12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a coalescing interval map for small objects.
- //
- // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
- // same value are represented in a compressed form.
- //
- // Iterators provide ordered access to the compressed intervals rather than the
- // individual keys, and insert and erase operations use key intervals as well.
- //
- // Like SmallVector, IntervalMap will store the first N intervals in the map
- // object itself without any allocations. When space is exhausted it switches to
- // a B+-tree representation with very small overhead for small key and value
- // objects.
- //
- // A Traits class specifies how keys are compared. It also allows IntervalMap to
- // work with both closed and half-open intervals.
- //
- // Keys and values are not stored next to each other in a std::pair, so we don't
- // provide such a value_type. Dereferencing iterators only returns the mapped
- // value. The interval bounds are accessible through the start() and stop()
- // iterator methods.
- //
- // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
- // is the optimal size. For large objects use std::map instead.
- //
- //===----------------------------------------------------------------------===//
- //
- // Synopsis:
- //
- // template <typename KeyT, typename ValT, unsigned N, typename Traits>
- // class IntervalMap {
- // public:
- // typedef KeyT key_type;
- // typedef ValT mapped_type;
- // typedef RecyclingAllocator<...> Allocator;
- // class iterator;
- // class const_iterator;
- //
- // explicit IntervalMap(Allocator&);
- // ~IntervalMap():
- //
- // bool empty() const;
- // KeyT start() const;
- // KeyT stop() const;
- // ValT lookup(KeyT x, Value NotFound = Value()) const;
- //
- // const_iterator begin() const;
- // const_iterator end() const;
- // iterator begin();
- // iterator end();
- // const_iterator find(KeyT x) const;
- // iterator find(KeyT x);
- //
- // void insert(KeyT a, KeyT b, ValT y);
- // void clear();
- // };
- //
- // template <typename KeyT, typename ValT, unsigned N, typename Traits>
- // class IntervalMap::const_iterator :
- // public std::iterator<std::bidirectional_iterator_tag, ValT> {
- // public:
- // bool operator==(const const_iterator &) const;
- // bool operator!=(const const_iterator &) const;
- // bool valid() const;
- //
- // const KeyT &start() const;
- // const KeyT &stop() const;
- // const ValT &value() const;
- // const ValT &operator*() const;
- // const ValT *operator->() const;
- //
- // const_iterator &operator++();
- // const_iterator &operator++(int);
- // const_iterator &operator--();
- // const_iterator &operator--(int);
- // void goToBegin();
- // void goToEnd();
- // void find(KeyT x);
- // void advanceTo(KeyT x);
- // };
- //
- // template <typename KeyT, typename ValT, unsigned N, typename Traits>
- // class IntervalMap::iterator : public const_iterator {
- // public:
- // void insert(KeyT a, KeyT b, Value y);
- // void erase();
- // };
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_INTERVALMAP_H
- #define LLVM_ADT_INTERVALMAP_H
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/bit.h"
- #include "llvm/Support/AlignOf.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/RecyclingAllocator.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <new>
- #include <utility>
- namespace llvm {
- //===----------------------------------------------------------------------===//
- //--- Key traits ---//
- //===----------------------------------------------------------------------===//
- //
- // The IntervalMap works with closed or half-open intervals.
- // Adjacent intervals that map to the same value are coalesced.
- //
- // The IntervalMapInfo traits class is used to determine if a key is contained
- // in an interval, and if two intervals are adjacent so they can be coalesced.
- // The provided implementation works for closed integer intervals, other keys
- // probably need a specialized version.
- //
- // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
- //
- // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
- // allowed. This is so that stopLess(a, b) can be used to determine if two
- // intervals overlap.
- //
- //===----------------------------------------------------------------------===//
- template <typename T>
- struct IntervalMapInfo {
- /// startLess - Return true if x is not in [a;b].
- /// This is x < a both for closed intervals and for [a;b) half-open intervals.
- static inline bool startLess(const T &x, const T &a) {
- return x < a;
- }
- /// stopLess - Return true if x is not in [a;b].
- /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
- static inline bool stopLess(const T &b, const T &x) {
- return b < x;
- }
- /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
- /// This is a+1 == b for closed intervals, a == b for half-open intervals.
- static inline bool adjacent(const T &a, const T &b) {
- return a+1 == b;
- }
- /// nonEmpty - Return true if [a;b] is non-empty.
- /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
- static inline bool nonEmpty(const T &a, const T &b) {
- return a <= b;
- }
- };
- template <typename T>
- struct IntervalMapHalfOpenInfo {
- /// startLess - Return true if x is not in [a;b).
- static inline bool startLess(const T &x, const T &a) {
- return x < a;
- }
- /// stopLess - Return true if x is not in [a;b).
- static inline bool stopLess(const T &b, const T &x) {
- return b <= x;
- }
- /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
- static inline bool adjacent(const T &a, const T &b) {
- return a == b;
- }
- /// nonEmpty - Return true if [a;b) is non-empty.
- static inline bool nonEmpty(const T &a, const T &b) {
- return a < b;
- }
- };
- /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
- /// It should be considered private to the implementation.
- namespace IntervalMapImpl {
- using IdxPair = std::pair<unsigned,unsigned>;
- //===----------------------------------------------------------------------===//
- //--- IntervalMapImpl::NodeBase ---//
- //===----------------------------------------------------------------------===//
- //
- // Both leaf and branch nodes store vectors of pairs.
- // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
- //
- // Keys and values are stored in separate arrays to avoid padding caused by
- // different object alignments. This also helps improve locality of reference
- // when searching the keys.
- //
- // The nodes don't know how many elements they contain - that information is
- // stored elsewhere. Omitting the size field prevents padding and allows a node
- // to fill the allocated cache lines completely.
- //
- // These are typical key and value sizes, the node branching factor (N), and
- // wasted space when nodes are sized to fit in three cache lines (192 bytes):
- //
- // T1 T2 N Waste Used by
- // 4 4 24 0 Branch<4> (32-bit pointers)
- // 8 4 16 0 Leaf<4,4>, Branch<4>
- // 8 8 12 0 Leaf<4,8>, Branch<8>
- // 16 4 9 12 Leaf<8,4>
- // 16 8 8 0 Leaf<8,8>
- //
- //===----------------------------------------------------------------------===//
- template <typename T1, typename T2, unsigned N>
- class NodeBase {
- public:
- enum { Capacity = N };
- T1 first[N];
- T2 second[N];
- /// copy - Copy elements from another node.
- /// @param Other Node elements are copied from.
- /// @param i Beginning of the source range in other.
- /// @param j Beginning of the destination range in this.
- /// @param Count Number of elements to copy.
- template <unsigned M>
- void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
- unsigned j, unsigned Count) {
- assert(i + Count <= M && "Invalid source range");
- assert(j + Count <= N && "Invalid dest range");
- for (unsigned e = i + Count; i != e; ++i, ++j) {
- first[j] = Other.first[i];
- second[j] = Other.second[i];
- }
- }
- /// moveLeft - Move elements to the left.
- /// @param i Beginning of the source range.
- /// @param j Beginning of the destination range.
- /// @param Count Number of elements to copy.
- void moveLeft(unsigned i, unsigned j, unsigned Count) {
- assert(j <= i && "Use moveRight shift elements right");
- copy(*this, i, j, Count);
- }
- /// moveRight - Move elements to the right.
- /// @param i Beginning of the source range.
- /// @param j Beginning of the destination range.
- /// @param Count Number of elements to copy.
- void moveRight(unsigned i, unsigned j, unsigned Count) {
- assert(i <= j && "Use moveLeft shift elements left");
- assert(j + Count <= N && "Invalid range");
- while (Count--) {
- first[j + Count] = first[i + Count];
- second[j + Count] = second[i + Count];
- }
- }
- /// erase - Erase elements [i;j).
- /// @param i Beginning of the range to erase.
- /// @param j End of the range. (Exclusive).
- /// @param Size Number of elements in node.
- void erase(unsigned i, unsigned j, unsigned Size) {
- moveLeft(j, i, Size - j);
- }
- /// erase - Erase element at i.
- /// @param i Index of element to erase.
- /// @param Size Number of elements in node.
- void erase(unsigned i, unsigned Size) {
- erase(i, i+1, Size);
- }
- /// shift - Shift elements [i;size) 1 position to the right.
- /// @param i Beginning of the range to move.
- /// @param Size Number of elements in node.
- void shift(unsigned i, unsigned Size) {
- moveRight(i, i + 1, Size - i);
- }
- /// transferToLeftSib - Transfer elements to a left sibling node.
- /// @param Size Number of elements in this.
- /// @param Sib Left sibling node.
- /// @param SSize Number of elements in sib.
- /// @param Count Number of elements to transfer.
- void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
- unsigned Count) {
- Sib.copy(*this, 0, SSize, Count);
- erase(0, Count, Size);
- }
- /// transferToRightSib - Transfer elements to a right sibling node.
- /// @param Size Number of elements in this.
- /// @param Sib Right sibling node.
- /// @param SSize Number of elements in sib.
- /// @param Count Number of elements to transfer.
- void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
- unsigned Count) {
- Sib.moveRight(0, Count, SSize);
- Sib.copy(*this, Size-Count, 0, Count);
- }
- /// adjustFromLeftSib - Adjust the number if elements in this node by moving
- /// elements to or from a left sibling node.
- /// @param Size Number of elements in this.
- /// @param Sib Right sibling node.
- /// @param SSize Number of elements in sib.
- /// @param Add The number of elements to add to this node, possibly < 0.
- /// @return Number of elements added to this node, possibly negative.
- int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
- if (Add > 0) {
- // We want to grow, copy from sib.
- unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
- Sib.transferToRightSib(SSize, *this, Size, Count);
- return Count;
- } else {
- // We want to shrink, copy to sib.
- unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
- transferToLeftSib(Size, Sib, SSize, Count);
- return -Count;
- }
- }
- };
- /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
- /// @param Node Array of pointers to sibling nodes.
- /// @param Nodes Number of nodes.
- /// @param CurSize Array of current node sizes, will be overwritten.
- /// @param NewSize Array of desired node sizes.
- template <typename NodeT>
- void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
- unsigned CurSize[], const unsigned NewSize[]) {
- // Move elements right.
- for (int n = Nodes - 1; n; --n) {
- if (CurSize[n] == NewSize[n])
- continue;
- for (int m = n - 1; m != -1; --m) {
- int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
- NewSize[n] - CurSize[n]);
- CurSize[m] -= d;
- CurSize[n] += d;
- // Keep going if the current node was exhausted.
- if (CurSize[n] >= NewSize[n])
- break;
- }
- }
- if (Nodes == 0)
- return;
- // Move elements left.
- for (unsigned n = 0; n != Nodes - 1; ++n) {
- if (CurSize[n] == NewSize[n])
- continue;
- for (unsigned m = n + 1; m != Nodes; ++m) {
- int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
- CurSize[n] - NewSize[n]);
- CurSize[m] += d;
- CurSize[n] -= d;
- // Keep going if the current node was exhausted.
- if (CurSize[n] >= NewSize[n])
- break;
- }
- }
- #ifndef NDEBUG
- for (unsigned n = 0; n != Nodes; n++)
- assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
- #endif
- }
- /// IntervalMapImpl::distribute - Compute a new distribution of node elements
- /// after an overflow or underflow. Reserve space for a new element at Position,
- /// and compute the node that will hold Position after redistributing node
- /// elements.
- ///
- /// It is required that
- ///
- /// Elements == sum(CurSize), and
- /// Elements + Grow <= Nodes * Capacity.
- ///
- /// NewSize[] will be filled in such that:
- ///
- /// sum(NewSize) == Elements, and
- /// NewSize[i] <= Capacity.
- ///
- /// The returned index is the node where Position will go, so:
- ///
- /// sum(NewSize[0..idx-1]) <= Position
- /// sum(NewSize[0..idx]) >= Position
- ///
- /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
- /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
- /// before the one holding the Position'th element where there is room for an
- /// insertion.
- ///
- /// @param Nodes The number of nodes.
- /// @param Elements Total elements in all nodes.
- /// @param Capacity The capacity of each node.
- /// @param CurSize Array[Nodes] of current node sizes, or NULL.
- /// @param NewSize Array[Nodes] to receive the new node sizes.
- /// @param Position Insert position.
- /// @param Grow Reserve space for a new element at Position.
- /// @return (node, offset) for Position.
- IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
- const unsigned *CurSize, unsigned NewSize[],
- unsigned Position, bool Grow);
- //===----------------------------------------------------------------------===//
- //--- IntervalMapImpl::NodeSizer ---//
- //===----------------------------------------------------------------------===//
- //
- // Compute node sizes from key and value types.
- //
- // The branching factors are chosen to make nodes fit in three cache lines.
- // This may not be possible if keys or values are very large. Such large objects
- // are handled correctly, but a std::map would probably give better performance.
- //
- //===----------------------------------------------------------------------===//
- enum {
- // Cache line size. Most architectures have 32 or 64 byte cache lines.
- // We use 64 bytes here because it provides good branching factors.
- Log2CacheLine = 6,
- CacheLineBytes = 1 << Log2CacheLine,
- DesiredNodeBytes = 3 * CacheLineBytes
- };
- template <typename KeyT, typename ValT>
- struct NodeSizer {
- enum {
- // Compute the leaf node branching factor that makes a node fit in three
- // cache lines. The branching factor must be at least 3, or some B+-tree
- // balancing algorithms won't work.
- // LeafSize can't be larger than CacheLineBytes. This is required by the
- // PointerIntPair used by NodeRef.
- DesiredLeafSize = DesiredNodeBytes /
- static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
- MinLeafSize = 3,
- LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
- };
- using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
- enum {
- // Now that we have the leaf branching factor, compute the actual allocation
- // unit size by rounding up to a whole number of cache lines.
- AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
- // Determine the branching factor for branch nodes.
- BranchSize = AllocBytes /
- static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
- };
- /// Allocator - The recycling allocator used for both branch and leaf nodes.
- /// This typedef is very likely to be identical for all IntervalMaps with
- /// reasonably sized entries, so the same allocator can be shared among
- /// different kinds of maps.
- using Allocator =
- RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
- };
- //===----------------------------------------------------------------------===//
- //--- IntervalMapImpl::NodeRef ---//
- //===----------------------------------------------------------------------===//
- //
- // B+-tree nodes can be leaves or branches, so we need a polymorphic node
- // pointer that can point to both kinds.
- //
- // All nodes are cache line aligned and the low 6 bits of a node pointer are
- // always 0. These bits are used to store the number of elements in the
- // referenced node. Besides saving space, placing node sizes in the parents
- // allow tree balancing algorithms to run without faulting cache lines for nodes
- // that may not need to be modified.
- //
- // A NodeRef doesn't know whether it references a leaf node or a branch node.
- // It is the responsibility of the caller to use the correct types.
- //
- // Nodes are never supposed to be empty, and it is invalid to store a node size
- // of 0 in a NodeRef. The valid range of sizes is 1-64.
- //
- //===----------------------------------------------------------------------===//
- class NodeRef {
- struct CacheAlignedPointerTraits {
- static inline void *getAsVoidPointer(void *P) { return P; }
- static inline void *getFromVoidPointer(void *P) { return P; }
- static constexpr int NumLowBitsAvailable = Log2CacheLine;
- };
- PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
- public:
- /// NodeRef - Create a null ref.
- NodeRef() = default;
- /// operator bool - Detect a null ref.
- explicit operator bool() const { return pip.getOpaqueValue(); }
- /// NodeRef - Create a reference to the node p with n elements.
- template <typename NodeT>
- NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
- assert(n <= NodeT::Capacity && "Size too big for node");
- }
- /// size - Return the number of elements in the referenced node.
- unsigned size() const { return pip.getInt() + 1; }
- /// setSize - Update the node size.
- void setSize(unsigned n) { pip.setInt(n - 1); }
- /// subtree - Access the i'th subtree reference in a branch node.
- /// This depends on branch nodes storing the NodeRef array as their first
- /// member.
- NodeRef &subtree(unsigned i) const {
- return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
- }
- /// get - Dereference as a NodeT reference.
- template <typename NodeT>
- NodeT &get() const {
- return *reinterpret_cast<NodeT*>(pip.getPointer());
- }
- bool operator==(const NodeRef &RHS) const {
- if (pip == RHS.pip)
- return true;
- assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
- return false;
- }
- bool operator!=(const NodeRef &RHS) const {
- return !operator==(RHS);
- }
- };
- //===----------------------------------------------------------------------===//
- //--- IntervalMapImpl::LeafNode ---//
- //===----------------------------------------------------------------------===//
- //
- // Leaf nodes store up to N disjoint intervals with corresponding values.
- //
- // The intervals are kept sorted and fully coalesced so there are no adjacent
- // intervals mapping to the same value.
- //
- // These constraints are always satisfied:
- //
- // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
- //
- // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
- //
- // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
- // - Fully coalesced.
- //
- //===----------------------------------------------------------------------===//
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
- public:
- const KeyT &start(unsigned i) const { return this->first[i].first; }
- const KeyT &stop(unsigned i) const { return this->first[i].second; }
- const ValT &value(unsigned i) const { return this->second[i]; }
- KeyT &start(unsigned i) { return this->first[i].first; }
- KeyT &stop(unsigned i) { return this->first[i].second; }
- ValT &value(unsigned i) { return this->second[i]; }
- /// findFrom - Find the first interval after i that may contain x.
- /// @param i Starting index for the search.
- /// @param Size Number of elements in node.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i].stop, x), or size.
- /// This is the first interval that can possibly contain x.
- unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
- assert(i <= Size && Size <= N && "Bad indices");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index is past the needed point");
- while (i != Size && Traits::stopLess(stop(i), x)) ++i;
- return i;
- }
- /// safeFind - Find an interval that is known to exist. This is the same as
- /// findFrom except is it assumed that x is at least within range of the last
- /// interval.
- /// @param i Starting index for the search.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i].stop, x), never size.
- /// This is the first interval that can possibly contain x.
- unsigned safeFind(unsigned i, KeyT x) const {
- assert(i < N && "Bad index");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index is past the needed point");
- while (Traits::stopLess(stop(i), x)) ++i;
- assert(i < N && "Unsafe intervals");
- return i;
- }
- /// safeLookup - Lookup mapped value for a safe key.
- /// It is assumed that x is within range of the last entry.
- /// @param x Key to search for.
- /// @param NotFound Value to return if x is not in any interval.
- /// @return The mapped value at x or NotFound.
- ValT safeLookup(KeyT x, ValT NotFound) const {
- unsigned i = safeFind(0, x);
- return Traits::startLess(x, start(i)) ? NotFound : value(i);
- }
- unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
- };
- /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
- /// possible. This may cause the node to grow by 1, or it may cause the node
- /// to shrink because of coalescing.
- /// @param Pos Starting index = insertFrom(0, size, a)
- /// @param Size Number of elements in node.
- /// @param a Interval start.
- /// @param b Interval stop.
- /// @param y Value be mapped.
- /// @return (insert position, new size), or (i, Capacity+1) on overflow.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- unsigned LeafNode<KeyT, ValT, N, Traits>::
- insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
- unsigned i = Pos;
- assert(i <= Size && Size <= N && "Invalid index");
- assert(!Traits::stopLess(b, a) && "Invalid interval");
- // Verify the findFrom invariant.
- assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
- assert((i == Size || !Traits::stopLess(stop(i), a)));
- assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
- // Coalesce with previous interval.
- if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
- Pos = i - 1;
- // Also coalesce with next interval?
- if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
- stop(i - 1) = stop(i);
- this->erase(i, Size);
- return Size - 1;
- }
- stop(i - 1) = b;
- return Size;
- }
- // Detect overflow.
- if (i == N)
- return N + 1;
- // Add new interval at end.
- if (i == Size) {
- start(i) = a;
- stop(i) = b;
- value(i) = y;
- return Size + 1;
- }
- // Try to coalesce with following interval.
- if (value(i) == y && Traits::adjacent(b, start(i))) {
- start(i) = a;
- return Size;
- }
- // We must insert before i. Detect overflow.
- if (Size == N)
- return N + 1;
- // Insert before i.
- this->shift(i, Size);
- start(i) = a;
- stop(i) = b;
- value(i) = y;
- return Size + 1;
- }
- //===----------------------------------------------------------------------===//
- //--- IntervalMapImpl::BranchNode ---//
- //===----------------------------------------------------------------------===//
- //
- // A branch node stores references to 1--N subtrees all of the same height.
- //
- // The key array in a branch node holds the rightmost stop key of each subtree.
- // It is redundant to store the last stop key since it can be found in the
- // parent node, but doing so makes tree balancing a lot simpler.
- //
- // It is unusual for a branch node to only have one subtree, but it can happen
- // in the root node if it is smaller than the normal nodes.
- //
- // When all of the leaf nodes from all the subtrees are concatenated, they must
- // satisfy the same constraints as a single leaf node. They must be sorted,
- // sane, and fully coalesced.
- //
- //===----------------------------------------------------------------------===//
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- class BranchNode : public NodeBase<NodeRef, KeyT, N> {
- public:
- const KeyT &stop(unsigned i) const { return this->second[i]; }
- const NodeRef &subtree(unsigned i) const { return this->first[i]; }
- KeyT &stop(unsigned i) { return this->second[i]; }
- NodeRef &subtree(unsigned i) { return this->first[i]; }
- /// findFrom - Find the first subtree after i that may contain x.
- /// @param i Starting index for the search.
- /// @param Size Number of elements in node.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i], x), or size.
- /// This is the first subtree that can possibly contain x.
- unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
- assert(i <= Size && Size <= N && "Bad indices");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index to findFrom is past the needed point");
- while (i != Size && Traits::stopLess(stop(i), x)) ++i;
- return i;
- }
- /// safeFind - Find a subtree that is known to exist. This is the same as
- /// findFrom except is it assumed that x is in range.
- /// @param i Starting index for the search.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i], x), never size.
- /// This is the first subtree that can possibly contain x.
- unsigned safeFind(unsigned i, KeyT x) const {
- assert(i < N && "Bad index");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index is past the needed point");
- while (Traits::stopLess(stop(i), x)) ++i;
- assert(i < N && "Unsafe intervals");
- return i;
- }
- /// safeLookup - Get the subtree containing x, Assuming that x is in range.
- /// @param x Key to search for.
- /// @return Subtree containing x
- NodeRef safeLookup(KeyT x) const {
- return subtree(safeFind(0, x));
- }
- /// insert - Insert a new (subtree, stop) pair.
- /// @param i Insert position, following entries will be shifted.
- /// @param Size Number of elements in node.
- /// @param Node Subtree to insert.
- /// @param Stop Last key in subtree.
- void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
- assert(Size < N && "branch node overflow");
- assert(i <= Size && "Bad insert position");
- this->shift(i, Size);
- subtree(i) = Node;
- stop(i) = Stop;
- }
- };
- //===----------------------------------------------------------------------===//
- //--- IntervalMapImpl::Path ---//
- //===----------------------------------------------------------------------===//
- //
- // A Path is used by iterators to represent a position in a B+-tree, and the
- // path to get there from the root.
- //
- // The Path class also contains the tree navigation code that doesn't have to
- // be templatized.
- //
- //===----------------------------------------------------------------------===//
- class Path {
- /// Entry - Each step in the path is a node pointer and an offset into that
- /// node.
- struct Entry {
- void *node;
- unsigned size;
- unsigned offset;
- Entry(void *Node, unsigned Size, unsigned Offset)
- : node(Node), size(Size), offset(Offset) {}
- Entry(NodeRef Node, unsigned Offset)
- : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
- NodeRef &subtree(unsigned i) const {
- return reinterpret_cast<NodeRef*>(node)[i];
- }
- };
- /// path - The path entries, path[0] is the root node, path.back() is a leaf.
- SmallVector<Entry, 4> path;
- public:
- // Node accessors.
- template <typename NodeT> NodeT &node(unsigned Level) const {
- return *reinterpret_cast<NodeT*>(path[Level].node);
- }
- unsigned size(unsigned Level) const { return path[Level].size; }
- unsigned offset(unsigned Level) const { return path[Level].offset; }
- unsigned &offset(unsigned Level) { return path[Level].offset; }
- // Leaf accessors.
- template <typename NodeT> NodeT &leaf() const {
- return *reinterpret_cast<NodeT*>(path.back().node);
- }
- unsigned leafSize() const { return path.back().size; }
- unsigned leafOffset() const { return path.back().offset; }
- unsigned &leafOffset() { return path.back().offset; }
- /// valid - Return true if path is at a valid node, not at end().
- bool valid() const {
- return !path.empty() && path.front().offset < path.front().size;
- }
- /// height - Return the height of the tree corresponding to this path.
- /// This matches map->height in a full path.
- unsigned height() const { return path.size() - 1; }
- /// subtree - Get the subtree referenced from Level. When the path is
- /// consistent, node(Level + 1) == subtree(Level).
- /// @param Level 0..height-1. The leaves have no subtrees.
- NodeRef &subtree(unsigned Level) const {
- return path[Level].subtree(path[Level].offset);
- }
- /// reset - Reset cached information about node(Level) from subtree(Level -1).
- /// @param Level 1..height. The node to update after parent node changed.
- void reset(unsigned Level) {
- path[Level] = Entry(subtree(Level - 1), offset(Level));
- }
- /// push - Add entry to path.
- /// @param Node Node to add, should be subtree(path.size()-1).
- /// @param Offset Offset into Node.
- void push(NodeRef Node, unsigned Offset) {
- path.push_back(Entry(Node, Offset));
- }
- /// pop - Remove the last path entry.
- void pop() {
- path.pop_back();
- }
- /// setSize - Set the size of a node both in the path and in the tree.
- /// @param Level 0..height. Note that setting the root size won't change
- /// map->rootSize.
- /// @param Size New node size.
- void setSize(unsigned Level, unsigned Size) {
- path[Level].size = Size;
- if (Level)
- subtree(Level - 1).setSize(Size);
- }
- /// setRoot - Clear the path and set a new root node.
- /// @param Node New root node.
- /// @param Size New root size.
- /// @param Offset Offset into root node.
- void setRoot(void *Node, unsigned Size, unsigned Offset) {
- path.clear();
- path.push_back(Entry(Node, Size, Offset));
- }
- /// replaceRoot - Replace the current root node with two new entries after the
- /// tree height has increased.
- /// @param Root The new root node.
- /// @param Size Number of entries in the new root.
- /// @param Offsets Offsets into the root and first branch nodes.
- void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
- /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
- /// @param Level Get the sibling to node(Level).
- /// @return Left sibling, or NodeRef().
- NodeRef getLeftSibling(unsigned Level) const;
- /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
- /// unaltered.
- /// @param Level Move node(Level).
- void moveLeft(unsigned Level);
- /// fillLeft - Grow path to Height by taking leftmost branches.
- /// @param Height The target height.
- void fillLeft(unsigned Height) {
- while (height() < Height)
- push(subtree(height()), 0);
- }
- /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
- /// @param Level Get the sibling to node(Level).
- /// @return Left sibling, or NodeRef().
- NodeRef getRightSibling(unsigned Level) const;
- /// moveRight - Move path to the left sibling at Level. Leave nodes below
- /// Level unaltered.
- /// @param Level Move node(Level).
- void moveRight(unsigned Level);
- /// atBegin - Return true if path is at begin().
- bool atBegin() const {
- for (unsigned i = 0, e = path.size(); i != e; ++i)
- if (path[i].offset != 0)
- return false;
- return true;
- }
- /// atLastEntry - Return true if the path is at the last entry of the node at
- /// Level.
- /// @param Level Node to examine.
- bool atLastEntry(unsigned Level) const {
- return path[Level].offset == path[Level].size - 1;
- }
- /// legalizeForInsert - Prepare the path for an insertion at Level. When the
- /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
- /// ensures that node(Level) is real by moving back to the last node at Level,
- /// and setting offset(Level) to size(Level) if required.
- /// @param Level The level where an insertion is about to take place.
- void legalizeForInsert(unsigned Level) {
- if (valid())
- return;
- moveLeft(Level);
- ++path[Level].offset;
- }
- };
- } // end namespace IntervalMapImpl
- //===----------------------------------------------------------------------===//
- //--- IntervalMap ----//
- //===----------------------------------------------------------------------===//
- template <typename KeyT, typename ValT,
- unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
- typename Traits = IntervalMapInfo<KeyT>>
- class IntervalMap {
- using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
- using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
- using Branch =
- IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
- using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
- using IdxPair = IntervalMapImpl::IdxPair;
- // The RootLeaf capacity is given as a template parameter. We must compute the
- // corresponding RootBranch capacity.
- enum {
- DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
- (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
- RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
- };
- using RootBranch =
- IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
- // When branched, we store a global start key as well as the branch node.
- struct RootBranchData {
- KeyT start;
- RootBranch node;
- };
- public:
- using Allocator = typename Sizer::Allocator;
- using KeyType = KeyT;
- using ValueType = ValT;
- using KeyTraits = Traits;
- private:
- // The root data is either a RootLeaf or a RootBranchData instance.
- AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
- // Tree height.
- // 0: Leaves in root.
- // 1: Root points to leaf.
- // 2: root->branch->leaf ...
- unsigned height;
- // Number of entries in the root node.
- unsigned rootSize;
- // Allocator used for creating external nodes.
- Allocator &allocator;
- /// Represent data as a node type without breaking aliasing rules.
- template <typename T> T &dataAs() const { return *llvm::bit_cast<T *>(&data); }
- const RootLeaf &rootLeaf() const {
- assert(!branched() && "Cannot acces leaf data in branched root");
- return dataAs<RootLeaf>();
- }
- RootLeaf &rootLeaf() {
- assert(!branched() && "Cannot acces leaf data in branched root");
- return dataAs<RootLeaf>();
- }
- RootBranchData &rootBranchData() const {
- assert(branched() && "Cannot access branch data in non-branched root");
- return dataAs<RootBranchData>();
- }
- RootBranchData &rootBranchData() {
- assert(branched() && "Cannot access branch data in non-branched root");
- return dataAs<RootBranchData>();
- }
- const RootBranch &rootBranch() const { return rootBranchData().node; }
- RootBranch &rootBranch() { return rootBranchData().node; }
- KeyT rootBranchStart() const { return rootBranchData().start; }
- KeyT &rootBranchStart() { return rootBranchData().start; }
- template <typename NodeT> NodeT *newNode() {
- return new(allocator.template Allocate<NodeT>()) NodeT();
- }
- template <typename NodeT> void deleteNode(NodeT *P) {
- P->~NodeT();
- allocator.Deallocate(P);
- }
- IdxPair branchRoot(unsigned Position);
- IdxPair splitRoot(unsigned Position);
- void switchRootToBranch() {
- rootLeaf().~RootLeaf();
- height = 1;
- new (&rootBranchData()) RootBranchData();
- }
- void switchRootToLeaf() {
- rootBranchData().~RootBranchData();
- height = 0;
- new(&rootLeaf()) RootLeaf();
- }
- bool branched() const { return height > 0; }
- ValT treeSafeLookup(KeyT x, ValT NotFound) const;
- void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
- unsigned Level));
- void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
- public:
- explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
- assert((uintptr_t(&data) & (alignof(RootLeaf) - 1)) == 0 &&
- "Insufficient alignment");
- new(&rootLeaf()) RootLeaf();
- }
- ~IntervalMap() {
- clear();
- rootLeaf().~RootLeaf();
- }
- /// empty - Return true when no intervals are mapped.
- bool empty() const {
- return rootSize == 0;
- }
- /// start - Return the smallest mapped key in a non-empty map.
- KeyT start() const {
- assert(!empty() && "Empty IntervalMap has no start");
- return !branched() ? rootLeaf().start(0) : rootBranchStart();
- }
- /// stop - Return the largest mapped key in a non-empty map.
- KeyT stop() const {
- assert(!empty() && "Empty IntervalMap has no stop");
- return !branched() ? rootLeaf().stop(rootSize - 1) :
- rootBranch().stop(rootSize - 1);
- }
- /// lookup - Return the mapped value at x or NotFound.
- ValT lookup(KeyT x, ValT NotFound = ValT()) const {
- if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
- return NotFound;
- return branched() ? treeSafeLookup(x, NotFound) :
- rootLeaf().safeLookup(x, NotFound);
- }
- /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
- /// It is assumed that no key in the interval is mapped to another value, but
- /// overlapping intervals already mapped to y will be coalesced.
- void insert(KeyT a, KeyT b, ValT y) {
- if (branched() || rootSize == RootLeaf::Capacity)
- return find(a).insert(a, b, y);
- // Easy insert into root leaf.
- unsigned p = rootLeaf().findFrom(0, rootSize, a);
- rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
- }
- /// clear - Remove all entries.
- void clear();
- class const_iterator;
- class iterator;
- friend class const_iterator;
- friend class iterator;
- const_iterator begin() const {
- const_iterator I(*this);
- I.goToBegin();
- return I;
- }
- iterator begin() {
- iterator I(*this);
- I.goToBegin();
- return I;
- }
- const_iterator end() const {
- const_iterator I(*this);
- I.goToEnd();
- return I;
- }
- iterator end() {
- iterator I(*this);
- I.goToEnd();
- return I;
- }
- /// find - Return an iterator pointing to the first interval ending at or
- /// after x, or end().
- const_iterator find(KeyT x) const {
- const_iterator I(*this);
- I.find(x);
- return I;
- }
- iterator find(KeyT x) {
- iterator I(*this);
- I.find(x);
- return I;
- }
- /// overlaps(a, b) - Return true if the intervals in this map overlap with the
- /// interval [a;b].
- bool overlaps(KeyT a, KeyT b) {
- assert(Traits::nonEmpty(a, b));
- const_iterator I = find(a);
- if (!I.valid())
- return false;
- // [a;b] and [x;y] overlap iff x<=b and a<=y. The find() call guarantees the
- // second part (y = find(a).stop()), so it is sufficient to check the first
- // one.
- return !Traits::stopLess(b, I.start());
- }
- };
- /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
- /// branched root.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- ValT IntervalMap<KeyT, ValT, N, Traits>::
- treeSafeLookup(KeyT x, ValT NotFound) const {
- assert(branched() && "treeLookup assumes a branched root");
- IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
- for (unsigned h = height-1; h; --h)
- NR = NR.get<Branch>().safeLookup(x);
- return NR.get<Leaf>().safeLookup(x, NotFound);
- }
- // branchRoot - Switch from a leaf root to a branched root.
- // Return the new (root offset, node offset) corresponding to Position.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
- branchRoot(unsigned Position) {
- using namespace IntervalMapImpl;
- // How many external leaf nodes to hold RootLeaf+1?
- const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
- // Compute element distribution among new nodes.
- unsigned size[Nodes];
- IdxPair NewOffset(0, Position);
- // Is is very common for the root node to be smaller than external nodes.
- if (Nodes == 1)
- size[0] = rootSize;
- else
- NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size,
- Position, true);
- // Allocate new nodes.
- unsigned pos = 0;
- NodeRef node[Nodes];
- for (unsigned n = 0; n != Nodes; ++n) {
- Leaf *L = newNode<Leaf>();
- L->copy(rootLeaf(), pos, 0, size[n]);
- node[n] = NodeRef(L, size[n]);
- pos += size[n];
- }
- // Destroy the old leaf node, construct branch node instead.
- switchRootToBranch();
- for (unsigned n = 0; n != Nodes; ++n) {
- rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
- rootBranch().subtree(n) = node[n];
- }
- rootBranchStart() = node[0].template get<Leaf>().start(0);
- rootSize = Nodes;
- return NewOffset;
- }
- // splitRoot - Split the current BranchRoot into multiple Branch nodes.
- // Return the new (root offset, node offset) corresponding to Position.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
- splitRoot(unsigned Position) {
- using namespace IntervalMapImpl;
- // How many external leaf nodes to hold RootBranch+1?
- const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
- // Compute element distribution among new nodes.
- unsigned Size[Nodes];
- IdxPair NewOffset(0, Position);
- // Is is very common for the root node to be smaller than external nodes.
- if (Nodes == 1)
- Size[0] = rootSize;
- else
- NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size,
- Position, true);
- // Allocate new nodes.
- unsigned Pos = 0;
- NodeRef Node[Nodes];
- for (unsigned n = 0; n != Nodes; ++n) {
- Branch *B = newNode<Branch>();
- B->copy(rootBranch(), Pos, 0, Size[n]);
- Node[n] = NodeRef(B, Size[n]);
- Pos += Size[n];
- }
- for (unsigned n = 0; n != Nodes; ++n) {
- rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
- rootBranch().subtree(n) = Node[n];
- }
- rootSize = Nodes;
- ++height;
- return NewOffset;
- }
- /// visitNodes - Visit each external node.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
- if (!branched())
- return;
- SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
- // Collect level 0 nodes from the root.
- for (unsigned i = 0; i != rootSize; ++i)
- Refs.push_back(rootBranch().subtree(i));
- // Visit all branch nodes.
- for (unsigned h = height - 1; h; --h) {
- for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
- for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
- NextRefs.push_back(Refs[i].subtree(j));
- (this->*f)(Refs[i], h);
- }
- Refs.clear();
- Refs.swap(NextRefs);
- }
- // Visit all leaf nodes.
- for (unsigned i = 0, e = Refs.size(); i != e; ++i)
- (this->*f)(Refs[i], 0);
- }
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
- if (Level)
- deleteNode(&Node.get<Branch>());
- else
- deleteNode(&Node.get<Leaf>());
- }
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- clear() {
- if (branched()) {
- visitNodes(&IntervalMap::deleteNode);
- switchRootToLeaf();
- }
- rootSize = 0;
- }
- //===----------------------------------------------------------------------===//
- //--- IntervalMap::const_iterator ----//
- //===----------------------------------------------------------------------===//
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
- public std::iterator<std::bidirectional_iterator_tag, ValT> {
- protected:
- friend class IntervalMap;
- // The map referred to.
- IntervalMap *map = nullptr;
- // We store a full path from the root to the current position.
- // The path may be partially filled, but never between iterator calls.
- IntervalMapImpl::Path path;
- explicit const_iterator(const IntervalMap &map) :
- map(const_cast<IntervalMap*>(&map)) {}
- bool branched() const {
- assert(map && "Invalid iterator");
- return map->branched();
- }
- void setRoot(unsigned Offset) {
- if (branched())
- path.setRoot(&map->rootBranch(), map->rootSize, Offset);
- else
- path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
- }
- void pathFillFind(KeyT x);
- void treeFind(KeyT x);
- void treeAdvanceTo(KeyT x);
- /// unsafeStart - Writable access to start() for iterator.
- KeyT &unsafeStart() const {
- assert(valid() && "Cannot access invalid iterator");
- return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
- path.leaf<RootLeaf>().start(path.leafOffset());
- }
- /// unsafeStop - Writable access to stop() for iterator.
- KeyT &unsafeStop() const {
- assert(valid() && "Cannot access invalid iterator");
- return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
- path.leaf<RootLeaf>().stop(path.leafOffset());
- }
- /// unsafeValue - Writable access to value() for iterator.
- ValT &unsafeValue() const {
- assert(valid() && "Cannot access invalid iterator");
- return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
- path.leaf<RootLeaf>().value(path.leafOffset());
- }
- public:
- /// const_iterator - Create an iterator that isn't pointing anywhere.
- const_iterator() = default;
- /// setMap - Change the map iterated over. This call must be followed by a
- /// call to goToBegin(), goToEnd(), or find()
- void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
- /// valid - Return true if the current position is valid, false for end().
- bool valid() const { return path.valid(); }
- /// atBegin - Return true if the current position is the first map entry.
- bool atBegin() const { return path.atBegin(); }
- /// start - Return the beginning of the current interval.
- const KeyT &start() const { return unsafeStart(); }
- /// stop - Return the end of the current interval.
- const KeyT &stop() const { return unsafeStop(); }
- /// value - Return the mapped value at the current interval.
- const ValT &value() const { return unsafeValue(); }
- const ValT &operator*() const { return value(); }
- bool operator==(const const_iterator &RHS) const {
- assert(map == RHS.map && "Cannot compare iterators from different maps");
- if (!valid())
- return !RHS.valid();
- if (path.leafOffset() != RHS.path.leafOffset())
- return false;
- return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
- }
- bool operator!=(const const_iterator &RHS) const {
- return !operator==(RHS);
- }
- /// goToBegin - Move to the first interval in map.
- void goToBegin() {
- setRoot(0);
- if (branched())
- path.fillLeft(map->height);
- }
- /// goToEnd - Move beyond the last interval in map.
- void goToEnd() {
- setRoot(map->rootSize);
- }
- /// preincrement - Move to the next interval.
- const_iterator &operator++() {
- assert(valid() && "Cannot increment end()");
- if (++path.leafOffset() == path.leafSize() && branched())
- path.moveRight(map->height);
- return *this;
- }
- /// postincrement - Don't do that!
- const_iterator operator++(int) {
- const_iterator tmp = *this;
- operator++();
- return tmp;
- }
- /// predecrement - Move to the previous interval.
- const_iterator &operator--() {
- if (path.leafOffset() && (valid() || !branched()))
- --path.leafOffset();
- else
- path.moveLeft(map->height);
- return *this;
- }
- /// postdecrement - Don't do that!
- const_iterator operator--(int) {
- const_iterator tmp = *this;
- operator--();
- return tmp;
- }
- /// find - Move to the first interval with stop >= x, or end().
- /// This is a full search from the root, the current position is ignored.
- void find(KeyT x) {
- if (branched())
- treeFind(x);
- else
- setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
- }
- /// advanceTo - Move to the first interval with stop >= x, or end().
- /// The search is started from the current position, and no earlier positions
- /// can be found. This is much faster than find() for small moves.
- void advanceTo(KeyT x) {
- if (!valid())
- return;
- if (branched())
- treeAdvanceTo(x);
- else
- path.leafOffset() =
- map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
- }
- };
- /// pathFillFind - Complete path by searching for x.
- /// @param x Key to search for.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- const_iterator::pathFillFind(KeyT x) {
- IntervalMapImpl::NodeRef NR = path.subtree(path.height());
- for (unsigned i = map->height - path.height() - 1; i; --i) {
- unsigned p = NR.get<Branch>().safeFind(0, x);
- path.push(NR, p);
- NR = NR.subtree(p);
- }
- path.push(NR, NR.get<Leaf>().safeFind(0, x));
- }
- /// treeFind - Find in a branched tree.
- /// @param x Key to search for.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- const_iterator::treeFind(KeyT x) {
- setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
- if (valid())
- pathFillFind(x);
- }
- /// treeAdvanceTo - Find position after the current one.
- /// @param x Key to search for.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- const_iterator::treeAdvanceTo(KeyT x) {
- // Can we stay on the same leaf node?
- if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
- path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
- return;
- }
- // Drop the current leaf.
- path.pop();
- // Search towards the root for a usable subtree.
- if (path.height()) {
- for (unsigned l = path.height() - 1; l; --l) {
- if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
- // The branch node at l+1 is usable
- path.offset(l + 1) =
- path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
- return pathFillFind(x);
- }
- path.pop();
- }
- // Is the level-1 Branch usable?
- if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
- path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
- return pathFillFind(x);
- }
- }
- // We reached the root.
- setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
- if (valid())
- pathFillFind(x);
- }
- //===----------------------------------------------------------------------===//
- //--- IntervalMap::iterator ----//
- //===----------------------------------------------------------------------===//
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
- friend class IntervalMap;
- using IdxPair = IntervalMapImpl::IdxPair;
- explicit iterator(IntervalMap &map) : const_iterator(map) {}
- void setNodeStop(unsigned Level, KeyT Stop);
- bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
- template <typename NodeT> bool overflow(unsigned Level);
- void treeInsert(KeyT a, KeyT b, ValT y);
- void eraseNode(unsigned Level);
- void treeErase(bool UpdateRoot = true);
- bool canCoalesceLeft(KeyT Start, ValT x);
- bool canCoalesceRight(KeyT Stop, ValT x);
- public:
- /// iterator - Create null iterator.
- iterator() = default;
- /// setStart - Move the start of the current interval.
- /// This may cause coalescing with the previous interval.
- /// @param a New start key, must not overlap the previous interval.
- void setStart(KeyT a);
- /// setStop - Move the end of the current interval.
- /// This may cause coalescing with the following interval.
- /// @param b New stop key, must not overlap the following interval.
- void setStop(KeyT b);
- /// setValue - Change the mapped value of the current interval.
- /// This may cause coalescing with the previous and following intervals.
- /// @param x New value.
- void setValue(ValT x);
- /// setStartUnchecked - Move the start of the current interval without
- /// checking for coalescing or overlaps.
- /// This should only be used when it is known that coalescing is not required.
- /// @param a New start key.
- void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
- /// setStopUnchecked - Move the end of the current interval without checking
- /// for coalescing or overlaps.
- /// This should only be used when it is known that coalescing is not required.
- /// @param b New stop key.
- void setStopUnchecked(KeyT b) {
- this->unsafeStop() = b;
- // Update keys in branch nodes as well.
- if (this->path.atLastEntry(this->path.height()))
- setNodeStop(this->path.height(), b);
- }
- /// setValueUnchecked - Change the mapped value of the current interval
- /// without checking for coalescing.
- /// @param x New value.
- void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
- /// insert - Insert mapping [a;b] -> y before the current position.
- void insert(KeyT a, KeyT b, ValT y);
- /// erase - Erase the current interval.
- void erase();
- iterator &operator++() {
- const_iterator::operator++();
- return *this;
- }
- iterator operator++(int) {
- iterator tmp = *this;
- operator++();
- return tmp;
- }
- iterator &operator--() {
- const_iterator::operator--();
- return *this;
- }
- iterator operator--(int) {
- iterator tmp = *this;
- operator--();
- return tmp;
- }
- };
- /// canCoalesceLeft - Can the current interval coalesce to the left after
- /// changing start or value?
- /// @param Start New start of current interval.
- /// @param Value New value for current interval.
- /// @return True when updating the current interval would enable coalescing.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- bool IntervalMap<KeyT, ValT, N, Traits>::
- iterator::canCoalesceLeft(KeyT Start, ValT Value) {
- using namespace IntervalMapImpl;
- Path &P = this->path;
- if (!this->branched()) {
- unsigned i = P.leafOffset();
- RootLeaf &Node = P.leaf<RootLeaf>();
- return i && Node.value(i-1) == Value &&
- Traits::adjacent(Node.stop(i-1), Start);
- }
- // Branched.
- if (unsigned i = P.leafOffset()) {
- Leaf &Node = P.leaf<Leaf>();
- return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
- } else if (NodeRef NR = P.getLeftSibling(P.height())) {
- unsigned i = NR.size() - 1;
- Leaf &Node = NR.get<Leaf>();
- return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
- }
- return false;
- }
- /// canCoalesceRight - Can the current interval coalesce to the right after
- /// changing stop or value?
- /// @param Stop New stop of current interval.
- /// @param Value New value for current interval.
- /// @return True when updating the current interval would enable coalescing.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- bool IntervalMap<KeyT, ValT, N, Traits>::
- iterator::canCoalesceRight(KeyT Stop, ValT Value) {
- using namespace IntervalMapImpl;
- Path &P = this->path;
- unsigned i = P.leafOffset() + 1;
- if (!this->branched()) {
- if (i >= P.leafSize())
- return false;
- RootLeaf &Node = P.leaf<RootLeaf>();
- return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
- }
- // Branched.
- if (i < P.leafSize()) {
- Leaf &Node = P.leaf<Leaf>();
- return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
- } else if (NodeRef NR = P.getRightSibling(P.height())) {
- Leaf &Node = NR.get<Leaf>();
- return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
- }
- return false;
- }
- /// setNodeStop - Update the stop key of the current node at level and above.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::setNodeStop(unsigned Level, KeyT Stop) {
- // There are no references to the root node, so nothing to update.
- if (!Level)
- return;
- IntervalMapImpl::Path &P = this->path;
- // Update nodes pointing to the current node.
- while (--Level) {
- P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
- if (!P.atLastEntry(Level))
- return;
- }
- // Update root separately since it has a different layout.
- P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
- }
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::setStart(KeyT a) {
- assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
- KeyT &CurStart = this->unsafeStart();
- if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
- CurStart = a;
- return;
- }
- // Coalesce with the interval to the left.
- --*this;
- a = this->start();
- erase();
- setStartUnchecked(a);
- }
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::setStop(KeyT b) {
- assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
- if (Traits::startLess(b, this->stop()) ||
- !canCoalesceRight(b, this->value())) {
- setStopUnchecked(b);
- return;
- }
- // Coalesce with interval to the right.
- KeyT a = this->start();
- erase();
- setStartUnchecked(a);
- }
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::setValue(ValT x) {
- setValueUnchecked(x);
- if (canCoalesceRight(this->stop(), x)) {
- KeyT a = this->start();
- erase();
- setStartUnchecked(a);
- }
- if (canCoalesceLeft(this->start(), x)) {
- --*this;
- KeyT a = this->start();
- erase();
- setStartUnchecked(a);
- }
- }
- /// insertNode - insert a node before the current path at level.
- /// Leave the current path pointing at the new node.
- /// @param Level path index of the node to be inserted.
- /// @param Node The node to be inserted.
- /// @param Stop The last index in the new node.
- /// @return True if the tree height was increased.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- bool IntervalMap<KeyT, ValT, N, Traits>::
- iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
- assert(Level && "Cannot insert next to the root");
- bool SplitRoot = false;
- IntervalMap &IM = *this->map;
- IntervalMapImpl::Path &P = this->path;
- if (Level == 1) {
- // Insert into the root branch node.
- if (IM.rootSize < RootBranch::Capacity) {
- IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
- P.setSize(0, ++IM.rootSize);
- P.reset(Level);
- return SplitRoot;
- }
- // We need to split the root while keeping our position.
- SplitRoot = true;
- IdxPair Offset = IM.splitRoot(P.offset(0));
- P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
- // Fall through to insert at the new higher level.
- ++Level;
- }
- // When inserting before end(), make sure we have a valid path.
- P.legalizeForInsert(--Level);
- // Insert into the branch node at Level-1.
- if (P.size(Level) == Branch::Capacity) {
- // Branch node is full, handle handle the overflow.
- assert(!SplitRoot && "Cannot overflow after splitting the root");
- SplitRoot = overflow<Branch>(Level);
- Level += SplitRoot;
- }
- P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
- P.setSize(Level, P.size(Level) + 1);
- if (P.atLastEntry(Level))
- setNodeStop(Level, Stop);
- P.reset(Level + 1);
- return SplitRoot;
- }
- // insert
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::insert(KeyT a, KeyT b, ValT y) {
- if (this->branched())
- return treeInsert(a, b, y);
- IntervalMap &IM = *this->map;
- IntervalMapImpl::Path &P = this->path;
- // Try simple root leaf insert.
- unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
- // Was the root node insert successful?
- if (Size <= RootLeaf::Capacity) {
- P.setSize(0, IM.rootSize = Size);
- return;
- }
- // Root leaf node is full, we must branch.
- IdxPair Offset = IM.branchRoot(P.leafOffset());
- P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
- // Now it fits in the new leaf.
- treeInsert(a, b, y);
- }
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::treeInsert(KeyT a, KeyT b, ValT y) {
- using namespace IntervalMapImpl;
- Path &P = this->path;
- if (!P.valid())
- P.legalizeForInsert(this->map->height);
- // Check if this insertion will extend the node to the left.
- if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
- // Node is growing to the left, will it affect a left sibling node?
- if (NodeRef Sib = P.getLeftSibling(P.height())) {
- Leaf &SibLeaf = Sib.get<Leaf>();
- unsigned SibOfs = Sib.size() - 1;
- if (SibLeaf.value(SibOfs) == y &&
- Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
- // This insertion will coalesce with the last entry in SibLeaf. We can
- // handle it in two ways:
- // 1. Extend SibLeaf.stop to b and be done, or
- // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
- // We prefer 1., but need 2 when coalescing to the right as well.
- Leaf &CurLeaf = P.leaf<Leaf>();
- P.moveLeft(P.height());
- if (Traits::stopLess(b, CurLeaf.start(0)) &&
- (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
- // Easy, just extend SibLeaf and we're done.
- setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
- return;
- } else {
- // We have both left and right coalescing. Erase the old SibLeaf entry
- // and continue inserting the larger interval.
- a = SibLeaf.start(SibOfs);
- treeErase(/* UpdateRoot= */false);
- }
- }
- } else {
- // No left sibling means we are at begin(). Update cached bound.
- this->map->rootBranchStart() = a;
- }
- }
- // When we are inserting at the end of a leaf node, we must update stops.
- unsigned Size = P.leafSize();
- bool Grow = P.leafOffset() == Size;
- Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
- // Leaf insertion unsuccessful? Overflow and try again.
- if (Size > Leaf::Capacity) {
- overflow<Leaf>(P.height());
- Grow = P.leafOffset() == P.leafSize();
- Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
- assert(Size <= Leaf::Capacity && "overflow() didn't make room");
- }
- // Inserted, update offset and leaf size.
- P.setSize(P.height(), Size);
- // Insert was the last node entry, update stops.
- if (Grow)
- setNodeStop(P.height(), b);
- }
- /// erase - erase the current interval and move to the next position.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::erase() {
- IntervalMap &IM = *this->map;
- IntervalMapImpl::Path &P = this->path;
- assert(P.valid() && "Cannot erase end()");
- if (this->branched())
- return treeErase();
- IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
- P.setSize(0, --IM.rootSize);
- }
- /// treeErase - erase() for a branched tree.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::treeErase(bool UpdateRoot) {
- IntervalMap &IM = *this->map;
- IntervalMapImpl::Path &P = this->path;
- Leaf &Node = P.leaf<Leaf>();
- // Nodes are not allowed to become empty.
- if (P.leafSize() == 1) {
- IM.deleteNode(&Node);
- eraseNode(IM.height);
- // Update rootBranchStart if we erased begin().
- if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
- IM.rootBranchStart() = P.leaf<Leaf>().start(0);
- return;
- }
- // Erase current entry.
- Node.erase(P.leafOffset(), P.leafSize());
- unsigned NewSize = P.leafSize() - 1;
- P.setSize(IM.height, NewSize);
- // When we erase the last entry, update stop and move to a legal position.
- if (P.leafOffset() == NewSize) {
- setNodeStop(IM.height, Node.stop(NewSize - 1));
- P.moveRight(IM.height);
- } else if (UpdateRoot && P.atBegin())
- IM.rootBranchStart() = P.leaf<Leaf>().start(0);
- }
- /// eraseNode - Erase the current node at Level from its parent and move path to
- /// the first entry of the next sibling node.
- /// The node must be deallocated by the caller.
- /// @param Level 1..height, the root node cannot be erased.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- void IntervalMap<KeyT, ValT, N, Traits>::
- iterator::eraseNode(unsigned Level) {
- assert(Level && "Cannot erase root node");
- IntervalMap &IM = *this->map;
- IntervalMapImpl::Path &P = this->path;
- if (--Level == 0) {
- IM.rootBranch().erase(P.offset(0), IM.rootSize);
- P.setSize(0, --IM.rootSize);
- // If this cleared the root, switch to height=0.
- if (IM.empty()) {
- IM.switchRootToLeaf();
- this->setRoot(0);
- return;
- }
- } else {
- // Remove node ref from branch node at Level.
- Branch &Parent = P.node<Branch>(Level);
- if (P.size(Level) == 1) {
- // Branch node became empty, remove it recursively.
- IM.deleteNode(&Parent);
- eraseNode(Level);
- } else {
- // Branch node won't become empty.
- Parent.erase(P.offset(Level), P.size(Level));
- unsigned NewSize = P.size(Level) - 1;
- P.setSize(Level, NewSize);
- // If we removed the last branch, update stop and move to a legal pos.
- if (P.offset(Level) == NewSize) {
- setNodeStop(Level, Parent.stop(NewSize - 1));
- P.moveRight(Level);
- }
- }
- }
- // Update path cache for the new right sibling position.
- if (P.valid()) {
- P.reset(Level + 1);
- P.offset(Level + 1) = 0;
- }
- }
- /// overflow - Distribute entries of the current node evenly among
- /// its siblings and ensure that the current node is not full.
- /// This may require allocating a new node.
- /// @tparam NodeT The type of node at Level (Leaf or Branch).
- /// @param Level path index of the overflowing node.
- /// @return True when the tree height was changed.
- template <typename KeyT, typename ValT, unsigned N, typename Traits>
- template <typename NodeT>
- bool IntervalMap<KeyT, ValT, N, Traits>::
- iterator::overflow(unsigned Level) {
- using namespace IntervalMapImpl;
- Path &P = this->path;
- unsigned CurSize[4];
- NodeT *Node[4];
- unsigned Nodes = 0;
- unsigned Elements = 0;
- unsigned Offset = P.offset(Level);
- // Do we have a left sibling?
- NodeRef LeftSib = P.getLeftSibling(Level);
- if (LeftSib) {
- Offset += Elements = CurSize[Nodes] = LeftSib.size();
- Node[Nodes++] = &LeftSib.get<NodeT>();
- }
- // Current node.
- Elements += CurSize[Nodes] = P.size(Level);
- Node[Nodes++] = &P.node<NodeT>(Level);
- // Do we have a right sibling?
- NodeRef RightSib = P.getRightSibling(Level);
- if (RightSib) {
- Elements += CurSize[Nodes] = RightSib.size();
- Node[Nodes++] = &RightSib.get<NodeT>();
- }
- // Do we need to allocate a new node?
- unsigned NewNode = 0;
- if (Elements + 1 > Nodes * NodeT::Capacity) {
- // Insert NewNode at the penultimate position, or after a single node.
- NewNode = Nodes == 1 ? 1 : Nodes - 1;
- CurSize[Nodes] = CurSize[NewNode];
- Node[Nodes] = Node[NewNode];
- CurSize[NewNode] = 0;
- Node[NewNode] = this->map->template newNode<NodeT>();
- ++Nodes;
- }
- // Compute the new element distribution.
- unsigned NewSize[4];
- IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
- CurSize, NewSize, Offset, true);
- adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
- // Move current location to the leftmost node.
- if (LeftSib)
- P.moveLeft(Level);
- // Elements have been rearranged, now update node sizes and stops.
- bool SplitRoot = false;
- unsigned Pos = 0;
- while (true) {
- KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
- if (NewNode && Pos == NewNode) {
- SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
- Level += SplitRoot;
- } else {
- P.setSize(Level, NewSize[Pos]);
- setNodeStop(Level, Stop);
- }
- if (Pos + 1 == Nodes)
- break;
- P.moveRight(Level);
- ++Pos;
- }
- // Where was I? Find NewOffset.
- while(Pos != NewOffset.first) {
- P.moveLeft(Level);
- --Pos;
- }
- P.offset(Level) = NewOffset.second;
- return SplitRoot;
- }
- //===----------------------------------------------------------------------===//
- //--- IntervalMapOverlaps ----//
- //===----------------------------------------------------------------------===//
- /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
- /// IntervalMaps. The maps may be different, but the KeyT and Traits types
- /// should be the same.
- ///
- /// Typical uses:
- ///
- /// 1. Test for overlap:
- /// bool overlap = IntervalMapOverlaps(a, b).valid();
- ///
- /// 2. Enumerate overlaps:
- /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
- ///
- template <typename MapA, typename MapB>
- class IntervalMapOverlaps {
- using KeyType = typename MapA::KeyType;
- using Traits = typename MapA::KeyTraits;
- typename MapA::const_iterator posA;
- typename MapB::const_iterator posB;
- /// advance - Move posA and posB forward until reaching an overlap, or until
- /// either meets end.
- /// Don't move the iterators if they are already overlapping.
- void advance() {
- if (!valid())
- return;
- if (Traits::stopLess(posA.stop(), posB.start())) {
- // A ends before B begins. Catch up.
- posA.advanceTo(posB.start());
- if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
- return;
- } else if (Traits::stopLess(posB.stop(), posA.start())) {
- // B ends before A begins. Catch up.
- posB.advanceTo(posA.start());
- if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
- return;
- } else
- // Already overlapping.
- return;
- while (true) {
- // Make a.end > b.start.
- posA.advanceTo(posB.start());
- if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
- return;
- // Make b.end > a.start.
- posB.advanceTo(posA.start());
- if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
- return;
- }
- }
- public:
- /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
- IntervalMapOverlaps(const MapA &a, const MapB &b)
- : posA(b.empty() ? a.end() : a.find(b.start())),
- posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
- /// valid - Return true if iterator is at an overlap.
- bool valid() const {
- return posA.valid() && posB.valid();
- }
- /// a - access the left hand side in the overlap.
- const typename MapA::const_iterator &a() const { return posA; }
- /// b - access the right hand side in the overlap.
- const typename MapB::const_iterator &b() const { return posB; }
- /// start - Beginning of the overlapping interval.
- KeyType start() const {
- KeyType ak = a().start();
- KeyType bk = b().start();
- return Traits::startLess(ak, bk) ? bk : ak;
- }
- /// stop - End of the overlapping interval.
- KeyType stop() const {
- KeyType ak = a().stop();
- KeyType bk = b().stop();
- return Traits::startLess(ak, bk) ? ak : bk;
- }
- /// skipA - Move to the next overlap that doesn't involve a().
- void skipA() {
- ++posA;
- advance();
- }
- /// skipB - Move to the next overlap that doesn't involve b().
- void skipB() {
- ++posB;
- advance();
- }
- /// Preincrement - Move to the next overlap.
- IntervalMapOverlaps &operator++() {
- // Bump the iterator that ends first. The other one may have more overlaps.
- if (Traits::startLess(posB.stop(), posA.stop()))
- skipB();
- else
- skipA();
- return *this;
- }
- /// advanceTo - Move to the first overlapping interval with
- /// stopLess(x, stop()).
- void advanceTo(KeyType x) {
- if (!valid())
- return;
- // Make sure advanceTo sees monotonic keys.
- if (Traits::stopLess(posA.stop(), x))
- posA.advanceTo(x);
- if (Traits::stopLess(posB.stop(), x))
- posB.advanceTo(x);
- advance();
- }
- };
- } // end namespace llvm
- #endif // LLVM_ADT_INTERVALMAP_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|