123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the BitVector class.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_BITVECTOR_H
- #define LLVM_ADT_BITVECTOR_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cassert>
- #include <climits>
- #include <cstdint>
- #include <cstdlib>
- #include <cstring>
- #include <utility>
- namespace llvm {
- /// ForwardIterator for the bits that are set.
- /// Iterators get invalidated when resize / reserve is called.
- template <typename BitVectorT> class const_set_bits_iterator_impl {
- const BitVectorT &Parent;
- int Current = 0;
- void advance() {
- assert(Current != -1 && "Trying to advance past end.");
- Current = Parent.find_next(Current);
- }
- public:
- const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
- : Parent(Parent), Current(Current) {}
- explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
- : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
- const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
- const_set_bits_iterator_impl operator++(int) {
- auto Prev = *this;
- advance();
- return Prev;
- }
- const_set_bits_iterator_impl &operator++() {
- advance();
- return *this;
- }
- unsigned operator*() const { return Current; }
- bool operator==(const const_set_bits_iterator_impl &Other) const {
- assert(&Parent == &Other.Parent &&
- "Comparing iterators from different BitVectors");
- return Current == Other.Current;
- }
- bool operator!=(const const_set_bits_iterator_impl &Other) const {
- assert(&Parent == &Other.Parent &&
- "Comparing iterators from different BitVectors");
- return Current != Other.Current;
- }
- };
- class BitVector {
- typedef uintptr_t BitWord;
- enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
- static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
- "Unsupported word size");
- MutableArrayRef<BitWord> Bits; // Actual bits.
- unsigned Size; // Size of bitvector in bits.
- public:
- typedef unsigned size_type;
- // Encapsulation of a single bit.
- class reference {
- friend class BitVector;
- BitWord *WordRef;
- unsigned BitPos;
- public:
- reference(BitVector &b, unsigned Idx) {
- WordRef = &b.Bits[Idx / BITWORD_SIZE];
- BitPos = Idx % BITWORD_SIZE;
- }
- reference() = delete;
- reference(const reference&) = default;
- reference &operator=(reference t) {
- *this = bool(t);
- return *this;
- }
- reference& operator=(bool t) {
- if (t)
- *WordRef |= BitWord(1) << BitPos;
- else
- *WordRef &= ~(BitWord(1) << BitPos);
- return *this;
- }
- operator bool() const {
- return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
- }
- };
- typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
- typedef const_set_bits_iterator set_iterator;
- const_set_bits_iterator set_bits_begin() const {
- return const_set_bits_iterator(*this);
- }
- const_set_bits_iterator set_bits_end() const {
- return const_set_bits_iterator(*this, -1);
- }
- iterator_range<const_set_bits_iterator> set_bits() const {
- return make_range(set_bits_begin(), set_bits_end());
- }
- /// BitVector default ctor - Creates an empty bitvector.
- BitVector() : Size(0) {}
- /// BitVector ctor - Creates a bitvector of specified number of bits. All
- /// bits are initialized to the specified value.
- explicit BitVector(unsigned s, bool t = false) : Size(s) {
- size_t Capacity = NumBitWords(s);
- Bits = allocate(Capacity);
- init_words(Bits, t);
- if (t)
- clear_unused_bits();
- }
- /// BitVector copy ctor.
- BitVector(const BitVector &RHS) : Size(RHS.size()) {
- if (Size == 0) {
- Bits = MutableArrayRef<BitWord>();
- return;
- }
- size_t Capacity = NumBitWords(RHS.size());
- Bits = allocate(Capacity);
- std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
- }
- BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
- RHS.Bits = MutableArrayRef<BitWord>();
- RHS.Size = 0;
- }
- ~BitVector() { std::free(Bits.data()); }
- /// empty - Tests whether there are no bits in this bitvector.
- bool empty() const { return Size == 0; }
- /// size - Returns the number of bits in this bitvector.
- size_type size() const { return Size; }
- /// count - Returns the number of bits which are set.
- size_type count() const {
- unsigned NumBits = 0;
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- NumBits += countPopulation(Bits[i]);
- return NumBits;
- }
- /// any - Returns true if any bit is set.
- bool any() const {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- if (Bits[i] != 0)
- return true;
- return false;
- }
- /// all - Returns true if all bits are set.
- bool all() const {
- for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
- if (Bits[i] != ~BitWord(0))
- return false;
- // If bits remain check that they are ones. The unused bits are always zero.
- if (unsigned Remainder = Size % BITWORD_SIZE)
- return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
- return true;
- }
- /// none - Returns true if none of the bits are set.
- bool none() const {
- return !any();
- }
- /// find_first_in - Returns the index of the first set / unset bit,
- /// depending on \p Set, in the range [Begin, End).
- /// Returns -1 if all bits in the range are unset / set.
- int find_first_in(unsigned Begin, unsigned End, bool Set = true) const {
- assert(Begin <= End && End <= Size);
- if (Begin == End)
- return -1;
- unsigned FirstWord = Begin / BITWORD_SIZE;
- unsigned LastWord = (End - 1) / BITWORD_SIZE;
- // Check subsequent words.
- // The code below is based on search for the first _set_ bit. If
- // we're searching for the first _unset_, we just take the
- // complement of each word before we use it and apply
- // the same method.
- for (unsigned i = FirstWord; i <= LastWord; ++i) {
- BitWord Copy = Bits[i];
- if (!Set)
- Copy = ~Copy;
- if (i == FirstWord) {
- unsigned FirstBit = Begin % BITWORD_SIZE;
- Copy &= maskTrailingZeros<BitWord>(FirstBit);
- }
- if (i == LastWord) {
- unsigned LastBit = (End - 1) % BITWORD_SIZE;
- Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
- }
- if (Copy != 0)
- return i * BITWORD_SIZE + countTrailingZeros(Copy);
- }
- return -1;
- }
- /// find_last_in - Returns the index of the last set bit in the range
- /// [Begin, End). Returns -1 if all bits in the range are unset.
- int find_last_in(unsigned Begin, unsigned End) const {
- assert(Begin <= End && End <= Size);
- if (Begin == End)
- return -1;
- unsigned LastWord = (End - 1) / BITWORD_SIZE;
- unsigned FirstWord = Begin / BITWORD_SIZE;
- for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
- unsigned CurrentWord = i - 1;
- BitWord Copy = Bits[CurrentWord];
- if (CurrentWord == LastWord) {
- unsigned LastBit = (End - 1) % BITWORD_SIZE;
- Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
- }
- if (CurrentWord == FirstWord) {
- unsigned FirstBit = Begin % BITWORD_SIZE;
- Copy &= maskTrailingZeros<BitWord>(FirstBit);
- }
- if (Copy != 0)
- return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
- }
- return -1;
- }
- /// find_first_unset_in - Returns the index of the first unset bit in the
- /// range [Begin, End). Returns -1 if all bits in the range are set.
- int find_first_unset_in(unsigned Begin, unsigned End) const {
- return find_first_in(Begin, End, /* Set = */ false);
- }
- /// find_last_unset_in - Returns the index of the last unset bit in the
- /// range [Begin, End). Returns -1 if all bits in the range are set.
- int find_last_unset_in(unsigned Begin, unsigned End) const {
- assert(Begin <= End && End <= Size);
- if (Begin == End)
- return -1;
- unsigned LastWord = (End - 1) / BITWORD_SIZE;
- unsigned FirstWord = Begin / BITWORD_SIZE;
- for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
- unsigned CurrentWord = i - 1;
- BitWord Copy = Bits[CurrentWord];
- if (CurrentWord == LastWord) {
- unsigned LastBit = (End - 1) % BITWORD_SIZE;
- Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
- }
- if (CurrentWord == FirstWord) {
- unsigned FirstBit = Begin % BITWORD_SIZE;
- Copy |= maskTrailingOnes<BitWord>(FirstBit);
- }
- if (Copy != ~BitWord(0)) {
- unsigned Result =
- (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
- return Result < Size ? Result : -1;
- }
- }
- return -1;
- }
- /// find_first - Returns the index of the first set bit, -1 if none
- /// of the bits are set.
- int find_first() const { return find_first_in(0, Size); }
- /// find_last - Returns the index of the last set bit, -1 if none of the bits
- /// are set.
- int find_last() const { return find_last_in(0, Size); }
- /// find_next - Returns the index of the next set bit following the
- /// "Prev" bit. Returns -1 if the next set bit is not found.
- int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
- /// find_prev - Returns the index of the first set bit that precedes the
- /// the bit at \p PriorTo. Returns -1 if all previous bits are unset.
- int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
- /// find_first_unset - Returns the index of the first unset bit, -1 if all
- /// of the bits are set.
- int find_first_unset() const { return find_first_unset_in(0, Size); }
- /// find_next_unset - Returns the index of the next unset bit following the
- /// "Prev" bit. Returns -1 if all remaining bits are set.
- int find_next_unset(unsigned Prev) const {
- return find_first_unset_in(Prev + 1, Size);
- }
- /// find_last_unset - Returns the index of the last unset bit, -1 if all of
- /// the bits are set.
- int find_last_unset() const { return find_last_unset_in(0, Size); }
- /// find_prev_unset - Returns the index of the first unset bit that precedes
- /// the bit at \p PriorTo. Returns -1 if all previous bits are set.
- int find_prev_unset(unsigned PriorTo) {
- return find_last_unset_in(0, PriorTo);
- }
- /// clear - Removes all bits from the bitvector. Does not change capacity.
- void clear() {
- Size = 0;
- }
- /// resize - Grow or shrink the bitvector.
- void resize(unsigned N, bool t = false) {
- if (N > getBitCapacity()) {
- unsigned OldCapacity = Bits.size();
- grow(N);
- init_words(Bits.drop_front(OldCapacity), t);
- }
- // Set any old unused bits that are now included in the BitVector. This
- // may set bits that are not included in the new vector, but we will clear
- // them back out below.
- if (N > Size)
- set_unused_bits(t);
- // Update the size, and clear out any bits that are now unused
- unsigned OldSize = Size;
- Size = N;
- if (t || N < OldSize)
- clear_unused_bits();
- }
- void reserve(unsigned N) {
- if (N > getBitCapacity())
- grow(N);
- }
- // Set, reset, flip
- BitVector &set() {
- init_words(Bits, true);
- clear_unused_bits();
- return *this;
- }
- BitVector &set(unsigned Idx) {
- assert(Bits.data() && "Bits never allocated");
- Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
- /// set - Efficiently set a range of bits in [I, E)
- BitVector &set(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to set backwards range!");
- assert(E <= size() && "Attempted to set out-of-bounds range!");
- if (I == E) return *this;
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
- BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] |= Mask;
- return *this;
- }
- BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] |= PrefixMask;
- I = alignTo(I, BITWORD_SIZE);
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = ~BitWord(0);
- BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] |= PostfixMask;
- return *this;
- }
- BitVector &reset() {
- init_words(Bits, false);
- return *this;
- }
- BitVector &reset(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
- return *this;
- }
- /// reset - Efficiently reset a range of bits in [I, E)
- BitVector &reset(unsigned I, unsigned E) {
- assert(I <= E && "Attempted to reset backwards range!");
- assert(E <= size() && "Attempted to reset out-of-bounds range!");
- if (I == E) return *this;
- if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
- BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
- BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
- BitWord Mask = EMask - IMask;
- Bits[I / BITWORD_SIZE] &= ~Mask;
- return *this;
- }
- BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
- Bits[I / BITWORD_SIZE] &= ~PrefixMask;
- I = alignTo(I, BITWORD_SIZE);
- for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
- Bits[I / BITWORD_SIZE] = BitWord(0);
- BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
- if (I < E)
- Bits[I / BITWORD_SIZE] &= ~PostfixMask;
- return *this;
- }
- BitVector &flip() {
- for (unsigned i = 0; i < NumBitWords(size()); ++i)
- Bits[i] = ~Bits[i];
- clear_unused_bits();
- return *this;
- }
- BitVector &flip(unsigned Idx) {
- Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
- return *this;
- }
- // Indexing.
- reference operator[](unsigned Idx) {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- return reference(*this, Idx);
- }
- bool operator[](unsigned Idx) const {
- assert (Idx < Size && "Out-of-bounds Bit access.");
- BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
- return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
- }
- bool test(unsigned Idx) const {
- return (*this)[Idx];
- }
- // Push single bit to end of vector.
- void push_back(bool Val) {
- unsigned OldSize = Size;
- unsigned NewSize = Size + 1;
- // Resize, which will insert zeros.
- // If we already fit then the unused bits will be already zero.
- if (NewSize > getBitCapacity())
- resize(NewSize, false);
- else
- Size = NewSize;
- // If true, set single bit.
- if (Val)
- set(OldSize);
- }
- /// Test if any common bits are set.
- bool anyCommon(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
- if (Bits[i] & RHS.Bits[i])
- return true;
- return false;
- }
- // Comparison operators.
- bool operator==(const BitVector &RHS) const {
- if (size() != RHS.size())
- return false;
- unsigned NumWords = NumBitWords(size());
- return Bits.take_front(NumWords) == RHS.Bits.take_front(NumWords);
- }
- bool operator!=(const BitVector &RHS) const {
- return !(*this == RHS);
- }
- /// Intersection, union, disjoint union.
- BitVector &operator&=(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= RHS.Bits[i];
- // Any bits that are just in this bitvector become zero, because they aren't
- // in the RHS bit vector. Any words only in RHS are ignored because they
- // are already zero in the LHS.
- for (; i != ThisWords; ++i)
- Bits[i] = 0;
- return *this;
- }
- /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
- BitVector &reset(const BitVector &RHS) {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- Bits[i] &= ~RHS.Bits[i];
- return *this;
- }
- /// test - Check if (This - RHS) is zero.
- /// This is the same as reset(RHS) and any().
- bool test(const BitVector &RHS) const {
- unsigned ThisWords = NumBitWords(size());
- unsigned RHSWords = NumBitWords(RHS.size());
- unsigned i;
- for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
- if ((Bits[i] & ~RHS.Bits[i]) != 0)
- return true;
- for (; i != ThisWords ; ++i)
- if (Bits[i] != 0)
- return true;
- return false;
- }
- BitVector &operator|=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] |= RHS.Bits[i];
- return *this;
- }
- BitVector &operator^=(const BitVector &RHS) {
- if (size() < RHS.size())
- resize(RHS.size());
- for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
- Bits[i] ^= RHS.Bits[i];
- return *this;
- }
- BitVector &operator>>=(unsigned N) {
- assert(N <= Size);
- if (LLVM_UNLIKELY(empty() || N == 0))
- return *this;
- unsigned NumWords = NumBitWords(Size);
- assert(NumWords >= 1);
- wordShr(N / BITWORD_SIZE);
- unsigned BitDistance = N % BITWORD_SIZE;
- if (BitDistance == 0)
- return *this;
- // When the shift size is not a multiple of the word size, then we have
- // a tricky situation where each word in succession needs to extract some
- // of the bits from the next word and or them into this word while
- // shifting this word to make room for the new bits. This has to be done
- // for every word in the array.
- // Since we're shifting each word right, some bits will fall off the end
- // of each word to the right, and empty space will be created on the left.
- // The final word in the array will lose bits permanently, so starting at
- // the beginning, work forwards shifting each word to the right, and
- // OR'ing in the bits from the end of the next word to the beginning of
- // the current word.
- // Example:
- // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
- // by 4 bits.
- // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD
- // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD
- // Step 3: Word[1] >>= 4 ; 0x0EEFF001
- // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001
- // Step 5: Word[2] >>= 4 ; 0x02334455
- // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
- const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
- const unsigned LSH = BITWORD_SIZE - BitDistance;
- for (unsigned I = 0; I < NumWords - 1; ++I) {
- Bits[I] >>= BitDistance;
- Bits[I] |= (Bits[I + 1] & Mask) << LSH;
- }
- Bits[NumWords - 1] >>= BitDistance;
- return *this;
- }
- BitVector &operator<<=(unsigned N) {
- assert(N <= Size);
- if (LLVM_UNLIKELY(empty() || N == 0))
- return *this;
- unsigned NumWords = NumBitWords(Size);
- assert(NumWords >= 1);
- wordShl(N / BITWORD_SIZE);
- unsigned BitDistance = N % BITWORD_SIZE;
- if (BitDistance == 0)
- return *this;
- // When the shift size is not a multiple of the word size, then we have
- // a tricky situation where each word in succession needs to extract some
- // of the bits from the previous word and or them into this word while
- // shifting this word to make room for the new bits. This has to be done
- // for every word in the array. This is similar to the algorithm outlined
- // in operator>>=, but backwards.
- // Since we're shifting each word left, some bits will fall off the end
- // of each word to the left, and empty space will be created on the right.
- // The first word in the array will lose bits permanently, so starting at
- // the end, work backwards shifting each word to the left, and OR'ing
- // in the bits from the end of the next word to the beginning of the
- // current word.
- // Example:
- // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
- // by 4 bits.
- // Step 1: Word[2] <<= 4 ; 0x23344550
- // Step 2: Word[2] |= 0x0000000E ; 0x2334455E
- // Step 3: Word[1] <<= 4 ; 0xEFF00110
- // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A
- // Step 5: Word[0] <<= 4 ; 0xABBCCDD0
- // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
- const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
- const unsigned RSH = BITWORD_SIZE - BitDistance;
- for (int I = NumWords - 1; I > 0; --I) {
- Bits[I] <<= BitDistance;
- Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
- }
- Bits[0] <<= BitDistance;
- clear_unused_bits();
- return *this;
- }
- // Assignment operator.
- const BitVector &operator=(const BitVector &RHS) {
- if (this == &RHS) return *this;
- Size = RHS.size();
- // Handle tombstone when the BitVector is a key of a DenseHash.
- if (RHS.isInvalid()) {
- std::free(Bits.data());
- Bits = None;
- return *this;
- }
- unsigned RHSWords = NumBitWords(Size);
- if (Size <= getBitCapacity()) {
- if (Size)
- std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
- clear_unused_bits();
- return *this;
- }
- // Grow the bitvector to have enough elements.
- unsigned NewCapacity = RHSWords;
- assert(NewCapacity > 0 && "negative capacity?");
- auto NewBits = allocate(NewCapacity);
- std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));
- // Destroy the old bits.
- std::free(Bits.data());
- Bits = NewBits;
- return *this;
- }
- const BitVector &operator=(BitVector &&RHS) {
- if (this == &RHS) return *this;
- std::free(Bits.data());
- Bits = RHS.Bits;
- Size = RHS.Size;
- RHS.Bits = MutableArrayRef<BitWord>();
- RHS.Size = 0;
- return *this;
- }
- void swap(BitVector &RHS) {
- std::swap(Bits, RHS.Bits);
- std::swap(Size, RHS.Size);
- }
- void invalid() {
- assert(!Size && Bits.empty());
- Size = (unsigned)-1;
- }
- bool isInvalid() const { return Size == (unsigned)-1; }
- ArrayRef<BitWord> getData() const {
- return Bits.take_front(NumBitWords(size()));
- }
- //===--------------------------------------------------------------------===//
- // Portable bit mask operations.
- //===--------------------------------------------------------------------===//
- //
- // These methods all operate on arrays of uint32_t, each holding 32 bits. The
- // fixed word size makes it easier to work with literal bit vector constants
- // in portable code.
- //
- // The LSB in each word is the lowest numbered bit. The size of a portable
- // bit mask is always a whole multiple of 32 bits. If no bit mask size is
- // given, the bit mask is assumed to cover the entire BitVector.
- /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
- /// This computes "*this |= Mask".
- void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, false>(Mask, MaskWords);
- }
- /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
- /// Don't resize. This computes "*this &= ~Mask".
- void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, false>(Mask, MaskWords);
- }
- /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this |= ~Mask".
- void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<true, true>(Mask, MaskWords);
- }
- /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
- /// Don't resize. This computes "*this &= Mask".
- void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
- applyMask<false, true>(Mask, MaskWords);
- }
- private:
- /// Perform a logical left shift of \p Count words by moving everything
- /// \p Count words to the right in memory.
- ///
- /// While confusing, words are stored from least significant at Bits[0] to
- /// most significant at Bits[NumWords-1]. A logical shift left, however,
- /// moves the current least significant bit to a higher logical index, and
- /// fills the previous least significant bits with 0. Thus, we actually
- /// need to move the bytes of the memory to the right, not to the left.
- /// Example:
- /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
- /// represents a BitVector where 0xBBBBAAAA contain the least significant
- /// bits. So if we want to shift the BitVector left by 2 words, we need to
- /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
- /// memmove which moves right, not left.
- void wordShl(uint32_t Count) {
- if (Count == 0)
- return;
- uint32_t NumWords = NumBitWords(Size);
- auto Src = Bits.take_front(NumWords).drop_back(Count);
- auto Dest = Bits.take_front(NumWords).drop_front(Count);
- // Since we always move Word-sized chunks of data with src and dest both
- // aligned to a word-boundary, we don't need to worry about endianness
- // here.
- std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
- std::memset(Bits.data(), 0, Count * sizeof(BitWord));
- clear_unused_bits();
- }
- /// Perform a logical right shift of \p Count words by moving those
- /// words to the left in memory. See wordShl for more information.
- ///
- void wordShr(uint32_t Count) {
- if (Count == 0)
- return;
- uint32_t NumWords = NumBitWords(Size);
- auto Src = Bits.take_front(NumWords).drop_front(Count);
- auto Dest = Bits.take_front(NumWords).drop_back(Count);
- assert(Dest.size() == Src.size());
- std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
- std::memset(Dest.end(), 0, Count * sizeof(BitWord));
- }
- MutableArrayRef<BitWord> allocate(size_t NumWords) {
- BitWord *RawBits = static_cast<BitWord *>(
- safe_malloc(NumWords * sizeof(BitWord)));
- return MutableArrayRef<BitWord>(RawBits, NumWords);
- }
- int next_unset_in_word(int WordIndex, BitWord Word) const {
- unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
- return Result < size() ? Result : -1;
- }
- unsigned NumBitWords(unsigned S) const {
- return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
- }
- // Set the unused bits in the high words.
- void set_unused_bits(bool t = true) {
- // Set high words first.
- unsigned UsedWords = NumBitWords(Size);
- if (Bits.size() > UsedWords)
- init_words(Bits.drop_front(UsedWords), t);
- // Then set any stray high bits of the last used word.
- unsigned ExtraBits = Size % BITWORD_SIZE;
- if (ExtraBits) {
- BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
- if (t)
- Bits[UsedWords-1] |= ExtraBitMask;
- else
- Bits[UsedWords-1] &= ~ExtraBitMask;
- }
- }
- // Clear the unused bits in the high words.
- void clear_unused_bits() {
- set_unused_bits(false);
- }
- void grow(unsigned NewSize) {
- size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
- assert(NewCapacity > 0 && "realloc-ing zero space");
- BitWord *NewBits = static_cast<BitWord *>(
- safe_realloc(Bits.data(), NewCapacity * sizeof(BitWord)));
- Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
- clear_unused_bits();
- }
- void init_words(MutableArrayRef<BitWord> B, bool t) {
- if (B.size() > 0)
- memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
- }
- template<bool AddBits, bool InvertMask>
- void applyMask(const uint32_t *Mask, unsigned MaskWords) {
- static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
- MaskWords = std::min(MaskWords, (size() + 31) / 32);
- const unsigned Scale = BITWORD_SIZE / 32;
- unsigned i;
- for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
- BitWord BW = Bits[i];
- // This inner loop should unroll completely when BITWORD_SIZE > 32.
- for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) BW |= BitWord(M) << b;
- else BW &= ~(BitWord(M) << b);
- }
- Bits[i] = BW;
- }
- for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
- uint32_t M = *Mask++;
- if (InvertMask) M = ~M;
- if (AddBits) Bits[i] |= BitWord(M) << b;
- else Bits[i] &= ~(BitWord(M) << b);
- }
- if (AddBits)
- clear_unused_bits();
- }
- public:
- /// Return the size (in bytes) of the bit vector.
- size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
- size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
- };
- inline size_t capacity_in_bytes(const BitVector &X) {
- return X.getMemorySize();
- }
- template <> struct DenseMapInfo<BitVector> {
- static inline BitVector getEmptyKey() { return BitVector(); }
- static inline BitVector getTombstoneKey() {
- BitVector V;
- V.invalid();
- return V;
- }
- static unsigned getHashValue(const BitVector &V) {
- return DenseMapInfo<std::pair<unsigned, ArrayRef<uintptr_t>>>::getHashValue(
- std::make_pair(V.size(), V.getData()));
- }
- static bool isEqual(const BitVector &LHS, const BitVector &RHS) {
- if (LHS.isInvalid() || RHS.isInvalid())
- return LHS.isInvalid() == RHS.isInvalid();
- return LHS == RHS;
- }
- };
- } // end namespace llvm
- namespace std {
- /// Implement std::swap in terms of BitVector swap.
- inline void
- swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
- LHS.swap(RHS);
- }
- } // end namespace std
- #endif // LLVM_ADT_BITVECTOR_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|