12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the LoopInfo class that is used to identify natural loops
- // and determine the loop depth of various nodes of the CFG. A natural loop
- // has exactly one entry-point, which is called the header. Note that natural
- // loops may actually be several loops that share the same header node.
- //
- // This analysis calculates the nesting structure of loops in a function. For
- // each natural loop identified, this analysis identifies natural loops
- // contained entirely within the loop and the basic blocks the make up the loop.
- //
- // It can calculate on the fly various bits of information, for example:
- //
- // * whether there is a preheader for the loop
- // * the number of back edges to the header
- // * whether or not a particular block branches out of the loop
- // * the successor blocks of the loop
- // * the loop depth
- // * etc...
- //
- // Note that this analysis specifically identifies *Loops* not cycles or SCCs
- // in the CFG. There can be strongly connected components in the CFG which
- // this analysis will not recognize and that will not be represented by a Loop
- // instance. In particular, a Loop might be inside such a non-loop SCC, or a
- // non-loop SCC might contain a sub-SCC which is a Loop.
- //
- // For an overview of terminology used in this API (and thus all of our loop
- // analyses or transforms), see docs/LoopTerminology.rst.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_LOOPINFO_H
- #define LLVM_ANALYSIS_LOOPINFO_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include <algorithm>
- #include <utility>
- namespace llvm {
- class DominatorTree;
- class LoopInfo;
- class Loop;
- class InductionDescriptor;
- class MDNode;
- class MemorySSAUpdater;
- class ScalarEvolution;
- class raw_ostream;
- template <class N, bool IsPostDom> class DominatorTreeBase;
- template <class N, class M> class LoopInfoBase;
- template <class N, class M> class LoopBase;
- //===----------------------------------------------------------------------===//
- /// Instances of this class are used to represent loops that are detected in the
- /// flow graph.
- ///
- template <class BlockT, class LoopT> class LoopBase {
- LoopT *ParentLoop;
- // Loops contained entirely within this one.
- std::vector<LoopT *> SubLoops;
- // The list of blocks in this loop. First entry is the header node.
- std::vector<BlockT *> Blocks;
- SmallPtrSet<const BlockT *, 8> DenseBlockSet;
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- /// Indicator that this loop is no longer a valid loop.
- bool IsInvalid = false;
- #endif
- LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
- const LoopBase<BlockT, LoopT> &
- operator=(const LoopBase<BlockT, LoopT> &) = delete;
- public:
- /// Return the nesting level of this loop. An outer-most loop has depth 1,
- /// for consistency with loop depth values used for basic blocks, where depth
- /// 0 is used for blocks not inside any loops.
- unsigned getLoopDepth() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- unsigned D = 1;
- for (const LoopT *CurLoop = ParentLoop; CurLoop;
- CurLoop = CurLoop->ParentLoop)
- ++D;
- return D;
- }
- BlockT *getHeader() const { return getBlocks().front(); }
- /// Return the parent loop if it exists or nullptr for top
- /// level loops.
- /// A loop is either top-level in a function (that is, it is not
- /// contained in any other loop) or it is entirely enclosed in
- /// some other loop.
- /// If a loop is top-level, it has no parent, otherwise its
- /// parent is the innermost loop in which it is enclosed.
- LoopT *getParentLoop() const { return ParentLoop; }
- /// This is a raw interface for bypassing addChildLoop.
- void setParentLoop(LoopT *L) {
- assert(!isInvalid() && "Loop not in a valid state!");
- ParentLoop = L;
- }
- /// Return true if the specified loop is contained within in this loop.
- bool contains(const LoopT *L) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- if (L == this)
- return true;
- if (!L)
- return false;
- return contains(L->getParentLoop());
- }
- /// Return true if the specified basic block is in this loop.
- bool contains(const BlockT *BB) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- return DenseBlockSet.count(BB);
- }
- /// Return true if the specified instruction is in this loop.
- template <class InstT> bool contains(const InstT *Inst) const {
- return contains(Inst->getParent());
- }
- /// Return the loops contained entirely within this loop.
- const std::vector<LoopT *> &getSubLoops() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- return SubLoops;
- }
- std::vector<LoopT *> &getSubLoopsVector() {
- assert(!isInvalid() && "Loop not in a valid state!");
- return SubLoops;
- }
- typedef typename std::vector<LoopT *>::const_iterator iterator;
- typedef
- typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
- iterator begin() const { return getSubLoops().begin(); }
- iterator end() const { return getSubLoops().end(); }
- reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
- reverse_iterator rend() const { return getSubLoops().rend(); }
- // LoopInfo does not detect irreducible control flow, just natural
- // loops. That is, it is possible that there is cyclic control
- // flow within the "innermost loop" or around the "outermost
- // loop".
- /// Return true if the loop does not contain any (natural) loops.
- bool isInnermost() const { return getSubLoops().empty(); }
- /// Return true if the loop does not have a parent (natural) loop
- // (i.e. it is outermost, which is the same as top-level).
- bool isOutermost() const { return getParentLoop() == nullptr; }
- /// Get a list of the basic blocks which make up this loop.
- ArrayRef<BlockT *> getBlocks() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- return Blocks;
- }
- typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
- block_iterator block_begin() const { return getBlocks().begin(); }
- block_iterator block_end() const { return getBlocks().end(); }
- inline iterator_range<block_iterator> blocks() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- return make_range(block_begin(), block_end());
- }
- /// Get the number of blocks in this loop in constant time.
- /// Invalidate the loop, indicating that it is no longer a loop.
- unsigned getNumBlocks() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- return Blocks.size();
- }
- /// Return a direct, mutable handle to the blocks vector so that we can
- /// mutate it efficiently with techniques like `std::remove`.
- std::vector<BlockT *> &getBlocksVector() {
- assert(!isInvalid() && "Loop not in a valid state!");
- return Blocks;
- }
- /// Return a direct, mutable handle to the blocks set so that we can
- /// mutate it efficiently.
- SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
- assert(!isInvalid() && "Loop not in a valid state!");
- return DenseBlockSet;
- }
- /// Return a direct, immutable handle to the blocks set.
- const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- return DenseBlockSet;
- }
- /// Return true if this loop is no longer valid. The only valid use of this
- /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
- /// true by the destructor. In other words, if this accessor returns true,
- /// the caller has already triggered UB by calling this accessor; and so it
- /// can only be called in a context where a return value of true indicates a
- /// programmer error.
- bool isInvalid() const {
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- return IsInvalid;
- #else
- return false;
- #endif
- }
- /// True if terminator in the block can branch to another block that is
- /// outside of the current loop. \p BB must be inside the loop.
- bool isLoopExiting(const BlockT *BB) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- assert(contains(BB) && "Exiting block must be part of the loop");
- for (const auto *Succ : children<const BlockT *>(BB)) {
- if (!contains(Succ))
- return true;
- }
- return false;
- }
- /// Returns true if \p BB is a loop-latch.
- /// A latch block is a block that contains a branch back to the header.
- /// This function is useful when there are multiple latches in a loop
- /// because \fn getLoopLatch will return nullptr in that case.
- bool isLoopLatch(const BlockT *BB) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- assert(contains(BB) && "block does not belong to the loop");
- BlockT *Header = getHeader();
- auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
- auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
- return std::find(PredBegin, PredEnd, BB) != PredEnd;
- }
- /// Calculate the number of back edges to the loop header.
- unsigned getNumBackEdges() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- unsigned NumBackEdges = 0;
- BlockT *H = getHeader();
- for (const auto Pred : children<Inverse<BlockT *>>(H))
- if (contains(Pred))
- ++NumBackEdges;
- return NumBackEdges;
- }
- //===--------------------------------------------------------------------===//
- // APIs for simple analysis of the loop.
- //
- // Note that all of these methods can fail on general loops (ie, there may not
- // be a preheader, etc). For best success, the loop simplification and
- // induction variable canonicalization pass should be used to normalize loops
- // for easy analysis. These methods assume canonical loops.
- /// Return all blocks inside the loop that have successors outside of the
- /// loop. These are the blocks _inside of the current loop_ which branch out.
- /// The returned list is always unique.
- void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
- /// If getExitingBlocks would return exactly one block, return that block.
- /// Otherwise return null.
- BlockT *getExitingBlock() const;
- /// Return all of the successor blocks of this loop. These are the blocks
- /// _outside of the current loop_ which are branched to.
- void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
- /// If getExitBlocks would return exactly one block, return that block.
- /// Otherwise return null.
- BlockT *getExitBlock() const;
- /// Return true if no exit block for the loop has a predecessor that is
- /// outside the loop.
- bool hasDedicatedExits() const;
- /// Return all unique successor blocks of this loop.
- /// These are the blocks _outside of the current loop_ which are branched to.
- void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
- /// Return all unique successor blocks of this loop except successors from
- /// Latch block are not considered. If the exit comes from Latch has also
- /// non Latch predecessor in a loop it will be added to ExitBlocks.
- /// These are the blocks _outside of the current loop_ which are branched to.
- void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
- /// If getUniqueExitBlocks would return exactly one block, return that block.
- /// Otherwise return null.
- BlockT *getUniqueExitBlock() const;
- /// Return true if this loop does not have any exit blocks.
- bool hasNoExitBlocks() const;
- /// Edge type.
- typedef std::pair<BlockT *, BlockT *> Edge;
- /// Return all pairs of (_inside_block_,_outside_block_).
- void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
- /// If there is a preheader for this loop, return it. A loop has a preheader
- /// if there is only one edge to the header of the loop from outside of the
- /// loop. If this is the case, the block branching to the header of the loop
- /// is the preheader node.
- ///
- /// This method returns null if there is no preheader for the loop.
- BlockT *getLoopPreheader() const;
- /// If the given loop's header has exactly one unique predecessor outside the
- /// loop, return it. Otherwise return null.
- /// This is less strict that the loop "preheader" concept, which requires
- /// the predecessor to have exactly one successor.
- BlockT *getLoopPredecessor() const;
- /// If there is a single latch block for this loop, return it.
- /// A latch block is a block that contains a branch back to the header.
- BlockT *getLoopLatch() const;
- /// Return all loop latch blocks of this loop. A latch block is a block that
- /// contains a branch back to the header.
- void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
- assert(!isInvalid() && "Loop not in a valid state!");
- BlockT *H = getHeader();
- for (const auto Pred : children<Inverse<BlockT *>>(H))
- if (contains(Pred))
- LoopLatches.push_back(Pred);
- }
- /// Return all inner loops in the loop nest rooted by the loop in preorder,
- /// with siblings in forward program order.
- template <class Type>
- static void getInnerLoopsInPreorder(const LoopT &L,
- SmallVectorImpl<Type> &PreOrderLoops) {
- SmallVector<LoopT *, 4> PreOrderWorklist;
- PreOrderWorklist.append(L.rbegin(), L.rend());
- while (!PreOrderWorklist.empty()) {
- LoopT *L = PreOrderWorklist.pop_back_val();
- // Sub-loops are stored in forward program order, but will process the
- // worklist backwards so append them in reverse order.
- PreOrderWorklist.append(L->rbegin(), L->rend());
- PreOrderLoops.push_back(L);
- }
- }
- /// Return all loops in the loop nest rooted by the loop in preorder, with
- /// siblings in forward program order.
- SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
- SmallVector<const LoopT *, 4> PreOrderLoops;
- const LoopT *CurLoop = static_cast<const LoopT *>(this);
- PreOrderLoops.push_back(CurLoop);
- getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
- return PreOrderLoops;
- }
- SmallVector<LoopT *, 4> getLoopsInPreorder() {
- SmallVector<LoopT *, 4> PreOrderLoops;
- LoopT *CurLoop = static_cast<LoopT *>(this);
- PreOrderLoops.push_back(CurLoop);
- getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
- return PreOrderLoops;
- }
- //===--------------------------------------------------------------------===//
- // APIs for updating loop information after changing the CFG
- //
- /// This method is used by other analyses to update loop information.
- /// NewBB is set to be a new member of the current loop.
- /// Because of this, it is added as a member of all parent loops, and is added
- /// to the specified LoopInfo object as being in the current basic block. It
- /// is not valid to replace the loop header with this method.
- void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
- /// This is used when splitting loops up. It replaces the OldChild entry in
- /// our children list with NewChild, and updates the parent pointer of
- /// OldChild to be null and the NewChild to be this loop.
- /// This updates the loop depth of the new child.
- void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
- /// Add the specified loop to be a child of this loop.
- /// This updates the loop depth of the new child.
- void addChildLoop(LoopT *NewChild) {
- assert(!isInvalid() && "Loop not in a valid state!");
- assert(!NewChild->ParentLoop && "NewChild already has a parent!");
- NewChild->ParentLoop = static_cast<LoopT *>(this);
- SubLoops.push_back(NewChild);
- }
- /// This removes the specified child from being a subloop of this loop. The
- /// loop is not deleted, as it will presumably be inserted into another loop.
- LoopT *removeChildLoop(iterator I) {
- assert(!isInvalid() && "Loop not in a valid state!");
- assert(I != SubLoops.end() && "Cannot remove end iterator!");
- LoopT *Child = *I;
- assert(Child->ParentLoop == this && "Child is not a child of this loop!");
- SubLoops.erase(SubLoops.begin() + (I - begin()));
- Child->ParentLoop = nullptr;
- return Child;
- }
- /// This removes the specified child from being a subloop of this loop. The
- /// loop is not deleted, as it will presumably be inserted into another loop.
- LoopT *removeChildLoop(LoopT *Child) {
- return removeChildLoop(llvm::find(*this, Child));
- }
- /// This adds a basic block directly to the basic block list.
- /// This should only be used by transformations that create new loops. Other
- /// transformations should use addBasicBlockToLoop.
- void addBlockEntry(BlockT *BB) {
- assert(!isInvalid() && "Loop not in a valid state!");
- Blocks.push_back(BB);
- DenseBlockSet.insert(BB);
- }
- /// interface to reverse Blocks[from, end of loop] in this loop
- void reverseBlock(unsigned from) {
- assert(!isInvalid() && "Loop not in a valid state!");
- std::reverse(Blocks.begin() + from, Blocks.end());
- }
- /// interface to do reserve() for Blocks
- void reserveBlocks(unsigned size) {
- assert(!isInvalid() && "Loop not in a valid state!");
- Blocks.reserve(size);
- }
- /// This method is used to move BB (which must be part of this loop) to be the
- /// loop header of the loop (the block that dominates all others).
- void moveToHeader(BlockT *BB) {
- assert(!isInvalid() && "Loop not in a valid state!");
- if (Blocks[0] == BB)
- return;
- for (unsigned i = 0;; ++i) {
- assert(i != Blocks.size() && "Loop does not contain BB!");
- if (Blocks[i] == BB) {
- Blocks[i] = Blocks[0];
- Blocks[0] = BB;
- return;
- }
- }
- }
- /// This removes the specified basic block from the current loop, updating the
- /// Blocks as appropriate. This does not update the mapping in the LoopInfo
- /// class.
- void removeBlockFromLoop(BlockT *BB) {
- assert(!isInvalid() && "Loop not in a valid state!");
- auto I = find(Blocks, BB);
- assert(I != Blocks.end() && "N is not in this list!");
- Blocks.erase(I);
- DenseBlockSet.erase(BB);
- }
- /// Verify loop structure
- void verifyLoop() const;
- /// Verify loop structure of this loop and all nested loops.
- void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
- /// Returns true if the loop is annotated parallel.
- ///
- /// Derived classes can override this method using static template
- /// polymorphism.
- bool isAnnotatedParallel() const { return false; }
- /// Print loop with all the BBs inside it.
- void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
- protected:
- friend class LoopInfoBase<BlockT, LoopT>;
- /// This creates an empty loop.
- LoopBase() : ParentLoop(nullptr) {}
- explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
- Blocks.push_back(BB);
- DenseBlockSet.insert(BB);
- }
- // Since loop passes like SCEV are allowed to key analysis results off of
- // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
- // This means loop passes should not be `delete` ing `Loop` objects directly
- // (and risk a later `Loop` allocation re-using the address of a previous one)
- // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
- // pointer till the end of the lifetime of the `LoopInfo` object.
- //
- // To make it easier to follow this rule, we mark the destructor as
- // non-public.
- ~LoopBase() {
- for (auto *SubLoop : SubLoops)
- SubLoop->~LoopT();
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- IsInvalid = true;
- #endif
- SubLoops.clear();
- Blocks.clear();
- DenseBlockSet.clear();
- ParentLoop = nullptr;
- }
- };
- template <class BlockT, class LoopT>
- raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
- Loop.print(OS);
- return OS;
- }
- // Implementation in LoopInfoImpl.h
- extern template class LoopBase<BasicBlock, Loop>;
- /// Represents a single loop in the control flow graph. Note that not all SCCs
- /// in the CFG are necessarily loops.
- class Loop : public LoopBase<BasicBlock, Loop> {
- public:
- /// A range representing the start and end location of a loop.
- class LocRange {
- DebugLoc Start;
- DebugLoc End;
- public:
- LocRange() {}
- LocRange(DebugLoc Start) : Start(Start), End(Start) {}
- LocRange(DebugLoc Start, DebugLoc End)
- : Start(std::move(Start)), End(std::move(End)) {}
- const DebugLoc &getStart() const { return Start; }
- const DebugLoc &getEnd() const { return End; }
- /// Check for null.
- ///
- explicit operator bool() const { return Start && End; }
- };
- /// Return true if the specified value is loop invariant.
- bool isLoopInvariant(const Value *V) const;
- /// Return true if all the operands of the specified instruction are loop
- /// invariant.
- bool hasLoopInvariantOperands(const Instruction *I) const;
- /// If the given value is an instruction inside of the loop and it can be
- /// hoisted, do so to make it trivially loop-invariant.
- /// Return true if the value after any hoisting is loop invariant. This
- /// function can be used as a slightly more aggressive replacement for
- /// isLoopInvariant.
- ///
- /// If InsertPt is specified, it is the point to hoist instructions to.
- /// If null, the terminator of the loop preheader is used.
- bool makeLoopInvariant(Value *V, bool &Changed,
- Instruction *InsertPt = nullptr,
- MemorySSAUpdater *MSSAU = nullptr) const;
- /// If the given instruction is inside of the loop and it can be hoisted, do
- /// so to make it trivially loop-invariant.
- /// Return true if the instruction after any hoisting is loop invariant. This
- /// function can be used as a slightly more aggressive replacement for
- /// isLoopInvariant.
- ///
- /// If InsertPt is specified, it is the point to hoist instructions to.
- /// If null, the terminator of the loop preheader is used.
- ///
- bool makeLoopInvariant(Instruction *I, bool &Changed,
- Instruction *InsertPt = nullptr,
- MemorySSAUpdater *MSSAU = nullptr) const;
- /// Check to see if the loop has a canonical induction variable: an integer
- /// recurrence that starts at 0 and increments by one each time through the
- /// loop. If so, return the phi node that corresponds to it.
- ///
- /// The IndVarSimplify pass transforms loops to have a canonical induction
- /// variable.
- ///
- PHINode *getCanonicalInductionVariable() const;
- /// Obtain the unique incoming and back edge. Return false if they are
- /// non-unique or the loop is dead; otherwise, return true.
- bool getIncomingAndBackEdge(BasicBlock *&Incoming,
- BasicBlock *&Backedge) const;
- /// Below are some utilities to get the loop guard, loop bounds and induction
- /// variable, and to check if a given phinode is an auxiliary induction
- /// variable, if the loop is guarded, and if the loop is canonical.
- ///
- /// Here is an example:
- /// \code
- /// for (int i = lb; i < ub; i+=step)
- /// <loop body>
- /// --- pseudo LLVMIR ---
- /// beforeloop:
- /// guardcmp = (lb < ub)
- /// if (guardcmp) goto preheader; else goto afterloop
- /// preheader:
- /// loop:
- /// i_1 = phi[{lb, preheader}, {i_2, latch}]
- /// <loop body>
- /// i_2 = i_1 + step
- /// latch:
- /// cmp = (i_2 < ub)
- /// if (cmp) goto loop
- /// exit:
- /// afterloop:
- /// \endcode
- ///
- /// - getBounds
- /// - getInitialIVValue --> lb
- /// - getStepInst --> i_2 = i_1 + step
- /// - getStepValue --> step
- /// - getFinalIVValue --> ub
- /// - getCanonicalPredicate --> '<'
- /// - getDirection --> Increasing
- ///
- /// - getInductionVariable --> i_1
- /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
- /// - getLoopGuardBranch()
- /// --> `if (guardcmp) goto preheader; else goto afterloop`
- /// - isGuarded() --> true
- /// - isCanonical --> false
- struct LoopBounds {
- /// Return the LoopBounds object if
- /// - the given \p IndVar is an induction variable
- /// - the initial value of the induction variable can be found
- /// - the step instruction of the induction variable can be found
- /// - the final value of the induction variable can be found
- ///
- /// Else None.
- static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
- ScalarEvolution &SE);
- /// Get the initial value of the loop induction variable.
- Value &getInitialIVValue() const { return InitialIVValue; }
- /// Get the instruction that updates the loop induction variable.
- Instruction &getStepInst() const { return StepInst; }
- /// Get the step that the loop induction variable gets updated by in each
- /// loop iteration. Return nullptr if not found.
- Value *getStepValue() const { return StepValue; }
- /// Get the final value of the loop induction variable.
- Value &getFinalIVValue() const { return FinalIVValue; }
- /// Return the canonical predicate for the latch compare instruction, if
- /// able to be calcuated. Else BAD_ICMP_PREDICATE.
- ///
- /// A predicate is considered as canonical if requirements below are all
- /// satisfied:
- /// 1. The first successor of the latch branch is the loop header
- /// If not, inverse the predicate.
- /// 2. One of the operands of the latch comparison is StepInst
- /// If not, and
- /// - if the current calcuated predicate is not ne or eq, flip the
- /// predicate.
- /// - else if the loop is increasing, return slt
- /// (notice that it is safe to change from ne or eq to sign compare)
- /// - else if the loop is decreasing, return sgt
- /// (notice that it is safe to change from ne or eq to sign compare)
- ///
- /// Here is an example when both (1) and (2) are not satisfied:
- /// \code
- /// loop.header:
- /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
- /// %inc = add %iv, %step
- /// %cmp = slt %iv, %finaliv
- /// br %cmp, %loop.exit, %loop.header
- /// loop.exit:
- /// \endcode
- /// - The second successor of the latch branch is the loop header instead
- /// of the first successor (slt -> sge)
- /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
- /// instead of the StepInst (%inc) (sge -> sgt)
- ///
- /// The predicate would be sgt if both (1) and (2) are satisfied.
- /// getCanonicalPredicate() returns sgt for this example.
- /// Note: The IR is not changed.
- ICmpInst::Predicate getCanonicalPredicate() const;
- /// An enum for the direction of the loop
- /// - for (int i = 0; i < ub; ++i) --> Increasing
- /// - for (int i = ub; i > 0; --i) --> Descresing
- /// - for (int i = x; i != y; i+=z) --> Unknown
- enum class Direction { Increasing, Decreasing, Unknown };
- /// Get the direction of the loop.
- Direction getDirection() const;
- private:
- LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
- ScalarEvolution &SE)
- : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
- FinalIVValue(F), SE(SE) {}
- const Loop &L;
- // The initial value of the loop induction variable
- Value &InitialIVValue;
- // The instruction that updates the loop induction variable
- Instruction &StepInst;
- // The value that the loop induction variable gets updated by in each loop
- // iteration
- Value *StepValue;
- // The final value of the loop induction variable
- Value &FinalIVValue;
- ScalarEvolution &SE;
- };
- /// Return the struct LoopBounds collected if all struct members are found,
- /// else None.
- Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
- /// Return the loop induction variable if found, else return nullptr.
- /// An instruction is considered as the loop induction variable if
- /// - it is an induction variable of the loop; and
- /// - it is used to determine the condition of the branch in the loop latch
- ///
- /// Note: the induction variable doesn't need to be canonical, i.e. starts at
- /// zero and increments by one each time through the loop (but it can be).
- PHINode *getInductionVariable(ScalarEvolution &SE) const;
- /// Get the loop induction descriptor for the loop induction variable. Return
- /// true if the loop induction variable is found.
- bool getInductionDescriptor(ScalarEvolution &SE,
- InductionDescriptor &IndDesc) const;
- /// Return true if the given PHINode \p AuxIndVar is
- /// - in the loop header
- /// - not used outside of the loop
- /// - incremented by a loop invariant step for each loop iteration
- /// - step instruction opcode should be add or sub
- /// Note: auxiliary induction variable is not required to be used in the
- /// conditional branch in the loop latch. (but it can be)
- bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
- ScalarEvolution &SE) const;
- /// Return the loop guard branch, if it exists.
- ///
- /// This currently only works on simplified loop, as it requires a preheader
- /// and a latch to identify the guard. It will work on loops of the form:
- /// \code
- /// GuardBB:
- /// br cond1, Preheader, ExitSucc <== GuardBranch
- /// Preheader:
- /// br Header
- /// Header:
- /// ...
- /// br Latch
- /// Latch:
- /// br cond2, Header, ExitBlock
- /// ExitBlock:
- /// br ExitSucc
- /// ExitSucc:
- /// \endcode
- BranchInst *getLoopGuardBranch() const;
- /// Return true iff the loop is
- /// - in simplify rotated form, and
- /// - guarded by a loop guard branch.
- bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
- /// Return true if the loop is in rotated form.
- ///
- /// This does not check if the loop was rotated by loop rotation, instead it
- /// only checks if the loop is in rotated form (has a valid latch that exists
- /// the loop).
- bool isRotatedForm() const {
- assert(!isInvalid() && "Loop not in a valid state!");
- BasicBlock *Latch = getLoopLatch();
- return Latch && isLoopExiting(Latch);
- }
- /// Return true if the loop induction variable starts at zero and increments
- /// by one each time through the loop.
- bool isCanonical(ScalarEvolution &SE) const;
- /// Return true if the Loop is in LCSSA form.
- bool isLCSSAForm(const DominatorTree &DT) const;
- /// Return true if this Loop and all inner subloops are in LCSSA form.
- bool isRecursivelyLCSSAForm(const DominatorTree &DT,
- const LoopInfo &LI) const;
- /// Return true if the Loop is in the form that the LoopSimplify form
- /// transforms loops to, which is sometimes called normal form.
- bool isLoopSimplifyForm() const;
- /// Return true if the loop body is safe to clone in practice.
- bool isSafeToClone() const;
- /// Returns true if the loop is annotated parallel.
- ///
- /// A parallel loop can be assumed to not contain any dependencies between
- /// iterations by the compiler. That is, any loop-carried dependency checking
- /// can be skipped completely when parallelizing the loop on the target
- /// machine. Thus, if the parallel loop information originates from the
- /// programmer, e.g. via the OpenMP parallel for pragma, it is the
- /// programmer's responsibility to ensure there are no loop-carried
- /// dependencies. The final execution order of the instructions across
- /// iterations is not guaranteed, thus, the end result might or might not
- /// implement actual concurrent execution of instructions across multiple
- /// iterations.
- bool isAnnotatedParallel() const;
- /// Return the llvm.loop loop id metadata node for this loop if it is present.
- ///
- /// If this loop contains the same llvm.loop metadata on each branch to the
- /// header then the node is returned. If any latch instruction does not
- /// contain llvm.loop or if multiple latches contain different nodes then
- /// 0 is returned.
- MDNode *getLoopID() const;
- /// Set the llvm.loop loop id metadata for this loop.
- ///
- /// The LoopID metadata node will be added to each terminator instruction in
- /// the loop that branches to the loop header.
- ///
- /// The LoopID metadata node should have one or more operands and the first
- /// operand should be the node itself.
- void setLoopID(MDNode *LoopID) const;
- /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
- ///
- /// Remove existing unroll metadata and add unroll disable metadata to
- /// indicate the loop has already been unrolled. This prevents a loop
- /// from being unrolled more than is directed by a pragma if the loop
- /// unrolling pass is run more than once (which it generally is).
- void setLoopAlreadyUnrolled();
- /// Add llvm.loop.mustprogress to this loop's loop id metadata.
- void setLoopMustProgress();
- void dump() const;
- void dumpVerbose() const;
- /// Return the debug location of the start of this loop.
- /// This looks for a BB terminating instruction with a known debug
- /// location by looking at the preheader and header blocks. If it
- /// cannot find a terminating instruction with location information,
- /// it returns an unknown location.
- DebugLoc getStartLoc() const;
- /// Return the source code span of the loop.
- LocRange getLocRange() const;
- StringRef getName() const {
- if (BasicBlock *Header = getHeader())
- if (Header->hasName())
- return Header->getName();
- return "<unnamed loop>";
- }
- private:
- Loop() = default;
- friend class LoopInfoBase<BasicBlock, Loop>;
- friend class LoopBase<BasicBlock, Loop>;
- explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
- ~Loop() = default;
- };
- //===----------------------------------------------------------------------===//
- /// This class builds and contains all of the top-level loop
- /// structures in the specified function.
- ///
- template <class BlockT, class LoopT> class LoopInfoBase {
- // BBMap - Mapping of basic blocks to the inner most loop they occur in
- DenseMap<const BlockT *, LoopT *> BBMap;
- std::vector<LoopT *> TopLevelLoops;
- BumpPtrAllocator LoopAllocator;
- friend class LoopBase<BlockT, LoopT>;
- friend class LoopInfo;
- void operator=(const LoopInfoBase &) = delete;
- LoopInfoBase(const LoopInfoBase &) = delete;
- public:
- LoopInfoBase() {}
- ~LoopInfoBase() { releaseMemory(); }
- LoopInfoBase(LoopInfoBase &&Arg)
- : BBMap(std::move(Arg.BBMap)),
- TopLevelLoops(std::move(Arg.TopLevelLoops)),
- LoopAllocator(std::move(Arg.LoopAllocator)) {
- // We have to clear the arguments top level loops as we've taken ownership.
- Arg.TopLevelLoops.clear();
- }
- LoopInfoBase &operator=(LoopInfoBase &&RHS) {
- BBMap = std::move(RHS.BBMap);
- for (auto *L : TopLevelLoops)
- L->~LoopT();
- TopLevelLoops = std::move(RHS.TopLevelLoops);
- LoopAllocator = std::move(RHS.LoopAllocator);
- RHS.TopLevelLoops.clear();
- return *this;
- }
- void releaseMemory() {
- BBMap.clear();
- for (auto *L : TopLevelLoops)
- L->~LoopT();
- TopLevelLoops.clear();
- LoopAllocator.Reset();
- }
- template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
- LoopT *Storage = LoopAllocator.Allocate<LoopT>();
- return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
- }
- /// iterator/begin/end - The interface to the top-level loops in the current
- /// function.
- ///
- typedef typename std::vector<LoopT *>::const_iterator iterator;
- typedef
- typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
- iterator begin() const { return TopLevelLoops.begin(); }
- iterator end() const { return TopLevelLoops.end(); }
- reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
- reverse_iterator rend() const { return TopLevelLoops.rend(); }
- bool empty() const { return TopLevelLoops.empty(); }
- /// Return all of the loops in the function in preorder across the loop
- /// nests, with siblings in forward program order.
- ///
- /// Note that because loops form a forest of trees, preorder is equivalent to
- /// reverse postorder.
- SmallVector<LoopT *, 4> getLoopsInPreorder();
- /// Return all of the loops in the function in preorder across the loop
- /// nests, with siblings in *reverse* program order.
- ///
- /// Note that because loops form a forest of trees, preorder is equivalent to
- /// reverse postorder.
- ///
- /// Also note that this is *not* a reverse preorder. Only the siblings are in
- /// reverse program order.
- SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
- /// Return the inner most loop that BB lives in. If a basic block is in no
- /// loop (for example the entry node), null is returned.
- LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
- /// Same as getLoopFor.
- const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
- /// Return the loop nesting level of the specified block. A depth of 0 means
- /// the block is not inside any loop.
- unsigned getLoopDepth(const BlockT *BB) const {
- const LoopT *L = getLoopFor(BB);
- return L ? L->getLoopDepth() : 0;
- }
- // True if the block is a loop header node
- bool isLoopHeader(const BlockT *BB) const {
- const LoopT *L = getLoopFor(BB);
- return L && L->getHeader() == BB;
- }
- /// Return the top-level loops.
- const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
- /// Return the top-level loops.
- std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
- /// This removes the specified top-level loop from this loop info object.
- /// The loop is not deleted, as it will presumably be inserted into
- /// another loop.
- LoopT *removeLoop(iterator I) {
- assert(I != end() && "Cannot remove end iterator!");
- LoopT *L = *I;
- assert(L->isOutermost() && "Not a top-level loop!");
- TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
- return L;
- }
- /// Change the top-level loop that contains BB to the specified loop.
- /// This should be used by transformations that restructure the loop hierarchy
- /// tree.
- void changeLoopFor(BlockT *BB, LoopT *L) {
- if (!L) {
- BBMap.erase(BB);
- return;
- }
- BBMap[BB] = L;
- }
- /// Replace the specified loop in the top-level loops list with the indicated
- /// loop.
- void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
- auto I = find(TopLevelLoops, OldLoop);
- assert(I != TopLevelLoops.end() && "Old loop not at top level!");
- *I = NewLoop;
- assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
- "Loops already embedded into a subloop!");
- }
- /// This adds the specified loop to the collection of top-level loops.
- void addTopLevelLoop(LoopT *New) {
- assert(New->isOutermost() && "Loop already in subloop!");
- TopLevelLoops.push_back(New);
- }
- /// This method completely removes BB from all data structures,
- /// including all of the Loop objects it is nested in and our mapping from
- /// BasicBlocks to loops.
- void removeBlock(BlockT *BB) {
- auto I = BBMap.find(BB);
- if (I != BBMap.end()) {
- for (LoopT *L = I->second; L; L = L->getParentLoop())
- L->removeBlockFromLoop(BB);
- BBMap.erase(I);
- }
- }
- // Internals
- static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
- const LoopT *ParentLoop) {
- if (!SubLoop)
- return true;
- if (SubLoop == ParentLoop)
- return false;
- return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
- }
- /// Create the loop forest using a stable algorithm.
- void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
- // Debugging
- void print(raw_ostream &OS) const;
- void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
- /// Destroy a loop that has been removed from the `LoopInfo` nest.
- ///
- /// This runs the destructor of the loop object making it invalid to
- /// reference afterward. The memory is retained so that the *pointer* to the
- /// loop remains valid.
- ///
- /// The caller is responsible for removing this loop from the loop nest and
- /// otherwise disconnecting it from the broader `LoopInfo` data structures.
- /// Callers that don't naturally handle this themselves should probably call
- /// `erase' instead.
- void destroy(LoopT *L) {
- L->~LoopT();
- // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
- // \c L, but the pointer remains valid for non-dereferencing uses.
- LoopAllocator.Deallocate(L);
- }
- };
- // Implementation in LoopInfoImpl.h
- extern template class LoopInfoBase<BasicBlock, Loop>;
- class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
- typedef LoopInfoBase<BasicBlock, Loop> BaseT;
- friend class LoopBase<BasicBlock, Loop>;
- void operator=(const LoopInfo &) = delete;
- LoopInfo(const LoopInfo &) = delete;
- public:
- LoopInfo() {}
- explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
- LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
- LoopInfo &operator=(LoopInfo &&RHS) {
- BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
- return *this;
- }
- /// Handle invalidation explicitly.
- bool invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &);
- // Most of the public interface is provided via LoopInfoBase.
- /// Update LoopInfo after removing the last backedge from a loop. This updates
- /// the loop forest and parent loops for each block so that \c L is no longer
- /// referenced, but does not actually delete \c L immediately. The pointer
- /// will remain valid until this LoopInfo's memory is released.
- void erase(Loop *L);
- /// Returns true if replacing From with To everywhere is guaranteed to
- /// preserve LCSSA form.
- bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
- // Preserving LCSSA form is only problematic if the replacing value is an
- // instruction.
- Instruction *I = dyn_cast<Instruction>(To);
- if (!I)
- return true;
- // If both instructions are defined in the same basic block then replacement
- // cannot break LCSSA form.
- if (I->getParent() == From->getParent())
- return true;
- // If the instruction is not defined in a loop then it can safely replace
- // anything.
- Loop *ToLoop = getLoopFor(I->getParent());
- if (!ToLoop)
- return true;
- // If the replacing instruction is defined in the same loop as the original
- // instruction, or in a loop that contains it as an inner loop, then using
- // it as a replacement will not break LCSSA form.
- return ToLoop->contains(getLoopFor(From->getParent()));
- }
- /// Checks if moving a specific instruction can break LCSSA in any loop.
- ///
- /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
- /// assuming that the function containing \p Inst and \p NewLoc is currently
- /// in LCSSA form.
- bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
- assert(Inst->getFunction() == NewLoc->getFunction() &&
- "Can't reason about IPO!");
- auto *OldBB = Inst->getParent();
- auto *NewBB = NewLoc->getParent();
- // Movement within the same loop does not break LCSSA (the equality check is
- // to avoid doing a hashtable lookup in case of intra-block movement).
- if (OldBB == NewBB)
- return true;
- auto *OldLoop = getLoopFor(OldBB);
- auto *NewLoop = getLoopFor(NewBB);
- if (OldLoop == NewLoop)
- return true;
- // Check if Outer contains Inner; with the null loop counting as the
- // "outermost" loop.
- auto Contains = [](const Loop *Outer, const Loop *Inner) {
- return !Outer || Outer->contains(Inner);
- };
- // To check that the movement of Inst to before NewLoc does not break LCSSA,
- // we need to check two sets of uses for possible LCSSA violations at
- // NewLoc: the users of NewInst, and the operands of NewInst.
- // If we know we're hoisting Inst out of an inner loop to an outer loop,
- // then the uses *of* Inst don't need to be checked.
- if (!Contains(NewLoop, OldLoop)) {
- for (Use &U : Inst->uses()) {
- auto *UI = cast<Instruction>(U.getUser());
- auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
- : UI->getParent();
- if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
- return false;
- }
- }
- // If we know we're sinking Inst from an outer loop into an inner loop, then
- // the *operands* of Inst don't need to be checked.
- if (!Contains(OldLoop, NewLoop)) {
- // See below on why we can't handle phi nodes here.
- if (isa<PHINode>(Inst))
- return false;
- for (Use &U : Inst->operands()) {
- auto *DefI = dyn_cast<Instruction>(U.get());
- if (!DefI)
- return false;
- // This would need adjustment if we allow Inst to be a phi node -- the
- // new use block won't simply be NewBB.
- auto *DefBlock = DefI->getParent();
- if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
- return false;
- }
- }
- return true;
- }
- };
- // Allow clients to walk the list of nested loops...
- template <> struct GraphTraits<const Loop *> {
- typedef const Loop *NodeRef;
- typedef LoopInfo::iterator ChildIteratorType;
- static NodeRef getEntryNode(const Loop *L) { return L; }
- static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
- static ChildIteratorType child_end(NodeRef N) { return N->end(); }
- };
- template <> struct GraphTraits<Loop *> {
- typedef Loop *NodeRef;
- typedef LoopInfo::iterator ChildIteratorType;
- static NodeRef getEntryNode(Loop *L) { return L; }
- static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
- static ChildIteratorType child_end(NodeRef N) { return N->end(); }
- };
- /// Analysis pass that exposes the \c LoopInfo for a function.
- class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
- friend AnalysisInfoMixin<LoopAnalysis>;
- static AnalysisKey Key;
- public:
- typedef LoopInfo Result;
- LoopInfo run(Function &F, FunctionAnalysisManager &AM);
- };
- /// Printer pass for the \c LoopAnalysis results.
- class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
- raw_ostream &OS;
- public:
- explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
- };
- /// Verifier pass for the \c LoopAnalysis results.
- struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
- };
- /// The legacy pass manager's analysis pass to compute loop information.
- class LoopInfoWrapperPass : public FunctionPass {
- LoopInfo LI;
- public:
- static char ID; // Pass identification, replacement for typeid
- LoopInfoWrapperPass();
- LoopInfo &getLoopInfo() { return LI; }
- const LoopInfo &getLoopInfo() const { return LI; }
- /// Calculate the natural loop information for a given function.
- bool runOnFunction(Function &F) override;
- void verifyAnalysis() const override;
- void releaseMemory() override { LI.releaseMemory(); }
- void print(raw_ostream &O, const Module *M = nullptr) const override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- };
- /// Function to print a loop's contents as LLVM's text IR assembly.
- void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
- /// Find and return the loop attribute node for the attribute @p Name in
- /// @p LoopID. Return nullptr if there is no such attribute.
- MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
- /// Find string metadata for a loop.
- ///
- /// Returns the MDNode where the first operand is the metadata's name. The
- /// following operands are the metadata's values. If no metadata with @p Name is
- /// found, return nullptr.
- MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
- /// Return whether an MDNode might represent an access group.
- ///
- /// Access group metadata nodes have to be distinct and empty. Being
- /// always-empty ensures that it never needs to be changed (which -- because
- /// MDNodes are designed immutable -- would require creating a new MDNode). Note
- /// that this is not a sufficient condition: not every distinct and empty NDNode
- /// is representing an access group.
- bool isValidAsAccessGroup(MDNode *AccGroup);
- /// Create a new LoopID after the loop has been transformed.
- ///
- /// This can be used when no follow-up loop attributes are defined
- /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
- /// applied again.
- ///
- /// @param Context The LLVMContext in which to create the new LoopID.
- /// @param OrigLoopID The original LoopID; can be nullptr if the original
- /// loop has no LoopID.
- /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
- /// Use to remove metadata of the transformation that has
- /// been applied.
- /// @param AddAttrs Add these loop attributes to the new LoopID.
- ///
- /// @return A new LoopID that can be applied using Loop::setLoopID().
- llvm::MDNode *
- makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
- llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
- llvm::ArrayRef<llvm::MDNode *> AddAttrs);
- } // End llvm namespace
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|