123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_TINYPTRVECTOR_H
- #define LLVM_ADT_TINYPTRVECTOR_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/PointerUnion.h"
- #include "llvm/ADT/SmallVector.h"
- #include <cassert>
- #include <cstddef>
- #include <iterator>
- #include <type_traits>
- namespace llvm {
- /// TinyPtrVector - This class is specialized for cases where there are
- /// normally 0 or 1 element in a vector, but is general enough to go beyond that
- /// when required.
- ///
- /// NOTE: This container doesn't allow you to store a null pointer into it.
- ///
- template <typename EltTy>
- class TinyPtrVector {
- public:
- using VecTy = SmallVector<EltTy, 4>;
- using value_type = typename VecTy::value_type;
- // EltTy must be the first pointer type so that is<EltTy> is true for the
- // default-constructed PtrUnion. This allows an empty TinyPtrVector to
- // naturally vend a begin/end iterator of type EltTy* without an additional
- // check for the empty state.
- using PtrUnion = PointerUnion<EltTy, VecTy *>;
- private:
- PtrUnion Val;
- public:
- TinyPtrVector() = default;
- ~TinyPtrVector() {
- if (VecTy *V = Val.template dyn_cast<VecTy*>())
- delete V;
- }
- TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
- if (VecTy *V = Val.template dyn_cast<VecTy*>())
- Val = new VecTy(*V);
- }
- TinyPtrVector &operator=(const TinyPtrVector &RHS) {
- if (this == &RHS)
- return *this;
- if (RHS.empty()) {
- this->clear();
- return *this;
- }
- // Try to squeeze into the single slot. If it won't fit, allocate a copied
- // vector.
- if (Val.template is<EltTy>()) {
- if (RHS.size() == 1)
- Val = RHS.front();
- else
- Val = new VecTy(*RHS.Val.template get<VecTy*>());
- return *this;
- }
- // If we have a full vector allocated, try to re-use it.
- if (RHS.Val.template is<EltTy>()) {
- Val.template get<VecTy*>()->clear();
- Val.template get<VecTy*>()->push_back(RHS.front());
- } else {
- *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
- }
- return *this;
- }
- TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
- RHS.Val = (EltTy)nullptr;
- }
- TinyPtrVector &operator=(TinyPtrVector &&RHS) {
- if (this == &RHS)
- return *this;
- if (RHS.empty()) {
- this->clear();
- return *this;
- }
- // If this vector has been allocated on the heap, re-use it if cheap. If it
- // would require more copying, just delete it and we'll steal the other
- // side.
- if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
- if (RHS.Val.template is<EltTy>()) {
- V->clear();
- V->push_back(RHS.front());
- RHS.Val = EltTy();
- return *this;
- }
- delete V;
- }
- Val = RHS.Val;
- RHS.Val = EltTy();
- return *this;
- }
- TinyPtrVector(std::initializer_list<EltTy> IL)
- : Val(IL.size() == 0
- ? PtrUnion()
- : IL.size() == 1 ? PtrUnion(*IL.begin())
- : PtrUnion(new VecTy(IL.begin(), IL.end()))) {}
- /// Constructor from an ArrayRef.
- ///
- /// This also is a constructor for individual array elements due to the single
- /// element constructor for ArrayRef.
- explicit TinyPtrVector(ArrayRef<EltTy> Elts)
- : Val(Elts.empty()
- ? PtrUnion()
- : Elts.size() == 1
- ? PtrUnion(Elts[0])
- : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
- TinyPtrVector(size_t Count, EltTy Value)
- : Val(Count == 0 ? PtrUnion()
- : Count == 1 ? PtrUnion(Value)
- : PtrUnion(new VecTy(Count, Value))) {}
- // implicit conversion operator to ArrayRef.
- operator ArrayRef<EltTy>() const {
- if (Val.isNull())
- return None;
- if (Val.template is<EltTy>())
- return *Val.getAddrOfPtr1();
- return *Val.template get<VecTy*>();
- }
- // implicit conversion operator to MutableArrayRef.
- operator MutableArrayRef<EltTy>() {
- if (Val.isNull())
- return None;
- if (Val.template is<EltTy>())
- return *Val.getAddrOfPtr1();
- return *Val.template get<VecTy*>();
- }
- // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
- template <
- typename U,
- std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
- bool> = false>
- operator ArrayRef<U>() const {
- return operator ArrayRef<EltTy>();
- }
- bool empty() const {
- // This vector can be empty if it contains no element, or if it
- // contains a pointer to an empty vector.
- if (Val.isNull()) return true;
- if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
- return Vec->empty();
- return false;
- }
- unsigned size() const {
- if (empty())
- return 0;
- if (Val.template is<EltTy>())
- return 1;
- return Val.template get<VecTy*>()->size();
- }
- using iterator = EltTy *;
- using const_iterator = const EltTy *;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- iterator begin() {
- if (Val.template is<EltTy>())
- return Val.getAddrOfPtr1();
- return Val.template get<VecTy *>()->begin();
- }
- iterator end() {
- if (Val.template is<EltTy>())
- return begin() + (Val.isNull() ? 0 : 1);
- return Val.template get<VecTy *>()->end();
- }
- const_iterator begin() const {
- return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
- }
- const_iterator end() const {
- return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
- }
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rbegin() const {
- return const_reverse_iterator(end());
- }
- const_reverse_iterator rend() const {
- return const_reverse_iterator(begin());
- }
- EltTy operator[](unsigned i) const {
- assert(!Val.isNull() && "can't index into an empty vector");
- if (Val.template is<EltTy>()) {
- assert(i == 0 && "tinyvector index out of range");
- return Val.template get<EltTy>();
- }
- assert(i < Val.template get<VecTy*>()->size() &&
- "tinyvector index out of range");
- return (*Val.template get<VecTy*>())[i];
- }
- EltTy front() const {
- assert(!empty() && "vector empty");
- if (Val.template is<EltTy>())
- return Val.template get<EltTy>();
- return Val.template get<VecTy*>()->front();
- }
- EltTy back() const {
- assert(!empty() && "vector empty");
- if (Val.template is<EltTy>())
- return Val.template get<EltTy>();
- return Val.template get<VecTy*>()->back();
- }
- void push_back(EltTy NewVal) {
- // If we have nothing, add something.
- if (Val.isNull()) {
- Val = NewVal;
- assert(!Val.isNull() && "Can't add a null value");
- return;
- }
- // If we have a single value, convert to a vector.
- if (Val.template is<EltTy>()) {
- EltTy V = Val.template get<EltTy>();
- Val = new VecTy();
- Val.template get<VecTy*>()->push_back(V);
- }
- // Add the new value, we know we have a vector.
- Val.template get<VecTy*>()->push_back(NewVal);
- }
- void pop_back() {
- // If we have a single value, convert to empty.
- if (Val.template is<EltTy>())
- Val = (EltTy)nullptr;
- else if (VecTy *Vec = Val.template get<VecTy*>())
- Vec->pop_back();
- }
- void clear() {
- // If we have a single value, convert to empty.
- if (Val.template is<EltTy>()) {
- Val = EltTy();
- } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
- // If we have a vector form, just clear it.
- Vec->clear();
- }
- // Otherwise, we're already empty.
- }
- iterator erase(iterator I) {
- assert(I >= begin() && "Iterator to erase is out of bounds.");
- assert(I < end() && "Erasing at past-the-end iterator.");
- // If we have a single value, convert to empty.
- if (Val.template is<EltTy>()) {
- if (I == begin())
- Val = EltTy();
- } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
- // multiple items in a vector; just do the erase, there is no
- // benefit to collapsing back to a pointer
- return Vec->erase(I);
- }
- return end();
- }
- iterator erase(iterator S, iterator E) {
- assert(S >= begin() && "Range to erase is out of bounds.");
- assert(S <= E && "Trying to erase invalid range.");
- assert(E <= end() && "Trying to erase past the end.");
- if (Val.template is<EltTy>()) {
- if (S == begin() && S != E)
- Val = EltTy();
- } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
- return Vec->erase(S, E);
- }
- return end();
- }
- iterator insert(iterator I, const EltTy &Elt) {
- assert(I >= this->begin() && "Insertion iterator is out of bounds.");
- assert(I <= this->end() && "Inserting past the end of the vector.");
- if (I == end()) {
- push_back(Elt);
- return std::prev(end());
- }
- assert(!Val.isNull() && "Null value with non-end insert iterator.");
- if (Val.template is<EltTy>()) {
- EltTy V = Val.template get<EltTy>();
- assert(I == begin());
- Val = Elt;
- push_back(V);
- return begin();
- }
- return Val.template get<VecTy*>()->insert(I, Elt);
- }
- template<typename ItTy>
- iterator insert(iterator I, ItTy From, ItTy To) {
- assert(I >= this->begin() && "Insertion iterator is out of bounds.");
- assert(I <= this->end() && "Inserting past the end of the vector.");
- if (From == To)
- return I;
- // If we have a single value, convert to a vector.
- ptrdiff_t Offset = I - begin();
- if (Val.isNull()) {
- if (std::next(From) == To) {
- Val = *From;
- return begin();
- }
- Val = new VecTy();
- } else if (Val.template is<EltTy>()) {
- EltTy V = Val.template get<EltTy>();
- Val = new VecTy();
- Val.template get<VecTy*>()->push_back(V);
- }
- return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
- }
- };
- } // end namespace llvm
- #endif // LLVM_ADT_TINYPTRVECTOR_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|