1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This pass exposes codegen information to IR-level passes. Every
- /// transformation that uses codegen information is broken into three parts:
- /// 1. The IR-level analysis pass.
- /// 2. The IR-level transformation interface which provides the needed
- /// information.
- /// 3. Codegen-level implementation which uses target-specific hooks.
- ///
- /// This file defines #2, which is the interface that IR-level transformations
- /// use for querying the codegen.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
- #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/AtomicOrdering.h"
- #include "llvm/Support/DataTypes.h"
- #include "llvm/Support/InstructionCost.h"
- #include <functional>
- namespace llvm {
- namespace Intrinsic {
- typedef unsigned ID;
- }
- class AssumptionCache;
- class BlockFrequencyInfo;
- class DominatorTree;
- class BranchInst;
- class CallBase;
- class ExtractElementInst;
- class Function;
- class GlobalValue;
- class InstCombiner;
- class IntrinsicInst;
- class LoadInst;
- class LoopAccessInfo;
- class Loop;
- class LoopInfo;
- class ProfileSummaryInfo;
- class SCEV;
- class ScalarEvolution;
- class StoreInst;
- class SwitchInst;
- class TargetLibraryInfo;
- class Type;
- class User;
- class Value;
- struct KnownBits;
- template <typename T> class Optional;
- /// Information about a load/store intrinsic defined by the target.
- struct MemIntrinsicInfo {
- /// This is the pointer that the intrinsic is loading from or storing to.
- /// If this is non-null, then analysis/optimization passes can assume that
- /// this intrinsic is functionally equivalent to a load/store from this
- /// pointer.
- Value *PtrVal = nullptr;
- // Ordering for atomic operations.
- AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
- // Same Id is set by the target for corresponding load/store intrinsics.
- unsigned short MatchingId = 0;
- bool ReadMem = false;
- bool WriteMem = false;
- bool IsVolatile = false;
- bool isUnordered() const {
- return (Ordering == AtomicOrdering::NotAtomic ||
- Ordering == AtomicOrdering::Unordered) &&
- !IsVolatile;
- }
- };
- /// Attributes of a target dependent hardware loop.
- struct HardwareLoopInfo {
- HardwareLoopInfo() = delete;
- HardwareLoopInfo(Loop *L) : L(L) {}
- Loop *L = nullptr;
- BasicBlock *ExitBlock = nullptr;
- BranchInst *ExitBranch = nullptr;
- const SCEV *TripCount = nullptr;
- IntegerType *CountType = nullptr;
- Value *LoopDecrement = nullptr; // Decrement the loop counter by this
- // value in every iteration.
- bool IsNestingLegal = false; // Can a hardware loop be a parent to
- // another hardware loop?
- bool CounterInReg = false; // Should loop counter be updated in
- // the loop via a phi?
- bool PerformEntryTest = false; // Generate the intrinsic which also performs
- // icmp ne zero on the loop counter value and
- // produces an i1 to guard the loop entry.
- bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
- DominatorTree &DT, bool ForceNestedLoop = false,
- bool ForceHardwareLoopPHI = false);
- bool canAnalyze(LoopInfo &LI);
- };
- class IntrinsicCostAttributes {
- const IntrinsicInst *II = nullptr;
- Type *RetTy = nullptr;
- Intrinsic::ID IID;
- SmallVector<Type *, 4> ParamTys;
- SmallVector<const Value *, 4> Arguments;
- FastMathFlags FMF;
- ElementCount VF = ElementCount::getFixed(1);
- // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
- // arguments and the return value will be computed based on types.
- unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
- public:
- IntrinsicCostAttributes(const IntrinsicInst &I);
- IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI);
- IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
- ElementCount Factor);
- IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
- ElementCount Factor, unsigned ScalarCost);
- IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
- ArrayRef<Type *> Tys, FastMathFlags Flags);
- IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
- ArrayRef<Type *> Tys, FastMathFlags Flags,
- unsigned ScalarCost);
- IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
- ArrayRef<Type *> Tys, FastMathFlags Flags,
- unsigned ScalarCost,
- const IntrinsicInst *I);
- IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
- ArrayRef<Type *> Tys);
- IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
- ArrayRef<const Value *> Args);
- Intrinsic::ID getID() const { return IID; }
- const IntrinsicInst *getInst() const { return II; }
- Type *getReturnType() const { return RetTy; }
- ElementCount getVectorFactor() const { return VF; }
- FastMathFlags getFlags() const { return FMF; }
- unsigned getScalarizationCost() const { return ScalarizationCost; }
- const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
- const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
- bool isTypeBasedOnly() const {
- return Arguments.empty();
- }
- bool skipScalarizationCost() const {
- return ScalarizationCost != std::numeric_limits<unsigned>::max();
- }
- };
- class TargetTransformInfo;
- typedef TargetTransformInfo TTI;
- /// This pass provides access to the codegen interfaces that are needed
- /// for IR-level transformations.
- class TargetTransformInfo {
- public:
- /// Construct a TTI object using a type implementing the \c Concept
- /// API below.
- ///
- /// This is used by targets to construct a TTI wrapping their target-specific
- /// implementation that encodes appropriate costs for their target.
- template <typename T> TargetTransformInfo(T Impl);
- /// Construct a baseline TTI object using a minimal implementation of
- /// the \c Concept API below.
- ///
- /// The TTI implementation will reflect the information in the DataLayout
- /// provided if non-null.
- explicit TargetTransformInfo(const DataLayout &DL);
- // Provide move semantics.
- TargetTransformInfo(TargetTransformInfo &&Arg);
- TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
- // We need to define the destructor out-of-line to define our sub-classes
- // out-of-line.
- ~TargetTransformInfo();
- /// Handle the invalidation of this information.
- ///
- /// When used as a result of \c TargetIRAnalysis this method will be called
- /// when the function this was computed for changes. When it returns false,
- /// the information is preserved across those changes.
- bool invalidate(Function &, const PreservedAnalyses &,
- FunctionAnalysisManager::Invalidator &) {
- // FIXME: We should probably in some way ensure that the subtarget
- // information for a function hasn't changed.
- return false;
- }
- /// \name Generic Target Information
- /// @{
- /// The kind of cost model.
- ///
- /// There are several different cost models that can be customized by the
- /// target. The normalization of each cost model may be target specific.
- enum TargetCostKind {
- TCK_RecipThroughput, ///< Reciprocal throughput.
- TCK_Latency, ///< The latency of instruction.
- TCK_CodeSize, ///< Instruction code size.
- TCK_SizeAndLatency ///< The weighted sum of size and latency.
- };
- /// Query the cost of a specified instruction.
- ///
- /// Clients should use this interface to query the cost of an existing
- /// instruction. The instruction must have a valid parent (basic block).
- ///
- /// Note, this method does not cache the cost calculation and it
- /// can be expensive in some cases.
- InstructionCost getInstructionCost(const Instruction *I,
- enum TargetCostKind kind) const {
- InstructionCost Cost;
- switch (kind) {
- case TCK_RecipThroughput:
- Cost = getInstructionThroughput(I);
- break;
- case TCK_Latency:
- Cost = getInstructionLatency(I);
- break;
- case TCK_CodeSize:
- case TCK_SizeAndLatency:
- Cost = getUserCost(I, kind);
- break;
- }
- if (Cost == -1)
- Cost.setInvalid();
- return Cost;
- }
- /// Underlying constants for 'cost' values in this interface.
- ///
- /// Many APIs in this interface return a cost. This enum defines the
- /// fundamental values that should be used to interpret (and produce) those
- /// costs. The costs are returned as an int rather than a member of this
- /// enumeration because it is expected that the cost of one IR instruction
- /// may have a multiplicative factor to it or otherwise won't fit directly
- /// into the enum. Moreover, it is common to sum or average costs which works
- /// better as simple integral values. Thus this enum only provides constants.
- /// Also note that the returned costs are signed integers to make it natural
- /// to add, subtract, and test with zero (a common boundary condition). It is
- /// not expected that 2^32 is a realistic cost to be modeling at any point.
- ///
- /// Note that these costs should usually reflect the intersection of code-size
- /// cost and execution cost. A free instruction is typically one that folds
- /// into another instruction. For example, reg-to-reg moves can often be
- /// skipped by renaming the registers in the CPU, but they still are encoded
- /// and thus wouldn't be considered 'free' here.
- enum TargetCostConstants {
- TCC_Free = 0, ///< Expected to fold away in lowering.
- TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
- TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
- };
- /// Estimate the cost of a GEP operation when lowered.
- int getGEPCost(Type *PointeeType, const Value *Ptr,
- ArrayRef<const Value *> Operands,
- TargetCostKind CostKind = TCK_SizeAndLatency) const;
- /// \returns A value by which our inlining threshold should be multiplied.
- /// This is primarily used to bump up the inlining threshold wholesale on
- /// targets where calls are unusually expensive.
- ///
- /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
- /// individual classes of instructions would be better.
- unsigned getInliningThresholdMultiplier() const;
- /// \returns A value to be added to the inlining threshold.
- unsigned adjustInliningThreshold(const CallBase *CB) const;
- /// \returns Vector bonus in percent.
- ///
- /// Vector bonuses: We want to more aggressively inline vector-dense kernels
- /// and apply this bonus based on the percentage of vector instructions. A
- /// bonus is applied if the vector instructions exceed 50% and half that
- /// amount is applied if it exceeds 10%. Note that these bonuses are some what
- /// arbitrary and evolved over time by accident as much as because they are
- /// principled bonuses.
- /// FIXME: It would be nice to base the bonus values on something more
- /// scientific. A target may has no bonus on vector instructions.
- int getInlinerVectorBonusPercent() const;
- /// \return the expected cost of a memcpy, which could e.g. depend on the
- /// source/destination type and alignment and the number of bytes copied.
- int getMemcpyCost(const Instruction *I) const;
- /// \return The estimated number of case clusters when lowering \p 'SI'.
- /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
- /// table.
- unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
- unsigned &JTSize,
- ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI) const;
- /// Estimate the cost of a given IR user when lowered.
- ///
- /// This can estimate the cost of either a ConstantExpr or Instruction when
- /// lowered.
- ///
- /// \p Operands is a list of operands which can be a result of transformations
- /// of the current operands. The number of the operands on the list must equal
- /// to the number of the current operands the IR user has. Their order on the
- /// list must be the same as the order of the current operands the IR user
- /// has.
- ///
- /// The returned cost is defined in terms of \c TargetCostConstants, see its
- /// comments for a detailed explanation of the cost values.
- int getUserCost(const User *U, ArrayRef<const Value *> Operands,
- TargetCostKind CostKind) const;
- /// This is a helper function which calls the two-argument getUserCost
- /// with \p Operands which are the current operands U has.
- int getUserCost(const User *U, TargetCostKind CostKind) const {
- SmallVector<const Value *, 4> Operands(U->operand_values());
- return getUserCost(U, Operands, CostKind);
- }
- /// Return true if branch divergence exists.
- ///
- /// Branch divergence has a significantly negative impact on GPU performance
- /// when threads in the same wavefront take different paths due to conditional
- /// branches.
- bool hasBranchDivergence() const;
- /// Return true if the target prefers to use GPU divergence analysis to
- /// replace the legacy version.
- bool useGPUDivergenceAnalysis() const;
- /// Returns whether V is a source of divergence.
- ///
- /// This function provides the target-dependent information for
- /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
- /// first builds the dependency graph, and then runs the reachability
- /// algorithm starting with the sources of divergence.
- bool isSourceOfDivergence(const Value *V) const;
- // Returns true for the target specific
- // set of operations which produce uniform result
- // even taking non-uniform arguments
- bool isAlwaysUniform(const Value *V) const;
- /// Returns the address space ID for a target's 'flat' address space. Note
- /// this is not necessarily the same as addrspace(0), which LLVM sometimes
- /// refers to as the generic address space. The flat address space is a
- /// generic address space that can be used access multiple segments of memory
- /// with different address spaces. Access of a memory location through a
- /// pointer with this address space is expected to be legal but slower
- /// compared to the same memory location accessed through a pointer with a
- /// different address space.
- //
- /// This is for targets with different pointer representations which can
- /// be converted with the addrspacecast instruction. If a pointer is converted
- /// to this address space, optimizations should attempt to replace the access
- /// with the source address space.
- ///
- /// \returns ~0u if the target does not have such a flat address space to
- /// optimize away.
- unsigned getFlatAddressSpace() const;
- /// Return any intrinsic address operand indexes which may be rewritten if
- /// they use a flat address space pointer.
- ///
- /// \returns true if the intrinsic was handled.
- bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
- Intrinsic::ID IID) const;
- bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
- unsigned getAssumedAddrSpace(const Value *V) const;
- /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
- /// NewV, which has a different address space. This should happen for every
- /// operand index that collectFlatAddressOperands returned for the intrinsic.
- /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
- /// new value (which may be the original \p II with modified operands).
- Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
- Value *NewV) const;
- /// Test whether calls to a function lower to actual program function
- /// calls.
- ///
- /// The idea is to test whether the program is likely to require a 'call'
- /// instruction or equivalent in order to call the given function.
- ///
- /// FIXME: It's not clear that this is a good or useful query API. Client's
- /// should probably move to simpler cost metrics using the above.
- /// Alternatively, we could split the cost interface into distinct code-size
- /// and execution-speed costs. This would allow modelling the core of this
- /// query more accurately as a call is a single small instruction, but
- /// incurs significant execution cost.
- bool isLoweredToCall(const Function *F) const;
- struct LSRCost {
- /// TODO: Some of these could be merged. Also, a lexical ordering
- /// isn't always optimal.
- unsigned Insns;
- unsigned NumRegs;
- unsigned AddRecCost;
- unsigned NumIVMuls;
- unsigned NumBaseAdds;
- unsigned ImmCost;
- unsigned SetupCost;
- unsigned ScaleCost;
- };
- /// Parameters that control the generic loop unrolling transformation.
- struct UnrollingPreferences {
- /// The cost threshold for the unrolled loop. Should be relative to the
- /// getUserCost values returned by this API, and the expectation is that
- /// the unrolled loop's instructions when run through that interface should
- /// not exceed this cost. However, this is only an estimate. Also, specific
- /// loops may be unrolled even with a cost above this threshold if deemed
- /// profitable. Set this to UINT_MAX to disable the loop body cost
- /// restriction.
- unsigned Threshold;
- /// If complete unrolling will reduce the cost of the loop, we will boost
- /// the Threshold by a certain percent to allow more aggressive complete
- /// unrolling. This value provides the maximum boost percentage that we
- /// can apply to Threshold (The value should be no less than 100).
- /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
- /// MaxPercentThresholdBoost / 100)
- /// E.g. if complete unrolling reduces the loop execution time by 50%
- /// then we boost the threshold by the factor of 2x. If unrolling is not
- /// expected to reduce the running time, then we do not increase the
- /// threshold.
- unsigned MaxPercentThresholdBoost;
- /// The cost threshold for the unrolled loop when optimizing for size (set
- /// to UINT_MAX to disable).
- unsigned OptSizeThreshold;
- /// The cost threshold for the unrolled loop, like Threshold, but used
- /// for partial/runtime unrolling (set to UINT_MAX to disable).
- unsigned PartialThreshold;
- /// The cost threshold for the unrolled loop when optimizing for size, like
- /// OptSizeThreshold, but used for partial/runtime unrolling (set to
- /// UINT_MAX to disable).
- unsigned PartialOptSizeThreshold;
- /// A forced unrolling factor (the number of concatenated bodies of the
- /// original loop in the unrolled loop body). When set to 0, the unrolling
- /// transformation will select an unrolling factor based on the current cost
- /// threshold and other factors.
- unsigned Count;
- /// Default unroll count for loops with run-time trip count.
- unsigned DefaultUnrollRuntimeCount;
- // Set the maximum unrolling factor. The unrolling factor may be selected
- // using the appropriate cost threshold, but may not exceed this number
- // (set to UINT_MAX to disable). This does not apply in cases where the
- // loop is being fully unrolled.
- unsigned MaxCount;
- /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
- /// applies even if full unrolling is selected. This allows a target to fall
- /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
- unsigned FullUnrollMaxCount;
- // Represents number of instructions optimized when "back edge"
- // becomes "fall through" in unrolled loop.
- // For now we count a conditional branch on a backedge and a comparison
- // feeding it.
- unsigned BEInsns;
- /// Allow partial unrolling (unrolling of loops to expand the size of the
- /// loop body, not only to eliminate small constant-trip-count loops).
- bool Partial;
- /// Allow runtime unrolling (unrolling of loops to expand the size of the
- /// loop body even when the number of loop iterations is not known at
- /// compile time).
- bool Runtime;
- /// Allow generation of a loop remainder (extra iterations after unroll).
- bool AllowRemainder;
- /// Allow emitting expensive instructions (such as divisions) when computing
- /// the trip count of a loop for runtime unrolling.
- bool AllowExpensiveTripCount;
- /// Apply loop unroll on any kind of loop
- /// (mainly to loops that fail runtime unrolling).
- bool Force;
- /// Allow using trip count upper bound to unroll loops.
- bool UpperBound;
- /// Allow unrolling of all the iterations of the runtime loop remainder.
- bool UnrollRemainder;
- /// Allow unroll and jam. Used to enable unroll and jam for the target.
- bool UnrollAndJam;
- /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
- /// value above is used during unroll and jam for the outer loop size.
- /// This value is used in the same manner to limit the size of the inner
- /// loop.
- unsigned UnrollAndJamInnerLoopThreshold;
- /// Don't allow loop unrolling to simulate more than this number of
- /// iterations when checking full unroll profitability
- unsigned MaxIterationsCountToAnalyze;
- };
- /// Get target-customized preferences for the generic loop unrolling
- /// transformation. The caller will initialize UP with the current
- /// target-independent defaults.
- void getUnrollingPreferences(Loop *L, ScalarEvolution &,
- UnrollingPreferences &UP) const;
- /// Query the target whether it would be profitable to convert the given loop
- /// into a hardware loop.
- bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC, TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) const;
- /// Query the target whether it would be prefered to create a predicated
- /// vector loop, which can avoid the need to emit a scalar epilogue loop.
- bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- AssumptionCache &AC, TargetLibraryInfo *TLI,
- DominatorTree *DT,
- const LoopAccessInfo *LAI) const;
- /// Query the target whether lowering of the llvm.get.active.lane.mask
- /// intrinsic is supported.
- bool emitGetActiveLaneMask() const;
- // Parameters that control the loop peeling transformation
- struct PeelingPreferences {
- /// A forced peeling factor (the number of bodied of the original loop
- /// that should be peeled off before the loop body). When set to 0, the
- /// a peeling factor based on profile information and other factors.
- unsigned PeelCount;
- /// Allow peeling off loop iterations.
- bool AllowPeeling;
- /// Allow peeling off loop iterations for loop nests.
- bool AllowLoopNestsPeeling;
- /// Allow peeling basing on profile. Uses to enable peeling off all
- /// iterations basing on provided profile.
- /// If the value is true the peeling cost model can decide to peel only
- /// some iterations and in this case it will set this to false.
- bool PeelProfiledIterations;
- };
- /// Get target-customized preferences for the generic loop peeling
- /// transformation. The caller will initialize \p PP with the current
- /// target-independent defaults with information from \p L and \p SE.
- void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- PeelingPreferences &PP) const;
- /// Targets can implement their own combinations for target-specific
- /// intrinsics. This function will be called from the InstCombine pass every
- /// time a target-specific intrinsic is encountered.
- ///
- /// \returns None to not do anything target specific or a value that will be
- /// returned from the InstCombiner. It is possible to return null and stop
- /// further processing of the intrinsic by returning nullptr.
- Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
- IntrinsicInst &II) const;
- /// Can be used to implement target-specific instruction combining.
- /// \see instCombineIntrinsic
- Optional<Value *>
- simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
- APInt DemandedMask, KnownBits &Known,
- bool &KnownBitsComputed) const;
- /// Can be used to implement target-specific instruction combining.
- /// \see instCombineIntrinsic
- Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
- InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
- APInt &UndefElts2, APInt &UndefElts3,
- std::function<void(Instruction *, unsigned, APInt, APInt &)>
- SimplifyAndSetOp) const;
- /// @}
- /// \name Scalar Target Information
- /// @{
- /// Flags indicating the kind of support for population count.
- ///
- /// Compared to the SW implementation, HW support is supposed to
- /// significantly boost the performance when the population is dense, and it
- /// may or may not degrade performance if the population is sparse. A HW
- /// support is considered as "Fast" if it can outperform, or is on a par
- /// with, SW implementation when the population is sparse; otherwise, it is
- /// considered as "Slow".
- enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
- /// Return true if the specified immediate is legal add immediate, that
- /// is the target has add instructions which can add a register with the
- /// immediate without having to materialize the immediate into a register.
- bool isLegalAddImmediate(int64_t Imm) const;
- /// Return true if the specified immediate is legal icmp immediate,
- /// that is the target has icmp instructions which can compare a register
- /// against the immediate without having to materialize the immediate into a
- /// register.
- bool isLegalICmpImmediate(int64_t Imm) const;
- /// Return true if the addressing mode represented by AM is legal for
- /// this target, for a load/store of the specified type.
- /// The type may be VoidTy, in which case only return true if the addressing
- /// mode is legal for a load/store of any legal type.
- /// If target returns true in LSRWithInstrQueries(), I may be valid.
- /// TODO: Handle pre/postinc as well.
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace = 0,
- Instruction *I = nullptr) const;
- /// Return true if LSR cost of C1 is lower than C1.
- bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
- TargetTransformInfo::LSRCost &C2) const;
- /// Return true if LSR major cost is number of registers. Targets which
- /// implement their own isLSRCostLess and unset number of registers as major
- /// cost should return false, otherwise return true.
- bool isNumRegsMajorCostOfLSR() const;
- /// \returns true if LSR should not optimize a chain that includes \p I.
- bool isProfitableLSRChainElement(Instruction *I) const;
- /// Return true if the target can fuse a compare and branch.
- /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
- /// calculation for the instructions in a loop.
- bool canMacroFuseCmp() const;
- /// Return true if the target can save a compare for loop count, for example
- /// hardware loop saves a compare.
- bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, AssumptionCache *AC,
- TargetLibraryInfo *LibInfo) const;
- /// \return True is LSR should make efforts to create/preserve post-inc
- /// addressing mode expressions.
- bool shouldFavorPostInc() const;
- /// Return true if LSR should make efforts to generate indexed addressing
- /// modes that operate across loop iterations.
- bool shouldFavorBackedgeIndex(const Loop *L) const;
- /// Return true if the target supports masked store.
- bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
- /// Return true if the target supports masked load.
- bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
- /// Return true if the target supports nontemporal store.
- bool isLegalNTStore(Type *DataType, Align Alignment) const;
- /// Return true if the target supports nontemporal load.
- bool isLegalNTLoad(Type *DataType, Align Alignment) const;
- /// Return true if the target supports masked scatter.
- bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
- /// Return true if the target supports masked gather.
- bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
- /// Return true if the target supports masked compress store.
- bool isLegalMaskedCompressStore(Type *DataType) const;
- /// Return true if the target supports masked expand load.
- bool isLegalMaskedExpandLoad(Type *DataType) const;
- /// Return true if the target has a unified operation to calculate division
- /// and remainder. If so, the additional implicit multiplication and
- /// subtraction required to calculate a remainder from division are free. This
- /// can enable more aggressive transformations for division and remainder than
- /// would typically be allowed using throughput or size cost models.
- bool hasDivRemOp(Type *DataType, bool IsSigned) const;
- /// Return true if the given instruction (assumed to be a memory access
- /// instruction) has a volatile variant. If that's the case then we can avoid
- /// addrspacecast to generic AS for volatile loads/stores. Default
- /// implementation returns false, which prevents address space inference for
- /// volatile loads/stores.
- bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
- /// Return true if target doesn't mind addresses in vectors.
- bool prefersVectorizedAddressing() const;
- /// Return the cost of the scaling factor used in the addressing
- /// mode represented by AM for this target, for a load/store
- /// of the specified type.
- /// If the AM is supported, the return value must be >= 0.
- /// If the AM is not supported, it returns a negative value.
- /// TODO: Handle pre/postinc as well.
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace = 0) const;
- /// Return true if the loop strength reduce pass should make
- /// Instruction* based TTI queries to isLegalAddressingMode(). This is
- /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
- /// immediate offset and no index register.
- bool LSRWithInstrQueries() const;
- /// Return true if it's free to truncate a value of type Ty1 to type
- /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
- /// by referencing its sub-register AX.
- bool isTruncateFree(Type *Ty1, Type *Ty2) const;
- /// Return true if it is profitable to hoist instruction in the
- /// then/else to before if.
- bool isProfitableToHoist(Instruction *I) const;
- bool useAA() const;
- /// Return true if this type is legal.
- bool isTypeLegal(Type *Ty) const;
- /// Returns the estimated number of registers required to represent \p Ty.
- unsigned getRegUsageForType(Type *Ty) const;
- /// Return true if switches should be turned into lookup tables for the
- /// target.
- bool shouldBuildLookupTables() const;
- /// Return true if switches should be turned into lookup tables
- /// containing this constant value for the target.
- bool shouldBuildLookupTablesForConstant(Constant *C) const;
- /// Return true if the input function which is cold at all call sites,
- /// should use coldcc calling convention.
- bool useColdCCForColdCall(Function &F) const;
- /// Estimate the overhead of scalarizing an instruction. Insert and Extract
- /// are set if the demanded result elements need to be inserted and/or
- /// extracted from vectors.
- unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
- bool Insert, bool Extract) const;
- /// Estimate the overhead of scalarizing an instructions unique
- /// non-constant operands. The types of the arguments are ordinarily
- /// scalar, in which case the costs are multiplied with VF.
- unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
- unsigned VF) const;
- /// If target has efficient vector element load/store instructions, it can
- /// return true here so that insertion/extraction costs are not added to
- /// the scalarization cost of a load/store.
- bool supportsEfficientVectorElementLoadStore() const;
- /// Don't restrict interleaved unrolling to small loops.
- bool enableAggressiveInterleaving(bool LoopHasReductions) const;
- /// Returns options for expansion of memcmp. IsZeroCmp is
- // true if this is the expansion of memcmp(p1, p2, s) == 0.
- struct MemCmpExpansionOptions {
- // Return true if memcmp expansion is enabled.
- operator bool() const { return MaxNumLoads > 0; }
- // Maximum number of load operations.
- unsigned MaxNumLoads = 0;
- // The list of available load sizes (in bytes), sorted in decreasing order.
- SmallVector<unsigned, 8> LoadSizes;
- // For memcmp expansion when the memcmp result is only compared equal or
- // not-equal to 0, allow up to this number of load pairs per block. As an
- // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
- // a0 = load2bytes &a[0]
- // b0 = load2bytes &b[0]
- // a2 = load1byte &a[2]
- // b2 = load1byte &b[2]
- // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
- unsigned NumLoadsPerBlock = 1;
- // Set to true to allow overlapping loads. For example, 7-byte compares can
- // be done with two 4-byte compares instead of 4+2+1-byte compares. This
- // requires all loads in LoadSizes to be doable in an unaligned way.
- bool AllowOverlappingLoads = false;
- };
- MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
- bool IsZeroCmp) const;
- /// Enable matching of interleaved access groups.
- bool enableInterleavedAccessVectorization() const;
- /// Enable matching of interleaved access groups that contain predicated
- /// accesses or gaps and therefore vectorized using masked
- /// vector loads/stores.
- bool enableMaskedInterleavedAccessVectorization() const;
- /// Indicate that it is potentially unsafe to automatically vectorize
- /// floating-point operations because the semantics of vector and scalar
- /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
- /// does not support IEEE-754 denormal numbers, while depending on the
- /// platform, scalar floating-point math does.
- /// This applies to floating-point math operations and calls, not memory
- /// operations, shuffles, or casts.
- bool isFPVectorizationPotentiallyUnsafe() const;
- /// Determine if the target supports unaligned memory accesses.
- bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
- unsigned AddressSpace = 0,
- unsigned Alignment = 1,
- bool *Fast = nullptr) const;
- /// Return hardware support for population count.
- PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
- /// Return true if the hardware has a fast square-root instruction.
- bool haveFastSqrt(Type *Ty) const;
- /// Return true if it is faster to check if a floating-point value is NaN
- /// (or not-NaN) versus a comparison against a constant FP zero value.
- /// Targets should override this if materializing a 0.0 for comparison is
- /// generally as cheap as checking for ordered/unordered.
- bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
- /// Return the expected cost of supporting the floating point operation
- /// of the specified type.
- int getFPOpCost(Type *Ty) const;
- /// Return the expected cost of materializing for the given integer
- /// immediate of the specified type.
- int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const;
- /// Return the expected cost of materialization for the given integer
- /// immediate of the specified type for a given instruction. The cost can be
- /// zero if the immediate can be folded into the specified instruction.
- int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
- TargetCostKind CostKind,
- Instruction *Inst = nullptr) const;
- int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
- Type *Ty, TargetCostKind CostKind) const;
- /// Return the expected cost for the given integer when optimising
- /// for size. This is different than the other integer immediate cost
- /// functions in that it is subtarget agnostic. This is useful when you e.g.
- /// target one ISA such as Aarch32 but smaller encodings could be possible
- /// with another such as Thumb. This return value is used as a penalty when
- /// the total costs for a constant is calculated (the bigger the cost, the
- /// more beneficial constant hoisting is).
- int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty) const;
- /// @}
- /// \name Vector Target Information
- /// @{
- /// The various kinds of shuffle patterns for vector queries.
- enum ShuffleKind {
- SK_Broadcast, ///< Broadcast element 0 to all other elements.
- SK_Reverse, ///< Reverse the order of the vector.
- SK_Select, ///< Selects elements from the corresponding lane of
- ///< either source operand. This is equivalent to a
- ///< vector select with a constant condition operand.
- SK_Transpose, ///< Transpose two vectors.
- SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
- SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
- SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
- ///< with any shuffle mask.
- SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
- ///< shuffle mask.
- };
- /// Kind of the reduction data.
- enum ReductionKind {
- RK_None, /// Not a reduction.
- RK_Arithmetic, /// Binary reduction data.
- RK_MinMax, /// Min/max reduction data.
- RK_UnsignedMinMax, /// Unsigned min/max reduction data.
- };
- /// Contains opcode + LHS/RHS parts of the reduction operations.
- struct ReductionData {
- ReductionData() = delete;
- ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
- : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
- assert(Kind != RK_None && "expected binary or min/max reduction only.");
- }
- unsigned Opcode = 0;
- Value *LHS = nullptr;
- Value *RHS = nullptr;
- ReductionKind Kind = RK_None;
- bool hasSameData(ReductionData &RD) const {
- return Kind == RD.Kind && Opcode == RD.Opcode;
- }
- };
- static ReductionKind matchPairwiseReduction(
- const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
- static ReductionKind matchVectorSplittingReduction(
- const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
- static ReductionKind matchVectorReduction(const ExtractElementInst *ReduxRoot,
- unsigned &Opcode, VectorType *&Ty,
- bool &IsPairwise);
- /// Additional information about an operand's possible values.
- enum OperandValueKind {
- OK_AnyValue, // Operand can have any value.
- OK_UniformValue, // Operand is uniform (splat of a value).
- OK_UniformConstantValue, // Operand is uniform constant.
- OK_NonUniformConstantValue // Operand is a non uniform constant value.
- };
- /// Additional properties of an operand's values.
- enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
- /// \return the number of registers in the target-provided register class.
- unsigned getNumberOfRegisters(unsigned ClassID) const;
- /// \return the target-provided register class ID for the provided type,
- /// accounting for type promotion and other type-legalization techniques that
- /// the target might apply. However, it specifically does not account for the
- /// scalarization or splitting of vector types. Should a vector type require
- /// scalarization or splitting into multiple underlying vector registers, that
- /// type should be mapped to a register class containing no registers.
- /// Specifically, this is designed to provide a simple, high-level view of the
- /// register allocation later performed by the backend. These register classes
- /// don't necessarily map onto the register classes used by the backend.
- /// FIXME: It's not currently possible to determine how many registers
- /// are used by the provided type.
- unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
- /// \return the target-provided register class name
- const char *getRegisterClassName(unsigned ClassID) const;
- /// \return The width of the largest scalar or vector register type.
- unsigned getRegisterBitWidth(bool Vector) const;
- /// \return The width of the smallest vector register type.
- unsigned getMinVectorRegisterBitWidth() const;
- /// \return The maximum value of vscale if the target specifies an
- /// architectural maximum vector length, and None otherwise.
- Optional<unsigned> getMaxVScale() const;
- /// \return True if the vectorization factor should be chosen to
- /// make the vector of the smallest element type match the size of a
- /// vector register. For wider element types, this could result in
- /// creating vectors that span multiple vector registers.
- /// If false, the vectorization factor will be chosen based on the
- /// size of the widest element type.
- bool shouldMaximizeVectorBandwidth(bool OptSize) const;
- /// \return The minimum vectorization factor for types of given element
- /// bit width, or 0 if there is no minimum VF. The returned value only
- /// applies when shouldMaximizeVectorBandwidth returns true.
- unsigned getMinimumVF(unsigned ElemWidth) const;
- /// \return The maximum vectorization factor for types of given element
- /// bit width and opcode, or 0 if there is no maximum VF.
- /// Currently only used by the SLP vectorizer.
- unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
- /// \return True if it should be considered for address type promotion.
- /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
- /// profitable without finding other extensions fed by the same input.
- bool shouldConsiderAddressTypePromotion(
- const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
- /// \return The size of a cache line in bytes.
- unsigned getCacheLineSize() const;
- /// The possible cache levels
- enum class CacheLevel {
- L1D, // The L1 data cache
- L2D, // The L2 data cache
- // We currently do not model L3 caches, as their sizes differ widely between
- // microarchitectures. Also, we currently do not have a use for L3 cache
- // size modeling yet.
- };
- /// \return The size of the cache level in bytes, if available.
- Optional<unsigned> getCacheSize(CacheLevel Level) const;
- /// \return The associativity of the cache level, if available.
- Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
- /// \return How much before a load we should place the prefetch
- /// instruction. This is currently measured in number of
- /// instructions.
- unsigned getPrefetchDistance() const;
- /// Some HW prefetchers can handle accesses up to a certain constant stride.
- /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
- /// and the arguments provided are meant to serve as a basis for deciding this
- /// for a particular loop.
- ///
- /// \param NumMemAccesses Number of memory accesses in the loop.
- /// \param NumStridedMemAccesses Number of the memory accesses that
- /// ScalarEvolution could find a known stride
- /// for.
- /// \param NumPrefetches Number of software prefetches that will be
- /// emitted as determined by the addresses
- /// involved and the cache line size.
- /// \param HasCall True if the loop contains a call.
- ///
- /// \return This is the minimum stride in bytes where it makes sense to start
- /// adding SW prefetches. The default is 1, i.e. prefetch with any
- /// stride.
- unsigned getMinPrefetchStride(unsigned NumMemAccesses,
- unsigned NumStridedMemAccesses,
- unsigned NumPrefetches, bool HasCall) const;
- /// \return The maximum number of iterations to prefetch ahead. If
- /// the required number of iterations is more than this number, no
- /// prefetching is performed.
- unsigned getMaxPrefetchIterationsAhead() const;
- /// \return True if prefetching should also be done for writes.
- bool enableWritePrefetching() const;
- /// \return The maximum interleave factor that any transform should try to
- /// perform for this target. This number depends on the level of parallelism
- /// and the number of execution units in the CPU.
- unsigned getMaxInterleaveFactor(unsigned VF) const;
- /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
- static OperandValueKind getOperandInfo(const Value *V,
- OperandValueProperties &OpProps);
- /// This is an approximation of reciprocal throughput of a math/logic op.
- /// A higher cost indicates less expected throughput.
- /// From Agner Fog's guides, reciprocal throughput is "the average number of
- /// clock cycles per instruction when the instructions are not part of a
- /// limiting dependency chain."
- /// Therefore, costs should be scaled to account for multiple execution units
- /// on the target that can process this type of instruction. For example, if
- /// there are 5 scalar integer units and 2 vector integer units that can
- /// calculate an 'add' in a single cycle, this model should indicate that the
- /// cost of the vector add instruction is 2.5 times the cost of the scalar
- /// add instruction.
- /// \p Args is an optional argument which holds the instruction operands
- /// values so the TTI can analyze those values searching for special
- /// cases or optimizations based on those values.
- /// \p CxtI is the optional original context instruction, if one exists, to
- /// provide even more information.
- int getArithmeticInstrCost(
- unsigned Opcode, Type *Ty,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
- OperandValueKind Opd1Info = OK_AnyValue,
- OperandValueKind Opd2Info = OK_AnyValue,
- OperandValueProperties Opd1PropInfo = OP_None,
- OperandValueProperties Opd2PropInfo = OP_None,
- ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
- const Instruction *CxtI = nullptr) const;
- /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
- /// The index and subtype parameters are used by the subvector insertion and
- /// extraction shuffle kinds to show the insert/extract point and the type of
- /// the subvector being inserted/extracted.
- /// NOTE: For subvector extractions Tp represents the source type.
- int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index = 0,
- VectorType *SubTp = nullptr) const;
- /// Represents a hint about the context in which a cast is used.
- ///
- /// For zext/sext, the context of the cast is the operand, which must be a
- /// load of some kind. For trunc, the context is of the cast is the single
- /// user of the instruction, which must be a store of some kind.
- ///
- /// This enum allows the vectorizer to give getCastInstrCost an idea of the
- /// type of cast it's dealing with, as not every cast is equal. For instance,
- /// the zext of a load may be free, but the zext of an interleaving load can
- //// be (very) expensive!
- ///
- /// See \c getCastContextHint to compute a CastContextHint from a cast
- /// Instruction*. Callers can use it if they don't need to override the
- /// context and just want it to be calculated from the instruction.
- ///
- /// FIXME: This handles the types of load/store that the vectorizer can
- /// produce, which are the cases where the context instruction is most
- /// likely to be incorrect. There are other situations where that can happen
- /// too, which might be handled here but in the long run a more general
- /// solution of costing multiple instructions at the same times may be better.
- enum class CastContextHint : uint8_t {
- None, ///< The cast is not used with a load/store of any kind.
- Normal, ///< The cast is used with a normal load/store.
- Masked, ///< The cast is used with a masked load/store.
- GatherScatter, ///< The cast is used with a gather/scatter.
- Interleave, ///< The cast is used with an interleaved load/store.
- Reversed, ///< The cast is used with a reversed load/store.
- };
- /// Calculates a CastContextHint from \p I.
- /// This should be used by callers of getCastInstrCost if they wish to
- /// determine the context from some instruction.
- /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
- /// or if it's another type of cast.
- static CastContextHint getCastContextHint(const Instruction *I);
- /// \return The expected cost of cast instructions, such as bitcast, trunc,
- /// zext, etc. If there is an existing instruction that holds Opcode, it
- /// may be passed in the 'I' parameter.
- int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
- TTI::CastContextHint CCH,
- TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
- const Instruction *I = nullptr) const;
- /// \return The expected cost of a sign- or zero-extended vector extract. Use
- /// -1 to indicate that there is no information about the index value.
- int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
- unsigned Index = -1) const;
- /// \return The expected cost of control-flow related instructions such as
- /// Phi, Ret, Br.
- int getCFInstrCost(unsigned Opcode,
- TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
- /// \returns The expected cost of compare and select instructions. If there
- /// is an existing instruction that holds Opcode, it may be passed in the
- /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
- /// is using a compare with the specified predicate as condition. When vector
- /// types are passed, \p VecPred must be used for all lanes.
- int getCmpSelInstrCost(
- unsigned Opcode, Type *ValTy, Type *CondTy = nullptr,
- CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
- const Instruction *I = nullptr) const;
- /// \return The expected cost of vector Insert and Extract.
- /// Use -1 to indicate that there is no information on the index value.
- int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
- /// \return The cost of Load and Store instructions.
- int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
- const Instruction *I = nullptr) const;
- /// \return The cost of masked Load and Store instructions.
- int getMaskedMemoryOpCost(
- unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
- /// \return The cost of Gather or Scatter operation
- /// \p Opcode - is a type of memory access Load or Store
- /// \p DataTy - a vector type of the data to be loaded or stored
- /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
- /// \p VariableMask - true when the memory access is predicated with a mask
- /// that is not a compile-time constant
- /// \p Alignment - alignment of single element
- /// \p I - the optional original context instruction, if one exists, e.g. the
- /// load/store to transform or the call to the gather/scatter intrinsic
- int getGatherScatterOpCost(
- unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
- Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
- const Instruction *I = nullptr) const;
- /// \return The cost of the interleaved memory operation.
- /// \p Opcode is the memory operation code
- /// \p VecTy is the vector type of the interleaved access.
- /// \p Factor is the interleave factor
- /// \p Indices is the indices for interleaved load members (as interleaved
- /// load allows gaps)
- /// \p Alignment is the alignment of the memory operation
- /// \p AddressSpace is address space of the pointer.
- /// \p UseMaskForCond indicates if the memory access is predicated.
- /// \p UseMaskForGaps indicates if gaps should be masked.
- int getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
- bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
- /// Calculate the cost of performing a vector reduction.
- ///
- /// This is the cost of reducing the vector value of type \p Ty to a scalar
- /// value using the operation denoted by \p Opcode. The form of the reduction
- /// can either be a pairwise reduction or a reduction that splits the vector
- /// at every reduction level.
- ///
- /// Pairwise:
- /// (v0, v1, v2, v3)
- /// ((v0+v1), (v2+v3), undef, undef)
- /// Split:
- /// (v0, v1, v2, v3)
- /// ((v0+v2), (v1+v3), undef, undef)
- int getArithmeticReductionCost(
- unsigned Opcode, VectorType *Ty, bool IsPairwiseForm,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
- int getMinMaxReductionCost(
- VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
- /// Calculate the cost of an extended reduction pattern, similar to
- /// getArithmeticReductionCost of an Add reduction with an extension and
- /// optional multiply. This is the cost of as:
- /// ResTy vecreduce.add(ext(Ty A)), or if IsMLA flag is set then:
- /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). The reduction happens
- /// on a VectorType with ResTy elements and Ty lanes.
- InstructionCost getExtendedAddReductionCost(
- bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
- /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
- /// Three cases are handled: 1. scalar instruction 2. vector instruction
- /// 3. scalar instruction which is to be vectorized.
- int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) const;
- /// \returns The cost of Call instructions.
- int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
- TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
- /// \returns The number of pieces into which the provided type must be
- /// split during legalization. Zero is returned when the answer is unknown.
- unsigned getNumberOfParts(Type *Tp) const;
- /// \returns The cost of the address computation. For most targets this can be
- /// merged into the instruction indexing mode. Some targets might want to
- /// distinguish between address computation for memory operations on vector
- /// types and scalar types. Such targets should override this function.
- /// The 'SE' parameter holds pointer for the scalar evolution object which
- /// is used in order to get the Ptr step value in case of constant stride.
- /// The 'Ptr' parameter holds SCEV of the access pointer.
- int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
- const SCEV *Ptr = nullptr) const;
- /// \returns The cost, if any, of keeping values of the given types alive
- /// over a callsite.
- ///
- /// Some types may require the use of register classes that do not have
- /// any callee-saved registers, so would require a spill and fill.
- unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
- /// \returns True if the intrinsic is a supported memory intrinsic. Info
- /// will contain additional information - whether the intrinsic may write
- /// or read to memory, volatility and the pointer. Info is undefined
- /// if false is returned.
- bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
- /// \returns The maximum element size, in bytes, for an element
- /// unordered-atomic memory intrinsic.
- unsigned getAtomicMemIntrinsicMaxElementSize() const;
- /// \returns A value which is the result of the given memory intrinsic. New
- /// instructions may be created to extract the result from the given intrinsic
- /// memory operation. Returns nullptr if the target cannot create a result
- /// from the given intrinsic.
- Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) const;
- /// \returns The type to use in a loop expansion of a memcpy call.
- Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
- unsigned SrcAddrSpace, unsigned DestAddrSpace,
- unsigned SrcAlign, unsigned DestAlign) const;
- /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
- /// \param RemainingBytes The number of bytes to copy.
- ///
- /// Calculates the operand types to use when copying \p RemainingBytes of
- /// memory, where source and destination alignments are \p SrcAlign and
- /// \p DestAlign respectively.
- void getMemcpyLoopResidualLoweringType(
- SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
- unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
- unsigned SrcAlign, unsigned DestAlign) const;
- /// \returns True if the two functions have compatible attributes for inlining
- /// purposes.
- bool areInlineCompatible(const Function *Caller,
- const Function *Callee) const;
- /// \returns True if the caller and callee agree on how \p Args will be passed
- /// to the callee.
- /// \param[out] Args The list of compatible arguments. The implementation may
- /// filter out any incompatible args from this list.
- bool areFunctionArgsABICompatible(const Function *Caller,
- const Function *Callee,
- SmallPtrSetImpl<Argument *> &Args) const;
- /// The type of load/store indexing.
- enum MemIndexedMode {
- MIM_Unindexed, ///< No indexing.
- MIM_PreInc, ///< Pre-incrementing.
- MIM_PreDec, ///< Pre-decrementing.
- MIM_PostInc, ///< Post-incrementing.
- MIM_PostDec ///< Post-decrementing.
- };
- /// \returns True if the specified indexed load for the given type is legal.
- bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
- /// \returns True if the specified indexed store for the given type is legal.
- bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
- /// \returns The bitwidth of the largest vector type that should be used to
- /// load/store in the given address space.
- unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
- /// \returns True if the load instruction is legal to vectorize.
- bool isLegalToVectorizeLoad(LoadInst *LI) const;
- /// \returns True if the store instruction is legal to vectorize.
- bool isLegalToVectorizeStore(StoreInst *SI) const;
- /// \returns True if it is legal to vectorize the given load chain.
- bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
- unsigned AddrSpace) const;
- /// \returns True if it is legal to vectorize the given store chain.
- bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
- unsigned AddrSpace) const;
- /// \returns The new vector factor value if the target doesn't support \p
- /// SizeInBytes loads or has a better vector factor.
- unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
- unsigned ChainSizeInBytes,
- VectorType *VecTy) const;
- /// \returns The new vector factor value if the target doesn't support \p
- /// SizeInBytes stores or has a better vector factor.
- unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
- unsigned ChainSizeInBytes,
- VectorType *VecTy) const;
- /// Flags describing the kind of vector reduction.
- struct ReductionFlags {
- ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
- bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
- bool IsSigned; ///< Whether the operation is a signed int reduction.
- bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
- };
- /// \returns True if the target wants to handle the given reduction idiom in
- /// the intrinsics form instead of the shuffle form.
- bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
- ReductionFlags Flags) const;
- /// \returns True if the target prefers reductions in loop.
- bool preferInLoopReduction(unsigned Opcode, Type *Ty,
- ReductionFlags Flags) const;
- /// \returns True if the target prefers reductions select kept in the loop
- /// when tail folding. i.e.
- /// loop:
- /// p = phi (0, s)
- /// a = add (p, x)
- /// s = select (mask, a, p)
- /// vecreduce.add(s)
- ///
- /// As opposed to the normal scheme of p = phi (0, a) which allows the select
- /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
- /// by the target, this can lead to cleaner code generation.
- bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
- ReductionFlags Flags) const;
- /// \returns True if the target wants to expand the given reduction intrinsic
- /// into a shuffle sequence.
- bool shouldExpandReduction(const IntrinsicInst *II) const;
- /// \returns the size cost of rematerializing a GlobalValue address relative
- /// to a stack reload.
- unsigned getGISelRematGlobalCost() const;
- /// \returns True if the target supports scalable vectors.
- bool supportsScalableVectors() const;
- /// \name Vector Predication Information
- /// @{
- /// Whether the target supports the %evl parameter of VP intrinsic efficiently
- /// in hardware. (see LLVM Language Reference - "Vector Predication
- /// Intrinsics") Use of %evl is discouraged when that is not the case.
- bool hasActiveVectorLength() const;
- /// @}
- /// @}
- private:
- /// Estimate the latency of specified instruction.
- /// Returns 1 as the default value.
- int getInstructionLatency(const Instruction *I) const;
- /// Returns the expected throughput cost of the instruction.
- /// Returns -1 if the cost is unknown.
- int getInstructionThroughput(const Instruction *I) const;
- /// The abstract base class used to type erase specific TTI
- /// implementations.
- class Concept;
- /// The template model for the base class which wraps a concrete
- /// implementation in a type erased interface.
- template <typename T> class Model;
- std::unique_ptr<Concept> TTIImpl;
- };
- class TargetTransformInfo::Concept {
- public:
- virtual ~Concept() = 0;
- virtual const DataLayout &getDataLayout() const = 0;
- virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
- ArrayRef<const Value *> Operands,
- TTI::TargetCostKind CostKind) = 0;
- virtual unsigned getInliningThresholdMultiplier() = 0;
- virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
- virtual int getInlinerVectorBonusPercent() = 0;
- virtual int getMemcpyCost(const Instruction *I) = 0;
- virtual unsigned
- getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
- ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI) = 0;
- virtual int getUserCost(const User *U, ArrayRef<const Value *> Operands,
- TargetCostKind CostKind) = 0;
- virtual bool hasBranchDivergence() = 0;
- virtual bool useGPUDivergenceAnalysis() = 0;
- virtual bool isSourceOfDivergence(const Value *V) = 0;
- virtual bool isAlwaysUniform(const Value *V) = 0;
- virtual unsigned getFlatAddressSpace() = 0;
- virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
- Intrinsic::ID IID) const = 0;
- virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
- virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
- virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
- Value *OldV,
- Value *NewV) const = 0;
- virtual bool isLoweredToCall(const Function *F) = 0;
- virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
- UnrollingPreferences &UP) = 0;
- virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- PeelingPreferences &PP) = 0;
- virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC,
- TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) = 0;
- virtual bool
- preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- AssumptionCache &AC, TargetLibraryInfo *TLI,
- DominatorTree *DT, const LoopAccessInfo *LAI) = 0;
- virtual bool emitGetActiveLaneMask() = 0;
- virtual Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
- IntrinsicInst &II) = 0;
- virtual Optional<Value *>
- simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
- APInt DemandedMask, KnownBits &Known,
- bool &KnownBitsComputed) = 0;
- virtual Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
- InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
- APInt &UndefElts2, APInt &UndefElts3,
- std::function<void(Instruction *, unsigned, APInt, APInt &)>
- SimplifyAndSetOp) = 0;
- virtual bool isLegalAddImmediate(int64_t Imm) = 0;
- virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
- virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale, unsigned AddrSpace,
- Instruction *I) = 0;
- virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
- TargetTransformInfo::LSRCost &C2) = 0;
- virtual bool isNumRegsMajorCostOfLSR() = 0;
- virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
- virtual bool canMacroFuseCmp() = 0;
- virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
- LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
- TargetLibraryInfo *LibInfo) = 0;
- virtual bool shouldFavorPostInc() const = 0;
- virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
- virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
- virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
- virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
- virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
- virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
- virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
- virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
- virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
- virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
- virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
- virtual bool prefersVectorizedAddressing() = 0;
- virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale, unsigned AddrSpace) = 0;
- virtual bool LSRWithInstrQueries() = 0;
- virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
- virtual bool isProfitableToHoist(Instruction *I) = 0;
- virtual bool useAA() = 0;
- virtual bool isTypeLegal(Type *Ty) = 0;
- virtual unsigned getRegUsageForType(Type *Ty) = 0;
- virtual bool shouldBuildLookupTables() = 0;
- virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
- virtual bool useColdCCForColdCall(Function &F) = 0;
- virtual unsigned getScalarizationOverhead(VectorType *Ty,
- const APInt &DemandedElts,
- bool Insert, bool Extract) = 0;
- virtual unsigned
- getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
- unsigned VF) = 0;
- virtual bool supportsEfficientVectorElementLoadStore() = 0;
- virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
- virtual MemCmpExpansionOptions
- enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
- virtual bool enableInterleavedAccessVectorization() = 0;
- virtual bool enableMaskedInterleavedAccessVectorization() = 0;
- virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
- virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
- unsigned BitWidth,
- unsigned AddressSpace,
- unsigned Alignment,
- bool *Fast) = 0;
- virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
- virtual bool haveFastSqrt(Type *Ty) = 0;
- virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
- virtual int getFPOpCost(Type *Ty) = 0;
- virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
- const APInt &Imm, Type *Ty) = 0;
- virtual int getIntImmCost(const APInt &Imm, Type *Ty,
- TargetCostKind CostKind) = 0;
- virtual int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty, TargetCostKind CostKind,
- Instruction *Inst = nullptr) = 0;
- virtual int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TargetCostKind CostKind) = 0;
- virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
- virtual unsigned getRegisterClassForType(bool Vector,
- Type *Ty = nullptr) const = 0;
- virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
- virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
- virtual unsigned getMinVectorRegisterBitWidth() = 0;
- virtual Optional<unsigned> getMaxVScale() const = 0;
- virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
- virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
- virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
- virtual bool shouldConsiderAddressTypePromotion(
- const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
- virtual unsigned getCacheLineSize() const = 0;
- virtual Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
- virtual Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;
- /// \return How much before a load we should place the prefetch
- /// instruction. This is currently measured in number of
- /// instructions.
- virtual unsigned getPrefetchDistance() const = 0;
- /// \return Some HW prefetchers can handle accesses up to a certain
- /// constant stride. This is the minimum stride in bytes where it
- /// makes sense to start adding SW prefetches. The default is 1,
- /// i.e. prefetch with any stride. Sometimes prefetching is beneficial
- /// even below the HW prefetcher limit, and the arguments provided are
- /// meant to serve as a basis for deciding this for a particular loop.
- virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
- unsigned NumStridedMemAccesses,
- unsigned NumPrefetches,
- bool HasCall) const = 0;
- /// \return The maximum number of iterations to prefetch ahead. If
- /// the required number of iterations is more than this number, no
- /// prefetching is performed.
- virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
- /// \return True if prefetching should also be done for writes.
- virtual bool enableWritePrefetching() const = 0;
- virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
- virtual unsigned getArithmeticInstrCost(
- unsigned Opcode, Type *Ty,
- TTI::TargetCostKind CostKind,
- OperandValueKind Opd1Info,
- OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
- OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
- const Instruction *CxtI = nullptr) = 0;
- virtual int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
- VectorType *SubTp) = 0;
- virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
- CastContextHint CCH,
- TTI::TargetCostKind CostKind,
- const Instruction *I) = 0;
- virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
- VectorType *VecTy, unsigned Index) = 0;
- virtual int getCFInstrCost(unsigned Opcode,
- TTI::TargetCostKind CostKind) = 0;
- virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I) = 0;
- virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) = 0;
- virtual int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- const Instruction *I) = 0;
- virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind) = 0;
- virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
- const Value *Ptr, bool VariableMask,
- Align Alignment,
- TTI::TargetCostKind CostKind,
- const Instruction *I = nullptr) = 0;
- virtual int getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
- bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
- virtual int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
- bool IsPairwiseForm,
- TTI::TargetCostKind CostKind) = 0;
- virtual int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
- bool IsPairwiseForm, bool IsUnsigned,
- TTI::TargetCostKind CostKind) = 0;
- virtual InstructionCost getExtendedAddReductionCost(
- bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
- virtual int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) = 0;
- virtual int getCallInstrCost(Function *F, Type *RetTy,
- ArrayRef<Type *> Tys,
- TTI::TargetCostKind CostKind) = 0;
- virtual unsigned getNumberOfParts(Type *Tp) = 0;
- virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
- const SCEV *Ptr) = 0;
- virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
- virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
- MemIntrinsicInfo &Info) = 0;
- virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
- virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) = 0;
- virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
- unsigned SrcAddrSpace,
- unsigned DestAddrSpace,
- unsigned SrcAlign,
- unsigned DestAlign) const = 0;
- virtual void getMemcpyLoopResidualLoweringType(
- SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
- unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
- unsigned SrcAlign, unsigned DestAlign) const = 0;
- virtual bool areInlineCompatible(const Function *Caller,
- const Function *Callee) const = 0;
- virtual bool
- areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
- SmallPtrSetImpl<Argument *> &Args) const = 0;
- virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
- virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
- virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
- virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
- virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
- virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
- Align Alignment,
- unsigned AddrSpace) const = 0;
- virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
- Align Alignment,
- unsigned AddrSpace) const = 0;
- virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
- unsigned ChainSizeInBytes,
- VectorType *VecTy) const = 0;
- virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
- unsigned ChainSizeInBytes,
- VectorType *VecTy) const = 0;
- virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
- ReductionFlags) const = 0;
- virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
- ReductionFlags) const = 0;
- virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
- ReductionFlags) const = 0;
- virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
- virtual unsigned getGISelRematGlobalCost() const = 0;
- virtual bool supportsScalableVectors() const = 0;
- virtual bool hasActiveVectorLength() const = 0;
- virtual int getInstructionLatency(const Instruction *I) = 0;
- };
- template <typename T>
- class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
- T Impl;
- public:
- Model(T Impl) : Impl(std::move(Impl)) {}
- ~Model() override {}
- const DataLayout &getDataLayout() const override {
- return Impl.getDataLayout();
- }
- int getGEPCost(Type *PointeeType, const Value *Ptr,
- ArrayRef<const Value *> Operands,
- enum TargetTransformInfo::TargetCostKind CostKind) override {
- return Impl.getGEPCost(PointeeType, Ptr, Operands);
- }
- unsigned getInliningThresholdMultiplier() override {
- return Impl.getInliningThresholdMultiplier();
- }
- unsigned adjustInliningThreshold(const CallBase *CB) override {
- return Impl.adjustInliningThreshold(CB);
- }
- int getInlinerVectorBonusPercent() override {
- return Impl.getInlinerVectorBonusPercent();
- }
- int getMemcpyCost(const Instruction *I) override {
- return Impl.getMemcpyCost(I);
- }
- int getUserCost(const User *U, ArrayRef<const Value *> Operands,
- TargetCostKind CostKind) override {
- return Impl.getUserCost(U, Operands, CostKind);
- }
- bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
- bool useGPUDivergenceAnalysis() override {
- return Impl.useGPUDivergenceAnalysis();
- }
- bool isSourceOfDivergence(const Value *V) override {
- return Impl.isSourceOfDivergence(V);
- }
- bool isAlwaysUniform(const Value *V) override {
- return Impl.isAlwaysUniform(V);
- }
- unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
- bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
- Intrinsic::ID IID) const override {
- return Impl.collectFlatAddressOperands(OpIndexes, IID);
- }
- bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
- return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
- }
- unsigned getAssumedAddrSpace(const Value *V) const override {
- return Impl.getAssumedAddrSpace(V);
- }
- Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
- Value *NewV) const override {
- return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
- }
- bool isLoweredToCall(const Function *F) override {
- return Impl.isLoweredToCall(F);
- }
- void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- UnrollingPreferences &UP) override {
- return Impl.getUnrollingPreferences(L, SE, UP);
- }
- void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- PeelingPreferences &PP) override {
- return Impl.getPeelingPreferences(L, SE, PP);
- }
- bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC, TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) override {
- return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
- }
- bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- AssumptionCache &AC, TargetLibraryInfo *TLI,
- DominatorTree *DT,
- const LoopAccessInfo *LAI) override {
- return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
- }
- bool emitGetActiveLaneMask() override {
- return Impl.emitGetActiveLaneMask();
- }
- Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
- IntrinsicInst &II) override {
- return Impl.instCombineIntrinsic(IC, II);
- }
- Optional<Value *>
- simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
- APInt DemandedMask, KnownBits &Known,
- bool &KnownBitsComputed) override {
- return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
- KnownBitsComputed);
- }
- Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
- InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
- APInt &UndefElts2, APInt &UndefElts3,
- std::function<void(Instruction *, unsigned, APInt, APInt &)>
- SimplifyAndSetOp) override {
- return Impl.simplifyDemandedVectorEltsIntrinsic(
- IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
- SimplifyAndSetOp);
- }
- bool isLegalAddImmediate(int64_t Imm) override {
- return Impl.isLegalAddImmediate(Imm);
- }
- bool isLegalICmpImmediate(int64_t Imm) override {
- return Impl.isLegalICmpImmediate(Imm);
- }
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
- Instruction *I) override {
- return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
- AddrSpace, I);
- }
- bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
- TargetTransformInfo::LSRCost &C2) override {
- return Impl.isLSRCostLess(C1, C2);
- }
- bool isNumRegsMajorCostOfLSR() override {
- return Impl.isNumRegsMajorCostOfLSR();
- }
- bool isProfitableLSRChainElement(Instruction *I) override {
- return Impl.isProfitableLSRChainElement(I);
- }
- bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
- bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, AssumptionCache *AC,
- TargetLibraryInfo *LibInfo) override {
- return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
- }
- bool shouldFavorPostInc() const override { return Impl.shouldFavorPostInc(); }
- bool shouldFavorBackedgeIndex(const Loop *L) const override {
- return Impl.shouldFavorBackedgeIndex(L);
- }
- bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
- return Impl.isLegalMaskedStore(DataType, Alignment);
- }
- bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
- return Impl.isLegalMaskedLoad(DataType, Alignment);
- }
- bool isLegalNTStore(Type *DataType, Align Alignment) override {
- return Impl.isLegalNTStore(DataType, Alignment);
- }
- bool isLegalNTLoad(Type *DataType, Align Alignment) override {
- return Impl.isLegalNTLoad(DataType, Alignment);
- }
- bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
- return Impl.isLegalMaskedScatter(DataType, Alignment);
- }
- bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
- return Impl.isLegalMaskedGather(DataType, Alignment);
- }
- bool isLegalMaskedCompressStore(Type *DataType) override {
- return Impl.isLegalMaskedCompressStore(DataType);
- }
- bool isLegalMaskedExpandLoad(Type *DataType) override {
- return Impl.isLegalMaskedExpandLoad(DataType);
- }
- bool hasDivRemOp(Type *DataType, bool IsSigned) override {
- return Impl.hasDivRemOp(DataType, IsSigned);
- }
- bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
- return Impl.hasVolatileVariant(I, AddrSpace);
- }
- bool prefersVectorizedAddressing() override {
- return Impl.prefersVectorizedAddressing();
- }
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace) override {
- return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
- AddrSpace);
- }
- bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
- bool isTruncateFree(Type *Ty1, Type *Ty2) override {
- return Impl.isTruncateFree(Ty1, Ty2);
- }
- bool isProfitableToHoist(Instruction *I) override {
- return Impl.isProfitableToHoist(I);
- }
- bool useAA() override { return Impl.useAA(); }
- bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
- unsigned getRegUsageForType(Type *Ty) override {
- return Impl.getRegUsageForType(Ty);
- }
- bool shouldBuildLookupTables() override {
- return Impl.shouldBuildLookupTables();
- }
- bool shouldBuildLookupTablesForConstant(Constant *C) override {
- return Impl.shouldBuildLookupTablesForConstant(C);
- }
- bool useColdCCForColdCall(Function &F) override {
- return Impl.useColdCCForColdCall(F);
- }
- unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
- bool Insert, bool Extract) override {
- return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
- }
- unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
- unsigned VF) override {
- return Impl.getOperandsScalarizationOverhead(Args, VF);
- }
- bool supportsEfficientVectorElementLoadStore() override {
- return Impl.supportsEfficientVectorElementLoadStore();
- }
- bool enableAggressiveInterleaving(bool LoopHasReductions) override {
- return Impl.enableAggressiveInterleaving(LoopHasReductions);
- }
- MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
- bool IsZeroCmp) const override {
- return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
- }
- bool enableInterleavedAccessVectorization() override {
- return Impl.enableInterleavedAccessVectorization();
- }
- bool enableMaskedInterleavedAccessVectorization() override {
- return Impl.enableMaskedInterleavedAccessVectorization();
- }
- bool isFPVectorizationPotentiallyUnsafe() override {
- return Impl.isFPVectorizationPotentiallyUnsafe();
- }
- bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
- unsigned AddressSpace, unsigned Alignment,
- bool *Fast) override {
- return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
- Alignment, Fast);
- }
- PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
- return Impl.getPopcntSupport(IntTyWidthInBit);
- }
- bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
- bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
- return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
- }
- int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
- int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
- Type *Ty) override {
- return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
- }
- int getIntImmCost(const APInt &Imm, Type *Ty,
- TargetCostKind CostKind) override {
- return Impl.getIntImmCost(Imm, Ty, CostKind);
- }
- int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
- TargetCostKind CostKind,
- Instruction *Inst = nullptr) override {
- return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
- }
- int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
- Type *Ty, TargetCostKind CostKind) override {
- return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
- }
- unsigned getNumberOfRegisters(unsigned ClassID) const override {
- return Impl.getNumberOfRegisters(ClassID);
- }
- unsigned getRegisterClassForType(bool Vector,
- Type *Ty = nullptr) const override {
- return Impl.getRegisterClassForType(Vector, Ty);
- }
- const char *getRegisterClassName(unsigned ClassID) const override {
- return Impl.getRegisterClassName(ClassID);
- }
- unsigned getRegisterBitWidth(bool Vector) const override {
- return Impl.getRegisterBitWidth(Vector);
- }
- unsigned getMinVectorRegisterBitWidth() override {
- return Impl.getMinVectorRegisterBitWidth();
- }
- Optional<unsigned> getMaxVScale() const override {
- return Impl.getMaxVScale();
- }
- bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
- return Impl.shouldMaximizeVectorBandwidth(OptSize);
- }
- unsigned getMinimumVF(unsigned ElemWidth) const override {
- return Impl.getMinimumVF(ElemWidth);
- }
- unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
- return Impl.getMaximumVF(ElemWidth, Opcode);
- }
- bool shouldConsiderAddressTypePromotion(
- const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
- return Impl.shouldConsiderAddressTypePromotion(
- I, AllowPromotionWithoutCommonHeader);
- }
- unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
- Optional<unsigned> getCacheSize(CacheLevel Level) const override {
- return Impl.getCacheSize(Level);
- }
- Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
- return Impl.getCacheAssociativity(Level);
- }
- /// Return the preferred prefetch distance in terms of instructions.
- ///
- unsigned getPrefetchDistance() const override {
- return Impl.getPrefetchDistance();
- }
- /// Return the minimum stride necessary to trigger software
- /// prefetching.
- ///
- unsigned getMinPrefetchStride(unsigned NumMemAccesses,
- unsigned NumStridedMemAccesses,
- unsigned NumPrefetches,
- bool HasCall) const override {
- return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
- NumPrefetches, HasCall);
- }
- /// Return the maximum prefetch distance in terms of loop
- /// iterations.
- ///
- unsigned getMaxPrefetchIterationsAhead() const override {
- return Impl.getMaxPrefetchIterationsAhead();
- }
- /// \return True if prefetching should also be done for writes.
- bool enableWritePrefetching() const override {
- return Impl.enableWritePrefetching();
- }
- unsigned getMaxInterleaveFactor(unsigned VF) override {
- return Impl.getMaxInterleaveFactor(VF);
- }
- unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
- unsigned &JTSize,
- ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI) override {
- return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
- }
- unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- TTI::TargetCostKind CostKind,
- OperandValueKind Opd1Info,
- OperandValueKind Opd2Info,
- OperandValueProperties Opd1PropInfo,
- OperandValueProperties Opd2PropInfo,
- ArrayRef<const Value *> Args,
- const Instruction *CxtI = nullptr) override {
- return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
- Opd1PropInfo, Opd2PropInfo, Args, CxtI);
- }
- int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
- VectorType *SubTp) override {
- return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
- }
- int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
- CastContextHint CCH, TTI::TargetCostKind CostKind,
- const Instruction *I) override {
- return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
- }
- int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
- unsigned Index) override {
- return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
- }
- int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) override {
- return Impl.getCFInstrCost(Opcode, CostKind);
- }
- int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I) override {
- return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
- }
- int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
- return Impl.getVectorInstrCost(Opcode, Val, Index);
- }
- int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
- unsigned AddressSpace, TTI::TargetCostKind CostKind,
- const Instruction *I) override {
- return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind, I);
- }
- int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind) override {
- return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- }
- int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
- bool VariableMask, Align Alignment,
- TTI::TargetCostKind CostKind,
- const Instruction *I = nullptr) override {
- return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
- Alignment, CostKind, I);
- }
- int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
- ArrayRef<unsigned> Indices, Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- bool UseMaskForCond,
- bool UseMaskForGaps) override {
- return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace, CostKind,
- UseMaskForCond, UseMaskForGaps);
- }
- int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
- bool IsPairwiseForm,
- TTI::TargetCostKind CostKind) override {
- return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
- CostKind);
- }
- int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
- bool IsPairwiseForm, bool IsUnsigned,
- TTI::TargetCostKind CostKind) override {
- return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
- CostKind);
- }
- InstructionCost getExtendedAddReductionCost(
- bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
- return Impl.getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
- CostKind);
- }
- int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) override {
- return Impl.getIntrinsicInstrCost(ICA, CostKind);
- }
- int getCallInstrCost(Function *F, Type *RetTy,
- ArrayRef<Type *> Tys,
- TTI::TargetCostKind CostKind) override {
- return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
- }
- unsigned getNumberOfParts(Type *Tp) override {
- return Impl.getNumberOfParts(Tp);
- }
- int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
- const SCEV *Ptr) override {
- return Impl.getAddressComputationCost(Ty, SE, Ptr);
- }
- unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
- return Impl.getCostOfKeepingLiveOverCall(Tys);
- }
- bool getTgtMemIntrinsic(IntrinsicInst *Inst,
- MemIntrinsicInfo &Info) override {
- return Impl.getTgtMemIntrinsic(Inst, Info);
- }
- unsigned getAtomicMemIntrinsicMaxElementSize() const override {
- return Impl.getAtomicMemIntrinsicMaxElementSize();
- }
- Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) override {
- return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
- }
- Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
- unsigned SrcAddrSpace, unsigned DestAddrSpace,
- unsigned SrcAlign,
- unsigned DestAlign) const override {
- return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
- DestAddrSpace, SrcAlign, DestAlign);
- }
- void getMemcpyLoopResidualLoweringType(
- SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
- unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
- unsigned SrcAlign, unsigned DestAlign) const override {
- Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
- SrcAddrSpace, DestAddrSpace,
- SrcAlign, DestAlign);
- }
- bool areInlineCompatible(const Function *Caller,
- const Function *Callee) const override {
- return Impl.areInlineCompatible(Caller, Callee);
- }
- bool areFunctionArgsABICompatible(
- const Function *Caller, const Function *Callee,
- SmallPtrSetImpl<Argument *> &Args) const override {
- return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
- }
- bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
- return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
- }
- bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
- return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
- }
- unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
- return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
- }
- bool isLegalToVectorizeLoad(LoadInst *LI) const override {
- return Impl.isLegalToVectorizeLoad(LI);
- }
- bool isLegalToVectorizeStore(StoreInst *SI) const override {
- return Impl.isLegalToVectorizeStore(SI);
- }
- bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
- unsigned AddrSpace) const override {
- return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
- AddrSpace);
- }
- bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
- unsigned AddrSpace) const override {
- return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
- AddrSpace);
- }
- unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
- unsigned ChainSizeInBytes,
- VectorType *VecTy) const override {
- return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
- }
- unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
- unsigned ChainSizeInBytes,
- VectorType *VecTy) const override {
- return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
- }
- bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
- ReductionFlags Flags) const override {
- return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
- }
- bool preferInLoopReduction(unsigned Opcode, Type *Ty,
- ReductionFlags Flags) const override {
- return Impl.preferInLoopReduction(Opcode, Ty, Flags);
- }
- bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
- ReductionFlags Flags) const override {
- return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
- }
- bool shouldExpandReduction(const IntrinsicInst *II) const override {
- return Impl.shouldExpandReduction(II);
- }
- unsigned getGISelRematGlobalCost() const override {
- return Impl.getGISelRematGlobalCost();
- }
- bool supportsScalableVectors() const override {
- return Impl.supportsScalableVectors();
- }
- bool hasActiveVectorLength() const override {
- return Impl.hasActiveVectorLength();
- }
- int getInstructionLatency(const Instruction *I) override {
- return Impl.getInstructionLatency(I);
- }
- };
- template <typename T>
- TargetTransformInfo::TargetTransformInfo(T Impl)
- : TTIImpl(new Model<T>(Impl)) {}
- /// Analysis pass providing the \c TargetTransformInfo.
- ///
- /// The core idea of the TargetIRAnalysis is to expose an interface through
- /// which LLVM targets can analyze and provide information about the middle
- /// end's target-independent IR. This supports use cases such as target-aware
- /// cost modeling of IR constructs.
- ///
- /// This is a function analysis because much of the cost modeling for targets
- /// is done in a subtarget specific way and LLVM supports compiling different
- /// functions targeting different subtargets in order to support runtime
- /// dispatch according to the observed subtarget.
- class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
- public:
- typedef TargetTransformInfo Result;
- /// Default construct a target IR analysis.
- ///
- /// This will use the module's datalayout to construct a baseline
- /// conservative TTI result.
- TargetIRAnalysis();
- /// Construct an IR analysis pass around a target-provide callback.
- ///
- /// The callback will be called with a particular function for which the TTI
- /// is needed and must return a TTI object for that function.
- TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
- // Value semantics. We spell out the constructors for MSVC.
- TargetIRAnalysis(const TargetIRAnalysis &Arg)
- : TTICallback(Arg.TTICallback) {}
- TargetIRAnalysis(TargetIRAnalysis &&Arg)
- : TTICallback(std::move(Arg.TTICallback)) {}
- TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
- TTICallback = RHS.TTICallback;
- return *this;
- }
- TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
- TTICallback = std::move(RHS.TTICallback);
- return *this;
- }
- Result run(const Function &F, FunctionAnalysisManager &);
- private:
- friend AnalysisInfoMixin<TargetIRAnalysis>;
- static AnalysisKey Key;
- /// The callback used to produce a result.
- ///
- /// We use a completely opaque callback so that targets can provide whatever
- /// mechanism they desire for constructing the TTI for a given function.
- ///
- /// FIXME: Should we really use std::function? It's relatively inefficient.
- /// It might be possible to arrange for even stateful callbacks to outlive
- /// the analysis and thus use a function_ref which would be lighter weight.
- /// This may also be less error prone as the callback is likely to reference
- /// the external TargetMachine, and that reference needs to never dangle.
- std::function<Result(const Function &)> TTICallback;
- /// Helper function used as the callback in the default constructor.
- static Result getDefaultTTI(const Function &F);
- };
- /// Wrapper pass for TargetTransformInfo.
- ///
- /// This pass can be constructed from a TTI object which it stores internally
- /// and is queried by passes.
- class TargetTransformInfoWrapperPass : public ImmutablePass {
- TargetIRAnalysis TIRA;
- Optional<TargetTransformInfo> TTI;
- virtual void anchor();
- public:
- static char ID;
- /// We must provide a default constructor for the pass but it should
- /// never be used.
- ///
- /// Use the constructor below or call one of the creation routines.
- TargetTransformInfoWrapperPass();
- explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
- TargetTransformInfo &getTTI(const Function &F);
- };
- /// Create an analysis pass wrapper around a TTI object.
- ///
- /// This analysis pass just holds the TTI instance and makes it available to
- /// clients.
- ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|