12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides a simple and efficient mechanism for performing general
- // tree-based pattern matches on the LLVM IR. The power of these routines is
- // that it allows you to write concise patterns that are expressive and easy to
- // understand. The other major advantage of this is that it allows you to
- // trivially capture/bind elements in the pattern to variables. For example,
- // you can do something like this:
- //
- // Value *Exp = ...
- // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
- // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
- // m_And(m_Value(Y), m_ConstantInt(C2))))) {
- // ... Pattern is matched and variables are bound ...
- // }
- //
- // This is primarily useful to things like the instruction combiner, but can
- // also be useful for static analysis tools or code generators.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_IR_PATTERNMATCH_H
- #define LLVM_IR_PATTERNMATCH_H
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include <cstdint>
- namespace llvm {
- namespace PatternMatch {
- template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
- return const_cast<Pattern &>(P).match(V);
- }
- template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
- return const_cast<Pattern &>(P).match(Mask);
- }
- template <typename SubPattern_t> struct OneUse_match {
- SubPattern_t SubPattern;
- OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
- template <typename OpTy> bool match(OpTy *V) {
- return V->hasOneUse() && SubPattern.match(V);
- }
- };
- template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
- return SubPattern;
- }
- template <typename Class> struct class_match {
- template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
- };
- /// Match an arbitrary value and ignore it.
- inline class_match<Value> m_Value() { return class_match<Value>(); }
- /// Match an arbitrary unary operation and ignore it.
- inline class_match<UnaryOperator> m_UnOp() {
- return class_match<UnaryOperator>();
- }
- /// Match an arbitrary binary operation and ignore it.
- inline class_match<BinaryOperator> m_BinOp() {
- return class_match<BinaryOperator>();
- }
- /// Matches any compare instruction and ignore it.
- inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
- /// Match an arbitrary undef constant.
- inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
- /// Match an arbitrary poison constant.
- inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
- /// Match an arbitrary Constant and ignore it.
- inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
- /// Match an arbitrary ConstantInt and ignore it.
- inline class_match<ConstantInt> m_ConstantInt() {
- return class_match<ConstantInt>();
- }
- /// Match an arbitrary ConstantFP and ignore it.
- inline class_match<ConstantFP> m_ConstantFP() {
- return class_match<ConstantFP>();
- }
- /// Match an arbitrary ConstantExpr and ignore it.
- inline class_match<ConstantExpr> m_ConstantExpr() {
- return class_match<ConstantExpr>();
- }
- /// Match an arbitrary basic block value and ignore it.
- inline class_match<BasicBlock> m_BasicBlock() {
- return class_match<BasicBlock>();
- }
- /// Inverting matcher
- template <typename Ty> struct match_unless {
- Ty M;
- match_unless(const Ty &Matcher) : M(Matcher) {}
- template <typename ITy> bool match(ITy *V) { return !M.match(V); }
- };
- /// Match if the inner matcher does *NOT* match.
- template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
- return match_unless<Ty>(M);
- }
- /// Matching combinators
- template <typename LTy, typename RTy> struct match_combine_or {
- LTy L;
- RTy R;
- match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
- template <typename ITy> bool match(ITy *V) {
- if (L.match(V))
- return true;
- if (R.match(V))
- return true;
- return false;
- }
- };
- template <typename LTy, typename RTy> struct match_combine_and {
- LTy L;
- RTy R;
- match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
- template <typename ITy> bool match(ITy *V) {
- if (L.match(V))
- if (R.match(V))
- return true;
- return false;
- }
- };
- /// Combine two pattern matchers matching L || R
- template <typename LTy, typename RTy>
- inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
- return match_combine_or<LTy, RTy>(L, R);
- }
- /// Combine two pattern matchers matching L && R
- template <typename LTy, typename RTy>
- inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
- return match_combine_and<LTy, RTy>(L, R);
- }
- struct apint_match {
- const APInt *&Res;
- bool AllowUndef;
- apint_match(const APInt *&Res, bool AllowUndef)
- : Res(Res), AllowUndef(AllowUndef) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CI = dyn_cast<ConstantInt>(V)) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantInt>(
- C->getSplatValue(AllowUndef))) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- // Either constexpr if or renaming ConstantFP::getValueAPF to
- // ConstantFP::getValue is needed to do it via single template
- // function for both apint/apfloat.
- struct apfloat_match {
- const APFloat *&Res;
- bool AllowUndef;
- apfloat_match(const APFloat *&Res, bool AllowUndef)
- : Res(Res), AllowUndef(AllowUndef) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CI = dyn_cast<ConstantFP>(V)) {
- Res = &CI->getValueAPF();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantFP>(
- C->getSplatValue(AllowUndef))) {
- Res = &CI->getValueAPF();
- return true;
- }
- return false;
- }
- };
- /// Match a ConstantInt or splatted ConstantVector, binding the
- /// specified pointer to the contained APInt.
- inline apint_match m_APInt(const APInt *&Res) {
- // Forbid undefs by default to maintain previous behavior.
- return apint_match(Res, /* AllowUndef */ false);
- }
- /// Match APInt while allowing undefs in splat vector constants.
- inline apint_match m_APIntAllowUndef(const APInt *&Res) {
- return apint_match(Res, /* AllowUndef */ true);
- }
- /// Match APInt while forbidding undefs in splat vector constants.
- inline apint_match m_APIntForbidUndef(const APInt *&Res) {
- return apint_match(Res, /* AllowUndef */ false);
- }
- /// Match a ConstantFP or splatted ConstantVector, binding the
- /// specified pointer to the contained APFloat.
- inline apfloat_match m_APFloat(const APFloat *&Res) {
- // Forbid undefs by default to maintain previous behavior.
- return apfloat_match(Res, /* AllowUndef */ false);
- }
- /// Match APFloat while allowing undefs in splat vector constants.
- inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
- return apfloat_match(Res, /* AllowUndef */ true);
- }
- /// Match APFloat while forbidding undefs in splat vector constants.
- inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
- return apfloat_match(Res, /* AllowUndef */ false);
- }
- template <int64_t Val> struct constantint_match {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V)) {
- const APInt &CIV = CI->getValue();
- if (Val >= 0)
- return CIV == static_cast<uint64_t>(Val);
- // If Val is negative, and CI is shorter than it, truncate to the right
- // number of bits. If it is larger, then we have to sign extend. Just
- // compare their negated values.
- return -CIV == -Val;
- }
- return false;
- }
- };
- /// Match a ConstantInt with a specific value.
- template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
- return constantint_match<Val>();
- }
- /// This helper class is used to match constant scalars, vector splats,
- /// and fixed width vectors that satisfy a specified predicate.
- /// For fixed width vector constants, undefined elements are ignored.
- template <typename Predicate, typename ConstantVal>
- struct cstval_pred_ty : public Predicate {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CV = dyn_cast<ConstantVal>(V))
- return this->isValue(CV->getValue());
- if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
- if (const auto *C = dyn_cast<Constant>(V)) {
- if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
- return this->isValue(CV->getValue());
- // Number of elements of a scalable vector unknown at compile time
- auto *FVTy = dyn_cast<FixedVectorType>(VTy);
- if (!FVTy)
- return false;
- // Non-splat vector constant: check each element for a match.
- unsigned NumElts = FVTy->getNumElements();
- assert(NumElts != 0 && "Constant vector with no elements?");
- bool HasNonUndefElements = false;
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt)
- return false;
- if (isa<UndefValue>(Elt))
- continue;
- auto *CV = dyn_cast<ConstantVal>(Elt);
- if (!CV || !this->isValue(CV->getValue()))
- return false;
- HasNonUndefElements = true;
- }
- return HasNonUndefElements;
- }
- }
- return false;
- }
- };
- /// specialization of cstval_pred_ty for ConstantInt
- template <typename Predicate>
- using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
- /// specialization of cstval_pred_ty for ConstantFP
- template <typename Predicate>
- using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
- /// This helper class is used to match scalar and vector constants that
- /// satisfy a specified predicate, and bind them to an APInt.
- template <typename Predicate> struct api_pred_ty : public Predicate {
- const APInt *&Res;
- api_pred_ty(const APInt *&R) : Res(R) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- /// This helper class is used to match scalar and vector constants that
- /// satisfy a specified predicate, and bind them to an APFloat.
- /// Undefs are allowed in splat vector constants.
- template <typename Predicate> struct apf_pred_ty : public Predicate {
- const APFloat *&Res;
- apf_pred_ty(const APFloat *&R) : Res(R) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantFP>(V))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantFP>(
- C->getSplatValue(/* AllowUndef */ true)))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- ///////////////////////////////////////////////////////////////////////////////
- //
- // Encapsulate constant value queries for use in templated predicate matchers.
- // This allows checking if constants match using compound predicates and works
- // with vector constants, possibly with relaxed constraints. For example, ignore
- // undef values.
- //
- ///////////////////////////////////////////////////////////////////////////////
- struct is_any_apint {
- bool isValue(const APInt &C) { return true; }
- };
- /// Match an integer or vector with any integral constant.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
- return cst_pred_ty<is_any_apint>();
- }
- struct is_all_ones {
- bool isValue(const APInt &C) { return C.isAllOnesValue(); }
- };
- /// Match an integer or vector with all bits set.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_all_ones> m_AllOnes() {
- return cst_pred_ty<is_all_ones>();
- }
- struct is_maxsignedvalue {
- bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
- };
- /// Match an integer or vector with values having all bits except for the high
- /// bit set (0x7f...).
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
- return cst_pred_ty<is_maxsignedvalue>();
- }
- inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
- return V;
- }
- struct is_negative {
- bool isValue(const APInt &C) { return C.isNegative(); }
- };
- /// Match an integer or vector of negative values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_negative> m_Negative() {
- return cst_pred_ty<is_negative>();
- }
- inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
- return V;
- }
- struct is_nonnegative {
- bool isValue(const APInt &C) { return C.isNonNegative(); }
- };
- /// Match an integer or vector of non-negative values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_nonnegative> m_NonNegative() {
- return cst_pred_ty<is_nonnegative>();
- }
- inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
- return V;
- }
- struct is_strictlypositive {
- bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
- };
- /// Match an integer or vector of strictly positive values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
- return cst_pred_ty<is_strictlypositive>();
- }
- inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
- return V;
- }
- struct is_nonpositive {
- bool isValue(const APInt &C) { return C.isNonPositive(); }
- };
- /// Match an integer or vector of non-positive values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_nonpositive> m_NonPositive() {
- return cst_pred_ty<is_nonpositive>();
- }
- inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
- struct is_one {
- bool isValue(const APInt &C) { return C.isOneValue(); }
- };
- /// Match an integer 1 or a vector with all elements equal to 1.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_one> m_One() {
- return cst_pred_ty<is_one>();
- }
- struct is_zero_int {
- bool isValue(const APInt &C) { return C.isNullValue(); }
- };
- /// Match an integer 0 or a vector with all elements equal to 0.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_zero_int> m_ZeroInt() {
- return cst_pred_ty<is_zero_int>();
- }
- struct is_zero {
- template <typename ITy> bool match(ITy *V) {
- auto *C = dyn_cast<Constant>(V);
- // FIXME: this should be able to do something for scalable vectors
- return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
- }
- };
- /// Match any null constant or a vector with all elements equal to 0.
- /// For vectors, this includes constants with undefined elements.
- inline is_zero m_Zero() {
- return is_zero();
- }
- struct is_power2 {
- bool isValue(const APInt &C) { return C.isPowerOf2(); }
- };
- /// Match an integer or vector power-of-2.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_power2> m_Power2() {
- return cst_pred_ty<is_power2>();
- }
- inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
- return V;
- }
- struct is_negated_power2 {
- bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
- };
- /// Match a integer or vector negated power-of-2.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
- return cst_pred_ty<is_negated_power2>();
- }
- inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
- return V;
- }
- struct is_power2_or_zero {
- bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
- };
- /// Match an integer or vector of 0 or power-of-2 values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
- return cst_pred_ty<is_power2_or_zero>();
- }
- inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
- return V;
- }
- struct is_sign_mask {
- bool isValue(const APInt &C) { return C.isSignMask(); }
- };
- /// Match an integer or vector with only the sign bit(s) set.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_sign_mask> m_SignMask() {
- return cst_pred_ty<is_sign_mask>();
- }
- struct is_lowbit_mask {
- bool isValue(const APInt &C) { return C.isMask(); }
- };
- /// Match an integer or vector with only the low bit(s) set.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
- return cst_pred_ty<is_lowbit_mask>();
- }
- struct icmp_pred_with_threshold {
- ICmpInst::Predicate Pred;
- const APInt *Thr;
- bool isValue(const APInt &C) {
- switch (Pred) {
- case ICmpInst::Predicate::ICMP_EQ:
- return C.eq(*Thr);
- case ICmpInst::Predicate::ICMP_NE:
- return C.ne(*Thr);
- case ICmpInst::Predicate::ICMP_UGT:
- return C.ugt(*Thr);
- case ICmpInst::Predicate::ICMP_UGE:
- return C.uge(*Thr);
- case ICmpInst::Predicate::ICMP_ULT:
- return C.ult(*Thr);
- case ICmpInst::Predicate::ICMP_ULE:
- return C.ule(*Thr);
- case ICmpInst::Predicate::ICMP_SGT:
- return C.sgt(*Thr);
- case ICmpInst::Predicate::ICMP_SGE:
- return C.sge(*Thr);
- case ICmpInst::Predicate::ICMP_SLT:
- return C.slt(*Thr);
- case ICmpInst::Predicate::ICMP_SLE:
- return C.sle(*Thr);
- default:
- llvm_unreachable("Unhandled ICmp predicate");
- }
- }
- };
- /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
- /// to Threshold. For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<icmp_pred_with_threshold>
- m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
- cst_pred_ty<icmp_pred_with_threshold> P;
- P.Pred = Predicate;
- P.Thr = &Threshold;
- return P;
- }
- struct is_nan {
- bool isValue(const APFloat &C) { return C.isNaN(); }
- };
- /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_nan> m_NaN() {
- return cstfp_pred_ty<is_nan>();
- }
- struct is_nonnan {
- bool isValue(const APFloat &C) { return !C.isNaN(); }
- };
- /// Match a non-NaN FP constant.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
- return cstfp_pred_ty<is_nonnan>();
- }
- struct is_inf {
- bool isValue(const APFloat &C) { return C.isInfinity(); }
- };
- /// Match a positive or negative infinity FP constant.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_inf> m_Inf() {
- return cstfp_pred_ty<is_inf>();
- }
- struct is_noninf {
- bool isValue(const APFloat &C) { return !C.isInfinity(); }
- };
- /// Match a non-infinity FP constant, i.e. finite or NaN.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_noninf> m_NonInf() {
- return cstfp_pred_ty<is_noninf>();
- }
- struct is_finite {
- bool isValue(const APFloat &C) { return C.isFinite(); }
- };
- /// Match a finite FP constant, i.e. not infinity or NaN.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_finite> m_Finite() {
- return cstfp_pred_ty<is_finite>();
- }
- inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
- struct is_finitenonzero {
- bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
- };
- /// Match a finite non-zero FP constant.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
- return cstfp_pred_ty<is_finitenonzero>();
- }
- inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
- return V;
- }
- struct is_any_zero_fp {
- bool isValue(const APFloat &C) { return C.isZero(); }
- };
- /// Match a floating-point negative zero or positive zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
- return cstfp_pred_ty<is_any_zero_fp>();
- }
- struct is_pos_zero_fp {
- bool isValue(const APFloat &C) { return C.isPosZero(); }
- };
- /// Match a floating-point positive zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
- return cstfp_pred_ty<is_pos_zero_fp>();
- }
- struct is_neg_zero_fp {
- bool isValue(const APFloat &C) { return C.isNegZero(); }
- };
- /// Match a floating-point negative zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
- return cstfp_pred_ty<is_neg_zero_fp>();
- }
- struct is_non_zero_fp {
- bool isValue(const APFloat &C) { return C.isNonZero(); }
- };
- /// Match a floating-point non-zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
- return cstfp_pred_ty<is_non_zero_fp>();
- }
- ///////////////////////////////////////////////////////////////////////////////
- template <typename Class> struct bind_ty {
- Class *&VR;
- bind_ty(Class *&V) : VR(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CV = dyn_cast<Class>(V)) {
- VR = CV;
- return true;
- }
- return false;
- }
- };
- /// Match a value, capturing it if we match.
- inline bind_ty<Value> m_Value(Value *&V) { return V; }
- inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
- /// Match an instruction, capturing it if we match.
- inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
- /// Match a unary operator, capturing it if we match.
- inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
- /// Match a binary operator, capturing it if we match.
- inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
- /// Match a with overflow intrinsic, capturing it if we match.
- inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
- /// Match a Constant, capturing the value if we match.
- inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
- /// Match a ConstantInt, capturing the value if we match.
- inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
- /// Match a ConstantFP, capturing the value if we match.
- inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
- /// Match a ConstantExpr, capturing the value if we match.
- inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
- /// Match a basic block value, capturing it if we match.
- inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
- inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
- return V;
- }
- /// Match an arbitrary immediate Constant and ignore it.
- inline match_combine_and<class_match<Constant>,
- match_unless<class_match<ConstantExpr>>>
- m_ImmConstant() {
- return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
- }
- /// Match an immediate Constant, capturing the value if we match.
- inline match_combine_and<bind_ty<Constant>,
- match_unless<class_match<ConstantExpr>>>
- m_ImmConstant(Constant *&C) {
- return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
- }
- /// Match a specified Value*.
- struct specificval_ty {
- const Value *Val;
- specificval_ty(const Value *V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) { return V == Val; }
- };
- /// Match if we have a specific specified value.
- inline specificval_ty m_Specific(const Value *V) { return V; }
- /// Stores a reference to the Value *, not the Value * itself,
- /// thus can be used in commutative matchers.
- template <typename Class> struct deferredval_ty {
- Class *const &Val;
- deferredval_ty(Class *const &V) : Val(V) {}
- template <typename ITy> bool match(ITy *const V) { return V == Val; }
- };
- /// A commutative-friendly version of m_Specific().
- inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
- inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
- return V;
- }
- /// Match a specified floating point value or vector of all elements of
- /// that value.
- struct specific_fpval {
- double Val;
- specific_fpval(double V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CFP = dyn_cast<ConstantFP>(V))
- return CFP->isExactlyValue(Val);
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
- return CFP->isExactlyValue(Val);
- return false;
- }
- };
- /// Match a specific floating point value or vector with all elements
- /// equal to the value.
- inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
- /// Match a float 1.0 or vector with all elements equal to 1.0.
- inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
- struct bind_const_intval_ty {
- uint64_t &VR;
- bind_const_intval_ty(uint64_t &V) : VR(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CV = dyn_cast<ConstantInt>(V))
- if (CV->getValue().ule(UINT64_MAX)) {
- VR = CV->getZExtValue();
- return true;
- }
- return false;
- }
- };
- /// Match a specified integer value or vector of all elements of that
- /// value.
- template <bool AllowUndefs>
- struct specific_intval {
- APInt Val;
- specific_intval(APInt V) : Val(std::move(V)) {}
- template <typename ITy> bool match(ITy *V) {
- const auto *CI = dyn_cast<ConstantInt>(V);
- if (!CI && V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
- return CI && APInt::isSameValue(CI->getValue(), Val);
- }
- };
- /// Match a specific integer value or vector with all elements equal to
- /// the value.
- inline specific_intval<false> m_SpecificInt(APInt V) {
- return specific_intval<false>(std::move(V));
- }
- inline specific_intval<false> m_SpecificInt(uint64_t V) {
- return m_SpecificInt(APInt(64, V));
- }
- inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
- return specific_intval<true>(std::move(V));
- }
- inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
- return m_SpecificIntAllowUndef(APInt(64, V));
- }
- /// Match a ConstantInt and bind to its value. This does not match
- /// ConstantInts wider than 64-bits.
- inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
- /// Match a specified basic block value.
- struct specific_bbval {
- BasicBlock *Val;
- specific_bbval(BasicBlock *Val) : Val(Val) {}
- template <typename ITy> bool match(ITy *V) {
- const auto *BB = dyn_cast<BasicBlock>(V);
- return BB && BB == Val;
- }
- };
- /// Match a specific basic block value.
- inline specific_bbval m_SpecificBB(BasicBlock *BB) {
- return specific_bbval(BB);
- }
- /// A commutative-friendly version of m_Specific().
- inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
- return BB;
- }
- inline deferredval_ty<const BasicBlock>
- m_Deferred(const BasicBlock *const &BB) {
- return BB;
- }
- //===----------------------------------------------------------------------===//
- // Matcher for any binary operator.
- //
- template <typename LHS_t, typename RHS_t, bool Commutable = false>
- struct AnyBinaryOp_match {
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<BinaryOperator>(V))
- return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
- (Commutable && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(0)));
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
- return AnyBinaryOp_match<LHS, RHS>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matcher for any unary operator.
- // TODO fuse unary, binary matcher into n-ary matcher
- //
- template <typename OP_t> struct AnyUnaryOp_match {
- OP_t X;
- AnyUnaryOp_match(const OP_t &X) : X(X) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<UnaryOperator>(V))
- return X.match(I->getOperand(0));
- return false;
- }
- };
- template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
- return AnyUnaryOp_match<OP_t>(X);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for specific binary operators.
- //
- template <typename LHS_t, typename RHS_t, unsigned Opcode,
- bool Commutable = false>
- struct BinaryOp_match {
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<BinaryOperator>(V);
- return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
- (Commutable && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(0)));
- }
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode() == Opcode &&
- ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
- (Commutable && L.match(CE->getOperand(1)) &&
- R.match(CE->getOperand(0))));
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
- }
- template <typename Op_t> struct FNeg_match {
- Op_t X;
- FNeg_match(const Op_t &Op) : X(Op) {}
- template <typename OpTy> bool match(OpTy *V) {
- auto *FPMO = dyn_cast<FPMathOperator>(V);
- if (!FPMO) return false;
- if (FPMO->getOpcode() == Instruction::FNeg)
- return X.match(FPMO->getOperand(0));
- if (FPMO->getOpcode() == Instruction::FSub) {
- if (FPMO->hasNoSignedZeros()) {
- // With 'nsz', any zero goes.
- if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
- return false;
- } else {
- // Without 'nsz', we need fsub -0.0, X exactly.
- if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
- return false;
- }
- return X.match(FPMO->getOperand(1));
- }
- return false;
- }
- };
- /// Match 'fneg X' as 'fsub -0.0, X'.
- template <typename OpTy>
- inline FNeg_match<OpTy>
- m_FNeg(const OpTy &X) {
- return FNeg_match<OpTy>(X);
- }
- /// Match 'fneg X' as 'fsub +-0.0, X'.
- template <typename RHS>
- inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
- m_FNegNSZ(const RHS &X) {
- return m_FSub(m_AnyZeroFP(), X);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
- }
- template <typename LHS_t, typename RHS_t, unsigned Opcode,
- unsigned WrapFlags = 0>
- struct OverflowingBinaryOp_match {
- LHS_t L;
- RHS_t R;
- OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
- : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
- if (Op->getOpcode() != Opcode)
- return false;
- if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
- !Op->hasNoUnsignedWrap())
- return false;
- if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
- !Op->hasNoSignedWrap())
- return false;
- return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
- }
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- //===----------------------------------------------------------------------===//
- // Class that matches a group of binary opcodes.
- //
- template <typename LHS_t, typename RHS_t, typename Predicate>
- struct BinOpPred_match : Predicate {
- LHS_t L;
- RHS_t R;
- BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<Instruction>(V))
- return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
- R.match(I->getOperand(1));
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
- R.match(CE->getOperand(1));
- return false;
- }
- };
- struct is_shift_op {
- bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
- };
- struct is_right_shift_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
- }
- };
- struct is_logical_shift_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
- }
- };
- struct is_bitwiselogic_op {
- bool isOpType(unsigned Opcode) {
- return Instruction::isBitwiseLogicOp(Opcode);
- }
- };
- struct is_idiv_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
- }
- };
- struct is_irem_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::SRem || Opcode == Instruction::URem;
- }
- };
- /// Matches shift operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
- }
- /// Matches logical shift operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
- }
- /// Matches logical shift operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
- m_LogicalShift(const LHS &L, const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
- }
- /// Matches bitwise logic operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
- m_BitwiseLogic(const LHS &L, const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
- }
- /// Matches integer division operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
- }
- /// Matches integer remainder operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Class that matches exact binary ops.
- //
- template <typename SubPattern_t> struct Exact_match {
- SubPattern_t SubPattern;
- Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
- return PEO->isExact() && SubPattern.match(V);
- return false;
- }
- };
- template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
- return SubPattern;
- }
- //===----------------------------------------------------------------------===//
- // Matchers for CmpInst classes
- //
- template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
- bool Commutable = false>
- struct CmpClass_match {
- PredicateTy &Predicate;
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
- : Predicate(Pred), L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<Class>(V)) {
- if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
- Predicate = I->getPredicate();
- return true;
- } else if (Commutable && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(0))) {
- Predicate = I->getSwappedPredicate();
- return true;
- }
- }
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
- m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
- }
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
- m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
- }
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
- m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for instructions with a given opcode and number of operands.
- //
- /// Matches instructions with Opcode and three operands.
- template <typename T0, unsigned Opcode> struct OneOps_match {
- T0 Op1;
- OneOps_match(const T0 &Op1) : Op1(Op1) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<Instruction>(V);
- return Op1.match(I->getOperand(0));
- }
- return false;
- }
- };
- /// Matches instructions with Opcode and three operands.
- template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
- T0 Op1;
- T1 Op2;
- TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<Instruction>(V);
- return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
- }
- return false;
- }
- };
- /// Matches instructions with Opcode and three operands.
- template <typename T0, typename T1, typename T2, unsigned Opcode>
- struct ThreeOps_match {
- T0 Op1;
- T1 Op2;
- T2 Op3;
- ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
- : Op1(Op1), Op2(Op2), Op3(Op3) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<Instruction>(V);
- return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
- Op3.match(I->getOperand(2));
- }
- return false;
- }
- };
- /// Matches SelectInst.
- template <typename Cond, typename LHS, typename RHS>
- inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
- m_Select(const Cond &C, const LHS &L, const RHS &R) {
- return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
- }
- /// This matches a select of two constants, e.g.:
- /// m_SelectCst<-1, 0>(m_Value(V))
- template <int64_t L, int64_t R, typename Cond>
- inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
- Instruction::Select>
- m_SelectCst(const Cond &C) {
- return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
- }
- /// Matches FreezeInst.
- template <typename OpTy>
- inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
- return OneOps_match<OpTy, Instruction::Freeze>(Op);
- }
- /// Matches InsertElementInst.
- template <typename Val_t, typename Elt_t, typename Idx_t>
- inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
- m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
- return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
- Val, Elt, Idx);
- }
- /// Matches ExtractElementInst.
- template <typename Val_t, typename Idx_t>
- inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
- m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
- return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
- }
- /// Matches shuffle.
- template <typename T0, typename T1, typename T2> struct Shuffle_match {
- T0 Op1;
- T1 Op2;
- T2 Mask;
- Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
- : Op1(Op1), Op2(Op2), Mask(Mask) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
- return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
- Mask.match(I->getShuffleMask());
- }
- return false;
- }
- };
- struct m_Mask {
- ArrayRef<int> &MaskRef;
- m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
- bool match(ArrayRef<int> Mask) {
- MaskRef = Mask;
- return true;
- }
- };
- struct m_ZeroMask {
- bool match(ArrayRef<int> Mask) {
- return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
- }
- };
- struct m_SpecificMask {
- ArrayRef<int> &MaskRef;
- m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
- bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
- };
- struct m_SplatOrUndefMask {
- int &SplatIndex;
- m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
- bool match(ArrayRef<int> Mask) {
- auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
- if (First == Mask.end())
- return false;
- SplatIndex = *First;
- return all_of(Mask,
- [First](int Elem) { return Elem == *First || Elem == -1; });
- }
- };
- /// Matches ShuffleVectorInst independently of mask value.
- template <typename V1_t, typename V2_t>
- inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
- m_Shuffle(const V1_t &v1, const V2_t &v2) {
- return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
- }
- template <typename V1_t, typename V2_t, typename Mask_t>
- inline Shuffle_match<V1_t, V2_t, Mask_t>
- m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
- return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
- }
- /// Matches LoadInst.
- template <typename OpTy>
- inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
- return OneOps_match<OpTy, Instruction::Load>(Op);
- }
- /// Matches StoreInst.
- template <typename ValueOpTy, typename PointerOpTy>
- inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
- m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
- return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
- PointerOp);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for CastInst classes
- //
- template <typename Op_t, unsigned Opcode> struct CastClass_match {
- Op_t Op;
- CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *O = dyn_cast<Operator>(V))
- return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
- return false;
- }
- };
- /// Matches BitCast.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::BitCast>(Op);
- }
- /// Matches PtrToInt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
- }
- /// Matches IntToPtr.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
- }
- /// Matches Trunc.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::Trunc>(Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
- m_TruncOrSelf(const OpTy &Op) {
- return m_CombineOr(m_Trunc(Op), Op);
- }
- /// Matches SExt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SExt>(Op);
- }
- /// Matches ZExt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::ZExt>(Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
- m_ZExtOrSelf(const OpTy &Op) {
- return m_CombineOr(m_ZExt(Op), Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
- m_SExtOrSelf(const OpTy &Op) {
- return m_CombineOr(m_SExt(Op), Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
- CastClass_match<OpTy, Instruction::SExt>>
- m_ZExtOrSExt(const OpTy &Op) {
- return m_CombineOr(m_ZExt(Op), m_SExt(Op));
- }
- template <typename OpTy>
- inline match_combine_or<
- match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
- CastClass_match<OpTy, Instruction::SExt>>,
- OpTy>
- m_ZExtOrSExtOrSelf(const OpTy &Op) {
- return m_CombineOr(m_ZExtOrSExt(Op), Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::UIToFP>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SIToFP>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPToUI>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPToSI>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPExt>(Op);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for control flow.
- //
- struct br_match {
- BasicBlock *&Succ;
- br_match(BasicBlock *&Succ) : Succ(Succ) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *BI = dyn_cast<BranchInst>(V))
- if (BI->isUnconditional()) {
- Succ = BI->getSuccessor(0);
- return true;
- }
- return false;
- }
- };
- inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
- template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
- struct brc_match {
- Cond_t Cond;
- TrueBlock_t T;
- FalseBlock_t F;
- brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
- : Cond(C), T(t), F(f) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *BI = dyn_cast<BranchInst>(V))
- if (BI->isConditional() && Cond.match(BI->getCondition()))
- return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
- return false;
- }
- };
- template <typename Cond_t>
- inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
- m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
- return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
- C, m_BasicBlock(T), m_BasicBlock(F));
- }
- template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
- inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
- m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
- return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
- //
- template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
- bool Commutable = false>
- struct MaxMin_match {
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *II = dyn_cast<IntrinsicInst>(V)) {
- Intrinsic::ID IID = II->getIntrinsicID();
- if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
- (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
- (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
- (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
- Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
- return (L.match(LHS) && R.match(RHS)) ||
- (Commutable && L.match(RHS) && R.match(LHS));
- }
- }
- // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
- auto *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return false;
- auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
- if (!Cmp)
- return false;
- // At this point we have a select conditioned on a comparison. Check that
- // it is the values returned by the select that are being compared.
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- if ((TrueVal != LHS || FalseVal != RHS) &&
- (TrueVal != RHS || FalseVal != LHS))
- return false;
- typename CmpInst_t::Predicate Pred =
- LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
- // Does "(x pred y) ? x : y" represent the desired max/min operation?
- if (!Pred_t::match(Pred))
- return false;
- // It does! Bind the operands.
- return (L.match(LHS) && R.match(RHS)) ||
- (Commutable && L.match(RHS) && R.match(LHS));
- }
- };
- /// Helper class for identifying signed max predicates.
- struct smax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
- }
- };
- /// Helper class for identifying signed min predicates.
- struct smin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
- }
- };
- /// Helper class for identifying unsigned max predicates.
- struct umax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
- }
- };
- /// Helper class for identifying unsigned min predicates.
- struct umin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
- }
- };
- /// Helper class for identifying ordered max predicates.
- struct ofmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
- }
- };
- /// Helper class for identifying ordered min predicates.
- struct ofmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
- }
- };
- /// Helper class for identifying unordered max predicates.
- struct ufmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
- }
- };
- /// Helper class for identifying unordered min predicates.
- struct ufmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
- }
- };
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline match_combine_or<
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
- MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
- MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
- m_MaxOrMin(const LHS &L, const RHS &R) {
- return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
- m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
- }
- /// Match an 'ordered' floating point maximum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_OrdFMax(L, R) = R iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
- }
- /// Match an 'ordered' floating point minimum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
- ///
- /// min(L, R) iff L and R are not NaN
- /// m_OrdFMin(L, R) = R iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
- }
- /// Match an 'unordered' floating point maximum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_UnordFMax(L, R) = L iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
- m_UnordFMax(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
- }
- /// Match an 'unordered' floating point minimum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
- ///
- /// min(L, R) iff L and R are not NaN
- /// m_UnordFMin(L, R) = L iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
- m_UnordFMin(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
- // Note that S might be matched to other instructions than AddInst.
- //
- template <typename LHS_t, typename RHS_t, typename Sum_t>
- struct UAddWithOverflow_match {
- LHS_t L;
- RHS_t R;
- Sum_t S;
- UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
- : L(L), R(R), S(S) {}
- template <typename OpTy> bool match(OpTy *V) {
- Value *ICmpLHS, *ICmpRHS;
- ICmpInst::Predicate Pred;
- if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
- return false;
- Value *AddLHS, *AddRHS;
- auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
- // (a + b) u< a, (a + b) u< b
- if (Pred == ICmpInst::ICMP_ULT)
- if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
- // a >u (a + b), b >u (a + b)
- if (Pred == ICmpInst::ICMP_UGT)
- if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
- Value *Op1;
- auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
- // (a ^ -1) <u b
- if (Pred == ICmpInst::ICMP_ULT) {
- if (XorExpr.match(ICmpLHS))
- return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
- }
- // b > u (a ^ -1)
- if (Pred == ICmpInst::ICMP_UGT) {
- if (XorExpr.match(ICmpRHS))
- return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
- }
- // Match special-case for increment-by-1.
- if (Pred == ICmpInst::ICMP_EQ) {
- // (a + 1) == 0
- // (1 + a) == 0
- if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
- (m_One().match(AddLHS) || m_One().match(AddRHS)))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
- // 0 == (a + 1)
- // 0 == (1 + a)
- if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
- (m_One().match(AddLHS) || m_One().match(AddRHS)))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
- }
- return false;
- }
- };
- /// Match an icmp instruction checking for unsigned overflow on addition.
- ///
- /// S is matched to the addition whose result is being checked for overflow, and
- /// L and R are matched to the LHS and RHS of S.
- template <typename LHS_t, typename RHS_t, typename Sum_t>
- UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
- m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
- return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
- }
- template <typename Opnd_t> struct Argument_match {
- unsigned OpI;
- Opnd_t Val;
- Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- // FIXME: Should likely be switched to use `CallBase`.
- if (const auto *CI = dyn_cast<CallInst>(V))
- return Val.match(CI->getArgOperand(OpI));
- return false;
- }
- };
- /// Match an argument.
- template <unsigned OpI, typename Opnd_t>
- inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
- return Argument_match<Opnd_t>(OpI, Op);
- }
- /// Intrinsic matchers.
- struct IntrinsicID_match {
- unsigned ID;
- IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (const auto *CI = dyn_cast<CallInst>(V))
- if (const auto *F = CI->getCalledFunction())
- return F->getIntrinsicID() == ID;
- return false;
- }
- };
- /// Intrinsic matches are combinations of ID matchers, and argument
- /// matchers. Higher arity matcher are defined recursively in terms of and-ing
- /// them with lower arity matchers. Here's some convenient typedefs for up to
- /// several arguments, and more can be added as needed
- template <typename T0 = void, typename T1 = void, typename T2 = void,
- typename T3 = void, typename T4 = void, typename T5 = void,
- typename T6 = void, typename T7 = void, typename T8 = void,
- typename T9 = void, typename T10 = void>
- struct m_Intrinsic_Ty;
- template <typename T0> struct m_Intrinsic_Ty<T0> {
- using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
- };
- template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
- using Ty =
- match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
- };
- template <typename T0, typename T1, typename T2>
- struct m_Intrinsic_Ty<T0, T1, T2> {
- using Ty =
- match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
- Argument_match<T2>>;
- };
- template <typename T0, typename T1, typename T2, typename T3>
- struct m_Intrinsic_Ty<T0, T1, T2, T3> {
- using Ty =
- match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
- Argument_match<T3>>;
- };
- template <typename T0, typename T1, typename T2, typename T3, typename T4>
- struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
- using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
- Argument_match<T4>>;
- };
- template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
- struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
- using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
- Argument_match<T5>>;
- };
- /// Match intrinsic calls like this:
- /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
- template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
- return IntrinsicID_match(IntrID);
- }
- template <Intrinsic::ID IntrID, typename T0>
- inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
- return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1>
- inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
- const T1 &Op1) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
- inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3, typename T4>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
- const T4 &Op4) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
- m_Argument<4>(Op4));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3, typename T4, typename T5>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
- const T4 &Op4, const T5 &Op5) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
- m_Argument<5>(Op5));
- }
- // Helper intrinsic matching specializations.
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::bitreverse>(Op0);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::bswap>(Op0);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::fabs>(Op0);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::canonicalize>(Op0);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
- }
- template <typename Opnd0, typename Opnd1, typename Opnd2>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
- m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
- return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
- }
- template <typename Opnd0, typename Opnd1, typename Opnd2>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
- m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
- return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for two-operands operators with the operators in either order
- //
- /// Matches a BinaryOperator with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
- return AnyBinaryOp_match<LHS, RHS, true>(L, R);
- }
- /// Matches an ICmp with a predicate over LHS and RHS in either order.
- /// Swaps the predicate if operands are commuted.
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
- m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
- R);
- }
- /// Matches a Add with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
- }
- /// Matches a Mul with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
- }
- /// Matches an And with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
- }
- /// Matches an Or with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
- }
- /// Matches an Xor with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
- }
- /// Matches a 'Neg' as 'sub 0, V'.
- template <typename ValTy>
- inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
- m_Neg(const ValTy &V) {
- return m_Sub(m_ZeroInt(), V);
- }
- /// Matches a 'Neg' as 'sub nsw 0, V'.
- template <typename ValTy>
- inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
- Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWNeg(const ValTy &V) {
- return m_NSWSub(m_ZeroInt(), V);
- }
- /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
- template <typename ValTy>
- inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
- m_Not(const ValTy &V) {
- return m_c_Xor(V, m_AllOnes());
- }
- /// Matches an SMin with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
- m_c_SMin(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
- }
- /// Matches an SMax with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
- m_c_SMax(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
- }
- /// Matches a UMin with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
- m_c_UMin(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
- }
- /// Matches a UMax with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
- m_c_UMax(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
- }
- template <typename LHS, typename RHS>
- inline match_combine_or<
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
- MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
- MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
- m_c_MaxOrMin(const LHS &L, const RHS &R) {
- return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
- m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
- }
- /// Matches FAdd with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
- m_c_FAdd(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
- }
- /// Matches FMul with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
- m_c_FMul(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
- }
- template <typename Opnd_t> struct Signum_match {
- Opnd_t Val;
- Signum_match(const Opnd_t &V) : Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- unsigned TypeSize = V->getType()->getScalarSizeInBits();
- if (TypeSize == 0)
- return false;
- unsigned ShiftWidth = TypeSize - 1;
- Value *OpL = nullptr, *OpR = nullptr;
- // This is the representation of signum we match:
- //
- // signum(x) == (x >> 63) | (-x >>u 63)
- //
- // An i1 value is its own signum, so it's correct to match
- //
- // signum(x) == (x >> 0) | (-x >>u 0)
- //
- // for i1 values.
- auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
- auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
- auto Signum = m_Or(LHS, RHS);
- return Signum.match(V) && OpL == OpR && Val.match(OpL);
- }
- };
- /// Matches a signum pattern.
- ///
- /// signum(x) =
- /// x > 0 -> 1
- /// x == 0 -> 0
- /// x < 0 -> -1
- template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
- return Signum_match<Val_t>(V);
- }
- template <int Ind, typename Opnd_t> struct ExtractValue_match {
- Opnd_t Val;
- ExtractValue_match(const Opnd_t &V) : Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<ExtractValueInst>(V))
- return I->getNumIndices() == 1 && I->getIndices()[0] == Ind &&
- Val.match(I->getAggregateOperand());
- return false;
- }
- };
- /// Match a single index ExtractValue instruction.
- /// For example m_ExtractValue<1>(...)
- template <int Ind, typename Val_t>
- inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
- return ExtractValue_match<Ind, Val_t>(V);
- }
- /// Matcher for a single index InsertValue instruction.
- template <int Ind, typename T0, typename T1> struct InsertValue_match {
- T0 Op0;
- T1 Op1;
- InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<InsertValueInst>(V)) {
- return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
- I->getNumIndices() == 1 && Ind == I->getIndices()[0];
- }
- return false;
- }
- };
- /// Matches a single index InsertValue instruction.
- template <int Ind, typename Val_t, typename Elt_t>
- inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
- const Elt_t &Elt) {
- return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
- }
- /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
- /// the constant expression
- /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
- /// under the right conditions determined by DataLayout.
- struct VScaleVal_match {
- private:
- template <typename Base, typename Offset>
- inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
- m_OffsetGep(const Base &B, const Offset &O) {
- return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
- }
- public:
- const DataLayout &DL;
- VScaleVal_match(const DataLayout &DL) : DL(DL) {}
- template <typename ITy> bool match(ITy *V) {
- if (m_Intrinsic<Intrinsic::vscale>().match(V))
- return true;
- if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
- Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
- auto *DerefTy = PtrTy->getPointerElementType();
- if (isa<ScalableVectorType>(DerefTy) &&
- DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
- return true;
- }
- return false;
- }
- };
- inline VScaleVal_match m_VScale(const DataLayout &DL) {
- return VScaleVal_match(DL);
- }
- template <typename LHS, typename RHS, unsigned Opcode>
- struct LogicalOp_match {
- LHS L;
- RHS R;
- LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
- template <typename T> bool match(T *V) {
- if (auto *I = dyn_cast<Instruction>(V)) {
- if (!I->getType()->isIntOrIntVectorTy(1))
- return false;
- if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) &&
- R.match(I->getOperand(1)))
- return true;
- if (auto *SI = dyn_cast<SelectInst>(I)) {
- if (Opcode == Instruction::And) {
- if (const auto *C = dyn_cast<Constant>(SI->getFalseValue()))
- if (C->isNullValue() && L.match(SI->getCondition()) &&
- R.match(SI->getTrueValue()))
- return true;
- } else {
- assert(Opcode == Instruction::Or);
- if (const auto *C = dyn_cast<Constant>(SI->getTrueValue()))
- if (C->isOneValue() && L.match(SI->getCondition()) &&
- R.match(SI->getFalseValue()))
- return true;
- }
- }
- }
- return false;
- }
- };
- /// Matches L && R either in the form of L & R or L ? R : false.
- /// Note that the latter form is poison-blocking.
- template <typename LHS, typename RHS>
- inline LogicalOp_match<LHS, RHS, Instruction::And>
- m_LogicalAnd(const LHS &L, const RHS &R) {
- return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
- }
- /// Matches L || R either in the form of L | R or L ? true : R.
- /// Note that the latter form is poison-blocking.
- template <typename LHS, typename RHS>
- inline LogicalOp_match<LHS, RHS, Instruction::Or>
- m_LogicalOr(const LHS &L, const RHS &R) {
- return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
- }
- } // end namespace PatternMatch
- } // end namespace llvm
- #endif // LLVM_IR_PATTERNMATCH_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|