ConstantRange.h 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. #pragma once
  2. #ifdef __GNUC__
  3. #pragma GCC diagnostic push
  4. #pragma GCC diagnostic ignored "-Wunused-parameter"
  5. #endif
  6. //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
  7. //
  8. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  9. // See https://llvm.org/LICENSE.txt for license information.
  10. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  11. //
  12. //===----------------------------------------------------------------------===//
  13. //
  14. // Represent a range of possible values that may occur when the program is run
  15. // for an integral value. This keeps track of a lower and upper bound for the
  16. // constant, which MAY wrap around the end of the numeric range. To do this, it
  17. // keeps track of a [lower, upper) bound, which specifies an interval just like
  18. // STL iterators. When used with boolean values, the following are important
  19. // ranges: :
  20. //
  21. // [F, F) = {} = Empty set
  22. // [T, F) = {T}
  23. // [F, T) = {F}
  24. // [T, T) = {F, T} = Full set
  25. //
  26. // The other integral ranges use min/max values for special range values. For
  27. // example, for 8-bit types, it uses:
  28. // [0, 0) = {} = Empty set
  29. // [255, 255) = {0..255} = Full Set
  30. //
  31. // Note that ConstantRange can be used to represent either signed or
  32. // unsigned ranges.
  33. //
  34. //===----------------------------------------------------------------------===//
  35. #ifndef LLVM_IR_CONSTANTRANGE_H
  36. #define LLVM_IR_CONSTANTRANGE_H
  37. #include "llvm/ADT/APInt.h"
  38. #include "llvm/IR/InstrTypes.h"
  39. #include "llvm/IR/Instruction.h"
  40. #include "llvm/Support/Compiler.h"
  41. #include <cstdint>
  42. namespace llvm {
  43. class MDNode;
  44. class raw_ostream;
  45. struct KnownBits;
  46. /// This class represents a range of values.
  47. class LLVM_NODISCARD ConstantRange {
  48. APInt Lower, Upper;
  49. /// Create empty constant range with same bitwidth.
  50. ConstantRange getEmpty() const {
  51. return ConstantRange(getBitWidth(), false);
  52. }
  53. /// Create full constant range with same bitwidth.
  54. ConstantRange getFull() const {
  55. return ConstantRange(getBitWidth(), true);
  56. }
  57. public:
  58. /// Initialize a full or empty set for the specified bit width.
  59. explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
  60. /// Initialize a range to hold the single specified value.
  61. ConstantRange(APInt Value);
  62. /// Initialize a range of values explicitly. This will assert out if
  63. /// Lower==Upper and Lower != Min or Max value for its type. It will also
  64. /// assert out if the two APInt's are not the same bit width.
  65. ConstantRange(APInt Lower, APInt Upper);
  66. /// Create empty constant range with the given bit width.
  67. static ConstantRange getEmpty(uint32_t BitWidth) {
  68. return ConstantRange(BitWidth, false);
  69. }
  70. /// Create full constant range with the given bit width.
  71. static ConstantRange getFull(uint32_t BitWidth) {
  72. return ConstantRange(BitWidth, true);
  73. }
  74. /// Create non-empty constant range with the given bounds. If Lower and
  75. /// Upper are the same, a full range is returned.
  76. static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
  77. if (Lower == Upper)
  78. return getFull(Lower.getBitWidth());
  79. return ConstantRange(std::move(Lower), std::move(Upper));
  80. }
  81. /// Initialize a range based on a known bits constraint. The IsSigned flag
  82. /// indicates whether the constant range should not wrap in the signed or
  83. /// unsigned domain.
  84. static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
  85. /// Produce the smallest range such that all values that may satisfy the given
  86. /// predicate with any value contained within Other is contained in the
  87. /// returned range. Formally, this returns a superset of
  88. /// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
  89. /// answer is not representable as a ConstantRange, the return value will be a
  90. /// proper superset of the above.
  91. ///
  92. /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
  93. static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
  94. const ConstantRange &Other);
  95. /// Produce the largest range such that all values in the returned range
  96. /// satisfy the given predicate with all values contained within Other.
  97. /// Formally, this returns a subset of
  98. /// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
  99. /// exact answer is not representable as a ConstantRange, the return value
  100. /// will be a proper subset of the above.
  101. ///
  102. /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
  103. static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
  104. const ConstantRange &Other);
  105. /// Produce the exact range such that all values in the returned range satisfy
  106. /// the given predicate with any value contained within Other. Formally, this
  107. /// returns the exact answer when the superset of 'union over all y in Other
  108. /// is exactly same as the subset of intersection over all y in Other.
  109. /// { x : icmp op x y is true}'.
  110. ///
  111. /// Example: Pred = ult and Other = i8 3 returns [0, 3)
  112. static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
  113. const APInt &Other);
  114. /// Produce the largest range containing all X such that "X BinOp Y" is
  115. /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
  116. /// be *some* Y in Other for which additional X not contained in the result
  117. /// also do not overflow.
  118. ///
  119. /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
  120. ///
  121. /// Examples:
  122. /// typedef OverflowingBinaryOperator OBO;
  123. /// #define MGNR makeGuaranteedNoWrapRegion
  124. /// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
  125. /// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
  126. /// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
  127. /// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
  128. /// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
  129. /// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
  130. static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
  131. const ConstantRange &Other,
  132. unsigned NoWrapKind);
  133. /// Produce the range that contains X if and only if "X BinOp Other" does
  134. /// not wrap.
  135. static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
  136. const APInt &Other,
  137. unsigned NoWrapKind);
  138. /// Returns true if ConstantRange calculations are supported for intrinsic
  139. /// with \p IntrinsicID.
  140. static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
  141. /// Compute range of intrinsic result for the given operand ranges.
  142. static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
  143. ArrayRef<ConstantRange> Ops);
  144. /// Set up \p Pred and \p RHS such that
  145. /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
  146. /// successful.
  147. bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
  148. /// Return the lower value for this range.
  149. const APInt &getLower() const { return Lower; }
  150. /// Return the upper value for this range.
  151. const APInt &getUpper() const { return Upper; }
  152. /// Get the bit width of this ConstantRange.
  153. uint32_t getBitWidth() const { return Lower.getBitWidth(); }
  154. /// Return true if this set contains all of the elements possible
  155. /// for this data-type.
  156. bool isFullSet() const;
  157. /// Return true if this set contains no members.
  158. bool isEmptySet() const;
  159. /// Return true if this set wraps around the unsigned domain. Special cases:
  160. /// * Empty set: Not wrapped.
  161. /// * Full set: Not wrapped.
  162. /// * [X, 0) == [X, Max]: Not wrapped.
  163. bool isWrappedSet() const;
  164. /// Return true if the exclusive upper bound wraps around the unsigned
  165. /// domain. Special cases:
  166. /// * Empty set: Not wrapped.
  167. /// * Full set: Not wrapped.
  168. /// * [X, 0): Wrapped.
  169. bool isUpperWrapped() const;
  170. /// Return true if this set wraps around the signed domain. Special cases:
  171. /// * Empty set: Not wrapped.
  172. /// * Full set: Not wrapped.
  173. /// * [X, SignedMin) == [X, SignedMax]: Not wrapped.
  174. bool isSignWrappedSet() const;
  175. /// Return true if the (exclusive) upper bound wraps around the signed
  176. /// domain. Special cases:
  177. /// * Empty set: Not wrapped.
  178. /// * Full set: Not wrapped.
  179. /// * [X, SignedMin): Wrapped.
  180. bool isUpperSignWrapped() const;
  181. /// Return true if the specified value is in the set.
  182. bool contains(const APInt &Val) const;
  183. /// Return true if the other range is a subset of this one.
  184. bool contains(const ConstantRange &CR) const;
  185. /// If this set contains a single element, return it, otherwise return null.
  186. const APInt *getSingleElement() const {
  187. if (Upper == Lower + 1)
  188. return &Lower;
  189. return nullptr;
  190. }
  191. /// If this set contains all but a single element, return it, otherwise return
  192. /// null.
  193. const APInt *getSingleMissingElement() const {
  194. if (Lower == Upper + 1)
  195. return &Upper;
  196. return nullptr;
  197. }
  198. /// Return true if this set contains exactly one member.
  199. bool isSingleElement() const { return getSingleElement() != nullptr; }
  200. /// Compare set size of this range with the range CR.
  201. bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
  202. /// Compare set size of this range with Value.
  203. bool isSizeLargerThan(uint64_t MaxSize) const;
  204. /// Return true if all values in this range are negative.
  205. bool isAllNegative() const;
  206. /// Return true if all values in this range are non-negative.
  207. bool isAllNonNegative() const;
  208. /// Return the largest unsigned value contained in the ConstantRange.
  209. APInt getUnsignedMax() const;
  210. /// Return the smallest unsigned value contained in the ConstantRange.
  211. APInt getUnsignedMin() const;
  212. /// Return the largest signed value contained in the ConstantRange.
  213. APInt getSignedMax() const;
  214. /// Return the smallest signed value contained in the ConstantRange.
  215. APInt getSignedMin() const;
  216. /// Return true if this range is equal to another range.
  217. bool operator==(const ConstantRange &CR) const {
  218. return Lower == CR.Lower && Upper == CR.Upper;
  219. }
  220. bool operator!=(const ConstantRange &CR) const {
  221. return !operator==(CR);
  222. }
  223. /// Compute the maximal number of active bits needed to represent every value
  224. /// in this range.
  225. unsigned getActiveBits() const;
  226. /// Compute the maximal number of bits needed to represent every value
  227. /// in this signed range.
  228. unsigned getMinSignedBits() const;
  229. /// Subtract the specified constant from the endpoints of this constant range.
  230. ConstantRange subtract(const APInt &CI) const;
  231. /// Subtract the specified range from this range (aka relative complement of
  232. /// the sets).
  233. ConstantRange difference(const ConstantRange &CR) const;
  234. /// If represented precisely, the result of some range operations may consist
  235. /// of multiple disjoint ranges. As only a single range may be returned, any
  236. /// range covering these disjoint ranges constitutes a valid result, but some
  237. /// may be more useful than others depending on context. The preferred range
  238. /// type specifies whether a range that is non-wrapping in the unsigned or
  239. /// signed domain, or has the smallest size, is preferred. If a signedness is
  240. /// preferred but all ranges are non-wrapping or all wrapping, then the
  241. /// smallest set size is preferred. If there are multiple smallest sets, any
  242. /// one of them may be returned.
  243. enum PreferredRangeType { Smallest, Unsigned, Signed };
  244. /// Return the range that results from the intersection of this range with
  245. /// another range. If the intersection is disjoint, such that two results
  246. /// are possible, the preferred range is determined by the PreferredRangeType.
  247. ConstantRange intersectWith(const ConstantRange &CR,
  248. PreferredRangeType Type = Smallest) const;
  249. /// Return the range that results from the union of this range
  250. /// with another range. The resultant range is guaranteed to include the
  251. /// elements of both sets, but may contain more. For example, [3, 9) union
  252. /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
  253. /// in either set before.
  254. ConstantRange unionWith(const ConstantRange &CR,
  255. PreferredRangeType Type = Smallest) const;
  256. /// Return a new range representing the possible values resulting
  257. /// from an application of the specified cast operator to this range. \p
  258. /// BitWidth is the target bitwidth of the cast. For casts which don't
  259. /// change bitwidth, it must be the same as the source bitwidth. For casts
  260. /// which do change bitwidth, the bitwidth must be consistent with the
  261. /// requested cast and source bitwidth.
  262. ConstantRange castOp(Instruction::CastOps CastOp,
  263. uint32_t BitWidth) const;
  264. /// Return a new range in the specified integer type, which must
  265. /// be strictly larger than the current type. The returned range will
  266. /// correspond to the possible range of values if the source range had been
  267. /// zero extended to BitWidth.
  268. ConstantRange zeroExtend(uint32_t BitWidth) const;
  269. /// Return a new range in the specified integer type, which must
  270. /// be strictly larger than the current type. The returned range will
  271. /// correspond to the possible range of values if the source range had been
  272. /// sign extended to BitWidth.
  273. ConstantRange signExtend(uint32_t BitWidth) const;
  274. /// Return a new range in the specified integer type, which must be
  275. /// strictly smaller than the current type. The returned range will
  276. /// correspond to the possible range of values if the source range had been
  277. /// truncated to the specified type.
  278. ConstantRange truncate(uint32_t BitWidth) const;
  279. /// Make this range have the bit width given by \p BitWidth. The
  280. /// value is zero extended, truncated, or left alone to make it that width.
  281. ConstantRange zextOrTrunc(uint32_t BitWidth) const;
  282. /// Make this range have the bit width given by \p BitWidth. The
  283. /// value is sign extended, truncated, or left alone to make it that width.
  284. ConstantRange sextOrTrunc(uint32_t BitWidth) const;
  285. /// Return a new range representing the possible values resulting
  286. /// from an application of the specified binary operator to an left hand side
  287. /// of this range and a right hand side of \p Other.
  288. ConstantRange binaryOp(Instruction::BinaryOps BinOp,
  289. const ConstantRange &Other) const;
  290. /// Return a new range representing the possible values resulting
  291. /// from an application of the specified overflowing binary operator to a
  292. /// left hand side of this range and a right hand side of \p Other given
  293. /// the provided knowledge about lack of wrapping \p NoWrapKind.
  294. ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
  295. const ConstantRange &Other,
  296. unsigned NoWrapKind) const;
  297. /// Return a new range representing the possible values resulting
  298. /// from an addition of a value in this range and a value in \p Other.
  299. ConstantRange add(const ConstantRange &Other) const;
  300. /// Return a new range representing the possible values resulting
  301. /// from an addition with wrap type \p NoWrapKind of a value in this
  302. /// range and a value in \p Other.
  303. /// If the result range is disjoint, the preferred range is determined by the
  304. /// \p PreferredRangeType.
  305. ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
  306. PreferredRangeType RangeType = Smallest) const;
  307. /// Return a new range representing the possible values resulting
  308. /// from a subtraction of a value in this range and a value in \p Other.
  309. ConstantRange sub(const ConstantRange &Other) const;
  310. /// Return a new range representing the possible values resulting
  311. /// from an subtraction with wrap type \p NoWrapKind of a value in this
  312. /// range and a value in \p Other.
  313. /// If the result range is disjoint, the preferred range is determined by the
  314. /// \p PreferredRangeType.
  315. ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
  316. PreferredRangeType RangeType = Smallest) const;
  317. /// Return a new range representing the possible values resulting
  318. /// from a multiplication of a value in this range and a value in \p Other,
  319. /// treating both this and \p Other as unsigned ranges.
  320. ConstantRange multiply(const ConstantRange &Other) const;
  321. /// Return a new range representing the possible values resulting
  322. /// from a signed maximum of a value in this range and a value in \p Other.
  323. ConstantRange smax(const ConstantRange &Other) const;
  324. /// Return a new range representing the possible values resulting
  325. /// from an unsigned maximum of a value in this range and a value in \p Other.
  326. ConstantRange umax(const ConstantRange &Other) const;
  327. /// Return a new range representing the possible values resulting
  328. /// from a signed minimum of a value in this range and a value in \p Other.
  329. ConstantRange smin(const ConstantRange &Other) const;
  330. /// Return a new range representing the possible values resulting
  331. /// from an unsigned minimum of a value in this range and a value in \p Other.
  332. ConstantRange umin(const ConstantRange &Other) const;
  333. /// Return a new range representing the possible values resulting
  334. /// from an unsigned division of a value in this range and a value in
  335. /// \p Other.
  336. ConstantRange udiv(const ConstantRange &Other) const;
  337. /// Return a new range representing the possible values resulting
  338. /// from a signed division of a value in this range and a value in
  339. /// \p Other. Division by zero and division of SignedMin by -1 are considered
  340. /// undefined behavior, in line with IR, and do not contribute towards the
  341. /// result.
  342. ConstantRange sdiv(const ConstantRange &Other) const;
  343. /// Return a new range representing the possible values resulting
  344. /// from an unsigned remainder operation of a value in this range and a
  345. /// value in \p Other.
  346. ConstantRange urem(const ConstantRange &Other) const;
  347. /// Return a new range representing the possible values resulting
  348. /// from a signed remainder operation of a value in this range and a
  349. /// value in \p Other.
  350. ConstantRange srem(const ConstantRange &Other) const;
  351. /// Return a new range representing the possible values resulting from
  352. /// a binary-xor of a value in this range by an all-one value,
  353. /// aka bitwise complement operation.
  354. ConstantRange binaryNot() const;
  355. /// Return a new range representing the possible values resulting
  356. /// from a binary-and of a value in this range by a value in \p Other.
  357. ConstantRange binaryAnd(const ConstantRange &Other) const;
  358. /// Return a new range representing the possible values resulting
  359. /// from a binary-or of a value in this range by a value in \p Other.
  360. ConstantRange binaryOr(const ConstantRange &Other) const;
  361. /// Return a new range representing the possible values resulting
  362. /// from a binary-xor of a value in this range by a value in \p Other.
  363. ConstantRange binaryXor(const ConstantRange &Other) const;
  364. /// Return a new range representing the possible values resulting
  365. /// from a left shift of a value in this range by a value in \p Other.
  366. /// TODO: This isn't fully implemented yet.
  367. ConstantRange shl(const ConstantRange &Other) const;
  368. /// Return a new range representing the possible values resulting from a
  369. /// logical right shift of a value in this range and a value in \p Other.
  370. ConstantRange lshr(const ConstantRange &Other) const;
  371. /// Return a new range representing the possible values resulting from a
  372. /// arithmetic right shift of a value in this range and a value in \p Other.
  373. ConstantRange ashr(const ConstantRange &Other) const;
  374. /// Perform an unsigned saturating addition of two constant ranges.
  375. ConstantRange uadd_sat(const ConstantRange &Other) const;
  376. /// Perform a signed saturating addition of two constant ranges.
  377. ConstantRange sadd_sat(const ConstantRange &Other) const;
  378. /// Perform an unsigned saturating subtraction of two constant ranges.
  379. ConstantRange usub_sat(const ConstantRange &Other) const;
  380. /// Perform a signed saturating subtraction of two constant ranges.
  381. ConstantRange ssub_sat(const ConstantRange &Other) const;
  382. /// Perform an unsigned saturating multiplication of two constant ranges.
  383. ConstantRange umul_sat(const ConstantRange &Other) const;
  384. /// Perform a signed saturating multiplication of two constant ranges.
  385. ConstantRange smul_sat(const ConstantRange &Other) const;
  386. /// Perform an unsigned saturating left shift of this constant range by a
  387. /// value in \p Other.
  388. ConstantRange ushl_sat(const ConstantRange &Other) const;
  389. /// Perform a signed saturating left shift of this constant range by a
  390. /// value in \p Other.
  391. ConstantRange sshl_sat(const ConstantRange &Other) const;
  392. /// Return a new range that is the logical not of the current set.
  393. ConstantRange inverse() const;
  394. /// Calculate absolute value range. If the original range contains signed
  395. /// min, then the resulting range will contain signed min if and only if
  396. /// \p IntMinIsPoison is false.
  397. ConstantRange abs(bool IntMinIsPoison = false) const;
  398. /// Represents whether an operation on the given constant range is known to
  399. /// always or never overflow.
  400. enum class OverflowResult {
  401. /// Always overflows in the direction of signed/unsigned min value.
  402. AlwaysOverflowsLow,
  403. /// Always overflows in the direction of signed/unsigned max value.
  404. AlwaysOverflowsHigh,
  405. /// May or may not overflow.
  406. MayOverflow,
  407. /// Never overflows.
  408. NeverOverflows,
  409. };
  410. /// Return whether unsigned add of the two ranges always/never overflows.
  411. OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
  412. /// Return whether signed add of the two ranges always/never overflows.
  413. OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
  414. /// Return whether unsigned sub of the two ranges always/never overflows.
  415. OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
  416. /// Return whether signed sub of the two ranges always/never overflows.
  417. OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
  418. /// Return whether unsigned mul of the two ranges always/never overflows.
  419. OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
  420. /// Print out the bounds to a stream.
  421. void print(raw_ostream &OS) const;
  422. /// Allow printing from a debugger easily.
  423. void dump() const;
  424. };
  425. inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
  426. CR.print(OS);
  427. return OS;
  428. }
  429. /// Parse out a conservative ConstantRange from !range metadata.
  430. ///
  431. /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
  432. ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
  433. } // end namespace llvm
  434. #endif // LLVM_IR_CONSTANTRANGE_H
  435. #ifdef __GNUC__
  436. #pragma GCC diagnostic pop
  437. #endif