123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the newly proposed standard C++ interfaces for hashing
- // arbitrary data and building hash functions for user-defined types. This
- // interface was originally proposed in N3333[1] and is currently under review
- // for inclusion in a future TR and/or standard.
- //
- // The primary interfaces provide are comprised of one type and three functions:
- //
- // -- 'hash_code' class is an opaque type representing the hash code for some
- // data. It is the intended product of hashing, and can be used to implement
- // hash tables, checksumming, and other common uses of hashes. It is not an
- // integer type (although it can be converted to one) because it is risky
- // to assume much about the internals of a hash_code. In particular, each
- // execution of the program has a high probability of producing a different
- // hash_code for a given input. Thus their values are not stable to save or
- // persist, and should only be used during the execution for the
- // construction of hashing datastructures.
- //
- // -- 'hash_value' is a function designed to be overloaded for each
- // user-defined type which wishes to be used within a hashing context. It
- // should be overloaded within the user-defined type's namespace and found
- // via ADL. Overloads for primitive types are provided by this library.
- //
- // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
- // programmers in easily and intuitively combining a set of data into
- // a single hash_code for their object. They should only logically be used
- // within the implementation of a 'hash_value' routine or similar context.
- //
- // Note that 'hash_combine_range' contains very special logic for hashing
- // a contiguous array of integers or pointers. This logic is *extremely* fast,
- // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
- // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
- // under 32-bytes.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_HASHING_H
- #define LLVM_ADT_HASHING_H
- #include "llvm/Support/DataTypes.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/SwapByteOrder.h"
- #include "llvm/Support/type_traits.h"
- #include <algorithm>
- #include <cassert>
- #include <cstring>
- #include <string>
- #include <tuple>
- #include <utility>
- namespace llvm {
- /// An opaque object representing a hash code.
- ///
- /// This object represents the result of hashing some entity. It is intended to
- /// be used to implement hashtables or other hashing-based data structures.
- /// While it wraps and exposes a numeric value, this value should not be
- /// trusted to be stable or predictable across processes or executions.
- ///
- /// In order to obtain the hash_code for an object 'x':
- /// \code
- /// using llvm::hash_value;
- /// llvm::hash_code code = hash_value(x);
- /// \endcode
- class hash_code {
- size_t value;
- public:
- /// Default construct a hash_code.
- /// Note that this leaves the value uninitialized.
- hash_code() = default;
- /// Form a hash code directly from a numerical value.
- hash_code(size_t value) : value(value) {}
- /// Convert the hash code to its numerical value for use.
- /*explicit*/ operator size_t() const { return value; }
- friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
- return lhs.value == rhs.value;
- }
- friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
- return lhs.value != rhs.value;
- }
- /// Allow a hash_code to be directly run through hash_value.
- friend size_t hash_value(const hash_code &code) { return code.value; }
- };
- /// Compute a hash_code for any integer value.
- ///
- /// Note that this function is intended to compute the same hash_code for
- /// a particular value without regard to the pre-promotion type. This is in
- /// contrast to hash_combine which may produce different hash_codes for
- /// differing argument types even if they would implicit promote to a common
- /// type without changing the value.
- template <typename T>
- std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
- /// Compute a hash_code for a pointer's address.
- ///
- /// N.B.: This hashes the *address*. Not the value and not the type.
- template <typename T> hash_code hash_value(const T *ptr);
- /// Compute a hash_code for a pair of objects.
- template <typename T, typename U>
- hash_code hash_value(const std::pair<T, U> &arg);
- /// Compute a hash_code for a tuple.
- template <typename... Ts>
- hash_code hash_value(const std::tuple<Ts...> &arg);
- /// Compute a hash_code for a standard string.
- template <typename T>
- hash_code hash_value(const std::basic_string<T> &arg);
- /// Override the execution seed with a fixed value.
- ///
- /// This hashing library uses a per-execution seed designed to change on each
- /// run with high probability in order to ensure that the hash codes are not
- /// attackable and to ensure that output which is intended to be stable does
- /// not rely on the particulars of the hash codes produced.
- ///
- /// That said, there are use cases where it is important to be able to
- /// reproduce *exactly* a specific behavior. To that end, we provide a function
- /// which will forcibly set the seed to a fixed value. This must be done at the
- /// start of the program, before any hashes are computed. Also, it cannot be
- /// undone. This makes it thread-hostile and very hard to use outside of
- /// immediately on start of a simple program designed for reproducible
- /// behavior.
- void set_fixed_execution_hash_seed(uint64_t fixed_value);
- // All of the implementation details of actually computing the various hash
- // code values are held within this namespace. These routines are included in
- // the header file mainly to allow inlining and constant propagation.
- namespace hashing {
- namespace detail {
- inline uint64_t fetch64(const char *p) {
- uint64_t result;
- memcpy(&result, p, sizeof(result));
- if (sys::IsBigEndianHost)
- sys::swapByteOrder(result);
- return result;
- }
- inline uint32_t fetch32(const char *p) {
- uint32_t result;
- memcpy(&result, p, sizeof(result));
- if (sys::IsBigEndianHost)
- sys::swapByteOrder(result);
- return result;
- }
- /// Some primes between 2^63 and 2^64 for various uses.
- static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
- static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
- static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
- static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
- /// Bitwise right rotate.
- /// Normally this will compile to a single instruction, especially if the
- /// shift is a manifest constant.
- inline uint64_t rotate(uint64_t val, size_t shift) {
- // Avoid shifting by 64: doing so yields an undefined result.
- return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
- }
- inline uint64_t shift_mix(uint64_t val) {
- return val ^ (val >> 47);
- }
- inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
- // Murmur-inspired hashing.
- const uint64_t kMul = 0x9ddfea08eb382d69ULL;
- uint64_t a = (low ^ high) * kMul;
- a ^= (a >> 47);
- uint64_t b = (high ^ a) * kMul;
- b ^= (b >> 47);
- b *= kMul;
- return b;
- }
- inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
- uint8_t a = s[0];
- uint8_t b = s[len >> 1];
- uint8_t c = s[len - 1];
- uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
- uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
- return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
- }
- inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
- uint64_t a = fetch32(s);
- return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
- }
- inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
- uint64_t a = fetch64(s);
- uint64_t b = fetch64(s + len - 8);
- return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
- }
- inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
- uint64_t a = fetch64(s) * k1;
- uint64_t b = fetch64(s + 8);
- uint64_t c = fetch64(s + len - 8) * k2;
- uint64_t d = fetch64(s + len - 16) * k0;
- return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
- a + rotate(b ^ k3, 20) - c + len + seed);
- }
- inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
- uint64_t z = fetch64(s + 24);
- uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
- uint64_t b = rotate(a + z, 52);
- uint64_t c = rotate(a, 37);
- a += fetch64(s + 8);
- c += rotate(a, 7);
- a += fetch64(s + 16);
- uint64_t vf = a + z;
- uint64_t vs = b + rotate(a, 31) + c;
- a = fetch64(s + 16) + fetch64(s + len - 32);
- z = fetch64(s + len - 8);
- b = rotate(a + z, 52);
- c = rotate(a, 37);
- a += fetch64(s + len - 24);
- c += rotate(a, 7);
- a += fetch64(s + len - 16);
- uint64_t wf = a + z;
- uint64_t ws = b + rotate(a, 31) + c;
- uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
- return shift_mix((seed ^ (r * k0)) + vs) * k2;
- }
- inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
- if (length >= 4 && length <= 8)
- return hash_4to8_bytes(s, length, seed);
- if (length > 8 && length <= 16)
- return hash_9to16_bytes(s, length, seed);
- if (length > 16 && length <= 32)
- return hash_17to32_bytes(s, length, seed);
- if (length > 32)
- return hash_33to64_bytes(s, length, seed);
- if (length != 0)
- return hash_1to3_bytes(s, length, seed);
- return k2 ^ seed;
- }
- /// The intermediate state used during hashing.
- /// Currently, the algorithm for computing hash codes is based on CityHash and
- /// keeps 56 bytes of arbitrary state.
- struct hash_state {
- uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
- /// Create a new hash_state structure and initialize it based on the
- /// seed and the first 64-byte chunk.
- /// This effectively performs the initial mix.
- static hash_state create(const char *s, uint64_t seed) {
- hash_state state = {
- 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
- seed * k1, shift_mix(seed), 0 };
- state.h6 = hash_16_bytes(state.h4, state.h5);
- state.mix(s);
- return state;
- }
- /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
- /// and 'b', including whatever is already in 'a' and 'b'.
- static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
- a += fetch64(s);
- uint64_t c = fetch64(s + 24);
- b = rotate(b + a + c, 21);
- uint64_t d = a;
- a += fetch64(s + 8) + fetch64(s + 16);
- b += rotate(a, 44) + d;
- a += c;
- }
- /// Mix in a 64-byte buffer of data.
- /// We mix all 64 bytes even when the chunk length is smaller, but we
- /// record the actual length.
- void mix(const char *s) {
- h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
- h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
- h0 ^= h6;
- h1 += h3 + fetch64(s + 40);
- h2 = rotate(h2 + h5, 33) * k1;
- h3 = h4 * k1;
- h4 = h0 + h5;
- mix_32_bytes(s, h3, h4);
- h5 = h2 + h6;
- h6 = h1 + fetch64(s + 16);
- mix_32_bytes(s + 32, h5, h6);
- std::swap(h2, h0);
- }
- /// Compute the final 64-bit hash code value based on the current
- /// state and the length of bytes hashed.
- uint64_t finalize(size_t length) {
- return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
- hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
- }
- };
- /// A global, fixed seed-override variable.
- ///
- /// This variable can be set using the \see llvm::set_fixed_execution_seed
- /// function. See that function for details. Do not, under any circumstances,
- /// set or read this variable.
- extern uint64_t fixed_seed_override;
- inline uint64_t get_execution_seed() {
- // FIXME: This needs to be a per-execution seed. This is just a placeholder
- // implementation. Switching to a per-execution seed is likely to flush out
- // instability bugs and so will happen as its own commit.
- //
- // However, if there is a fixed seed override set the first time this is
- // called, return that instead of the per-execution seed.
- const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
- static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
- return seed;
- }
- /// Trait to indicate whether a type's bits can be hashed directly.
- ///
- /// A type trait which is true if we want to combine values for hashing by
- /// reading the underlying data. It is false if values of this type must
- /// first be passed to hash_value, and the resulting hash_codes combined.
- //
- // FIXME: We want to replace is_integral_or_enum and is_pointer here with
- // a predicate which asserts that comparing the underlying storage of two
- // values of the type for equality is equivalent to comparing the two values
- // for equality. For all the platforms we care about, this holds for integers
- // and pointers, but there are platforms where it doesn't and we would like to
- // support user-defined types which happen to satisfy this property.
- template <typename T> struct is_hashable_data
- : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
- std::is_pointer<T>::value) &&
- 64 % sizeof(T) == 0)> {};
- // Special case std::pair to detect when both types are viable and when there
- // is no alignment-derived padding in the pair. This is a bit of a lie because
- // std::pair isn't truly POD, but it's close enough in all reasonable
- // implementations for our use case of hashing the underlying data.
- template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
- : std::integral_constant<bool, (is_hashable_data<T>::value &&
- is_hashable_data<U>::value &&
- (sizeof(T) + sizeof(U)) ==
- sizeof(std::pair<T, U>))> {};
- /// Helper to get the hashable data representation for a type.
- /// This variant is enabled when the type itself can be used.
- template <typename T>
- std::enable_if_t<is_hashable_data<T>::value, T>
- get_hashable_data(const T &value) {
- return value;
- }
- /// Helper to get the hashable data representation for a type.
- /// This variant is enabled when we must first call hash_value and use the
- /// result as our data.
- template <typename T>
- std::enable_if_t<!is_hashable_data<T>::value, size_t>
- get_hashable_data(const T &value) {
- using ::llvm::hash_value;
- return hash_value(value);
- }
- /// Helper to store data from a value into a buffer and advance the
- /// pointer into that buffer.
- ///
- /// This routine first checks whether there is enough space in the provided
- /// buffer, and if not immediately returns false. If there is space, it
- /// copies the underlying bytes of value into the buffer, advances the
- /// buffer_ptr past the copied bytes, and returns true.
- template <typename T>
- bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
- size_t offset = 0) {
- size_t store_size = sizeof(value) - offset;
- if (buffer_ptr + store_size > buffer_end)
- return false;
- const char *value_data = reinterpret_cast<const char *>(&value);
- memcpy(buffer_ptr, value_data + offset, store_size);
- buffer_ptr += store_size;
- return true;
- }
- /// Implement the combining of integral values into a hash_code.
- ///
- /// This overload is selected when the value type of the iterator is
- /// integral. Rather than computing a hash_code for each object and then
- /// combining them, this (as an optimization) directly combines the integers.
- template <typename InputIteratorT>
- hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
- const uint64_t seed = get_execution_seed();
- char buffer[64], *buffer_ptr = buffer;
- char *const buffer_end = std::end(buffer);
- while (first != last && store_and_advance(buffer_ptr, buffer_end,
- get_hashable_data(*first)))
- ++first;
- if (first == last)
- return hash_short(buffer, buffer_ptr - buffer, seed);
- assert(buffer_ptr == buffer_end);
- hash_state state = state.create(buffer, seed);
- size_t length = 64;
- while (first != last) {
- // Fill up the buffer. We don't clear it, which re-mixes the last round
- // when only a partial 64-byte chunk is left.
- buffer_ptr = buffer;
- while (first != last && store_and_advance(buffer_ptr, buffer_end,
- get_hashable_data(*first)))
- ++first;
- // Rotate the buffer if we did a partial fill in order to simulate doing
- // a mix of the last 64-bytes. That is how the algorithm works when we
- // have a contiguous byte sequence, and we want to emulate that here.
- std::rotate(buffer, buffer_ptr, buffer_end);
- // Mix this chunk into the current state.
- state.mix(buffer);
- length += buffer_ptr - buffer;
- };
- return state.finalize(length);
- }
- /// Implement the combining of integral values into a hash_code.
- ///
- /// This overload is selected when the value type of the iterator is integral
- /// and when the input iterator is actually a pointer. Rather than computing
- /// a hash_code for each object and then combining them, this (as an
- /// optimization) directly combines the integers. Also, because the integers
- /// are stored in contiguous memory, this routine avoids copying each value
- /// and directly reads from the underlying memory.
- template <typename ValueT>
- std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
- hash_combine_range_impl(ValueT *first, ValueT *last) {
- const uint64_t seed = get_execution_seed();
- const char *s_begin = reinterpret_cast<const char *>(first);
- const char *s_end = reinterpret_cast<const char *>(last);
- const size_t length = std::distance(s_begin, s_end);
- if (length <= 64)
- return hash_short(s_begin, length, seed);
- const char *s_aligned_end = s_begin + (length & ~63);
- hash_state state = state.create(s_begin, seed);
- s_begin += 64;
- while (s_begin != s_aligned_end) {
- state.mix(s_begin);
- s_begin += 64;
- }
- if (length & 63)
- state.mix(s_end - 64);
- return state.finalize(length);
- }
- } // namespace detail
- } // namespace hashing
- /// Compute a hash_code for a sequence of values.
- ///
- /// This hashes a sequence of values. It produces the same hash_code as
- /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
- /// and is significantly faster given pointers and types which can be hashed as
- /// a sequence of bytes.
- template <typename InputIteratorT>
- hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
- return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
- }
- // Implementation details for hash_combine.
- namespace hashing {
- namespace detail {
- /// Helper class to manage the recursive combining of hash_combine
- /// arguments.
- ///
- /// This class exists to manage the state and various calls involved in the
- /// recursive combining of arguments used in hash_combine. It is particularly
- /// useful at minimizing the code in the recursive calls to ease the pain
- /// caused by a lack of variadic functions.
- struct hash_combine_recursive_helper {
- char buffer[64] = {};
- hash_state state;
- const uint64_t seed;
- public:
- /// Construct a recursive hash combining helper.
- ///
- /// This sets up the state for a recursive hash combine, including getting
- /// the seed and buffer setup.
- hash_combine_recursive_helper()
- : seed(get_execution_seed()) {}
- /// Combine one chunk of data into the current in-flight hash.
- ///
- /// This merges one chunk of data into the hash. First it tries to buffer
- /// the data. If the buffer is full, it hashes the buffer into its
- /// hash_state, empties it, and then merges the new chunk in. This also
- /// handles cases where the data straddles the end of the buffer.
- template <typename T>
- char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
- if (!store_and_advance(buffer_ptr, buffer_end, data)) {
- // Check for skew which prevents the buffer from being packed, and do
- // a partial store into the buffer to fill it. This is only a concern
- // with the variadic combine because that formation can have varying
- // argument types.
- size_t partial_store_size = buffer_end - buffer_ptr;
- memcpy(buffer_ptr, &data, partial_store_size);
- // If the store fails, our buffer is full and ready to hash. We have to
- // either initialize the hash state (on the first full buffer) or mix
- // this buffer into the existing hash state. Length tracks the *hashed*
- // length, not the buffered length.
- if (length == 0) {
- state = state.create(buffer, seed);
- length = 64;
- } else {
- // Mix this chunk into the current state and bump length up by 64.
- state.mix(buffer);
- length += 64;
- }
- // Reset the buffer_ptr to the head of the buffer for the next chunk of
- // data.
- buffer_ptr = buffer;
- // Try again to store into the buffer -- this cannot fail as we only
- // store types smaller than the buffer.
- if (!store_and_advance(buffer_ptr, buffer_end, data,
- partial_store_size))
- llvm_unreachable("buffer smaller than stored type");
- }
- return buffer_ptr;
- }
- /// Recursive, variadic combining method.
- ///
- /// This function recurses through each argument, combining that argument
- /// into a single hash.
- template <typename T, typename ...Ts>
- hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
- const T &arg, const Ts &...args) {
- buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
- // Recurse to the next argument.
- return combine(length, buffer_ptr, buffer_end, args...);
- }
- /// Base case for recursive, variadic combining.
- ///
- /// The base case when combining arguments recursively is reached when all
- /// arguments have been handled. It flushes the remaining buffer and
- /// constructs a hash_code.
- hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
- // Check whether the entire set of values fit in the buffer. If so, we'll
- // use the optimized short hashing routine and skip state entirely.
- if (length == 0)
- return hash_short(buffer, buffer_ptr - buffer, seed);
- // Mix the final buffer, rotating it if we did a partial fill in order to
- // simulate doing a mix of the last 64-bytes. That is how the algorithm
- // works when we have a contiguous byte sequence, and we want to emulate
- // that here.
- std::rotate(buffer, buffer_ptr, buffer_end);
- // Mix this chunk into the current state.
- state.mix(buffer);
- length += buffer_ptr - buffer;
- return state.finalize(length);
- }
- };
- } // namespace detail
- } // namespace hashing
- /// Combine values into a single hash_code.
- ///
- /// This routine accepts a varying number of arguments of any type. It will
- /// attempt to combine them into a single hash_code. For user-defined types it
- /// attempts to call a \see hash_value overload (via ADL) for the type. For
- /// integer and pointer types it directly combines their data into the
- /// resulting hash_code.
- ///
- /// The result is suitable for returning from a user's hash_value
- /// *implementation* for their user-defined type. Consumers of a type should
- /// *not* call this routine, they should instead call 'hash_value'.
- template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
- // Recursively hash each argument using a helper class.
- ::llvm::hashing::detail::hash_combine_recursive_helper helper;
- return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
- }
- // Implementation details for implementations of hash_value overloads provided
- // here.
- namespace hashing {
- namespace detail {
- /// Helper to hash the value of a single integer.
- ///
- /// Overloads for smaller integer types are not provided to ensure consistent
- /// behavior in the presence of integral promotions. Essentially,
- /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
- inline hash_code hash_integer_value(uint64_t value) {
- // Similar to hash_4to8_bytes but using a seed instead of length.
- const uint64_t seed = get_execution_seed();
- const char *s = reinterpret_cast<const char *>(&value);
- const uint64_t a = fetch32(s);
- return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
- }
- } // namespace detail
- } // namespace hashing
- // Declared and documented above, but defined here so that any of the hashing
- // infrastructure is available.
- template <typename T>
- std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
- return ::llvm::hashing::detail::hash_integer_value(
- static_cast<uint64_t>(value));
- }
- // Declared and documented above, but defined here so that any of the hashing
- // infrastructure is available.
- template <typename T> hash_code hash_value(const T *ptr) {
- return ::llvm::hashing::detail::hash_integer_value(
- reinterpret_cast<uintptr_t>(ptr));
- }
- // Declared and documented above, but defined here so that any of the hashing
- // infrastructure is available.
- template <typename T, typename U>
- hash_code hash_value(const std::pair<T, U> &arg) {
- return hash_combine(arg.first, arg.second);
- }
- // Implementation details for the hash_value overload for std::tuple<...>(...).
- namespace hashing {
- namespace detail {
- template <typename... Ts, std::size_t... Indices>
- hash_code hash_value_tuple_helper(const std::tuple<Ts...> &arg,
- std::index_sequence<Indices...> indices) {
- return hash_combine(std::get<Indices>(arg)...);
- }
- } // namespace detail
- } // namespace hashing
- template <typename... Ts>
- hash_code hash_value(const std::tuple<Ts...> &arg) {
- // TODO: Use std::apply when LLVM starts using C++17.
- return ::llvm::hashing::detail::hash_value_tuple_helper(
- arg, typename std::index_sequence_for<Ts...>());
- }
- // Declared and documented above, but defined here so that any of the hashing
- // infrastructure is available.
- template <typename T>
- hash_code hash_value(const std::basic_string<T> &arg) {
- return hash_combine_range(arg.begin(), arg.end());
- }
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|