs() << "all done\n");
- return false;
- }
- //===----------------------------------------------------------------------===//
- // banerjeeMIVtest -
- // Use Banerjee's Inequalities to test an MIV subscript pair.
- // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
- // Generally follows the discussion in Section 2.5.2 of
- //
- // Optimizing Supercompilers for Supercomputers
- // Michael Wolfe
- //
- // The inequalities given on page 25 are simplified in that loops are
- // normalized so that the lower bound is always 0 and the stride is always 1.
- // For example, Wolfe gives
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
- //
- // where A_k is the coefficient of the kth index in the source subscript,
- // B_k is the coefficient of the kth index in the destination subscript,
- // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
- // index, and N_k is the stride of the kth index. Since all loops are normalized
- // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
- // equation to
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
- // = (A^-_k - B_k)^- (U_k - 1) - B_k
- //
- // Similar simplifications are possible for the other equations.
- //
- // When we can't determine the number of iterations for a loop,
- // we use NULL as an indicator for the worst case, infinity.
- // When computing the upper bound, NULL denotes +inf;
- // for the lower bound, NULL denotes -inf.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
- const SmallBitVector &Loops,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << "starting Banerjee\n");
- ++BanerjeeApplications;
- LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
- const SCEV *A0;
- CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
- LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
- const SCEV *B0;
- CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
- BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
- const SCEV *Delta = SE->getMinusSCEV(B0, A0);
- LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
- // Compute bounds for all the * directions.
- LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
- for (unsigned K = 1; K <= MaxLevels; ++K) {
- Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
- Bound[K].Direction = Dependence::DVEntry::ALL;
- Bound[K].DirSet = Dependence::DVEntry::NONE;
- findBoundsALL(A, B, Bound, K);
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "\t " << K << '\t');
- if (Bound[K].Lower[Dependence::DVEntry::ALL])
- LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[K].Upper[Dependence::DVEntry::ALL])
- LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- #endif
- }
- // Test the *, *, *, ... case.
- bool Disproved = false;
- if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
- // Explore the direction vector hierarchy.
- unsigned DepthExpanded = 0;
- unsigned NewDeps = exploreDirections(1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- if (NewDeps > 0) {
- bool Improved = false;
- for (unsigned K = 1; K <= CommonLevels; ++K) {
- if (Loops[K]) {
- unsigned Old = Result.DV[K - 1].Direction;
- Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
- Improved |= Old != Result.DV[K - 1].Direction;
- if (!Result.DV[K - 1].Direction) {
- Improved = false;
- Disproved = true;
- break;
- }
- }
- }
- if (Improved)
- ++BanerjeeSuccesses;
- }
- else {
- ++BanerjeeIndependence;
- Disproved = true;
- }
- }
- else {
- ++BanerjeeIndependence;
- Disproved = true;
- }
- delete [] Bound;
- delete [] A;
- delete [] B;
- return Disproved;
- }
- // Hierarchically expands the direction vector
- // search space, combining the directions of discovered dependences
- // in the DirSet field of Bound. Returns the number of distinct
- // dependences discovered. If the dependence is disproved,
- // it will return 0.
- unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
- CoefficientInfo *B, BoundInfo *Bound,
- const SmallBitVector &Loops,
- unsigned &DepthExpanded,
- const SCEV *Delta) const {
- // This algorithm has worst case complexity of O(3^n), where 'n' is the number
- // of common loop levels. To avoid excessive compile-time, pessimize all the
- // results and immediately return when the number of common levels is beyond
- // the given threshold.
- if (CommonLevels > MIVMaxLevelThreshold) {
- LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
- "direction exploration is terminated.\n");
- for (unsigned K = 1; K <= CommonLevels; ++K)
- if (Loops[K])
- Bound[K].DirSet = Dependence::DVEntry::ALL;
- return 1;
- }
- if (Level > CommonLevels) {
- // record result
- LLVM_DEBUG(dbgs() << "\t[");
- for (unsigned K = 1; K <= CommonLevels; ++K) {
- if (Loops[K]) {
- Bound[K].DirSet |= Bound[K].Direction;
- #ifndef NDEBUG
- switch (Bound[K].Direction) {
- case Dependence::DVEntry::LT:
- LLVM_DEBUG(dbgs() << " <");
- break;
- case Dependence::DVEntry::EQ:
- LLVM_DEBUG(dbgs() << " =");
- break;
- case Dependence::DVEntry::GT:
- LLVM_DEBUG(dbgs() << " >");
- break;
- case Dependence::DVEntry::ALL:
- LLVM_DEBUG(dbgs() << " *");
- break;
- default:
- llvm_unreachable("unexpected Bound[K].Direction");
- }
- #endif
- }
- }
- LLVM_DEBUG(dbgs() << " ]\n");
- return 1;
- }
- if (Loops[Level]) {
- if (Level > DepthExpanded) {
- DepthExpanded = Level;
- // compute bounds for <, =, > at current level
- findBoundsLT(A, B, Bound, Level);
- findBoundsGT(A, B, Bound, Level);
- findBoundsEQ(A, B, Bound, Level);
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
- LLVM_DEBUG(dbgs() << "\t <\t");
- if (Bound[Level].Lower[Dependence::DVEntry::LT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
- << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[Level].Upper[Dependence::DVEntry::LT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- LLVM_DEBUG(dbgs() << "\t =\t");
- if (Bound[Level].Lower[Dependence::DVEntry::EQ])
- LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
- << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[Level].Upper[Dependence::DVEntry::EQ])
- LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- LLVM_DEBUG(dbgs() << "\t >\t");
- if (Bound[Level].Lower[Dependence::DVEntry::GT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
- << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[Level].Upper[Dependence::DVEntry::GT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- #endif
- }
- unsigned NewDeps = 0;
- // test bounds for <, *, *, ...
- if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- // Test bounds for =, *, *, ...
- if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- // test bounds for >, *, *, ...
- if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- Bound[Level].Direction = Dependence::DVEntry::ALL;
- return NewDeps;
- }
- else
- return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
- }
- // Returns true iff the current bounds are plausible.
- bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
- BoundInfo *Bound, const SCEV *Delta) const {
- Bound[Level].Direction = DirKind;
- if (const SCEV *LowerBound = getLowerBound(Bound))
- if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
- return false;
- if (const SCEV *UpperBound = getUpperBound(Bound))
- if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
- return false;
- return true;
- }
- // Computes the upper and lower bounds for level K
- // using the * direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
- // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^*_k = (A^-_k - B^+_k)U_k
- // UB^*_k = (A^+_k - B^-_k)U_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- // Note that the lower bound is always <= 0
- // and the upper bound is always >= 0.
- void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- Bound[K].Lower[Dependence::DVEntry::ALL] =
- SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
- Bound[K].Iterations);
- Bound[K].Upper[Dependence::DVEntry::ALL] =
- SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
- Bound[K].Iterations);
- }
- else {
- // If the difference is 0, we won't need to know the number of iterations.
- if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
- Bound[K].Lower[Dependence::DVEntry::ALL] =
- SE->getZero(A[K].Coeff->getType());
- if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
- Bound[K].Upper[Dependence::DVEntry::ALL] =
- SE->getZero(A[K].Coeff->getType());
- }
- }
- // Computes the upper and lower bounds for level K
- // using the = direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
- // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^=_k = (A_k - B_k)^- U_k
- // UB^=_k = (A_k - B_k)^+ U_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- // Note that the lower bound is always <= 0
- // and the upper bound is always >= 0.
- void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
- const SCEV *NegativePart = getNegativePart(Delta);
- Bound[K].Lower[Dependence::DVEntry::EQ] =
- SE->getMulExpr(NegativePart, Bound[K].Iterations);
- const SCEV *PositivePart = getPositivePart(Delta);
- Bound[K].Upper[Dependence::DVEntry::EQ] =
- SE->getMulExpr(PositivePart, Bound[K].Iterations);
- }
- else {
- // If the positive/negative part of the difference is 0,
- // we won't need to know the number of iterations.
- const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
- const SCEV *NegativePart = getNegativePart(Delta);
- if (NegativePart->isZero())
- Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
- const SCEV *PositivePart = getPositivePart(Delta);
- if (PositivePart->isZero())
- Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
- }
- }
- // Computes the upper and lower bounds for level K
- // using the < direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
- // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
- // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- const SCEV *Iter_1 = SE->getMinusSCEV(
- Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
- const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
- Bound[K].Lower[Dependence::DVEntry::LT] =
- SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
- const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
- Bound[K].Upper[Dependence::DVEntry::LT] =
- SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
- }
- else {
- // If the positive/negative part of the difference is 0,
- // we won't need to know the number of iterations.
- const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
- if (NegPart->isZero())
- Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
- const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
- if (PosPart->isZero())
- Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
- }
- }
- // Computes the upper and lower bounds for level K
- // using the > direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
- // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
- // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- const SCEV *Iter_1 = SE->getMinusSCEV(
- Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
- const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
- Bound[K].Lower[Dependence::DVEntry::GT] =
- SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
- const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
- Bound[K].Upper[Dependence::DVEntry::GT] =
- SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
- }
- else {
- // If the positive/negative part of the difference is 0,
- // we won't need to know the number of iterations.
- const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
- if (NegPart->isZero())
- Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
- const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
- if (PosPart->isZero())
- Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
- }
- }
- // X^+ = max(X, 0)
- const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
- return SE->getSMaxExpr(X, SE->getZero(X->getType()));
- }
- // X^- = min(X, 0)
- const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
- return SE->getSMinExpr(X, SE->getZero(X->getType()));
- }
- // Walks through the subscript,
- // collecting each coefficient, the associated loop bounds,
- // and recording its positive and negative parts for later use.
- DependenceInfo::CoefficientInfo *
- DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
- const SCEV *&Constant) const {
- const SCEV *Zero = SE->getZero(Subscript->getType());
- CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
- for (unsigned K = 1; K <= MaxLevels; ++K) {
- CI[K].Coeff = Zero;
- CI[K].PosPart = Zero;
- CI[K].NegPart = Zero;
- CI[K].Iterations = nullptr;
- }
- while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
- const Loop *L = AddRec->getLoop();
- unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
- CI[K].Coeff = AddRec->getStepRecurrence(*SE);
- CI[K].PosPart = getPositivePart(CI[K].Coeff);
- CI[K].NegPart = getNegativePart(CI[K].Coeff);
- CI[K].Iterations = collectUpperBound(L, Subscript->getType());
- Subscript = AddRec->getStart();
- }
- Constant = Subscript;
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
- for (unsigned K = 1; K <= MaxLevels; ++K) {
- LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
- LLVM_DEBUG(dbgs() << "\tPos Part = ");
- LLVM_DEBUG(dbgs() << *CI[K].PosPart);
- LLVM_DEBUG(dbgs() << "\tNeg Part = ");
- LLVM_DEBUG(dbgs() << *CI[K].NegPart);
- LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
- if (CI[K].Iterations)
- LLVM_DEBUG(dbgs() << *CI[K].Iterations);
- else
- LLVM_DEBUG(dbgs() << "+inf");
- LLVM_DEBUG(dbgs() << '\n');
- }
- LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
- #endif
- return CI;
- }
- // Looks through all the bounds info and
- // computes the lower bound given the current direction settings
- // at each level. If the lower bound for any level is -inf,
- // the result is -inf.
- const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
- const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
- for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
- if (Bound[K].Lower[Bound[K].Direction])
- Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
- else
- Sum = nullptr;
- }
- return Sum;
- }
- // Looks through all the bounds info and
- // computes the upper bound given the current direction settings
- // at each level. If the upper bound at any level is +inf,
- // the result is +inf.
- const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
- const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
- for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
- if (Bound[K].Upper[Bound[K].Direction])
- Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
- else
- Sum = nullptr;
- }
- return Sum;
- }
- //===----------------------------------------------------------------------===//
- // Constraint manipulation for Delta test.
- // Given a linear SCEV,
- // return the coefficient (the step)
- // corresponding to the specified loop.
- // If there isn't one, return 0.
- // For example, given a*i + b*j + c*k, finding the coefficient
- // corresponding to the j loop would yield b.
- const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
- const Loop *TargetLoop) const {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec)
- return SE->getZero(Expr->getType());
- if (AddRec->getLoop() == TargetLoop)
- return AddRec->getStepRecurrence(*SE);
- return findCoefficient(AddRec->getStart(), TargetLoop);
- }
- // Given a linear SCEV,
- // return the SCEV given by zeroing out the coefficient
- // corresponding to the specified loop.
- // For example, given a*i + b*j + c*k, zeroing the coefficient
- // corresponding to the j loop would yield a*i + c*k.
- const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
- const Loop *TargetLoop) const {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec)
- return Expr; // ignore
- if (AddRec->getLoop() == TargetLoop)
- return AddRec->getStart();
- return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
- AddRec->getStepRecurrence(*SE),
- AddRec->getLoop(),
- AddRec->getNoWrapFlags());
- }
- // Given a linear SCEV Expr,
- // return the SCEV given by adding some Value to the
- // coefficient corresponding to the specified TargetLoop.
- // For example, given a*i + b*j + c*k, adding 1 to the coefficient
- // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
- const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
- const Loop *TargetLoop,
- const SCEV *Value) const {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec) // create a new addRec
- return SE->getAddRecExpr(Expr,
- Value,
- TargetLoop,
- SCEV::FlagAnyWrap); // Worst case, with no info.
- if (AddRec->getLoop() == TargetLoop) {
- const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
- if (Sum->isZero())
- return AddRec->getStart();
- return SE->getAddRecExpr(AddRec->getStart(),
- Sum,
- AddRec->getLoop(),
- AddRec->getNoWrapFlags());
- }
- if (SE->isLoopInvariant(AddRec, TargetLoop))
- return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
- return SE->getAddRecExpr(
- addToCoefficient(AddRec->getStart(), TargetLoop, Value),
- AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
- AddRec->getNoWrapFlags());
- }
- // Review the constraints, looking for opportunities
- // to simplify a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- // If the simplification isn't exact (that is, if it is conservative
- // in terms of dependence), set consistent to false.
- // Corresponds to Figure 5 from the paper
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
- SmallBitVector &Loops,
- SmallVectorImpl<Constraint> &Constraints,
- bool &Consistent) {
- bool Result = false;
- for (unsigned LI : Loops.set_bits()) {
- LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
- LLVM_DEBUG(Constraints[LI].dump(dbgs()));
- if (Constraints[LI].isDistance())
- Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
- else if (Constraints[LI].isLine())
- Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
- else if (Constraints[LI].isPoint())
- Result |= propagatePoint(Src, Dst, Constraints[LI]);
- }
- return Result;
- }
- // Attempt to propagate a distance
- // constraint into a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- // If the simplification isn't exact (that is, if it is conservative
- // in terms of dependence), set consistent to false.
- bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
- Constraint &CurConstraint,
- bool &Consistent) {
- const Loop *CurLoop = CurConstraint.getAssociatedLoop();
- LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- if (A_K->isZero())
- return false;
- const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
- Src = SE->getMinusSCEV(Src, DA_K);
- Src = zeroCoefficient(Src, CurLoop);
- LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
- Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
- LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- return true;
- }
- // Attempt to propagate a line
- // constraint into a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- // If the simplification isn't exact (that is, if it is conservative
- // in terms of dependence), set consistent to false.
- bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
- Constraint &CurConstraint,
- bool &Consistent) {
- const Loop *CurLoop = CurConstraint.getAssociatedLoop();
- const SCEV *A = CurConstraint.getA();
- const SCEV *B = CurConstraint.getB();
- const SCEV *C = CurConstraint.getC();
- LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
- << "\n");
- LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
- if (A->isZero()) {
- const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
- const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Bconst || !Cconst) return false;
- APInt Beta = Bconst->getAPInt();
- APInt Charlie = Cconst->getAPInt();
- APInt CdivB = Charlie.sdiv(Beta);
- assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
- const SCEV *AP_K = findCoefficient(Dst, CurLoop);
- // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
- Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
- Dst = zeroCoefficient(Dst, CurLoop);
- if (!findCoefficient(Src, CurLoop)->isZero())
- Consistent = false;
- }
- else if (B->isZero()) {
- const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
- const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Aconst || !Cconst) return false;
- APInt Alpha = Aconst->getAPInt();
- APInt Charlie = Cconst->getAPInt();
- APInt CdivA = Charlie.sdiv(Alpha);
- assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
- Src = zeroCoefficient(Src, CurLoop);
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- }
- else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
- const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
- const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Aconst || !Cconst) return false;
- APInt Alpha = Aconst->getAPInt();
- APInt Charlie = Cconst->getAPInt();
- APInt CdivA = Charlie.sdiv(Alpha);
- assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
- Src = zeroCoefficient(Src, CurLoop);
- Dst = addToCoefficient(Dst, CurLoop, A_K);
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- }
- else {
- // paper is incorrect here, or perhaps just misleading
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- Src = SE->getMulExpr(Src, A);
- Dst = SE->getMulExpr(Dst, A);
- Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
- Src = zeroCoefficient(Src, CurLoop);
- Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- }
- LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
- return true;
- }
- // Attempt to propagate a point
- // constraint into a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
- Constraint &CurConstraint) {
- const Loop *CurLoop = CurConstraint.getAssociatedLoop();
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- const SCEV *AP_K = findCoefficient(Dst, CurLoop);
- const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
- const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
- LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
- Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
- Src = zeroCoefficient(Src, CurLoop);
- LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
- Dst = zeroCoefficient(Dst, CurLoop);
- LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
- return true;
- }
- // Update direction vector entry based on the current constraint.
- void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
- const Constraint &CurConstraint) const {
- LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
- LLVM_DEBUG(CurConstraint.dump(dbgs()));
- if (CurConstraint.isAny())
- ; // use defaults
- else if (CurConstraint.isDistance()) {
- // this one is consistent, the others aren't
- Level.Scalar = false;
- Level.Distance = CurConstraint.getD();
- unsigned NewDirection = Dependence::DVEntry::NONE;
- if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
- NewDirection = Dependence::DVEntry::EQ;
- if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
- NewDirection |= Dependence::DVEntry::LT;
- if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
- NewDirection |= Dependence::DVEntry::GT;
- Level.Direction &= NewDirection;
- }
- else if (CurConstraint.isLine()) {
- Level.Scalar = false;
- Level.Distance = nullptr;
- // direction should be accurate
- }
- else if (CurConstraint.isPoint()) {
- Level.Scalar = false;
- Level.Distance = nullptr;
- unsigned NewDirection = Dependence::DVEntry::NONE;
- if (!isKnownPredicate(CmpInst::ICMP_NE,
- CurConstraint.getY(),
- CurConstraint.getX()))
- // if X may be = Y
- NewDirection |= Dependence::DVEntry::EQ;
- if (!isKnownPredicate(CmpInst::ICMP_SLE,
- CurConstraint.getY(),
- CurConstraint.getX()))
- // if Y may be > X
- NewDirection |= Dependence::DVEntry::LT;
- if (!isKnownPredicate(CmpInst::ICMP_SGE,
- CurConstraint.getY(),
- CurConstraint.getX()))
- // if Y may be < X
- NewDirection |= Dependence::DVEntry::GT;
- Level.Direction &= NewDirection;
- }
- else
- llvm_unreachable("constraint has unexpected kind");
- }
- /// Check if we can delinearize the subscripts. If the SCEVs representing the
- /// source and destination array references are recurrences on a nested loop,
- /// this function flattens the nested recurrences into separate recurrences
- /// for each loop level.
- bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
- SmallVectorImpl<Subscript> &Pair) {
- assert(isLoadOrStore(Src) && "instruction is not load or store");
- assert(isLoadOrStore(Dst) && "instruction is not load or store");
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- Loop *SrcLoop = LI->getLoopFor(Src->getParent());
- Loop *DstLoop = LI->getLoopFor(Dst->getParent());
- const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
- const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
- const SCEVUnknown *SrcBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
- const SCEVUnknown *DstBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
- if (!SrcBase || !DstBase || SrcBase != DstBase)
- return false;
- SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
- if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
- SrcSubscripts, DstSubscripts) &&
- !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
- SrcSubscripts, DstSubscripts))
- return false;
- int Size = SrcSubscripts.size();
- LLVM_DEBUG({
- dbgs() << "\nSrcSubscripts: ";
- for (int I = 0; I < Size; I++)
- dbgs() << *SrcSubscripts[I];
- dbgs() << "\nDstSubscripts: ";
- for (int I = 0; I < Size; I++)
- dbgs() << *DstSubscripts[I];
- });
- // The delinearization transforms a single-subscript MIV dependence test into
- // a multi-subscript SIV dependence test that is easier to compute. So we
- // resize Pair to contain as many pairs of subscripts as the delinearization
- // has found, and then initialize the pairs following the delinearization.
- Pair.resize(Size);
- for (int I = 0; I < Size; ++I) {
- Pair[I].Src = SrcSubscripts[I];
- Pair[I].Dst = DstSubscripts[I];
- unifySubscriptType(&Pair[I]);
- }
- return true;
- }
- /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying
- /// arrays accessed are fixed-size arrays. Return true if delinearization was
- /// successful.
- bool DependenceInfo::tryDelinearizeFixedSize(
- Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
- const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
- SmallVectorImpl<const SCEV *> &DstSubscripts) {
- LLVM_DEBUG({
- const SCEVUnknown *SrcBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
- const SCEVUnknown *DstBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
- assert(SrcBase && DstBase && SrcBase == DstBase &&
- "expected src and dst scev unknowns to be equal");
- });
- SmallVector<int, 4> SrcSizes;
- SmallVector<int, 4> DstSizes;
- if (!tryDelinearizeFixedSizeImpl(SE, Src, SrcAccessFn, SrcSubscripts,
- SrcSizes) ||
- !tryDelinearizeFixedSizeImpl(SE, Dst, DstAccessFn, DstSubscripts,
- DstSizes))
- return false;
- // Check that the two size arrays are non-empty and equal in length and
- // value.
- if (SrcSizes.size() != DstSizes.size() ||
- !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
- SrcSubscripts.clear();
- DstSubscripts.clear();
- return false;
- }
- assert(SrcSubscripts.size() == DstSubscripts.size() &&
- "Expected equal number of entries in the list of SrcSubscripts and "
- "DstSubscripts.");
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- // In general we cannot safely assume that the subscripts recovered from GEPs
- // are in the range of values defined for their corresponding array
- // dimensions. For example some C language usage/interpretation make it
- // impossible to verify this at compile-time. As such we can only delinearize
- // iff the subscripts are positive and are less than the range of the
- // dimension.
- if (!DisableDelinearizationChecks) {
- auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
- SmallVectorImpl<const SCEV *> &Subscripts,
- Value *Ptr) {
- size_t SSize = Subscripts.size();
- for (size_t I = 1; I < SSize; ++I) {
- const SCEV *S = Subscripts[I];
- if (!isKnownNonNegative(S, Ptr))
- return false;
- if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
- const SCEV *Range = SE->getConstant(
- ConstantInt::get(SType, DimensionSizes[I - 1], false));
- if (!isKnownLessThan(S, Range))
- return false;
- }
- }
- return true;
- };
- if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
- !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
- SrcSubscripts.clear();
- DstSubscripts.clear();
- return false;
- }
- }
- LLVM_DEBUG({
- dbgs() << "Delinearized subscripts of fixed-size array\n"
- << "SrcGEP:" << *SrcPtr << "\n"
- << "DstGEP:" << *DstPtr << "\n";
- });
- return true;
- }
- bool DependenceInfo::tryDelinearizeParametricSize(
- Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
- const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
- SmallVectorImpl<const SCEV *> &DstSubscripts) {
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- const SCEVUnknown *SrcBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
- const SCEVUnknown *DstBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
- assert(SrcBase && DstBase && SrcBase == DstBase &&
- "expected src and dst scev unknowns to be equal");
- const SCEV *ElementSize = SE->getElementSize(Src);
- if (ElementSize != SE->getElementSize(Dst))
- return false;
- const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
- const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
- const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
- const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
- if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
- return false;
- // First step: collect parametric terms in both array references.
- SmallVector<const SCEV *, 4> Terms;
- collectParametricTerms(*SE, SrcAR, Terms);
- collectParametricTerms(*SE, DstAR, Terms);
- // Second step: find subscript sizes.
- SmallVector<const SCEV *, 4> Sizes;
- findArrayDimensions(*SE, Terms, Sizes, ElementSize);
- // Third step: compute the access functions for each subscript.
- computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
- computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
- // Fail when there is only a subscript: that's a linearized access function.
- if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
- SrcSubscripts.size() != DstSubscripts.size())
- return false;
- size_t Size = SrcSubscripts.size();
- // Statically check that the array bounds are in-range. The first subscript we
- // don't have a size for and it cannot overflow into another subscript, so is
- // always safe. The others need to be 0 <= subscript[i] < bound, for both src
- // and dst.
- // FIXME: It may be better to record these sizes and add them as constraints
- // to the dependency checks.
- if (!DisableDelinearizationChecks)
- for (size_t I = 1; I < Size; ++I) {
- if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
- return false;
- if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
- return false;
- if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
- return false;
- if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
- return false;
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- #ifndef NDEBUG
- // For debugging purposes, dump a small bit vector to dbgs().
- static void dumpSmallBitVector(SmallBitVector &BV) {
- dbgs() << "{";
- for (unsigned VI : BV.set_bits()) {
- dbgs() << VI;
- if (BV.find_next(VI) >= 0)
- dbgs() << ' ';
- }
- dbgs() << "}\n";
- }
- #endif
- bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // Check if the analysis itself has been invalidated.
- auto PAC = PA.getChecker<DependenceAnalysis>();
- if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
- return true;
- // Check transitive dependencies.
- return Inv.invalidate<AAManager>(F, PA) ||
- Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
- Inv.invalidate<LoopAnalysis>(F, PA);
- }
- // depends -
- // Returns NULL if there is no dependence.
- // Otherwise, return a Dependence with as many details as possible.
- // Corresponds to Section 3.1 in the paper
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- //
- // Care is required to keep the routine below, getSplitIteration(),
- // up to date with respect to this routine.
- std::unique_ptr<Dependence>
- DependenceInfo::depends(Instruction *Src, Instruction *Dst,
- bool PossiblyLoopIndependent) {
- if (Src == Dst)
- PossiblyLoopIndependent = false;
- if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
- // if both instructions don't reference memory, there's no dependence
- return nullptr;
- if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
- // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
- LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
- return std::make_unique<Dependence>(Src, Dst);
- }
- assert(isLoadOrStore(Src) && "instruction is not load or store");
- assert(isLoadOrStore(Dst) && "instruction is not load or store");
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
- MemoryLocation::get(Dst),
- MemoryLocation::get(Src))) {
- case AliasResult::MayAlias:
- case AliasResult::PartialAlias:
- // cannot analyse objects if we don't understand their aliasing.
- LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
- return std::make_unique<Dependence>(Src, Dst);
- case AliasResult::NoAlias:
- // If the objects noalias, they are distinct, accesses are independent.
- LLVM_DEBUG(dbgs() << "no alias\n");
- return nullptr;
- case AliasResult::MustAlias:
- break; // The underlying objects alias; test accesses for dependence.
- }
- // establish loop nesting levels
- establishNestingLevels(Src, Dst);
- LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
- LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
- FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
- ++TotalArrayPairs;
- unsigned Pairs = 1;
- SmallVector<Subscript, 2> Pair(Pairs);
- const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
- const SCEV *DstSCEV = SE->getSCEV(DstPtr);
- LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
- LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
- if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
- // If two pointers have different bases, trying to analyze indexes won't
- // work; we can't compare them to each other. This can happen, for example,
- // if one is produced by an LCSSA PHI node.
- //
- // We check this upfront so we don't crash in cases where getMinusSCEV()
- // returns a SCEVCouldNotCompute.
- LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
- return std::make_unique<Dependence>(Src, Dst);
- }
- Pair[0].Src = SrcSCEV;
- Pair[0].Dst = DstSCEV;
- if (Delinearize) {
- if (tryDelinearize(Src, Dst, Pair)) {
- LLVM_DEBUG(dbgs() << " delinearized\n");
- Pairs = Pair.size();
- }
- }
- for (unsigned P = 0; P < Pairs; ++P) {
- Pair[P].Loops.resize(MaxLevels + 1);
- Pair[P].GroupLoops.resize(MaxLevels + 1);
- Pair[P].Group.resize(Pairs);
- removeMatchingExtensions(&Pair[P]);
- Pair[P].Classification =
- classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
- Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[P].Loops);
- Pair[P].GroupLoops = Pair[P].Loops;
- Pair[P].Group.set(P);
- LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
- LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
- LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
- LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
- LLVM_DEBUG(dbgs() << "\tloops = ");
- LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
- }
- SmallBitVector Separable(Pairs);
- SmallBitVector Coupled(Pairs);
- // Partition subscripts into separable and minimally-coupled groups
- // Algorithm in paper is algorithmically better;
- // this may be faster in practice. Check someday.
- //
- // Here's an example of how it works. Consider this code:
- //
- // for (i = ...) {
- // for (j = ...) {
- // for (k = ...) {
- // for (l = ...) {
- // for (m = ...) {
- // A[i][j][k][m] = ...;
- // ... = A[0][j][l][i + j];
- // }
- // }
- // }
- // }
- // }
- //
- // There are 4 subscripts here:
- // 0 [i] and [0]
- // 1 [j] and [j]
- // 2 [k] and [l]
- // 3 [m] and [i + j]
- //
- // We've already classified each subscript pair as ZIV, SIV, etc.,
- // and collected all the loops mentioned by pair P in Pair[P].Loops.
- // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
- // and set Pair[P].Group = {P}.
- //
- // Src Dst Classification Loops GroupLoops Group
- // 0 [i] [0] SIV {1} {1} {0}
- // 1 [j] [j] SIV {2} {2} {1}
- // 2 [k] [l] RDIV {3,4} {3,4} {2}
- // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
- //
- // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
- // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
- //
- // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
- // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
- // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
- // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
- // to either Separable or Coupled).
- //
- // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
- // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
- // so Pair[3].Group = {0, 1, 3} and Done = false.
- //
- // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
- // Since Done remains true, we add 2 to the set of Separable pairs.
- //
- // Finally, we consider 3. There's nothing to compare it with,
- // so Done remains true and we add it to the Coupled set.
- // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
- //
- // In the end, we've got 1 separable subscript and 1 coupled group.
- for (unsigned SI = 0; SI < Pairs; ++SI) {
- if (Pair[SI].Classification == Subscript::NonLinear) {
- // ignore these, but collect loops for later
- ++NonlinearSubscriptPairs;
- collectCommonLoops(Pair[SI].Src,
- LI->getLoopFor(Src->getParent()),
- Pair[SI].Loops);
- collectCommonLoops(Pair[SI].Dst,
- LI->getLoopFor(Dst->getParent()),
- Pair[SI].Loops);
- Result.Consistent = false;
- } else if (Pair[SI].Classification == Subscript::ZIV) {
- // always separable
- Separable.set(SI);
- }
- else {
- // SIV, RDIV, or MIV, so check for coupled group
- bool Done = true;
- for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
- SmallBitVector Intersection = Pair[SI].GroupLoops;
- Intersection &= Pair[SJ].GroupLoops;
- if (Intersection.any()) {
- // accumulate set of all the loops in group
- Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
- // accumulate set of all subscripts in group
- Pair[SJ].Group |= Pair[SI].Group;
- Done = false;
- }
- }
- if (Done) {
- if (Pair[SI].Group.count() == 1) {
- Separable.set(SI);
- ++SeparableSubscriptPairs;
- }
- else {
- Coupled.set(SI);
- ++CoupledSubscriptPairs;
- }
- }
- }
- }
- LLVM_DEBUG(dbgs() << " Separable = ");
- LLVM_DEBUG(dumpSmallBitVector(Separable));
- LLVM_DEBUG(dbgs() << " Coupled = ");
- LLVM_DEBUG(dumpSmallBitVector(Coupled));
- Constraint NewConstraint;
- NewConstraint.setAny(SE);
- // test separable subscripts
- for (unsigned SI : Separable.set_bits()) {
- LLVM_DEBUG(dbgs() << "testing subscript " << SI);
- switch (Pair[SI].Classification) {
- case Subscript::ZIV:
- LLVM_DEBUG(dbgs() << ", ZIV\n");
- if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
- return nullptr;
- break;
- case Subscript::SIV: {
- LLVM_DEBUG(dbgs() << ", SIV\n");
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
- SplitIter))
- return nullptr;
- break;
- }
- case Subscript::RDIV:
- LLVM_DEBUG(dbgs() << ", RDIV\n");
- if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
- return nullptr;
- break;
- case Subscript::MIV:
- LLVM_DEBUG(dbgs() << ", MIV\n");
- if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
- return nullptr;
- break;
- default:
- llvm_unreachable("subscript has unexpected classification");
- }
- }
- if (Coupled.count()) {
- // test coupled subscript groups
- LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
- LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
- SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
- for (unsigned II = 0; II <= MaxLevels; ++II)
- Constraints[II].setAny(SE);
- for (unsigned SI : Coupled.set_bits()) {
- LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
- SmallBitVector Group(Pair[SI].Group);
- SmallBitVector Sivs(Pairs);
- SmallBitVector Mivs(Pairs);
- SmallBitVector ConstrainedLevels(MaxLevels + 1);
- SmallVector<Subscript *, 4> PairsInGroup;
- for (unsigned SJ : Group.set_bits()) {
- LLVM_DEBUG(dbgs() << SJ << " ");
- if (Pair[SJ].Classification == Subscript::SIV)
- Sivs.set(SJ);
- else
- Mivs.set(SJ);
- PairsInGroup.push_back(&Pair[SJ]);
- }
- unifySubscriptType(PairsInGroup);
- LLVM_DEBUG(dbgs() << "}\n");
- while (Sivs.any()) {
- bool Changed = false;
- for (unsigned SJ : Sivs.set_bits()) {
- LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
- // SJ is an SIV subscript that's part of the current coupled group
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- LLVM_DEBUG(dbgs() << "SIV\n");
- if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
- SplitIter))
- return nullptr;
- ConstrainedLevels.set(Level);
- if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
- if (Constraints[Level].isEmpty()) {
- ++DeltaIndependence;
- return nullptr;
- }
- Changed = true;
- }
- Sivs.reset(SJ);
- }
- if (Changed) {
- // propagate, possibly creating new SIVs and ZIVs
- LLVM_DEBUG(dbgs() << " propagating\n");
- LLVM_DEBUG(dbgs() << "\tMivs = ");
- LLVM_DEBUG(dumpSmallBitVector(Mivs));
- for (unsigned SJ : Mivs.set_bits()) {
- // SJ is an MIV subscript that's part of the current coupled group
- LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
- if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
- Constraints, Result.Consistent)) {
- LLVM_DEBUG(dbgs() << "\t Changed\n");
- ++DeltaPropagations;
- Pair[SJ].Classification =
- classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
- Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[SJ].Loops);
- switch (Pair[SJ].Classification) {
- case Subscript::ZIV:
- LLVM_DEBUG(dbgs() << "ZIV\n");
- if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
- return nullptr;
- Mivs.reset(SJ);
- break;
- case Subscript::SIV:
- Sivs.set(SJ);
- Mivs.reset(SJ);
- break;
- case Subscript::RDIV:
- case Subscript::MIV:
- break;
- default:
- llvm_unreachable("bad subscript classification");
- }
- }
- }
- }
- }
- // test & propagate remaining RDIVs
- for (unsigned SJ : Mivs.set_bits()) {
- if (Pair[SJ].Classification == Subscript::RDIV) {
- LLVM_DEBUG(dbgs() << "RDIV test\n");
- if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
- return nullptr;
- // I don't yet understand how to propagate RDIV results
- Mivs.reset(SJ);
- }
- }
- // test remaining MIVs
- // This code is temporary.
- // Better to somehow test all remaining subscripts simultaneously.
- for (unsigned SJ : Mivs.set_bits()) {
- if (Pair[SJ].Classification == Subscript::MIV) {
- LLVM_DEBUG(dbgs() << "MIV test\n");
- if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
- return nullptr;
- }
- else
- llvm_unreachable("expected only MIV subscripts at this point");
- }
- // update Result.DV from constraint vector
- LLVM_DEBUG(dbgs() << " updating\n");
- for (unsigned SJ : ConstrainedLevels.set_bits()) {
- if (SJ > CommonLevels)
- break;
- updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
- if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
- return nullptr;
- }
- }
- }
- // Make sure the Scalar flags are set correctly.
- SmallBitVector CompleteLoops(MaxLevels + 1);
- for (unsigned SI = 0; SI < Pairs; ++SI)
- CompleteLoops |= Pair[SI].Loops;
- for (unsigned II = 1; II <= CommonLevels; ++II)
- if (CompleteLoops[II])
- Result.DV[II - 1].Scalar = false;
- if (PossiblyLoopIndependent) {
- // Make sure the LoopIndependent flag is set correctly.
- // All directions must include equal, otherwise no
- // loop-independent dependence is possible.
- for (unsigned II = 1; II <= CommonLevels; ++II) {
- if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
- Result.LoopIndependent = false;
- break;
- }
- }
- }
- else {
- // On the other hand, if all directions are equal and there's no
- // loop-independent dependence possible, then no dependence exists.
- bool AllEqual = true;
- for (unsigned II = 1; II <= CommonLevels; ++II) {
- if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
- AllEqual = false;
- break;
- }
- }
- if (AllEqual)
- return nullptr;
- }
- return std::make_unique<FullDependence>(std::move(Result));
- }
- //===----------------------------------------------------------------------===//
- // getSplitIteration -
- // Rather than spend rarely-used space recording the splitting iteration
- // during the Weak-Crossing SIV test, we re-compute it on demand.
- // The re-computation is basically a repeat of the entire dependence test,
- // though simplified since we know that the dependence exists.
- // It's tedious, since we must go through all propagations, etc.
- //
- // Care is required to keep this code up to date with respect to the routine
- // above, depends().
- //
- // Generally, the dependence analyzer will be used to build
- // a dependence graph for a function (basically a map from instructions
- // to dependences). Looking for cycles in the graph shows us loops
- // that cannot be trivially vectorized/parallelized.
- //
- // We can try to improve the situation by examining all the dependences
- // that make up the cycle, looking for ones we can break.
- // Sometimes, peeling the first or last iteration of a loop will break
- // dependences, and we've got flags for those possibilities.
- // Sometimes, splitting a loop at some other iteration will do the trick,
- // and we've got a flag for that case. Rather than waste the space to
- // record the exact iteration (since we rarely know), we provide
- // a method that calculates the iteration. It's a drag that it must work
- // from scratch, but wonderful in that it's possible.
- //
- // Here's an example:
- //
- // for (i = 0; i < 10; i++)
- // A[i] = ...
- // ... = A[11 - i]
- //
- // There's a loop-carried flow dependence from the store to the load,
- // found by the weak-crossing SIV test. The dependence will have a flag,
- // indicating that the dependence can be broken by splitting the loop.
- // Calling getSplitIteration will return 5.
- // Splitting the loop breaks the dependence, like so:
- //
- // for (i = 0; i <= 5; i++)
- // A[i] = ...
- // ... = A[11 - i]
- // for (i = 6; i < 10; i++)
- // A[i] = ...
- // ... = A[11 - i]
- //
- // breaks the dependence and allows us to vectorize/parallelize
- // both loops.
- const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
- unsigned SplitLevel) {
- assert(Dep.isSplitable(SplitLevel) &&
- "Dep should be splitable at SplitLevel");
- Instruction *Src = Dep.getSrc();
- Instruction *Dst = Dep.getDst();
- assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
- assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
- assert(isLoadOrStore(Src));
- assert(isLoadOrStore(Dst));
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- assert(underlyingObjectsAlias(
- AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
- MemoryLocation::get(Src)) == AliasResult::MustAlias);
- // establish loop nesting levels
- establishNestingLevels(Src, Dst);
- FullDependence Result(Src, Dst, false, CommonLevels);
- unsigned Pairs = 1;
- SmallVector<Subscript, 2> Pair(Pairs);
- const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
- const SCEV *DstSCEV = SE->getSCEV(DstPtr);
- Pair[0].Src = SrcSCEV;
- Pair[0].Dst = DstSCEV;
- if (Delinearize) {
- if (tryDelinearize(Src, Dst, Pair)) {
- LLVM_DEBUG(dbgs() << " delinearized\n");
- Pairs = Pair.size();
- }
- }
- for (unsigned P = 0; P < Pairs; ++P) {
- Pair[P].Loops.resize(MaxLevels + 1);
- Pair[P].GroupLoops.resize(MaxLevels + 1);
- Pair[P].Group.resize(Pairs);
- removeMatchingExtensions(&Pair[P]);
- Pair[P].Classification =
- classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
- Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[P].Loops);
- Pair[P].GroupLoops = Pair[P].Loops;
- Pair[P].Group.set(P);
- }
- SmallBitVector Separable(Pairs);
- SmallBitVector Coupled(Pairs);
- // partition subscripts into separable and minimally-coupled groups
- for (unsigned SI = 0; SI < Pairs; ++SI) {
- if (Pair[SI].Classification == Subscript::NonLinear) {
- // ignore these, but collect loops for later
- collectCommonLoops(Pair[SI].Src,
- LI->getLoopFor(Src->getParent()),
- Pair[SI].Loops);
- collectCommonLoops(Pair[SI].Dst,
- LI->getLoopFor(Dst->getParent()),
- Pair[SI].Loops);
- Result.Consistent = false;
- }
- else if (Pair[SI].Classification == Subscript::ZIV)
- Separable.set(SI);
- else {
- // SIV, RDIV, or MIV, so check for coupled group
- bool Done = true;
- for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
- SmallBitVector Intersection = Pair[SI].GroupLoops;
- Intersection &= Pair[SJ].GroupLoops;
- if (Intersection.any()) {
- // accumulate set of all the loops in group
- Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
- // accumulate set of all subscripts in group
- Pair[SJ].Group |= Pair[SI].Group;
- Done = false;
- }
- }
- if (Done) {
- if (Pair[SI].Group.count() == 1)
- Separable.set(SI);
- else
- Coupled.set(SI);
- }
- }
- }
- Constraint NewConstraint;
- NewConstraint.setAny(SE);
- // test separable subscripts
- for (unsigned SI : Separable.set_bits()) {
- switch (Pair[SI].Classification) {
- case Subscript::SIV: {
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
- Result, NewConstraint, SplitIter);
- if (Level == SplitLevel) {
- assert(SplitIter != nullptr);
- return SplitIter;
- }
- break;
- }
- case Subscript::ZIV:
- case Subscript::RDIV:
- case Subscript::MIV:
- break;
- default:
- llvm_unreachable("subscript has unexpected classification");
- }
- }
- if (Coupled.count()) {
- // test coupled subscript groups
- SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
- for (unsigned II = 0; II <= MaxLevels; ++II)
- Constraints[II].setAny(SE);
- for (unsigned SI : Coupled.set_bits()) {
- SmallBitVector Group(Pair[SI].Group);
- SmallBitVector Sivs(Pairs);
- SmallBitVector Mivs(Pairs);
- SmallBitVector ConstrainedLevels(MaxLevels + 1);
- for (unsigned SJ : Group.set_bits()) {
- if (Pair[SJ].Classification == Subscript::SIV)
- Sivs.set(SJ);
- else
- Mivs.set(SJ);
- }
- while (Sivs.any()) {
- bool Changed = false;
- for (unsigned SJ : Sivs.set_bits()) {
- // SJ is an SIV subscript that's part of the current coupled group
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
- Result, NewConstraint, SplitIter);
- if (Level == SplitLevel && SplitIter)
- return SplitIter;
- ConstrainedLevels.set(Level);
- if (intersectConstraints(&Constraints[Level], &NewConstraint))
- Changed = true;
- Sivs.reset(SJ);
- }
- if (Changed) {
- // propagate, possibly creating new SIVs and ZIVs
- for (unsigned SJ : Mivs.set_bits()) {
- // SJ is an MIV subscript that's part of the current coupled group
- if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
- Pair[SJ].Loops, Constraints, Result.Consistent)) {
- Pair[SJ].Classification =
- classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
- Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[SJ].Loops);
- switch (Pair[SJ].Classification) {
- case Subscript::ZIV:
- Mivs.reset(SJ);
- break;
- case Subscript::SIV:
- Sivs.set(SJ);
- Mivs.reset(SJ);
- break;
- case Subscript::RDIV:
- case Subscript::MIV:
- break;
- default:
- llvm_unreachable("bad subscript classification");
- }
- }
- }
- }
- }
- }
- }
- llvm_unreachable("somehow reached end of routine");
- return nullptr;
- }
|