123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- #ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
- #define LLVM_ANALYSIS_UTILS_TFUTILS_H
- #include "llvm/Config/llvm-config.h"
- #ifdef LLVM_HAVE_TF_API
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/Support/JSON.h"
- #include <memory>
- #include <vector>
- namespace llvm {
- /// Load a SavedModel, find the given inputs and outputs, and setup storage
- /// for input tensors. The user is responsible for correctly dimensioning the
- /// input tensors and setting their values before calling evaluate().
- /// To initialize:
- /// - construct the object
- /// - initialize the input tensors using initInput. Indices must correspond to
- /// indices in the InputNames used at construction.
- /// To use:
- /// - set input values by using getInput to get each input tensor, and then
- /// setting internal scalars, for all dimensions (tensors are row-major:
- /// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
- /// - call evaluate. The input tensors' values are not consumed after this, and
- /// may still be read.
- /// - use the outputs in the output vector
- class TFModelEvaluatorImpl;
- class EvaluationResultImpl;
- /// TensorSpec encapsulates the specification of a tensor: its dimensions, or
- /// "shape" (row-major), its type (see TensorSpec::getDataType specializations
- /// for supported types), its name and port (see "TensorFlow: Large-Scale
- /// Machine Learning on Heterogeneous Distributed Systems", section 4.2, para 2:
- /// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
- ///
- /// TensorSpec is used to set up a TFModelEvaluator by describing the expected
- /// inputs and outputs.
- class TensorSpec final {
- public:
- template <typename T>
- static TensorSpec createSpec(const std::string &Name,
- const std::vector<int64_t> &Shape,
- int Port = 0) {
- return TensorSpec(Name, Port, getDataType<T>(), Shape);
- }
- const std::string &name() const { return Name; }
- int port() const { return Port; }
- int typeIndex() const { return TypeIndex; }
- const std::vector<int64_t> &shape() const { return Shape; }
- bool operator==(const TensorSpec &Other) const {
- return Name == Other.Name && Port == Other.Port &&
- TypeIndex == Other.TypeIndex && Shape == Other.Shape;
- }
- bool operator!=(const TensorSpec &Other) const { return !(*this == Other); }
- /// Get the number of elements in a tensor with this shape.
- size_t getElementCount() const { return ElementCount; }
- /// Get the size, in bytes, of one element.
- size_t getElementByteSize() const;
- template <typename T> bool isElementType() const {
- return getDataType<T>() == TypeIndex;
- }
- private:
- TensorSpec(const std::string &Name, int Port, int TypeIndex,
- const std::vector<int64_t> &Shape);
- template <typename T> static int getDataType() {
- llvm_unreachable("Undefined tensor type");
- }
- std::string Name;
- int Port = 0;
- int TypeIndex = 0;
- std::vector<int64_t> Shape;
- size_t ElementCount = 0;
- };
- /// Construct a TensorSpec from a JSON dictionary of the form:
- /// { "name": <string>,
- /// "port": <int>,
- /// "type": <string. Use LLVM's types, e.g. float, double, int64_t>,
- /// "shape": <array of ints> }
- /// For the "type" field, see the C++ primitive types used in
- /// TFUTILS_SUPPORTED_TYPES.
- Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
- const json::Value &Value);
- struct LoggedFeatureSpec {
- TensorSpec Spec;
- Optional<std::string> LoggingName;
- };
- /// Load the output specs. If SpecFileOverride is not empty, that path is used.
- /// Otherwise, the file is assumed to be called 'output_spec.json' and be found
- /// under ModelPath (the model directory).
- /// The first output tensor name must match ExpectedDecisionName.
- /// In case of error, the return is None and the error is logged.
- Optional<std::vector<LoggedFeatureSpec>>
- loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
- StringRef ModelPath, StringRef SpecFileOverride = StringRef());
- /// Logging utility - given an ordered specification of features, and assuming
- /// a scalar reward, allow logging feature values and rewards, and then print
- /// as tf.train.SequenceExample text protobuf.
- /// The assumption is that, for an event to be logged (i.e. a set of feature
- /// values and a reward), the user calls the log* API for each feature exactly
- /// once, providing the index matching the position in the feature spec list
- /// provided at construction:
- /// event 0:
- /// logTensorValue(0, ...)
- /// logTensorValue(1, ...)
- /// ...
- /// logReward(...)
- /// event 1:
- /// logTensorValue(0, ...)
- /// logTensorValue(1, ...)
- /// ...
- /// logReward(...)
- ///
- /// At the end, call print to generate the protobuf.
- class Logger final {
- public:
- /// Construct a Logger. If IncludeReward is false, then logReward shouldn't
- /// be called, and the reward feature won't be printed out.
- Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
- const TensorSpec &RewardSpec, bool IncludeReward)
- : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
- RawLogData(FeatureSpecs.size() + IncludeReward),
- IncludeReward(IncludeReward) {}
- template <typename T> void logReward(T Value) {
- assert(IncludeReward);
- logTensorValue(RawLogData.size() - 1, &Value);
- }
- template <typename T> void logFinalReward(T Value) {
- assert(RawLogData.back().empty());
- logReward(Value);
- }
- template <typename T>
- void logTensorValue(size_t FeatureID, const T *Value, size_t Size = 1) {
- const char *Start = reinterpret_cast<const char *>(Value);
- const char *End = Start + sizeof(T) * Size;
- RawLogData[FeatureID].insert(RawLogData[FeatureID].end(), Start, End);
- }
- void print(raw_ostream &OS);
- private:
- std::vector<LoggedFeatureSpec> FeatureSpecs;
- TensorSpec RewardSpec;
- /// RawData has one entry per feature, plus one more for the reward.
- /// Each feature's values are then stored in a vector, in succession.
- /// This means the ith event is stored at [*][i]
- std::vector<std::vector<char>> RawLogData;
- const bool IncludeReward;
- };
- class TFModelEvaluator final {
- public:
- /// The result of a model evaluation. Handles the lifetime of the output
- /// tensors, which means that their values need to be used before
- /// the EvaluationResult's dtor is called.
- class EvaluationResult {
- public:
- EvaluationResult(const EvaluationResult &) = delete;
- EvaluationResult &operator=(const EvaluationResult &Other) = delete;
- EvaluationResult(EvaluationResult &&Other);
- EvaluationResult &operator=(EvaluationResult &&Other);
- ~EvaluationResult();
- /// Get a (const) pointer to the first element of the tensor at Index.
- template <typename T> T *getTensorValue(size_t Index) {
- return static_cast<T *>(getUntypedTensorValue(Index));
- }
- template <typename T> const T *getTensorValue(size_t Index) const {
- return static_cast<T *>(getUntypedTensorValue(Index));
- }
- /// Get a (const) pointer to the untyped data of the tensor.
- void *getUntypedTensorValue(size_t Index);
- const void *getUntypedTensorValue(size_t Index) const;
- private:
- friend class TFModelEvaluator;
- EvaluationResult(std::unique_ptr<EvaluationResultImpl> Impl);
- std::unique_ptr<EvaluationResultImpl> Impl;
- };
- TFModelEvaluator(StringRef SavedModelPath,
- const std::vector<TensorSpec> &InputSpecs,
- const std::vector<TensorSpec> &OutputSpecs,
- const char *Tags = "serve");
- TFModelEvaluator(StringRef SavedModelPath,
- const std::vector<TensorSpec> &InputSpecs,
- function_ref<TensorSpec(size_t)> GetOutputSpecs,
- size_t OutputSpecsSize, const char *Tags = "serve");
- ~TFModelEvaluator();
- TFModelEvaluator(const TFModelEvaluator &) = delete;
- TFModelEvaluator(TFModelEvaluator &&) = delete;
- /// Evaluate the model, assuming it is valid. Returns None if the evaluation
- /// fails or the model is invalid, or an EvaluationResult otherwise. The
- /// inputs are assumed to have been already provided via getInput(). When
- /// returning None, it also invalidates this object.
- Optional<EvaluationResult> evaluate();
- /// Provides access to the input vector.
- template <typename T> T *getInput(size_t Index) {
- return static_cast<T *>(getUntypedInput(Index));
- }
- /// Returns true if the tensorflow model was loaded successfully, false
- /// otherwise.
- bool isValid() const { return !!Impl; }
- private:
- void *getUntypedInput(size_t Index);
- std::unique_ptr<TFModelEvaluatorImpl> Impl;
- };
- /// List of supported types, as a pair:
- /// - C++ type
- /// - enum name (implementation-specific)
- #define TFUTILS_SUPPORTED_TYPES(M) \
- M(float, TF_FLOAT) \
- M(double, TF_DOUBLE) \
- M(int8_t, TF_INT8) \
- M(uint8_t, TF_UINT8) \
- M(int16_t, TF_INT16) \
- M(uint16_t, TF_UINT16) \
- M(int32_t, TF_INT32) \
- M(uint32_t, TF_UINT32) \
- M(int64_t, TF_INT64) \
- M(uint64_t, TF_UINT64)
- #define TFUTILS_GETDATATYPE_DEF(T, E) \
- template <> int TensorSpec::getDataType<T>();
- TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_DEF)
- #undef TFUTILS_GETDATATYPE_DEF
- } // namespace llvm
- #endif // LLVM_HAVE_TF_API
- #endif // LLVM_ANALYSIS_UTILS_TFUTILS_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|