12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// @file
- /// This file contains the declarations for the subclasses of Constant,
- /// which represent the different flavors of constant values that live in LLVM.
- /// Note that Constants are immutable (once created they never change) and are
- /// fully shared by structural equivalence. This means that two structurally
- /// equivalent constants will always have the same address. Constants are
- /// created on demand as needed and never deleted: thus clients don't have to
- /// worry about the lifetime of the objects.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_IR_CONSTANTS_H
- #define LLVM_IR_CONSTANTS_H
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/OperandTraits.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- namespace llvm {
- template <class ConstantClass> struct ConstantAggrKeyType;
- /// Base class for constants with no operands.
- ///
- /// These constants have no operands; they represent their data directly.
- /// Since they can be in use by unrelated modules (and are never based on
- /// GlobalValues), it never makes sense to RAUW them.
- class ConstantData : public Constant {
- friend class Constant;
- Value *handleOperandChangeImpl(Value *From, Value *To) {
- llvm_unreachable("Constant data does not have operands!");
- }
- protected:
- explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
- void *operator new(size_t s) { return User::operator new(s, 0); }
- public:
- ConstantData(const ConstantData &) = delete;
- /// Methods to support type inquiry through isa, cast, and dyn_cast.
- static bool classof(const Value *V) {
- return V->getValueID() >= ConstantDataFirstVal &&
- V->getValueID() <= ConstantDataLastVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// This is the shared class of boolean and integer constants. This class
- /// represents both boolean and integral constants.
- /// Class for constant integers.
- class ConstantInt final : public ConstantData {
- friend class Constant;
- APInt Val;
- ConstantInt(IntegerType *Ty, const APInt& V);
- void destroyConstantImpl();
- public:
- ConstantInt(const ConstantInt &) = delete;
- static ConstantInt *getTrue(LLVMContext &Context);
- static ConstantInt *getFalse(LLVMContext &Context);
- static ConstantInt *getBool(LLVMContext &Context, bool V);
- static Constant *getTrue(Type *Ty);
- static Constant *getFalse(Type *Ty);
- static Constant *getBool(Type *Ty, bool V);
- /// If Ty is a vector type, return a Constant with a splat of the given
- /// value. Otherwise return a ConstantInt for the given value.
- static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
- /// Return a ConstantInt with the specified integer value for the specified
- /// type. If the type is wider than 64 bits, the value will be zero-extended
- /// to fit the type, unless isSigned is true, in which case the value will
- /// be interpreted as a 64-bit signed integer and sign-extended to fit
- /// the type.
- /// Get a ConstantInt for a specific value.
- static ConstantInt *get(IntegerType *Ty, uint64_t V,
- bool isSigned = false);
- /// Return a ConstantInt with the specified value for the specified type. The
- /// value V will be canonicalized to a an unsigned APInt. Accessing it with
- /// either getSExtValue() or getZExtValue() will yield a correctly sized and
- /// signed value for the type Ty.
- /// Get a ConstantInt for a specific signed value.
- static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
- static Constant *getSigned(Type *Ty, int64_t V);
- /// Return a ConstantInt with the specified value and an implied Type. The
- /// type is the integer type that corresponds to the bit width of the value.
- static ConstantInt *get(LLVMContext &Context, const APInt &V);
- /// Return a ConstantInt constructed from the string strStart with the given
- /// radix.
- static ConstantInt *get(IntegerType *Ty, StringRef Str,
- uint8_t radix);
- /// If Ty is a vector type, return a Constant with a splat of the given
- /// value. Otherwise return a ConstantInt for the given value.
- static Constant *get(Type* Ty, const APInt& V);
- /// Return the constant as an APInt value reference. This allows clients to
- /// obtain a full-precision copy of the value.
- /// Return the constant's value.
- inline const APInt &getValue() const {
- return Val;
- }
- /// getBitWidth - Return the bitwidth of this constant.
- unsigned getBitWidth() const { return Val.getBitWidth(); }
- /// Return the constant as a 64-bit unsigned integer value after it
- /// has been zero extended as appropriate for the type of this constant. Note
- /// that this method can assert if the value does not fit in 64 bits.
- /// Return the zero extended value.
- inline uint64_t getZExtValue() const {
- return Val.getZExtValue();
- }
- /// Return the constant as a 64-bit integer value after it has been sign
- /// extended as appropriate for the type of this constant. Note that
- /// this method can assert if the value does not fit in 64 bits.
- /// Return the sign extended value.
- inline int64_t getSExtValue() const {
- return Val.getSExtValue();
- }
- /// Return the constant as an llvm::MaybeAlign.
- /// Note that this method can assert if the value does not fit in 64 bits or
- /// is not a power of two.
- inline MaybeAlign getMaybeAlignValue() const {
- return MaybeAlign(getZExtValue());
- }
- /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
- /// Note that this method can assert if the value does not fit in 64 bits or
- /// is not a power of two.
- inline Align getAlignValue() const {
- return getMaybeAlignValue().valueOrOne();
- }
- /// A helper method that can be used to determine if the constant contained
- /// within is equal to a constant. This only works for very small values,
- /// because this is all that can be represented with all types.
- /// Determine if this constant's value is same as an unsigned char.
- bool equalsInt(uint64_t V) const {
- return Val == V;
- }
- /// getType - Specialize the getType() method to always return an IntegerType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline IntegerType *getType() const {
- return cast<IntegerType>(Value::getType());
- }
- /// This static method returns true if the type Ty is big enough to
- /// represent the value V. This can be used to avoid having the get method
- /// assert when V is larger than Ty can represent. Note that there are two
- /// versions of this method, one for unsigned and one for signed integers.
- /// Although ConstantInt canonicalizes everything to an unsigned integer,
- /// the signed version avoids callers having to convert a signed quantity
- /// to the appropriate unsigned type before calling the method.
- /// @returns true if V is a valid value for type Ty
- /// Determine if the value is in range for the given type.
- static bool isValueValidForType(Type *Ty, uint64_t V);
- static bool isValueValidForType(Type *Ty, int64_t V);
- bool isNegative() const { return Val.isNegative(); }
- /// This is just a convenience method to make client code smaller for a
- /// common code. It also correctly performs the comparison without the
- /// potential for an assertion from getZExtValue().
- bool isZero() const {
- return Val.isNullValue();
- }
- /// This is just a convenience method to make client code smaller for a
- /// common case. It also correctly performs the comparison without the
- /// potential for an assertion from getZExtValue().
- /// Determine if the value is one.
- bool isOne() const {
- return Val.isOneValue();
- }
- /// This function will return true iff every bit in this constant is set
- /// to true.
- /// @returns true iff this constant's bits are all set to true.
- /// Determine if the value is all ones.
- bool isMinusOne() const {
- return Val.isAllOnesValue();
- }
- /// This function will return true iff this constant represents the largest
- /// value that may be represented by the constant's type.
- /// @returns true iff this is the largest value that may be represented
- /// by this type.
- /// Determine if the value is maximal.
- bool isMaxValue(bool isSigned) const {
- if (isSigned)
- return Val.isMaxSignedValue();
- else
- return Val.isMaxValue();
- }
- /// This function will return true iff this constant represents the smallest
- /// value that may be represented by this constant's type.
- /// @returns true if this is the smallest value that may be represented by
- /// this type.
- /// Determine if the value is minimal.
- bool isMinValue(bool isSigned) const {
- if (isSigned)
- return Val.isMinSignedValue();
- else
- return Val.isMinValue();
- }
- /// This function will return true iff this constant represents a value with
- /// active bits bigger than 64 bits or a value greater than the given uint64_t
- /// value.
- /// @returns true iff this constant is greater or equal to the given number.
- /// Determine if the value is greater or equal to the given number.
- bool uge(uint64_t Num) const {
- return Val.uge(Num);
- }
- /// getLimitedValue - If the value is smaller than the specified limit,
- /// return it, otherwise return the limit value. This causes the value
- /// to saturate to the limit.
- /// @returns the min of the value of the constant and the specified value
- /// Get the constant's value with a saturation limit
- uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
- return Val.getLimitedValue(Limit);
- }
- /// Methods to support type inquiry through isa, cast, and dyn_cast.
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantIntVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// ConstantFP - Floating Point Values [float, double]
- ///
- class ConstantFP final : public ConstantData {
- friend class Constant;
- APFloat Val;
- ConstantFP(Type *Ty, const APFloat& V);
- void destroyConstantImpl();
- public:
- ConstantFP(const ConstantFP &) = delete;
- /// Floating point negation must be implemented with f(x) = -0.0 - x. This
- /// method returns the negative zero constant for floating point or vector
- /// floating point types; for all other types, it returns the null value.
- static Constant *getZeroValueForNegation(Type *Ty);
- /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
- /// for the specified value in the specified type. This should only be used
- /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
- /// host double and as the target format.
- static Constant *get(Type* Ty, double V);
- /// If Ty is a vector type, return a Constant with a splat of the given
- /// value. Otherwise return a ConstantFP for the given value.
- static Constant *get(Type *Ty, const APFloat &V);
- static Constant *get(Type* Ty, StringRef Str);
- static ConstantFP *get(LLVMContext &Context, const APFloat &V);
- static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0);
- static Constant *getQNaN(Type *Ty, bool Negative = false,
- APInt *Payload = nullptr);
- static Constant *getSNaN(Type *Ty, bool Negative = false,
- APInt *Payload = nullptr);
- static Constant *getNegativeZero(Type *Ty);
- static Constant *getInfinity(Type *Ty, bool Negative = false);
- /// Return true if Ty is big enough to represent V.
- static bool isValueValidForType(Type *Ty, const APFloat &V);
- inline const APFloat &getValueAPF() const { return Val; }
- inline const APFloat &getValue() const { return Val; }
- /// Return true if the value is positive or negative zero.
- bool isZero() const { return Val.isZero(); }
- /// Return true if the sign bit is set.
- bool isNegative() const { return Val.isNegative(); }
- /// Return true if the value is infinity
- bool isInfinity() const { return Val.isInfinity(); }
- /// Return true if the value is a NaN.
- bool isNaN() const { return Val.isNaN(); }
- /// We don't rely on operator== working on double values, as it returns true
- /// for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values. The version with a double operand is retained
- /// because it's so convenient to write isExactlyValue(2.0), but please use
- /// it only for simple constants.
- bool isExactlyValue(const APFloat &V) const;
- bool isExactlyValue(double V) const {
- bool ignored;
- APFloat FV(V);
- FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
- return isExactlyValue(FV);
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantFPVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// All zero aggregate value
- ///
- class ConstantAggregateZero final : public ConstantData {
- friend class Constant;
- explicit ConstantAggregateZero(Type *Ty)
- : ConstantData(Ty, ConstantAggregateZeroVal) {}
- void destroyConstantImpl();
- public:
- ConstantAggregateZero(const ConstantAggregateZero &) = delete;
- static ConstantAggregateZero *get(Type *Ty);
- /// If this CAZ has array or vector type, return a zero with the right element
- /// type.
- Constant *getSequentialElement() const;
- /// If this CAZ has struct type, return a zero with the right element type for
- /// the specified element.
- Constant *getStructElement(unsigned Elt) const;
- /// Return a zero of the right value for the specified GEP index if we can,
- /// otherwise return null (e.g. if C is a ConstantExpr).
- Constant *getElementValue(Constant *C) const;
- /// Return a zero of the right value for the specified GEP index.
- Constant *getElementValue(unsigned Idx) const;
- /// Return the number of elements in the array, vector, or struct.
- unsigned getNumElements() const;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- ///
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantAggregateZeroVal;
- }
- };
- /// Base class for aggregate constants (with operands).
- ///
- /// These constants are aggregates of other constants, which are stored as
- /// operands.
- ///
- /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
- /// ConstantVector.
- ///
- /// \note Some subclasses of \a ConstantData are semantically aggregates --
- /// such as \a ConstantDataArray -- but are not subclasses of this because they
- /// use operands.
- class ConstantAggregate : public Constant {
- protected:
- ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
- public:
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() >= ConstantAggregateFirstVal &&
- V->getValueID() <= ConstantAggregateLastVal;
- }
- };
- template <>
- struct OperandTraits<ConstantAggregate>
- : public VariadicOperandTraits<ConstantAggregate> {};
- DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
- //===----------------------------------------------------------------------===//
- /// ConstantArray - Constant Array Declarations
- ///
- class ConstantArray final : public ConstantAggregate {
- friend struct ConstantAggrKeyType<ConstantArray>;
- friend class Constant;
- ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
- void destroyConstantImpl();
- Value *handleOperandChangeImpl(Value *From, Value *To);
- public:
- // ConstantArray accessors
- static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
- private:
- static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
- public:
- /// Specialize the getType() method to always return an ArrayType,
- /// which reduces the amount of casting needed in parts of the compiler.
- inline ArrayType *getType() const {
- return cast<ArrayType>(Value::getType());
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantArrayVal;
- }
- };
- //===----------------------------------------------------------------------===//
- // Constant Struct Declarations
- //
- class ConstantStruct final : public ConstantAggregate {
- friend struct ConstantAggrKeyType<ConstantStruct>;
- friend class Constant;
- ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
- void destroyConstantImpl();
- Value *handleOperandChangeImpl(Value *From, Value *To);
- public:
- // ConstantStruct accessors
- static Constant *get(StructType *T, ArrayRef<Constant*> V);
- template <typename... Csts>
- static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
- get(StructType *T, Csts *... Vs) {
- SmallVector<Constant *, 8> Values({Vs...});
- return get(T, Values);
- }
- /// Return an anonymous struct that has the specified elements.
- /// If the struct is possibly empty, then you must specify a context.
- static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
- return get(getTypeForElements(V, Packed), V);
- }
- static Constant *getAnon(LLVMContext &Ctx,
- ArrayRef<Constant*> V, bool Packed = false) {
- return get(getTypeForElements(Ctx, V, Packed), V);
- }
- /// Return an anonymous struct type to use for a constant with the specified
- /// set of elements. The list must not be empty.
- static StructType *getTypeForElements(ArrayRef<Constant*> V,
- bool Packed = false);
- /// This version of the method allows an empty list.
- static StructType *getTypeForElements(LLVMContext &Ctx,
- ArrayRef<Constant*> V,
- bool Packed = false);
- /// Specialization - reduce amount of casting.
- inline StructType *getType() const {
- return cast<StructType>(Value::getType());
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantStructVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// Constant Vector Declarations
- ///
- class ConstantVector final : public ConstantAggregate {
- friend struct ConstantAggrKeyType<ConstantVector>;
- friend class Constant;
- ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
- void destroyConstantImpl();
- Value *handleOperandChangeImpl(Value *From, Value *To);
- public:
- // ConstantVector accessors
- static Constant *get(ArrayRef<Constant*> V);
- private:
- static Constant *getImpl(ArrayRef<Constant *> V);
- public:
- /// Return a ConstantVector with the specified constant in each element.
- /// Note that this might not return an instance of ConstantVector
- static Constant *getSplat(ElementCount EC, Constant *Elt);
- /// Specialize the getType() method to always return a FixedVectorType,
- /// which reduces the amount of casting needed in parts of the compiler.
- inline FixedVectorType *getType() const {
- return cast<FixedVectorType>(Value::getType());
- }
- /// If all elements of the vector constant have the same value, return that
- /// value. Otherwise, return nullptr. Ignore undefined elements by setting
- /// AllowUndefs to true.
- Constant *getSplatValue(bool AllowUndefs = false) const;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantVectorVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// A constant pointer value that points to null
- ///
- class ConstantPointerNull final : public ConstantData {
- friend class Constant;
- explicit ConstantPointerNull(PointerType *T)
- : ConstantData(T, Value::ConstantPointerNullVal) {}
- void destroyConstantImpl();
- public:
- ConstantPointerNull(const ConstantPointerNull &) = delete;
- /// Static factory methods - Return objects of the specified value
- static ConstantPointerNull *get(PointerType *T);
- /// Specialize the getType() method to always return an PointerType,
- /// which reduces the amount of casting needed in parts of the compiler.
- inline PointerType *getType() const {
- return cast<PointerType>(Value::getType());
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantPointerNullVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// ConstantDataSequential - A vector or array constant whose element type is a
- /// simple 1/2/4/8-byte integer or float/double, and whose elements are just
- /// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
- /// operands because it stores all of the elements of the constant as densely
- /// packed data, instead of as Value*'s.
- ///
- /// This is the common base class of ConstantDataArray and ConstantDataVector.
- ///
- class ConstantDataSequential : public ConstantData {
- friend class LLVMContextImpl;
- friend class Constant;
- /// A pointer to the bytes underlying this constant (which is owned by the
- /// uniquing StringMap).
- const char *DataElements;
- /// This forms a link list of ConstantDataSequential nodes that have
- /// the same value but different type. For example, 0,0,0,1 could be a 4
- /// element array of i8, or a 1-element array of i32. They'll both end up in
- /// the same StringMap bucket, linked up.
- std::unique_ptr<ConstantDataSequential> Next;
- void destroyConstantImpl();
- protected:
- explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
- : ConstantData(ty, VT), DataElements(Data) {}
- static Constant *getImpl(StringRef Bytes, Type *Ty);
- public:
- ConstantDataSequential(const ConstantDataSequential &) = delete;
- /// Return true if a ConstantDataSequential can be formed with a vector or
- /// array of the specified element type.
- /// ConstantDataArray only works with normal float and int types that are
- /// stored densely in memory, not with things like i42 or x86_f80.
- static bool isElementTypeCompatible(Type *Ty);
- /// If this is a sequential container of integers (of any size), return the
- /// specified element in the low bits of a uint64_t.
- uint64_t getElementAsInteger(unsigned i) const;
- /// If this is a sequential container of integers (of any size), return the
- /// specified element as an APInt.
- APInt getElementAsAPInt(unsigned i) const;
- /// If this is a sequential container of floating point type, return the
- /// specified element as an APFloat.
- APFloat getElementAsAPFloat(unsigned i) const;
- /// If this is an sequential container of floats, return the specified element
- /// as a float.
- float getElementAsFloat(unsigned i) const;
- /// If this is an sequential container of doubles, return the specified
- /// element as a double.
- double getElementAsDouble(unsigned i) const;
- /// Return a Constant for a specified index's element.
- /// Note that this has to compute a new constant to return, so it isn't as
- /// efficient as getElementAsInteger/Float/Double.
- Constant *getElementAsConstant(unsigned i) const;
- /// Return the element type of the array/vector.
- Type *getElementType() const;
- /// Return the number of elements in the array or vector.
- unsigned getNumElements() const;
- /// Return the size (in bytes) of each element in the array/vector.
- /// The size of the elements is known to be a multiple of one byte.
- uint64_t getElementByteSize() const;
- /// This method returns true if this is an array of \p CharSize integers.
- bool isString(unsigned CharSize = 8) const;
- /// This method returns true if the array "isString", ends with a null byte,
- /// and does not contains any other null bytes.
- bool isCString() const;
- /// If this array is isString(), then this method returns the array as a
- /// StringRef. Otherwise, it asserts out.
- StringRef getAsString() const {
- assert(isString() && "Not a string");
- return getRawDataValues();
- }
- /// If this array is isCString(), then this method returns the array (without
- /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
- StringRef getAsCString() const {
- assert(isCString() && "Isn't a C string");
- StringRef Str = getAsString();
- return Str.substr(0, Str.size()-1);
- }
- /// Return the raw, underlying, bytes of this data. Note that this is an
- /// extremely tricky thing to work with, as it exposes the host endianness of
- /// the data elements.
- StringRef getRawDataValues() const;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantDataArrayVal ||
- V->getValueID() == ConstantDataVectorVal;
- }
- private:
- const char *getElementPointer(unsigned Elt) const;
- };
- //===----------------------------------------------------------------------===//
- /// An array constant whose element type is a simple 1/2/4/8-byte integer or
- /// float/double, and whose elements are just simple data values
- /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
- /// stores all of the elements of the constant as densely packed data, instead
- /// of as Value*'s.
- class ConstantDataArray final : public ConstantDataSequential {
- friend class ConstantDataSequential;
- explicit ConstantDataArray(Type *ty, const char *Data)
- : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
- public:
- ConstantDataArray(const ConstantDataArray &) = delete;
- /// get() constructor - Return a constant with array type with an element
- /// count and element type matching the ArrayRef passed in. Note that this
- /// can return a ConstantAggregateZero object.
- template <typename ElementTy>
- static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
- Type::getScalarTy<ElementTy>(Context));
- }
- /// get() constructor - ArrayTy needs to be compatible with
- /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
- template <typename ArrayTy>
- static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
- return ConstantDataArray::get(Context, makeArrayRef(Elts));
- }
- /// get() constructor - Return a constant with array type with an element
- /// count and element type matching the NumElements and ElementTy parameters
- /// passed in. Note that this can return a ConstantAggregateZero object.
- /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the
- /// buffer containing the elements. Be careful to make sure Data uses the
- /// right endianness, the buffer will be used as-is.
- static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) {
- Type *Ty = ArrayType::get(ElementTy, NumElements);
- return getImpl(Data, Ty);
- }
- /// getFP() constructors - Return a constant of array type with a float
- /// element type taken from argument `ElementType', and count taken from
- /// argument `Elts'. The amount of bits of the contained type must match the
- /// number of bits of the type contained in the passed in ArrayRef.
- /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
- /// that this can return a ConstantAggregateZero object.
- static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
- static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
- static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
- /// This method constructs a CDS and initializes it with a text string.
- /// The default behavior (AddNull==true) causes a null terminator to
- /// be placed at the end of the array (increasing the length of the string by
- /// one more than the StringRef would normally indicate. Pass AddNull=false
- /// to disable this behavior.
- static Constant *getString(LLVMContext &Context, StringRef Initializer,
- bool AddNull = true);
- /// Specialize the getType() method to always return an ArrayType,
- /// which reduces the amount of casting needed in parts of the compiler.
- inline ArrayType *getType() const {
- return cast<ArrayType>(Value::getType());
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantDataArrayVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
- /// float/double, and whose elements are just simple data values
- /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
- /// stores all of the elements of the constant as densely packed data, instead
- /// of as Value*'s.
- class ConstantDataVector final : public ConstantDataSequential {
- friend class ConstantDataSequential;
- explicit ConstantDataVector(Type *ty, const char *Data)
- : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
- IsSplatSet(false) {}
- // Cache whether or not the constant is a splat.
- mutable bool IsSplatSet : 1;
- mutable bool IsSplat : 1;
- bool isSplatData() const;
- public:
- ConstantDataVector(const ConstantDataVector &) = delete;
- /// get() constructors - Return a constant with vector type with an element
- /// count and element type matching the ArrayRef passed in. Note that this
- /// can return a ConstantAggregateZero object.
- static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
- /// getFP() constructors - Return a constant of vector type with a float
- /// element type taken from argument `ElementType', and count taken from
- /// argument `Elts'. The amount of bits of the contained type must match the
- /// number of bits of the type contained in the passed in ArrayRef.
- /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
- /// that this can return a ConstantAggregateZero object.
- static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
- static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
- static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
- /// Return a ConstantVector with the specified constant in each element.
- /// The specified constant has to be a of a compatible type (i8/i16/
- /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
- static Constant *getSplat(unsigned NumElts, Constant *Elt);
- /// Returns true if this is a splat constant, meaning that all elements have
- /// the same value.
- bool isSplat() const;
- /// If this is a splat constant, meaning that all of the elements have the
- /// same value, return that value. Otherwise return NULL.
- Constant *getSplatValue() const;
- /// Specialize the getType() method to always return a FixedVectorType,
- /// which reduces the amount of casting needed in parts of the compiler.
- inline FixedVectorType *getType() const {
- return cast<FixedVectorType>(Value::getType());
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantDataVectorVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// A constant token which is empty
- ///
- class ConstantTokenNone final : public ConstantData {
- friend class Constant;
- explicit ConstantTokenNone(LLVMContext &Context)
- : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
- void destroyConstantImpl();
- public:
- ConstantTokenNone(const ConstantTokenNone &) = delete;
- /// Return the ConstantTokenNone.
- static ConstantTokenNone *get(LLVMContext &Context);
- /// Methods to support type inquiry through isa, cast, and dyn_cast.
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantTokenNoneVal;
- }
- };
- /// The address of a basic block.
- ///
- class BlockAddress final : public Constant {
- friend class Constant;
- BlockAddress(Function *F, BasicBlock *BB);
- void *operator new(size_t s) { return User::operator new(s, 2); }
- void destroyConstantImpl();
- Value *handleOperandChangeImpl(Value *From, Value *To);
- public:
- /// Return a BlockAddress for the specified function and basic block.
- static BlockAddress *get(Function *F, BasicBlock *BB);
- /// Return a BlockAddress for the specified basic block. The basic
- /// block must be embedded into a function.
- static BlockAddress *get(BasicBlock *BB);
- /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
- ///
- /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
- static BlockAddress *lookup(const BasicBlock *BB);
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
- Function *getFunction() const { return (Function*)Op<0>().get(); }
- BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == BlockAddressVal;
- }
- };
- template <>
- struct OperandTraits<BlockAddress> :
- public FixedNumOperandTraits<BlockAddress, 2> {
- };
- DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
- /// Wrapper for a function that represents a value that
- /// functionally represents the original function. This can be a function,
- /// global alias to a function, or an ifunc.
- class DSOLocalEquivalent final : public Constant {
- friend class Constant;
- DSOLocalEquivalent(GlobalValue *GV);
- void *operator new(size_t s) { return User::operator new(s, 1); }
- void destroyConstantImpl();
- Value *handleOperandChangeImpl(Value *From, Value *To);
- public:
- /// Return a DSOLocalEquivalent for the specified global value.
- static DSOLocalEquivalent *get(GlobalValue *GV);
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
- GlobalValue *getGlobalValue() const {
- return cast<GlobalValue>(Op<0>().get());
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == DSOLocalEquivalentVal;
- }
- };
- template <>
- struct OperandTraits<DSOLocalEquivalent>
- : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
- DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
- //===----------------------------------------------------------------------===//
- /// A constant value that is initialized with an expression using
- /// other constant values.
- ///
- /// This class uses the standard Instruction opcodes to define the various
- /// constant expressions. The Opcode field for the ConstantExpr class is
- /// maintained in the Value::SubclassData field.
- class ConstantExpr : public Constant {
- friend struct ConstantExprKeyType;
- friend class Constant;
- void destroyConstantImpl();
- Value *handleOperandChangeImpl(Value *From, Value *To);
- protected:
- ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
- : Constant(ty, ConstantExprVal, Ops, NumOps) {
- // Operation type (an Instruction opcode) is stored as the SubclassData.
- setValueSubclassData(Opcode);
- }
- ~ConstantExpr() = default;
- public:
- // Static methods to construct a ConstantExpr of different kinds. Note that
- // these methods may return a object that is not an instance of the
- // ConstantExpr class, because they will attempt to fold the constant
- // expression into something simpler if possible.
- /// getAlignOf constant expr - computes the alignment of a type in a target
- /// independent way (Note: the return type is an i64).
- static Constant *getAlignOf(Type *Ty);
- /// getSizeOf constant expr - computes the (alloc) size of a type (in
- /// address-units, not bits) in a target independent way (Note: the return
- /// type is an i64).
- ///
- static Constant *getSizeOf(Type *Ty);
- /// getOffsetOf constant expr - computes the offset of a struct field in a
- /// target independent way (Note: the return type is an i64).
- ///
- static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
- /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
- /// which supports any aggregate type, and any Constant index.
- ///
- static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
- static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
- static Constant *getFNeg(Constant *C);
- static Constant *getNot(Constant *C);
- static Constant *getAdd(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getFAdd(Constant *C1, Constant *C2);
- static Constant *getSub(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getFSub(Constant *C1, Constant *C2);
- static Constant *getMul(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getFMul(Constant *C1, Constant *C2);
- static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getFDiv(Constant *C1, Constant *C2);
- static Constant *getURem(Constant *C1, Constant *C2);
- static Constant *getSRem(Constant *C1, Constant *C2);
- static Constant *getFRem(Constant *C1, Constant *C2);
- static Constant *getAnd(Constant *C1, Constant *C2);
- static Constant *getOr(Constant *C1, Constant *C2);
- static Constant *getXor(Constant *C1, Constant *C2);
- static Constant *getUMin(Constant *C1, Constant *C2);
- static Constant *getShl(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getFPTrunc(Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- static Constant *getFPExtend(Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
- static Constant *getPtrToInt(Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- static Constant *getIntToPtr(Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- static Constant *getBitCast(Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
- static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
- static Constant *getNSWAdd(Constant *C1, Constant *C2) {
- return getAdd(C1, C2, false, true);
- }
- static Constant *getNUWAdd(Constant *C1, Constant *C2) {
- return getAdd(C1, C2, true, false);
- }
- static Constant *getNSWSub(Constant *C1, Constant *C2) {
- return getSub(C1, C2, false, true);
- }
- static Constant *getNUWSub(Constant *C1, Constant *C2) {
- return getSub(C1, C2, true, false);
- }
- static Constant *getNSWMul(Constant *C1, Constant *C2) {
- return getMul(C1, C2, false, true);
- }
- static Constant *getNUWMul(Constant *C1, Constant *C2) {
- return getMul(C1, C2, true, false);
- }
- static Constant *getNSWShl(Constant *C1, Constant *C2) {
- return getShl(C1, C2, false, true);
- }
- static Constant *getNUWShl(Constant *C1, Constant *C2) {
- return getShl(C1, C2, true, false);
- }
- static Constant *getExactSDiv(Constant *C1, Constant *C2) {
- return getSDiv(C1, C2, true);
- }
- static Constant *getExactUDiv(Constant *C1, Constant *C2) {
- return getUDiv(C1, C2, true);
- }
- static Constant *getExactAShr(Constant *C1, Constant *C2) {
- return getAShr(C1, C2, true);
- }
- static Constant *getExactLShr(Constant *C1, Constant *C2) {
- return getLShr(C1, C2, true);
- }
- /// If C is a scalar/fixed width vector of known powers of 2, then this
- /// function returns a new scalar/fixed width vector obtained from logBase2
- /// of C. Undef vector elements are set to zero.
- /// Return a null pointer otherwise.
- static Constant *getExactLogBase2(Constant *C);
- /// Return the identity constant for a binary opcode.
- /// The identity constant C is defined as X op C = X and C op X = X for every
- /// X when the binary operation is commutative. If the binop is not
- /// commutative, callers can acquire the operand 1 identity constant by
- /// setting AllowRHSConstant to true. For example, any shift has a zero
- /// identity constant for operand 1: X shift 0 = X.
- /// Return nullptr if the operator does not have an identity constant.
- static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
- bool AllowRHSConstant = false);
- /// Return the absorbing element for the given binary
- /// operation, i.e. a constant C such that X op C = C and C op X = C for
- /// every X. For example, this returns zero for integer multiplication.
- /// It returns null if the operator doesn't have an absorbing element.
- static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
- /// Convenience function for getting a Cast operation.
- ///
- /// \param ops The opcode for the conversion
- /// \param C The constant to be converted
- /// \param Ty The type to which the constant is converted
- /// \param OnlyIfReduced see \a getWithOperands() docs.
- static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
- bool OnlyIfReduced = false);
- // Create a ZExt or BitCast cast constant expression
- static Constant *getZExtOrBitCast(
- Constant *C, ///< The constant to zext or bitcast
- Type *Ty ///< The type to zext or bitcast C to
- );
- // Create a SExt or BitCast cast constant expression
- static Constant *getSExtOrBitCast(
- Constant *C, ///< The constant to sext or bitcast
- Type *Ty ///< The type to sext or bitcast C to
- );
- // Create a Trunc or BitCast cast constant expression
- static Constant *getTruncOrBitCast(
- Constant *C, ///< The constant to trunc or bitcast
- Type *Ty ///< The type to trunc or bitcast C to
- );
- /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
- /// expression.
- static Constant *getPointerCast(
- Constant *C, ///< The pointer value to be casted (operand 0)
- Type *Ty ///< The type to which cast should be made
- );
- /// Create a BitCast or AddrSpaceCast for a pointer type depending on
- /// the address space.
- static Constant *getPointerBitCastOrAddrSpaceCast(
- Constant *C, ///< The constant to addrspacecast or bitcast
- Type *Ty ///< The type to bitcast or addrspacecast C to
- );
- /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
- static Constant *getIntegerCast(
- Constant *C, ///< The integer constant to be casted
- Type *Ty, ///< The integer type to cast to
- bool isSigned ///< Whether C should be treated as signed or not
- );
- /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
- static Constant *getFPCast(
- Constant *C, ///< The integer constant to be casted
- Type *Ty ///< The integer type to cast to
- );
- /// Return true if this is a convert constant expression
- bool isCast() const;
- /// Return true if this is a compare constant expression
- bool isCompare() const;
- /// Return true if this is an insertvalue or extractvalue expression,
- /// and the getIndices() method may be used.
- bool hasIndices() const;
- /// Return true if this is a getelementptr expression and all
- /// the index operands are compile-time known integers within the
- /// corresponding notional static array extents. Note that this is
- /// not equivalant to, a subset of, or a superset of the "inbounds"
- /// property.
- bool isGEPWithNoNotionalOverIndexing() const;
- /// Select constant expr
- ///
- /// \param OnlyIfReducedTy see \a getWithOperands() docs.
- static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
- Type *OnlyIfReducedTy = nullptr);
- /// get - Return a unary operator constant expression,
- /// folding if possible.
- ///
- /// \param OnlyIfReducedTy see \a getWithOperands() docs.
- static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0,
- Type *OnlyIfReducedTy = nullptr);
- /// get - Return a binary or shift operator constant expression,
- /// folding if possible.
- ///
- /// \param OnlyIfReducedTy see \a getWithOperands() docs.
- static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
- unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
- /// Return an ICmp or FCmp comparison operator constant expression.
- ///
- /// \param OnlyIfReduced see \a getWithOperands() docs.
- static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
- bool OnlyIfReduced = false);
- /// get* - Return some common constants without having to
- /// specify the full Instruction::OPCODE identifier.
- ///
- static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
- bool OnlyIfReduced = false);
- static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
- bool OnlyIfReduced = false);
- /// Getelementptr form. Value* is only accepted for convenience;
- /// all elements must be Constants.
- ///
- /// \param InRangeIndex the inrange index if present or None.
- /// \param OnlyIfReducedTy see \a getWithOperands() docs.
- static Constant *getGetElementPtr(Type *Ty, Constant *C,
- ArrayRef<Constant *> IdxList,
- bool InBounds = false,
- Optional<unsigned> InRangeIndex = None,
- Type *OnlyIfReducedTy = nullptr) {
- return getGetElementPtr(
- Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
- InBounds, InRangeIndex, OnlyIfReducedTy);
- }
- static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
- bool InBounds = false,
- Optional<unsigned> InRangeIndex = None,
- Type *OnlyIfReducedTy = nullptr) {
- // This form of the function only exists to avoid ambiguous overload
- // warnings about whether to convert Idx to ArrayRef<Constant *> or
- // ArrayRef<Value *>.
- return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
- OnlyIfReducedTy);
- }
- static Constant *getGetElementPtr(Type *Ty, Constant *C,
- ArrayRef<Value *> IdxList,
- bool InBounds = false,
- Optional<unsigned> InRangeIndex = None,
- Type *OnlyIfReducedTy = nullptr);
- /// Create an "inbounds" getelementptr. See the documentation for the
- /// "inbounds" flag in LangRef.html for details.
- static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
- ArrayRef<Constant *> IdxList) {
- return getGetElementPtr(Ty, C, IdxList, true);
- }
- static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
- Constant *Idx) {
- // This form of the function only exists to avoid ambiguous overload
- // warnings about whether to convert Idx to ArrayRef<Constant *> or
- // ArrayRef<Value *>.
- return getGetElementPtr(Ty, C, Idx, true);
- }
- static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
- ArrayRef<Value *> IdxList) {
- return getGetElementPtr(Ty, C, IdxList, true);
- }
- static Constant *getExtractElement(Constant *Vec, Constant *Idx,
- Type *OnlyIfReducedTy = nullptr);
- static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
- Type *OnlyIfReducedTy = nullptr);
- static Constant *getShuffleVector(Constant *V1, Constant *V2,
- ArrayRef<int> Mask,
- Type *OnlyIfReducedTy = nullptr);
- static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
- Type *OnlyIfReducedTy = nullptr);
- static Constant *getInsertValue(Constant *Agg, Constant *Val,
- ArrayRef<unsigned> Idxs,
- Type *OnlyIfReducedTy = nullptr);
- /// Return the opcode at the root of this constant expression
- unsigned getOpcode() const { return getSubclassDataFromValue(); }
- /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
- /// FCMP constant expression.
- unsigned getPredicate() const;
- /// Assert that this is an insertvalue or exactvalue
- /// expression and return the list of indices.
- ArrayRef<unsigned> getIndices() const;
- /// Assert that this is a shufflevector and return the mask. See class
- /// ShuffleVectorInst for a description of the mask representation.
- ArrayRef<int> getShuffleMask() const;
- /// Assert that this is a shufflevector and return the mask.
- ///
- /// TODO: This is a temporary hack until we update the bitcode format for
- /// shufflevector.
- Constant *getShuffleMaskForBitcode() const;
- /// Return a string representation for an opcode.
- const char *getOpcodeName() const;
- /// Return a constant expression identical to this one, but with the specified
- /// operand set to the specified value.
- Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
- /// This returns the current constant expression with the operands replaced
- /// with the specified values. The specified array must have the same number
- /// of operands as our current one.
- Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
- return getWithOperands(Ops, getType());
- }
- /// Get the current expression with the operands replaced.
- ///
- /// Return the current constant expression with the operands replaced with \c
- /// Ops and the type with \c Ty. The new operands must have the same number
- /// as the current ones.
- ///
- /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
- /// gets constant-folded, the type changes, or the expression is otherwise
- /// canonicalized. This parameter should almost always be \c false.
- Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
- bool OnlyIfReduced = false,
- Type *SrcTy = nullptr) const;
- /// Returns an Instruction which implements the same operation as this
- /// ConstantExpr. The instruction is not linked to any basic block.
- ///
- /// A better approach to this could be to have a constructor for Instruction
- /// which would take a ConstantExpr parameter, but that would have spread
- /// implementation details of ConstantExpr outside of Constants.cpp, which
- /// would make it harder to remove ConstantExprs altogether.
- Instruction *getAsInstruction() const;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantExprVal;
- }
- private:
- // Shadow Value::setValueSubclassData with a private forwarding method so that
- // subclasses cannot accidentally use it.
- void setValueSubclassData(unsigned short D) {
- Value::setValueSubclassData(D);
- }
- };
- template <>
- struct OperandTraits<ConstantExpr> :
- public VariadicOperandTraits<ConstantExpr, 1> {
- };
- DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
- //===----------------------------------------------------------------------===//
- /// 'undef' values are things that do not have specified contents.
- /// These are used for a variety of purposes, including global variable
- /// initializers and operands to instructions. 'undef' values can occur with
- /// any first-class type.
- ///
- /// Undef values aren't exactly constants; if they have multiple uses, they
- /// can appear to have different bit patterns at each use. See
- /// LangRef.html#undefvalues for details.
- ///
- class UndefValue : public ConstantData {
- friend class Constant;
- explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
- void destroyConstantImpl();
- protected:
- explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
- public:
- UndefValue(const UndefValue &) = delete;
- /// Static factory methods - Return an 'undef' object of the specified type.
- static UndefValue *get(Type *T);
- /// If this Undef has array or vector type, return a undef with the right
- /// element type.
- UndefValue *getSequentialElement() const;
- /// If this undef has struct type, return a undef with the right element type
- /// for the specified element.
- UndefValue *getStructElement(unsigned Elt) const;
- /// Return an undef of the right value for the specified GEP index if we can,
- /// otherwise return null (e.g. if C is a ConstantExpr).
- UndefValue *getElementValue(Constant *C) const;
- /// Return an undef of the right value for the specified GEP index.
- UndefValue *getElementValue(unsigned Idx) const;
- /// Return the number of elements in the array, vector, or struct.
- unsigned getNumElements() const;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == UndefValueVal ||
- V->getValueID() == PoisonValueVal;
- }
- };
- //===----------------------------------------------------------------------===//
- /// In order to facilitate speculative execution, many instructions do not
- /// invoke immediate undefined behavior when provided with illegal operands,
- /// and return a poison value instead.
- ///
- /// see LangRef.html#poisonvalues for details.
- ///
- class PoisonValue final : public UndefValue {
- friend class Constant;
- explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
- void destroyConstantImpl();
- public:
- PoisonValue(const PoisonValue &) = delete;
- /// Static factory methods - Return an 'poison' object of the specified type.
- static PoisonValue *get(Type *T);
- /// If this poison has array or vector type, return a poison with the right
- /// element type.
- PoisonValue *getSequentialElement() const;
- /// If this poison has struct type, return a poison with the right element
- /// type for the specified element.
- PoisonValue *getStructElement(unsigned Elt) const;
- /// Return an poison of the right value for the specified GEP index if we can,
- /// otherwise return null (e.g. if C is a ConstantExpr).
- PoisonValue *getElementValue(Constant *C) const;
- /// Return an poison of the right value for the specified GEP index.
- PoisonValue *getElementValue(unsigned Idx) const;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == PoisonValueVal;
- }
- };
- } // end namespace llvm
- #endif // LLVM_IR_CONSTANTS_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|