123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221 |
- //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/CGSCCPassManager.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/PriorityWorklist.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PassManagerImpl.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/TimeProfiler.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <iterator>
- #include <optional>
- #define DEBUG_TYPE "cgscc"
- using namespace llvm;
- // Explicit template instantiations and specialization definitions for core
- // template typedefs.
- namespace llvm {
- static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
- "abort-on-max-devirt-iterations-reached",
- cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
- "pass is reached"));
- AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key;
- // Explicit instantiations for the core proxy templates.
- template class AllAnalysesOn<LazyCallGraph::SCC>;
- template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
- template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
- LazyCallGraph &, CGSCCUpdateResult &>;
- template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
- template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
- LazyCallGraph::SCC, LazyCallGraph &>;
- template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
- /// Explicitly specialize the pass manager run method to handle call graph
- /// updates.
- template <>
- PreservedAnalyses
- PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
- CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &G, CGSCCUpdateResult &UR) {
- // Request PassInstrumentation from analysis manager, will use it to run
- // instrumenting callbacks for the passes later.
- PassInstrumentation PI =
- AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
- PreservedAnalyses PA = PreservedAnalyses::all();
- // The SCC may be refined while we are running passes over it, so set up
- // a pointer that we can update.
- LazyCallGraph::SCC *C = &InitialC;
- // Get Function analysis manager from its proxy.
- FunctionAnalysisManager &FAM =
- AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
- for (auto &Pass : Passes) {
- // Check the PassInstrumentation's BeforePass callbacks before running the
- // pass, skip its execution completely if asked to (callback returns false).
- if (!PI.runBeforePass(*Pass, *C))
- continue;
- PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
- if (UR.InvalidatedSCCs.count(C))
- PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
- else
- PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
- // Update the SCC if necessary.
- C = UR.UpdatedC ? UR.UpdatedC : C;
- if (UR.UpdatedC) {
- // If C is updated, also create a proxy and update FAM inside the result.
- auto *ResultFAMCP =
- &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
- ResultFAMCP->updateFAM(FAM);
- }
- // Intersect the final preserved analyses to compute the aggregate
- // preserved set for this pass manager.
- PA.intersect(PassPA);
- // If the CGSCC pass wasn't able to provide a valid updated SCC, the
- // current SCC may simply need to be skipped if invalid.
- if (UR.InvalidatedSCCs.count(C)) {
- LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
- break;
- }
- // Check that we didn't miss any update scenario.
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
- // Update the analysis manager as each pass runs and potentially
- // invalidates analyses.
- AM.invalidate(*C, PassPA);
- }
- // Before we mark all of *this* SCC's analyses as preserved below, intersect
- // this with the cross-SCC preserved analysis set. This is used to allow
- // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
- // for them.
- UR.CrossSCCPA.intersect(PA);
- // Invalidation was handled after each pass in the above loop for the current
- // SCC. Therefore, the remaining analysis results in the AnalysisManager are
- // preserved. We mark this with a set so that we don't need to inspect each
- // one individually.
- PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
- return PA;
- }
- PreservedAnalyses
- ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
- // Setup the CGSCC analysis manager from its proxy.
- CGSCCAnalysisManager &CGAM =
- AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
- // Get the call graph for this module.
- LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
- // Get Function analysis manager from its proxy.
- FunctionAnalysisManager &FAM =
- AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
- // We keep worklists to allow us to push more work onto the pass manager as
- // the passes are run.
- SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
- SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
- // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
- // iterating off the worklists.
- SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
- SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
- SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
- InlinedInternalEdges;
- CGSCCUpdateResult UR = {
- RCWorklist, CWorklist, InvalidRefSCCSet,
- InvalidSCCSet, nullptr, PreservedAnalyses::all(),
- InlinedInternalEdges, {}};
- // Request PassInstrumentation from analysis manager, will use it to run
- // instrumenting callbacks for the passes later.
- PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
- PreservedAnalyses PA = PreservedAnalyses::all();
- CG.buildRefSCCs();
- for (LazyCallGraph::RefSCC &RC :
- llvm::make_early_inc_range(CG.postorder_ref_sccs())) {
- assert(RCWorklist.empty() &&
- "Should always start with an empty RefSCC worklist");
- // The postorder_ref_sccs range we are walking is lazily constructed, so
- // we only push the first one onto the worklist. The worklist allows us
- // to capture *new* RefSCCs created during transformations.
- //
- // We really want to form RefSCCs lazily because that makes them cheaper
- // to update as the program is simplified and allows us to have greater
- // cache locality as forming a RefSCC touches all the parts of all the
- // functions within that RefSCC.
- //
- // We also eagerly increment the iterator to the next position because
- // the CGSCC passes below may delete the current RefSCC.
- RCWorklist.insert(&RC);
- do {
- LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
- if (InvalidRefSCCSet.count(RC)) {
- LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
- continue;
- }
- assert(CWorklist.empty() &&
- "Should always start with an empty SCC worklist");
- LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
- << "\n");
- // The top of the worklist may *also* be the same SCC we just ran over
- // (and invalidated for). Keep track of that last SCC we processed due
- // to SCC update to avoid redundant processing when an SCC is both just
- // updated itself and at the top of the worklist.
- LazyCallGraph::SCC *LastUpdatedC = nullptr;
- // Push the initial SCCs in reverse post-order as we'll pop off the
- // back and so see this in post-order.
- for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
- CWorklist.insert(&C);
- do {
- LazyCallGraph::SCC *C = CWorklist.pop_back_val();
- // Due to call graph mutations, we may have invalid SCCs or SCCs from
- // other RefSCCs in the worklist. The invalid ones are dead and the
- // other RefSCCs should be queued above, so we just need to skip both
- // scenarios here.
- if (InvalidSCCSet.count(C)) {
- LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
- continue;
- }
- if (LastUpdatedC == C) {
- LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
- continue;
- }
- // We used to also check if the current SCC is part of the current
- // RefSCC and bail if it wasn't, since it should be in RCWorklist.
- // However, this can cause compile time explosions in some cases on
- // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
- // huge RefSCC can become their own child RefSCC, we create one child
- // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
- // the huge RefSCC, and repeat. By visiting all SCCs in the original
- // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
- // rather one pass of the RefSCC creating one child RefSCC at a time.
- // Ensure we can proxy analysis updates from the CGSCC analysis manager
- // into the the Function analysis manager by getting a proxy here.
- // This also needs to update the FunctionAnalysisManager, as this may be
- // the first time we see this SCC.
- CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
- FAM);
- // Each time we visit a new SCC pulled off the worklist,
- // a transformation of a child SCC may have also modified this parent
- // and invalidated analyses. So we invalidate using the update record's
- // cross-SCC preserved set. This preserved set is intersected by any
- // CGSCC pass that handles invalidation (primarily pass managers) prior
- // to marking its SCC as preserved. That lets us track everything that
- // might need invalidation across SCCs without excessive invalidations
- // on a single SCC.
- //
- // This essentially allows SCC passes to freely invalidate analyses
- // of any ancestor SCC. If this becomes detrimental to successfully
- // caching analyses, we could force each SCC pass to manually
- // invalidate the analyses for any SCCs other than themselves which
- // are mutated. However, that seems to lose the robustness of the
- // pass-manager driven invalidation scheme.
- CGAM.invalidate(*C, UR.CrossSCCPA);
- do {
- // Check that we didn't miss any update scenario.
- assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
- LastUpdatedC = UR.UpdatedC;
- UR.UpdatedC = nullptr;
- // Check the PassInstrumentation's BeforePass callbacks before
- // running the pass, skip its execution completely if asked to
- // (callback returns false).
- if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
- continue;
- PreservedAnalyses PassPA = Pass->run(*C, CGAM, CG, UR);
- if (UR.InvalidatedSCCs.count(C))
- PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
- else
- PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
- // Update the SCC and RefSCC if necessary.
- C = UR.UpdatedC ? UR.UpdatedC : C;
- if (UR.UpdatedC) {
- // If we're updating the SCC, also update the FAM inside the proxy's
- // result.
- CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
- FAM);
- }
- // Intersect with the cross-SCC preserved set to capture any
- // cross-SCC invalidation.
- UR.CrossSCCPA.intersect(PassPA);
- // Intersect the preserved set so that invalidation of module
- // analyses will eventually occur when the module pass completes.
- PA.intersect(PassPA);
- // If the CGSCC pass wasn't able to provide a valid updated SCC,
- // the current SCC may simply need to be skipped if invalid.
- if (UR.InvalidatedSCCs.count(C)) {
- LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
- break;
- }
- // Check that we didn't miss any update scenario.
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
- // We handle invalidating the CGSCC analysis manager's information
- // for the (potentially updated) SCC here. Note that any other SCCs
- // whose structure has changed should have been invalidated by
- // whatever was updating the call graph. This SCC gets invalidated
- // late as it contains the nodes that were actively being
- // processed.
- CGAM.invalidate(*C, PassPA);
- // The pass may have restructured the call graph and refined the
- // current SCC and/or RefSCC. We need to update our current SCC and
- // RefSCC pointers to follow these. Also, when the current SCC is
- // refined, re-run the SCC pass over the newly refined SCC in order
- // to observe the most precise SCC model available. This inherently
- // cannot cycle excessively as it only happens when we split SCCs
- // apart, at most converging on a DAG of single nodes.
- // FIXME: If we ever start having RefSCC passes, we'll want to
- // iterate there too.
- if (UR.UpdatedC)
- LLVM_DEBUG(dbgs()
- << "Re-running SCC passes after a refinement of the "
- "current SCC: "
- << *UR.UpdatedC << "\n");
- // Note that both `C` and `RC` may at this point refer to deleted,
- // invalid SCC and RefSCCs respectively. But we will short circuit
- // the processing when we check them in the loop above.
- } while (UR.UpdatedC);
- } while (!CWorklist.empty());
- // We only need to keep internal inlined edge information within
- // a RefSCC, clear it to save on space and let the next time we visit
- // any of these functions have a fresh start.
- InlinedInternalEdges.clear();
- } while (!RCWorklist.empty());
- }
- // By definition we preserve the call garph, all SCC analyses, and the
- // analysis proxies by handling them above and in any nested pass managers.
- PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
- PA.preserve<LazyCallGraphAnalysis>();
- PA.preserve<CGSCCAnalysisManagerModuleProxy>();
- PA.preserve<FunctionAnalysisManagerModuleProxy>();
- return PA;
- }
- PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG,
- CGSCCUpdateResult &UR) {
- PreservedAnalyses PA = PreservedAnalyses::all();
- PassInstrumentation PI =
- AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
- // The SCC may be refined while we are running passes over it, so set up
- // a pointer that we can update.
- LazyCallGraph::SCC *C = &InitialC;
- // Struct to track the counts of direct and indirect calls in each function
- // of the SCC.
- struct CallCount {
- int Direct;
- int Indirect;
- };
- // Put value handles on all of the indirect calls and return the number of
- // direct calls for each function in the SCC.
- auto ScanSCC = [](LazyCallGraph::SCC &C,
- SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
- assert(CallHandles.empty() && "Must start with a clear set of handles.");
- SmallDenseMap<Function *, CallCount> CallCounts;
- CallCount CountLocal = {0, 0};
- for (LazyCallGraph::Node &N : C) {
- CallCount &Count =
- CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
- .first->second;
- for (Instruction &I : instructions(N.getFunction()))
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- if (CB->getCalledFunction()) {
- ++Count.Direct;
- } else {
- ++Count.Indirect;
- CallHandles.insert({CB, WeakTrackingVH(CB)});
- }
- }
- }
- return CallCounts;
- };
- UR.IndirectVHs.clear();
- // Populate the initial call handles and get the initial call counts.
- auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
- for (int Iteration = 0;; ++Iteration) {
- if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
- continue;
- PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
- if (UR.InvalidatedSCCs.count(C))
- PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
- else
- PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
- PA.intersect(PassPA);
- // If the SCC structure has changed, bail immediately and let the outer
- // CGSCC layer handle any iteration to reflect the refined structure.
- if (UR.UpdatedC && UR.UpdatedC != C)
- break;
- // If the CGSCC pass wasn't able to provide a valid updated SCC, the
- // current SCC may simply need to be skipped if invalid.
- if (UR.InvalidatedSCCs.count(C)) {
- LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
- break;
- }
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
- // Check whether any of the handles were devirtualized.
- bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
- if (P.second) {
- if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
- if (CB->getCalledFunction()) {
- LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
- return true;
- }
- }
- }
- return false;
- });
- // Rescan to build up a new set of handles and count how many direct
- // calls remain. If we decide to iterate, this also sets up the input to
- // the next iteration.
- UR.IndirectVHs.clear();
- auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
- // If we haven't found an explicit devirtualization already see if we
- // have decreased the number of indirect calls and increased the number
- // of direct calls for any function in the SCC. This can be fooled by all
- // manner of transformations such as DCE and other things, but seems to
- // work well in practice.
- if (!Devirt)
- // Iterate over the keys in NewCallCounts, if Function also exists in
- // CallCounts, make the check below.
- for (auto &Pair : NewCallCounts) {
- auto &CallCountNew = Pair.second;
- auto CountIt = CallCounts.find(Pair.first);
- if (CountIt != CallCounts.end()) {
- const auto &CallCountOld = CountIt->second;
- if (CallCountOld.Indirect > CallCountNew.Indirect &&
- CallCountOld.Direct < CallCountNew.Direct) {
- Devirt = true;
- break;
- }
- }
- }
- if (!Devirt) {
- break;
- }
- // Otherwise, if we've already hit our max, we're done.
- if (Iteration >= MaxIterations) {
- if (AbortOnMaxDevirtIterationsReached)
- report_fatal_error("Max devirtualization iterations reached");
- LLVM_DEBUG(
- dbgs() << "Found another devirtualization after hitting the max "
- "number of repetitions ("
- << MaxIterations << ") on SCC: " << *C << "\n");
- break;
- }
- LLVM_DEBUG(
- dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
- << *C << "\n");
- // Move over the new call counts in preparation for iterating.
- CallCounts = std::move(NewCallCounts);
- // Update the analysis manager with each run and intersect the total set
- // of preserved analyses so we're ready to iterate.
- AM.invalidate(*C, PassPA);
- }
- // Note that we don't add any preserved entries here unlike a more normal
- // "pass manager" because we only handle invalidation *between* iterations,
- // not after the last iteration.
- return PA;
- }
- PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG,
- CGSCCUpdateResult &UR) {
- // Setup the function analysis manager from its proxy.
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
- SmallVector<LazyCallGraph::Node *, 4> Nodes;
- for (LazyCallGraph::Node &N : C)
- Nodes.push_back(&N);
- // The SCC may get split while we are optimizing functions due to deleting
- // edges. If this happens, the current SCC can shift, so keep track of
- // a pointer we can overwrite.
- LazyCallGraph::SCC *CurrentC = &C;
- LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
- PreservedAnalyses PA = PreservedAnalyses::all();
- for (LazyCallGraph::Node *N : Nodes) {
- // Skip nodes from other SCCs. These may have been split out during
- // processing. We'll eventually visit those SCCs and pick up the nodes
- // there.
- if (CG.lookupSCC(*N) != CurrentC)
- continue;
- Function &F = N->getFunction();
- if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F))
- continue;
- PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
- if (!PI.runBeforePass<Function>(*Pass, F))
- continue;
- PreservedAnalyses PassPA = Pass->run(F, FAM);
- PI.runAfterPass<Function>(*Pass, F, PassPA);
- // We know that the function pass couldn't have invalidated any other
- // function's analyses (that's the contract of a function pass), so
- // directly handle the function analysis manager's invalidation here.
- FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA);
- if (NoRerun)
- (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F);
- // Then intersect the preserved set so that invalidation of module
- // analyses will eventually occur when the module pass completes.
- PA.intersect(std::move(PassPA));
- // If the call graph hasn't been preserved, update it based on this
- // function pass. This may also update the current SCC to point to
- // a smaller, more refined SCC.
- auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
- if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
- CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
- AM, UR, FAM);
- assert(CG.lookupSCC(*N) == CurrentC &&
- "Current SCC not updated to the SCC containing the current node!");
- }
- }
- // By definition we preserve the proxy. And we preserve all analyses on
- // Functions. This precludes *any* invalidation of function analyses by the
- // proxy, but that's OK because we've taken care to invalidate analyses in
- // the function analysis manager incrementally above.
- PA.preserveSet<AllAnalysesOn<Function>>();
- PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
- // We've also ensured that we updated the call graph along the way.
- PA.preserve<LazyCallGraphAnalysis>();
- return PA;
- }
- bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
- Module &M, const PreservedAnalyses &PA,
- ModuleAnalysisManager::Invalidator &Inv) {
- // If literally everything is preserved, we're done.
- if (PA.areAllPreserved())
- return false; // This is still a valid proxy.
- // If this proxy or the call graph is going to be invalidated, we also need
- // to clear all the keys coming from that analysis.
- //
- // We also directly invalidate the FAM's module proxy if necessary, and if
- // that proxy isn't preserved we can't preserve this proxy either. We rely on
- // it to handle module -> function analysis invalidation in the face of
- // structural changes and so if it's unavailable we conservatively clear the
- // entire SCC layer as well rather than trying to do invalidation ourselves.
- auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
- if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
- Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
- Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
- InnerAM->clear();
- // And the proxy itself should be marked as invalid so that we can observe
- // the new call graph. This isn't strictly necessary because we cheat
- // above, but is still useful.
- return true;
- }
- // Directly check if the relevant set is preserved so we can short circuit
- // invalidating SCCs below.
- bool AreSCCAnalysesPreserved =
- PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
- // Ok, we have a graph, so we can propagate the invalidation down into it.
- G->buildRefSCCs();
- for (auto &RC : G->postorder_ref_sccs())
- for (auto &C : RC) {
- std::optional<PreservedAnalyses> InnerPA;
- // Check to see whether the preserved set needs to be adjusted based on
- // module-level analysis invalidation triggering deferred invalidation
- // for this SCC.
- if (auto *OuterProxy =
- InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
- for (const auto &OuterInvalidationPair :
- OuterProxy->getOuterInvalidations()) {
- AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
- const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
- if (Inv.invalidate(OuterAnalysisID, M, PA)) {
- if (!InnerPA)
- InnerPA = PA;
- for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
- InnerPA->abandon(InnerAnalysisID);
- }
- }
- // Check if we needed a custom PA set. If so we'll need to run the inner
- // invalidation.
- if (InnerPA) {
- InnerAM->invalidate(C, *InnerPA);
- continue;
- }
- // Otherwise we only need to do invalidation if the original PA set didn't
- // preserve all SCC analyses.
- if (!AreSCCAnalysesPreserved)
- InnerAM->invalidate(C, PA);
- }
- // Return false to indicate that this result is still a valid proxy.
- return false;
- }
- template <>
- CGSCCAnalysisManagerModuleProxy::Result
- CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
- // Force the Function analysis manager to also be available so that it can
- // be accessed in an SCC analysis and proxied onward to function passes.
- // FIXME: It is pretty awkward to just drop the result here and assert that
- // we can find it again later.
- (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
- return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
- }
- AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
- FunctionAnalysisManagerCGSCCProxy::Result
- FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG) {
- // Note: unconditionally getting checking that the proxy exists may get it at
- // this point. There are cases when this is being run unnecessarily, but
- // it is cheap and having the assertion in place is more valuable.
- auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
- Module &M = *C.begin()->getFunction().getParent();
- bool ProxyExists =
- MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
- assert(ProxyExists &&
- "The CGSCC pass manager requires that the FAM module proxy is run "
- "on the module prior to entering the CGSCC walk");
- (void)ProxyExists;
- // We just return an empty result. The caller will use the updateFAM interface
- // to correctly register the relevant FunctionAnalysisManager based on the
- // context in which this proxy is run.
- return Result();
- }
- bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
- LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
- CGSCCAnalysisManager::Invalidator &Inv) {
- // If literally everything is preserved, we're done.
- if (PA.areAllPreserved())
- return false; // This is still a valid proxy.
- // All updates to preserve valid results are done below, so we don't need to
- // invalidate this proxy.
- //
- // Note that in order to preserve this proxy, a module pass must ensure that
- // the FAM has been completely updated to handle the deletion of functions.
- // Specifically, any FAM-cached results for those functions need to have been
- // forcibly cleared. When preserved, this proxy will only invalidate results
- // cached on functions *still in the module* at the end of the module pass.
- auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
- if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
- for (LazyCallGraph::Node &N : C)
- FAM->invalidate(N.getFunction(), PA);
- return false;
- }
- // Directly check if the relevant set is preserved.
- bool AreFunctionAnalysesPreserved =
- PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
- // Now walk all the functions to see if any inner analysis invalidation is
- // necessary.
- for (LazyCallGraph::Node &N : C) {
- Function &F = N.getFunction();
- std::optional<PreservedAnalyses> FunctionPA;
- // Check to see whether the preserved set needs to be pruned based on
- // SCC-level analysis invalidation that triggers deferred invalidation
- // registered with the outer analysis manager proxy for this function.
- if (auto *OuterProxy =
- FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
- for (const auto &OuterInvalidationPair :
- OuterProxy->getOuterInvalidations()) {
- AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
- const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
- if (Inv.invalidate(OuterAnalysisID, C, PA)) {
- if (!FunctionPA)
- FunctionPA = PA;
- for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
- FunctionPA->abandon(InnerAnalysisID);
- }
- }
- // Check if we needed a custom PA set, and if so we'll need to run the
- // inner invalidation.
- if (FunctionPA) {
- FAM->invalidate(F, *FunctionPA);
- continue;
- }
- // Otherwise we only need to do invalidation if the original PA set didn't
- // preserve all function analyses.
- if (!AreFunctionAnalysesPreserved)
- FAM->invalidate(F, PA);
- }
- // Return false to indicate that this result is still a valid proxy.
- return false;
- }
- } // end namespace llvm
- /// When a new SCC is created for the graph we first update the
- /// FunctionAnalysisManager in the Proxy's result.
- /// As there might be function analysis results cached for the functions now in
- /// that SCC, two forms of updates are required.
- ///
- /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
- /// created so that any subsequent invalidation events to the SCC are
- /// propagated to the function analysis results cached for functions within it.
- ///
- /// Second, if any of the functions within the SCC have analysis results with
- /// outer analysis dependencies, then those dependencies would point to the
- /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
- /// function analyses so that they don't retain stale handles.
- static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
- LazyCallGraph &G,
- CGSCCAnalysisManager &AM,
- FunctionAnalysisManager &FAM) {
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
- // Now walk the functions in this SCC and invalidate any function analysis
- // results that might have outer dependencies on an SCC analysis.
- for (LazyCallGraph::Node &N : C) {
- Function &F = N.getFunction();
- auto *OuterProxy =
- FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
- if (!OuterProxy)
- // No outer analyses were queried, nothing to do.
- continue;
- // Forcibly abandon all the inner analyses with dependencies, but
- // invalidate nothing else.
- auto PA = PreservedAnalyses::all();
- for (const auto &OuterInvalidationPair :
- OuterProxy->getOuterInvalidations()) {
- const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
- for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
- PA.abandon(InnerAnalysisID);
- }
- // Now invalidate anything we found.
- FAM.invalidate(F, PA);
- }
- }
- /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
- /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
- /// added SCCs.
- ///
- /// The range of new SCCs must be in postorder already. The SCC they were split
- /// out of must be provided as \p C. The current node being mutated and
- /// triggering updates must be passed as \p N.
- ///
- /// This function returns the SCC containing \p N. This will be either \p C if
- /// no new SCCs have been split out, or it will be the new SCC containing \p N.
- template <typename SCCRangeT>
- static LazyCallGraph::SCC *
- incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
- LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
- CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
- using SCC = LazyCallGraph::SCC;
- if (NewSCCRange.empty())
- return C;
- // Add the current SCC to the worklist as its shape has changed.
- UR.CWorklist.insert(C);
- LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
- << "\n");
- SCC *OldC = C;
- // Update the current SCC. Note that if we have new SCCs, this must actually
- // change the SCC.
- assert(C != &*NewSCCRange.begin() &&
- "Cannot insert new SCCs without changing current SCC!");
- C = &*NewSCCRange.begin();
- assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
- // If we had a cached FAM proxy originally, we will want to create more of
- // them for each SCC that was split off.
- FunctionAnalysisManager *FAM = nullptr;
- if (auto *FAMProxy =
- AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
- FAM = &FAMProxy->getManager();
- // We need to propagate an invalidation call to all but the newly current SCC
- // because the outer pass manager won't do that for us after splitting them.
- // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
- // there are preserved analysis we can avoid invalidating them here for
- // split-off SCCs.
- // We know however that this will preserve any FAM proxy so go ahead and mark
- // that.
- auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
- PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
- AM.invalidate(*OldC, PA);
- // Ensure the now-current SCC's function analyses are updated.
- if (FAM)
- updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
- for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
- assert(C != &NewC && "No need to re-visit the current SCC!");
- assert(OldC != &NewC && "Already handled the original SCC!");
- UR.CWorklist.insert(&NewC);
- LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
- // Ensure new SCCs' function analyses are updated.
- if (FAM)
- updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
- // Also propagate a normal invalidation to the new SCC as only the current
- // will get one from the pass manager infrastructure.
- AM.invalidate(NewC, PA);
- }
- return C;
- }
- static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
- LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
- CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
- FunctionAnalysisManager &FAM, bool FunctionPass) {
- using Node = LazyCallGraph::Node;
- using Edge = LazyCallGraph::Edge;
- using SCC = LazyCallGraph::SCC;
- using RefSCC = LazyCallGraph::RefSCC;
- RefSCC &InitialRC = InitialC.getOuterRefSCC();
- SCC *C = &InitialC;
- RefSCC *RC = &InitialRC;
- Function &F = N.getFunction();
- // Walk the function body and build up the set of retained, promoted, and
- // demoted edges.
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- SmallPtrSet<Node *, 16> RetainedEdges;
- SmallSetVector<Node *, 4> PromotedRefTargets;
- SmallSetVector<Node *, 4> DemotedCallTargets;
- SmallSetVector<Node *, 4> NewCallEdges;
- SmallSetVector<Node *, 4> NewRefEdges;
- // First walk the function and handle all called functions. We do this first
- // because if there is a single call edge, whether there are ref edges is
- // irrelevant.
- for (Instruction &I : instructions(F)) {
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- if (Function *Callee = CB->getCalledFunction()) {
- if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
- Node *CalleeN = G.lookup(*Callee);
- assert(CalleeN &&
- "Visited function should already have an associated node");
- Edge *E = N->lookup(*CalleeN);
- assert((E || !FunctionPass) &&
- "No function transformations should introduce *new* "
- "call edges! Any new calls should be modeled as "
- "promoted existing ref edges!");
- bool Inserted = RetainedEdges.insert(CalleeN).second;
- (void)Inserted;
- assert(Inserted && "We should never visit a function twice.");
- if (!E)
- NewCallEdges.insert(CalleeN);
- else if (!E->isCall())
- PromotedRefTargets.insert(CalleeN);
- }
- } else {
- // We can miss devirtualization if an indirect call is created then
- // promoted before updateCGAndAnalysisManagerForPass runs.
- auto *Entry = UR.IndirectVHs.find(CB);
- if (Entry == UR.IndirectVHs.end())
- UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
- else if (!Entry->second)
- Entry->second = WeakTrackingVH(CB);
- }
- }
- }
- // Now walk all references.
- for (Instruction &I : instructions(F))
- for (Value *Op : I.operand_values())
- if (auto *OpC = dyn_cast<Constant>(Op))
- if (Visited.insert(OpC).second)
- Worklist.push_back(OpC);
- auto VisitRef = [&](Function &Referee) {
- Node *RefereeN = G.lookup(Referee);
- assert(RefereeN &&
- "Visited function should already have an associated node");
- Edge *E = N->lookup(*RefereeN);
- assert((E || !FunctionPass) &&
- "No function transformations should introduce *new* ref "
- "edges! Any new ref edges would require IPO which "
- "function passes aren't allowed to do!");
- bool Inserted = RetainedEdges.insert(RefereeN).second;
- (void)Inserted;
- assert(Inserted && "We should never visit a function twice.");
- if (!E)
- NewRefEdges.insert(RefereeN);
- else if (E->isCall())
- DemotedCallTargets.insert(RefereeN);
- };
- LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
- // Handle new ref edges.
- for (Node *RefTarget : NewRefEdges) {
- SCC &TargetC = *G.lookupSCC(*RefTarget);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- (void)TargetRC;
- // TODO: This only allows trivial edges to be added for now.
- #ifdef EXPENSIVE_CHECKS
- assert((RC == &TargetRC ||
- RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
- #endif
- RC->insertTrivialRefEdge(N, *RefTarget);
- }
- // Handle new call edges.
- for (Node *CallTarget : NewCallEdges) {
- SCC &TargetC = *G.lookupSCC(*CallTarget);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- (void)TargetRC;
- // TODO: This only allows trivial edges to be added for now.
- #ifdef EXPENSIVE_CHECKS
- assert((RC == &TargetRC ||
- RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
- #endif
- // Add a trivial ref edge to be promoted later on alongside
- // PromotedRefTargets.
- RC->insertTrivialRefEdge(N, *CallTarget);
- }
- // Include synthetic reference edges to known, defined lib functions.
- for (auto *LibFn : G.getLibFunctions())
- // While the list of lib functions doesn't have repeats, don't re-visit
- // anything handled above.
- if (!Visited.count(LibFn))
- VisitRef(*LibFn);
- // First remove all of the edges that are no longer present in this function.
- // The first step makes these edges uniformly ref edges and accumulates them
- // into a separate data structure so removal doesn't invalidate anything.
- SmallVector<Node *, 4> DeadTargets;
- for (Edge &E : *N) {
- if (RetainedEdges.count(&E.getNode()))
- continue;
- SCC &TargetC = *G.lookupSCC(E.getNode());
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- if (&TargetRC == RC && E.isCall()) {
- if (C != &TargetC) {
- // For separate SCCs this is trivial.
- RC->switchTrivialInternalEdgeToRef(N, E.getNode());
- } else {
- // Now update the call graph.
- C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
- G, N, C, AM, UR);
- }
- }
- // Now that this is ready for actual removal, put it into our list.
- DeadTargets.push_back(&E.getNode());
- }
- // Remove the easy cases quickly and actually pull them out of our list.
- llvm::erase_if(DeadTargets, [&](Node *TargetN) {
- SCC &TargetC = *G.lookupSCC(*TargetN);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- // We can't trivially remove internal targets, so skip
- // those.
- if (&TargetRC == RC)
- return false;
- LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
- << *TargetN << "'\n");
- RC->removeOutgoingEdge(N, *TargetN);
- return true;
- });
- // Now do a batch removal of the internal ref edges left.
- auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
- if (!NewRefSCCs.empty()) {
- // The old RefSCC is dead, mark it as such.
- UR.InvalidatedRefSCCs.insert(RC);
- // Note that we don't bother to invalidate analyses as ref-edge
- // connectivity is not really observable in any way and is intended
- // exclusively to be used for ordering of transforms rather than for
- // analysis conclusions.
- // Update RC to the "bottom".
- assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
- RC = &C->getOuterRefSCC();
- assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
- // The RC worklist is in reverse postorder, so we enqueue the new ones in
- // RPO except for the one which contains the source node as that is the
- // "bottom" we will continue processing in the bottom-up walk.
- assert(NewRefSCCs.front() == RC &&
- "New current RefSCC not first in the returned list!");
- for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
- assert(NewRC != RC && "Should not encounter the current RefSCC further "
- "in the postorder list of new RefSCCs.");
- UR.RCWorklist.insert(NewRC);
- LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
- << *NewRC << "\n");
- }
- }
- // Next demote all the call edges that are now ref edges. This helps make
- // the SCCs small which should minimize the work below as we don't want to
- // form cycles that this would break.
- for (Node *RefTarget : DemotedCallTargets) {
- SCC &TargetC = *G.lookupSCC(*RefTarget);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- // The easy case is when the target RefSCC is not this RefSCC. This is
- // only supported when the target RefSCC is a child of this RefSCC.
- if (&TargetRC != RC) {
- #ifdef EXPENSIVE_CHECKS
- assert(RC->isAncestorOf(TargetRC) &&
- "Cannot potentially form RefSCC cycles here!");
- #endif
- RC->switchOutgoingEdgeToRef(N, *RefTarget);
- LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
- << "' to '" << *RefTarget << "'\n");
- continue;
- }
- // We are switching an internal call edge to a ref edge. This may split up
- // some SCCs.
- if (C != &TargetC) {
- // For separate SCCs this is trivial.
- RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
- continue;
- }
- // Now update the call graph.
- C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
- C, AM, UR);
- }
- // We added a ref edge earlier for new call edges, promote those to call edges
- // alongside PromotedRefTargets.
- for (Node *E : NewCallEdges)
- PromotedRefTargets.insert(E);
- // Now promote ref edges into call edges.
- for (Node *CallTarget : PromotedRefTargets) {
- SCC &TargetC = *G.lookupSCC(*CallTarget);
- RefSCC &TargetRC = TargetC.getOuterRefSCC();
- // The easy case is when the target RefSCC is not this RefSCC. This is
- // only supported when the target RefSCC is a child of this RefSCC.
- if (&TargetRC != RC) {
- #ifdef EXPENSIVE_CHECKS
- assert(RC->isAncestorOf(TargetRC) &&
- "Cannot potentially form RefSCC cycles here!");
- #endif
- RC->switchOutgoingEdgeToCall(N, *CallTarget);
- LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
- << "' to '" << *CallTarget << "'\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
- << N << "' to '" << *CallTarget << "'\n");
- // Otherwise we are switching an internal ref edge to a call edge. This
- // may merge away some SCCs, and we add those to the UpdateResult. We also
- // need to make sure to update the worklist in the event SCCs have moved
- // before the current one in the post-order sequence
- bool HasFunctionAnalysisProxy = false;
- auto InitialSCCIndex = RC->find(*C) - RC->begin();
- bool FormedCycle = RC->switchInternalEdgeToCall(
- N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
- for (SCC *MergedC : MergedSCCs) {
- assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
- HasFunctionAnalysisProxy |=
- AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
- *MergedC) != nullptr;
- // Mark that this SCC will no longer be valid.
- UR.InvalidatedSCCs.insert(MergedC);
- // FIXME: We should really do a 'clear' here to forcibly release
- // memory, but we don't have a good way of doing that and
- // preserving the function analyses.
- auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
- PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
- AM.invalidate(*MergedC, PA);
- }
- });
- // If we formed a cycle by creating this call, we need to update more data
- // structures.
- if (FormedCycle) {
- C = &TargetC;
- assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
- // If one of the invalidated SCCs had a cached proxy to a function
- // analysis manager, we need to create a proxy in the new current SCC as
- // the invalidated SCCs had their functions moved.
- if (HasFunctionAnalysisProxy)
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
- // Any analyses cached for this SCC are no longer precise as the shape
- // has changed by introducing this cycle. However, we have taken care to
- // update the proxies so it remains valide.
- auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
- PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
- AM.invalidate(*C, PA);
- }
- auto NewSCCIndex = RC->find(*C) - RC->begin();
- // If we have actually moved an SCC to be topologically "below" the current
- // one due to merging, we will need to revisit the current SCC after
- // visiting those moved SCCs.
- //
- // It is critical that we *do not* revisit the current SCC unless we
- // actually move SCCs in the process of merging because otherwise we may
- // form a cycle where an SCC is split apart, merged, split, merged and so
- // on infinitely.
- if (InitialSCCIndex < NewSCCIndex) {
- // Put our current SCC back onto the worklist as we'll visit other SCCs
- // that are now definitively ordered prior to the current one in the
- // post-order sequence, and may end up observing more precise context to
- // optimize the current SCC.
- UR.CWorklist.insert(C);
- LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
- << "\n");
- // Enqueue in reverse order as we pop off the back of the worklist.
- for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
- RC->begin() + NewSCCIndex))) {
- UR.CWorklist.insert(&MovedC);
- LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
- << MovedC << "\n");
- }
- }
- }
- assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
- assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
- assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
- // Record the current SCC for higher layers of the CGSCC pass manager now that
- // all the updates have been applied.
- if (C != &InitialC)
- UR.UpdatedC = C;
- return *C;
- }
- LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
- LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
- CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
- FunctionAnalysisManager &FAM) {
- return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
- /* FunctionPass */ true);
- }
- LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
- LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
- CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
- FunctionAnalysisManager &FAM) {
- return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
- /* FunctionPass */ false);
- }
|