123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the interface for the loop memory dependence framework that
- // was originally developed for the Loop Vectorizer.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
- #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
- #include "llvm/ADT/EquivalenceClasses.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/Pass.h"
- namespace llvm {
- class AAResults;
- class DataLayout;
- class Loop;
- class LoopAccessInfo;
- class OptimizationRemarkEmitter;
- class raw_ostream;
- class SCEV;
- class SCEVUnionPredicate;
- class Value;
- /// Collection of parameters shared beetween the Loop Vectorizer and the
- /// Loop Access Analysis.
- struct VectorizerParams {
- /// Maximum SIMD width.
- static const unsigned MaxVectorWidth;
- /// VF as overridden by the user.
- static unsigned VectorizationFactor;
- /// Interleave factor as overridden by the user.
- static unsigned VectorizationInterleave;
- /// True if force-vector-interleave was specified by the user.
- static bool isInterleaveForced();
- /// \When performing memory disambiguation checks at runtime do not
- /// make more than this number of comparisons.
- static unsigned RuntimeMemoryCheckThreshold;
- };
- /// Checks memory dependences among accesses to the same underlying
- /// object to determine whether there vectorization is legal or not (and at
- /// which vectorization factor).
- ///
- /// Note: This class will compute a conservative dependence for access to
- /// different underlying pointers. Clients, such as the loop vectorizer, will
- /// sometimes deal these potential dependencies by emitting runtime checks.
- ///
- /// We use the ScalarEvolution framework to symbolically evalutate access
- /// functions pairs. Since we currently don't restructure the loop we can rely
- /// on the program order of memory accesses to determine their safety.
- /// At the moment we will only deem accesses as safe for:
- /// * A negative constant distance assuming program order.
- ///
- /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
- /// a[i] = tmp; y = a[i];
- ///
- /// The latter case is safe because later checks guarantuee that there can't
- /// be a cycle through a phi node (that is, we check that "x" and "y" is not
- /// the same variable: a header phi can only be an induction or a reduction, a
- /// reduction can't have a memory sink, an induction can't have a memory
- /// source). This is important and must not be violated (or we have to
- /// resort to checking for cycles through memory).
- ///
- /// * A positive constant distance assuming program order that is bigger
- /// than the biggest memory access.
- ///
- /// tmp = a[i] OR b[i] = x
- /// a[i+2] = tmp y = b[i+2];
- ///
- /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
- ///
- /// * Zero distances and all accesses have the same size.
- ///
- class MemoryDepChecker {
- public:
- typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
- typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
- /// Set of potential dependent memory accesses.
- typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
- /// Type to keep track of the status of the dependence check. The order of
- /// the elements is important and has to be from most permissive to least
- /// permissive.
- enum class VectorizationSafetyStatus {
- // Can vectorize safely without RT checks. All dependences are known to be
- // safe.
- Safe,
- // Can possibly vectorize with RT checks to overcome unknown dependencies.
- PossiblySafeWithRtChecks,
- // Cannot vectorize due to known unsafe dependencies.
- Unsafe,
- };
- /// Dependece between memory access instructions.
- struct Dependence {
- /// The type of the dependence.
- enum DepType {
- // No dependence.
- NoDep,
- // We couldn't determine the direction or the distance.
- Unknown,
- // Lexically forward.
- //
- // FIXME: If we only have loop-independent forward dependences (e.g. a
- // read and write of A[i]), LAA will locally deem the dependence "safe"
- // without querying the MemoryDepChecker. Therefore we can miss
- // enumerating loop-independent forward dependences in
- // getDependences. Note that as soon as there are different
- // indices used to access the same array, the MemoryDepChecker *is*
- // queried and the dependence list is complete.
- Forward,
- // Forward, but if vectorized, is likely to prevent store-to-load
- // forwarding.
- ForwardButPreventsForwarding,
- // Lexically backward.
- Backward,
- // Backward, but the distance allows a vectorization factor of
- // MaxSafeDepDistBytes.
- BackwardVectorizable,
- // Same, but may prevent store-to-load forwarding.
- BackwardVectorizableButPreventsForwarding
- };
- /// String version of the types.
- static const char *DepName[];
- /// Index of the source of the dependence in the InstMap vector.
- unsigned Source;
- /// Index of the destination of the dependence in the InstMap vector.
- unsigned Destination;
- /// The type of the dependence.
- DepType Type;
- Dependence(unsigned Source, unsigned Destination, DepType Type)
- : Source(Source), Destination(Destination), Type(Type) {}
- /// Return the source instruction of the dependence.
- Instruction *getSource(const LoopAccessInfo &LAI) const;
- /// Return the destination instruction of the dependence.
- Instruction *getDestination(const LoopAccessInfo &LAI) const;
- /// Dependence types that don't prevent vectorization.
- static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
- /// Lexically forward dependence.
- bool isForward() const;
- /// Lexically backward dependence.
- bool isBackward() const;
- /// May be a lexically backward dependence type (includes Unknown).
- bool isPossiblyBackward() const;
- /// Print the dependence. \p Instr is used to map the instruction
- /// indices to instructions.
- void print(raw_ostream &OS, unsigned Depth,
- const SmallVectorImpl<Instruction *> &Instrs) const;
- };
- MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
- : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeDepDistBytes(0),
- MaxSafeVectorWidthInBits(-1U),
- FoundNonConstantDistanceDependence(false),
- Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}
- /// Register the location (instructions are given increasing numbers)
- /// of a write access.
- void addAccess(StoreInst *SI) {
- Value *Ptr = SI->getPointerOperand();
- Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
- InstMap.push_back(SI);
- ++AccessIdx;
- }
- /// Register the location (instructions are given increasing numbers)
- /// of a write access.
- void addAccess(LoadInst *LI) {
- Value *Ptr = LI->getPointerOperand();
- Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
- InstMap.push_back(LI);
- ++AccessIdx;
- }
- /// Check whether the dependencies between the accesses are safe.
- ///
- /// Only checks sets with elements in \p CheckDeps.
- bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
- const ValueToValueMap &Strides);
- /// No memory dependence was encountered that would inhibit
- /// vectorization.
- bool isSafeForVectorization() const {
- return Status == VectorizationSafetyStatus::Safe;
- }
- /// Return true if the number of elements that are safe to operate on
- /// simultaneously is not bounded.
- bool isSafeForAnyVectorWidth() const {
- return MaxSafeVectorWidthInBits == UINT_MAX;
- }
- /// The maximum number of bytes of a vector register we can vectorize
- /// the accesses safely with.
- uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
- /// Return the number of elements that are safe to operate on
- /// simultaneously, multiplied by the size of the element in bits.
- uint64_t getMaxSafeVectorWidthInBits() const {
- return MaxSafeVectorWidthInBits;
- }
- /// In same cases when the dependency check fails we can still
- /// vectorize the loop with a dynamic array access check.
- bool shouldRetryWithRuntimeCheck() const {
- return FoundNonConstantDistanceDependence &&
- Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
- }
- /// Returns the memory dependences. If null is returned we exceeded
- /// the MaxDependences threshold and this information is not
- /// available.
- const SmallVectorImpl<Dependence> *getDependences() const {
- return RecordDependences ? &Dependences : nullptr;
- }
- void clearDependences() { Dependences.clear(); }
- /// The vector of memory access instructions. The indices are used as
- /// instruction identifiers in the Dependence class.
- const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
- return InstMap;
- }
- /// Generate a mapping between the memory instructions and their
- /// indices according to program order.
- DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
- DenseMap<Instruction *, unsigned> OrderMap;
- for (unsigned I = 0; I < InstMap.size(); ++I)
- OrderMap[InstMap[I]] = I;
- return OrderMap;
- }
- /// Find the set of instructions that read or write via \p Ptr.
- SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
- bool isWrite) const;
- private:
- /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
- /// applies dynamic knowledge to simplify SCEV expressions and convert them
- /// to a more usable form. We need this in case assumptions about SCEV
- /// expressions need to be made in order to avoid unknown dependences. For
- /// example we might assume a unit stride for a pointer in order to prove
- /// that a memory access is strided and doesn't wrap.
- PredicatedScalarEvolution &PSE;
- const Loop *InnermostLoop;
- /// Maps access locations (ptr, read/write) to program order.
- DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
- /// Memory access instructions in program order.
- SmallVector<Instruction *, 16> InstMap;
- /// The program order index to be used for the next instruction.
- unsigned AccessIdx;
- // We can access this many bytes in parallel safely.
- uint64_t MaxSafeDepDistBytes;
- /// Number of elements (from consecutive iterations) that are safe to
- /// operate on simultaneously, multiplied by the size of the element in bits.
- /// The size of the element is taken from the memory access that is most
- /// restrictive.
- uint64_t MaxSafeVectorWidthInBits;
- /// If we see a non-constant dependence distance we can still try to
- /// vectorize this loop with runtime checks.
- bool FoundNonConstantDistanceDependence;
- /// Result of the dependence checks, indicating whether the checked
- /// dependences are safe for vectorization, require RT checks or are known to
- /// be unsafe.
- VectorizationSafetyStatus Status;
- //// True if Dependences reflects the dependences in the
- //// loop. If false we exceeded MaxDependences and
- //// Dependences is invalid.
- bool RecordDependences;
- /// Memory dependences collected during the analysis. Only valid if
- /// RecordDependences is true.
- SmallVector<Dependence, 8> Dependences;
- /// Check whether there is a plausible dependence between the two
- /// accesses.
- ///
- /// Access \p A must happen before \p B in program order. The two indices
- /// identify the index into the program order map.
- ///
- /// This function checks whether there is a plausible dependence (or the
- /// absence of such can't be proved) between the two accesses. If there is a
- /// plausible dependence but the dependence distance is bigger than one
- /// element access it records this distance in \p MaxSafeDepDistBytes (if this
- /// distance is smaller than any other distance encountered so far).
- /// Otherwise, this function returns true signaling a possible dependence.
- Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
- const MemAccessInfo &B, unsigned BIdx,
- const ValueToValueMap &Strides);
- /// Check whether the data dependence could prevent store-load
- /// forwarding.
- ///
- /// \return false if we shouldn't vectorize at all or avoid larger
- /// vectorization factors by limiting MaxSafeDepDistBytes.
- bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
- /// Updates the current safety status with \p S. We can go from Safe to
- /// either PossiblySafeWithRtChecks or Unsafe and from
- /// PossiblySafeWithRtChecks to Unsafe.
- void mergeInStatus(VectorizationSafetyStatus S);
- };
- class RuntimePointerChecking;
- /// A grouping of pointers. A single memcheck is required between
- /// two groups.
- struct RuntimeCheckingPtrGroup {
- /// Create a new pointer checking group containing a single
- /// pointer, with index \p Index in RtCheck.
- RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
- /// Tries to add the pointer recorded in RtCheck at index
- /// \p Index to this pointer checking group. We can only add a pointer
- /// to a checking group if we will still be able to get
- /// the upper and lower bounds of the check. Returns true in case
- /// of success, false otherwise.
- bool addPointer(unsigned Index);
- /// Constitutes the context of this pointer checking group. For each
- /// pointer that is a member of this group we will retain the index
- /// at which it appears in RtCheck.
- RuntimePointerChecking &RtCheck;
- /// The SCEV expression which represents the upper bound of all the
- /// pointers in this group.
- const SCEV *High;
- /// The SCEV expression which represents the lower bound of all the
- /// pointers in this group.
- const SCEV *Low;
- /// Indices of all the pointers that constitute this grouping.
- SmallVector<unsigned, 2> Members;
- };
- /// A memcheck which made up of a pair of grouped pointers.
- typedef std::pair<const RuntimeCheckingPtrGroup *,
- const RuntimeCheckingPtrGroup *>
- RuntimePointerCheck;
- /// Holds information about the memory runtime legality checks to verify
- /// that a group of pointers do not overlap.
- class RuntimePointerChecking {
- friend struct RuntimeCheckingPtrGroup;
- public:
- struct PointerInfo {
- /// Holds the pointer value that we need to check.
- TrackingVH<Value> PointerValue;
- /// Holds the smallest byte address accessed by the pointer throughout all
- /// iterations of the loop.
- const SCEV *Start;
- /// Holds the largest byte address accessed by the pointer throughout all
- /// iterations of the loop, plus 1.
- const SCEV *End;
- /// Holds the information if this pointer is used for writing to memory.
- bool IsWritePtr;
- /// Holds the id of the set of pointers that could be dependent because of a
- /// shared underlying object.
- unsigned DependencySetId;
- /// Holds the id of the disjoint alias set to which this pointer belongs.
- unsigned AliasSetId;
- /// SCEV for the access.
- const SCEV *Expr;
- PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
- bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
- const SCEV *Expr)
- : PointerValue(PointerValue), Start(Start), End(End),
- IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
- AliasSetId(AliasSetId), Expr(Expr) {}
- };
- RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
- /// Reset the state of the pointer runtime information.
- void reset() {
- Need = false;
- Pointers.clear();
- Checks.clear();
- }
- /// Insert a pointer and calculate the start and end SCEVs.
- /// We need \p PSE in order to compute the SCEV expression of the pointer
- /// according to the assumptions that we've made during the analysis.
- /// The method might also version the pointer stride according to \p Strides,
- /// and add new predicates to \p PSE.
- void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
- unsigned ASId, const ValueToValueMap &Strides,
- PredicatedScalarEvolution &PSE);
- /// No run-time memory checking is necessary.
- bool empty() const { return Pointers.empty(); }
- /// Generate the checks and store it. This also performs the grouping
- /// of pointers to reduce the number of memchecks necessary.
- void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
- bool UseDependencies);
- /// Returns the checks that generateChecks created.
- const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
- return Checks;
- }
- /// Decide if we need to add a check between two groups of pointers,
- /// according to needsChecking.
- bool needsChecking(const RuntimeCheckingPtrGroup &M,
- const RuntimeCheckingPtrGroup &N) const;
- /// Returns the number of run-time checks required according to
- /// needsChecking.
- unsigned getNumberOfChecks() const { return Checks.size(); }
- /// Print the list run-time memory checks necessary.
- void print(raw_ostream &OS, unsigned Depth = 0) const;
- /// Print \p Checks.
- void printChecks(raw_ostream &OS,
- const SmallVectorImpl<RuntimePointerCheck> &Checks,
- unsigned Depth = 0) const;
- /// This flag indicates if we need to add the runtime check.
- bool Need;
- /// Information about the pointers that may require checking.
- SmallVector<PointerInfo, 2> Pointers;
- /// Holds a partitioning of pointers into "check groups".
- SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
- /// Check if pointers are in the same partition
- ///
- /// \p PtrToPartition contains the partition number for pointers (-1 if the
- /// pointer belongs to multiple partitions).
- static bool
- arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
- unsigned PtrIdx1, unsigned PtrIdx2);
- /// Decide whether we need to issue a run-time check for pointer at
- /// index \p I and \p J to prove their independence.
- bool needsChecking(unsigned I, unsigned J) const;
- /// Return PointerInfo for pointer at index \p PtrIdx.
- const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
- return Pointers[PtrIdx];
- }
- ScalarEvolution *getSE() const { return SE; }
- private:
- /// Groups pointers such that a single memcheck is required
- /// between two different groups. This will clear the CheckingGroups vector
- /// and re-compute it. We will only group dependecies if \p UseDependencies
- /// is true, otherwise we will create a separate group for each pointer.
- void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
- bool UseDependencies);
- /// Generate the checks and return them.
- SmallVector<RuntimePointerCheck, 4> generateChecks() const;
- /// Holds a pointer to the ScalarEvolution analysis.
- ScalarEvolution *SE;
- /// Set of run-time checks required to establish independence of
- /// otherwise may-aliasing pointers in the loop.
- SmallVector<RuntimePointerCheck, 4> Checks;
- };
- /// Drive the analysis of memory accesses in the loop
- ///
- /// This class is responsible for analyzing the memory accesses of a loop. It
- /// collects the accesses and then its main helper the AccessAnalysis class
- /// finds and categorizes the dependences in buildDependenceSets.
- ///
- /// For memory dependences that can be analyzed at compile time, it determines
- /// whether the dependence is part of cycle inhibiting vectorization. This work
- /// is delegated to the MemoryDepChecker class.
- ///
- /// For memory dependences that cannot be determined at compile time, it
- /// generates run-time checks to prove independence. This is done by
- /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
- /// RuntimePointerCheck class.
- ///
- /// If pointers can wrap or can't be expressed as affine AddRec expressions by
- /// ScalarEvolution, we will generate run-time checks by emitting a
- /// SCEVUnionPredicate.
- ///
- /// Checks for both memory dependences and the SCEV predicates contained in the
- /// PSE must be emitted in order for the results of this analysis to be valid.
- class LoopAccessInfo {
- public:
- LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
- AAResults *AA, DominatorTree *DT, LoopInfo *LI);
- /// Return true we can analyze the memory accesses in the loop and there are
- /// no memory dependence cycles.
- bool canVectorizeMemory() const { return CanVecMem; }
- /// Return true if there is a convergent operation in the loop. There may
- /// still be reported runtime pointer checks that would be required, but it is
- /// not legal to insert them.
- bool hasConvergentOp() const { return HasConvergentOp; }
- const RuntimePointerChecking *getRuntimePointerChecking() const {
- return PtrRtChecking.get();
- }
- /// Number of memchecks required to prove independence of otherwise
- /// may-alias pointers.
- unsigned getNumRuntimePointerChecks() const {
- return PtrRtChecking->getNumberOfChecks();
- }
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
- DominatorTree *DT);
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V) const;
- uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
- unsigned getNumStores() const { return NumStores; }
- unsigned getNumLoads() const { return NumLoads;}
- /// The diagnostics report generated for the analysis. E.g. why we
- /// couldn't analyze the loop.
- const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
- /// the Memory Dependence Checker which can determine the
- /// loop-independent and loop-carried dependences between memory accesses.
- const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
- /// Return the list of instructions that use \p Ptr to read or write
- /// memory.
- SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
- bool isWrite) const {
- return DepChecker->getInstructionsForAccess(Ptr, isWrite);
- }
- /// If an access has a symbolic strides, this maps the pointer value to
- /// the stride symbol.
- const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
- /// Pointer has a symbolic stride.
- bool hasStride(Value *V) const { return StrideSet.count(V); }
- /// Print the information about the memory accesses in the loop.
- void print(raw_ostream &OS, unsigned Depth = 0) const;
- /// If the loop has memory dependence involving an invariant address, i.e. two
- /// stores or a store and a load, then return true, else return false.
- bool hasDependenceInvolvingLoopInvariantAddress() const {
- return HasDependenceInvolvingLoopInvariantAddress;
- }
- /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
- /// them to a more usable form. All SCEV expressions during the analysis
- /// should be re-written (and therefore simplified) according to PSE.
- /// A user of LoopAccessAnalysis will need to emit the runtime checks
- /// associated with this predicate.
- const PredicatedScalarEvolution &getPSE() const { return *PSE; }
- private:
- /// Analyze the loop.
- void analyzeLoop(AAResults *AA, LoopInfo *LI,
- const TargetLibraryInfo *TLI, DominatorTree *DT);
- /// Check if the structure of the loop allows it to be analyzed by this
- /// pass.
- bool canAnalyzeLoop();
- /// Save the analysis remark.
- ///
- /// LAA does not directly emits the remarks. Instead it stores it which the
- /// client can retrieve and presents as its own analysis
- /// (e.g. -Rpass-analysis=loop-vectorize).
- OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
- Instruction *Instr = nullptr);
- /// Collect memory access with loop invariant strides.
- ///
- /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
- /// invariant.
- void collectStridedAccess(Value *LoadOrStoreInst);
- std::unique_ptr<PredicatedScalarEvolution> PSE;
- /// We need to check that all of the pointers in this list are disjoint
- /// at runtime. Using std::unique_ptr to make using move ctor simpler.
- std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
- /// the Memory Dependence Checker which can determine the
- /// loop-independent and loop-carried dependences between memory accesses.
- std::unique_ptr<MemoryDepChecker> DepChecker;
- Loop *TheLoop;
- unsigned NumLoads;
- unsigned NumStores;
- uint64_t MaxSafeDepDistBytes;
- /// Cache the result of analyzeLoop.
- bool CanVecMem;
- bool HasConvergentOp;
- /// Indicator that there are non vectorizable stores to a uniform address.
- bool HasDependenceInvolvingLoopInvariantAddress;
- /// The diagnostics report generated for the analysis. E.g. why we
- /// couldn't analyze the loop.
- std::unique_ptr<OptimizationRemarkAnalysis> Report;
- /// If an access has a symbolic strides, this maps the pointer value to
- /// the stride symbol.
- ValueToValueMap SymbolicStrides;
- /// Set of symbolic strides values.
- SmallPtrSet<Value *, 8> StrideSet;
- };
- Value *stripIntegerCast(Value *V);
- /// Return the SCEV corresponding to a pointer with the symbolic stride
- /// replaced with constant one, assuming the SCEV predicate associated with
- /// \p PSE is true.
- ///
- /// If necessary this method will version the stride of the pointer according
- /// to \p PtrToStride and therefore add further predicates to \p PSE.
- ///
- /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
- /// Ptr. \p PtrToStride provides the mapping between the pointer value and its
- /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
- const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
- const ValueToValueMap &PtrToStride,
- Value *Ptr, Value *OrigPtr = nullptr);
- /// If the pointer has a constant stride return it in units of its
- /// element size. Otherwise return zero.
- ///
- /// Ensure that it does not wrap in the address space, assuming the predicate
- /// associated with \p PSE is true.
- ///
- /// If necessary this method will version the stride of the pointer according
- /// to \p PtrToStride and therefore add further predicates to \p PSE.
- /// The \p Assume parameter indicates if we are allowed to make additional
- /// run-time assumptions.
- int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
- const ValueToValueMap &StridesMap = ValueToValueMap(),
- bool Assume = false, bool ShouldCheckWrap = true);
- /// Attempt to sort the pointers in \p VL and return the sorted indices
- /// in \p SortedIndices, if reordering is required.
- ///
- /// Returns 'true' if sorting is legal, otherwise returns 'false'.
- ///
- /// For example, for a given \p VL of memory accesses in program order, a[i+4],
- /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
- /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
- /// saves the mask for actual memory accesses in program order in
- /// \p SortedIndices as <1,2,0,3>
- bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
- ScalarEvolution &SE,
- SmallVectorImpl<unsigned> &SortedIndices);
- /// Returns true if the memory operations \p A and \p B are consecutive.
- /// This is a simple API that does not depend on the analysis pass.
- bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
- ScalarEvolution &SE, bool CheckType = true);
- /// This analysis provides dependence information for the memory accesses
- /// of a loop.
- ///
- /// It runs the analysis for a loop on demand. This can be initiated by
- /// querying the loop access info via LAA::getInfo. getInfo return a
- /// LoopAccessInfo object. See this class for the specifics of what information
- /// is provided.
- class LoopAccessLegacyAnalysis : public FunctionPass {
- public:
- static char ID;
- LoopAccessLegacyAnalysis();
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- /// Query the result of the loop access information for the loop \p L.
- ///
- /// If there is no cached result available run the analysis.
- const LoopAccessInfo &getInfo(Loop *L);
- void releaseMemory() override {
- // Invalidate the cache when the pass is freed.
- LoopAccessInfoMap.clear();
- }
- /// Print the result of the analysis when invoked with -analyze.
- void print(raw_ostream &OS, const Module *M = nullptr) const override;
- private:
- /// The cache.
- DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
- // The used analysis passes.
- ScalarEvolution *SE = nullptr;
- const TargetLibraryInfo *TLI = nullptr;
- AAResults *AA = nullptr;
- DominatorTree *DT = nullptr;
- LoopInfo *LI = nullptr;
- };
- /// This analysis provides dependence information for the memory
- /// accesses of a loop.
- ///
- /// It runs the analysis for a loop on demand. This can be initiated by
- /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
- /// getResult return a LoopAccessInfo object. See this class for the
- /// specifics of what information is provided.
- class LoopAccessAnalysis
- : public AnalysisInfoMixin<LoopAccessAnalysis> {
- friend AnalysisInfoMixin<LoopAccessAnalysis>;
- static AnalysisKey Key;
- public:
- typedef LoopAccessInfo Result;
- Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
- };
- inline Instruction *MemoryDepChecker::Dependence::getSource(
- const LoopAccessInfo &LAI) const {
- return LAI.getDepChecker().getMemoryInstructions()[Source];
- }
- inline Instruction *MemoryDepChecker::Dependence::getDestination(
- const LoopAccessInfo &LAI) const {
- return LAI.getDepChecker().getMemoryInstructions()[Destination];
- }
- } // End llvm namespace
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|