12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file implements a class to represent arbitrary precision
- /// integral constant values and operations on them.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_APINT_H
- #define LLVM_ADT_APINT_H
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- #include <climits>
- #include <cstring>
- #include <string>
- namespace llvm {
- class FoldingSetNodeID;
- class StringRef;
- class hash_code;
- class raw_ostream;
- template <typename T> class SmallVectorImpl;
- template <typename T> class ArrayRef;
- template <typename T> class Optional;
- template <typename T> struct DenseMapInfo;
- class APInt;
- inline APInt operator-(APInt);
- //===----------------------------------------------------------------------===//
- // APInt Class
- //===----------------------------------------------------------------------===//
- /// Class for arbitrary precision integers.
- ///
- /// APInt is a functional replacement for common case unsigned integer type like
- /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
- /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
- /// than 64-bits of precision. APInt provides a variety of arithmetic operators
- /// and methods to manipulate integer values of any bit-width. It supports both
- /// the typical integer arithmetic and comparison operations as well as bitwise
- /// manipulation.
- ///
- /// The class has several invariants worth noting:
- /// * All bit, byte, and word positions are zero-based.
- /// * Once the bit width is set, it doesn't change except by the Truncate,
- /// SignExtend, or ZeroExtend operations.
- /// * All binary operators must be on APInt instances of the same bit width.
- /// Attempting to use these operators on instances with different bit
- /// widths will yield an assertion.
- /// * The value is stored canonically as an unsigned value. For operations
- /// where it makes a difference, there are both signed and unsigned variants
- /// of the operation. For example, sdiv and udiv. However, because the bit
- /// widths must be the same, operations such as Mul and Add produce the same
- /// results regardless of whether the values are interpreted as signed or
- /// not.
- /// * In general, the class tries to follow the style of computation that LLVM
- /// uses in its IR. This simplifies its use for LLVM.
- ///
- class LLVM_NODISCARD APInt {
- public:
- typedef uint64_t WordType;
- /// This enum is used to hold the constants we needed for APInt.
- enum : unsigned {
- /// Byte size of a word.
- APINT_WORD_SIZE = sizeof(WordType),
- /// Bits in a word.
- APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
- };
- enum class Rounding {
- DOWN,
- TOWARD_ZERO,
- UP,
- };
- static constexpr WordType WORDTYPE_MAX = ~WordType(0);
- private:
- /// This union is used to store the integer value. When the
- /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
- union {
- uint64_t VAL; ///< Used to store the <= 64 bits integer value.
- uint64_t *pVal; ///< Used to store the >64 bits integer value.
- } U;
- unsigned BitWidth; ///< The number of bits in this APInt.
- friend struct DenseMapInfo<APInt>;
- friend class APSInt;
- /// Fast internal constructor
- ///
- /// This constructor is used only internally for speed of construction of
- /// temporaries. It is unsafe for general use so it is not public.
- APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
- U.pVal = val;
- }
- /// Determine if this APInt just has one word to store value.
- ///
- /// \returns true if the number of bits <= 64, false otherwise.
- bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
- /// Determine which word a bit is in.
- ///
- /// \returns the word position for the specified bit position.
- static unsigned whichWord(unsigned bitPosition) {
- return bitPosition / APINT_BITS_PER_WORD;
- }
- /// Determine which bit in a word a bit is in.
- ///
- /// \returns the bit position in a word for the specified bit position
- /// in the APInt.
- static unsigned whichBit(unsigned bitPosition) {
- return bitPosition % APINT_BITS_PER_WORD;
- }
- /// Get a single bit mask.
- ///
- /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
- /// This method generates and returns a uint64_t (word) mask for a single
- /// bit at a specific bit position. This is used to mask the bit in the
- /// corresponding word.
- static uint64_t maskBit(unsigned bitPosition) {
- return 1ULL << whichBit(bitPosition);
- }
- /// Clear unused high order bits
- ///
- /// This method is used internally to clear the top "N" bits in the high order
- /// word that are not used by the APInt. This is needed after the most
- /// significant word is assigned a value to ensure that those bits are
- /// zero'd out.
- APInt &clearUnusedBits() {
- // Compute how many bits are used in the final word
- unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
- // Mask out the high bits.
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
- if (isSingleWord())
- U.VAL &= mask;
- else
- U.pVal[getNumWords() - 1] &= mask;
- return *this;
- }
- /// Get the word corresponding to a bit position
- /// \returns the corresponding word for the specified bit position.
- uint64_t getWord(unsigned bitPosition) const {
- return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
- }
- /// Utility method to change the bit width of this APInt to new bit width,
- /// allocating and/or deallocating as necessary. There is no guarantee on the
- /// value of any bits upon return. Caller should populate the bits after.
- void reallocate(unsigned NewBitWidth);
- /// Convert a char array into an APInt
- ///
- /// \param radix 2, 8, 10, 16, or 36
- /// Converts a string into a number. The string must be non-empty
- /// and well-formed as a number of the given base. The bit-width
- /// must be sufficient to hold the result.
- ///
- /// This is used by the constructors that take string arguments.
- ///
- /// StringRef::getAsInteger is superficially similar but (1) does
- /// not assume that the string is well-formed and (2) grows the
- /// result to hold the input.
- void fromString(unsigned numBits, StringRef str, uint8_t radix);
- /// An internal division function for dividing APInts.
- ///
- /// This is used by the toString method to divide by the radix. It simply
- /// provides a more convenient form of divide for internal use since KnuthDiv
- /// has specific constraints on its inputs. If those constraints are not met
- /// then it provides a simpler form of divide.
- static void divide(const WordType *LHS, unsigned lhsWords,
- const WordType *RHS, unsigned rhsWords, WordType *Quotient,
- WordType *Remainder);
- /// out-of-line slow case for inline constructor
- void initSlowCase(uint64_t val, bool isSigned);
- /// shared code between two array constructors
- void initFromArray(ArrayRef<uint64_t> array);
- /// out-of-line slow case for inline copy constructor
- void initSlowCase(const APInt &that);
- /// out-of-line slow case for shl
- void shlSlowCase(unsigned ShiftAmt);
- /// out-of-line slow case for lshr.
- void lshrSlowCase(unsigned ShiftAmt);
- /// out-of-line slow case for ashr.
- void ashrSlowCase(unsigned ShiftAmt);
- /// out-of-line slow case for operator=
- void AssignSlowCase(const APInt &RHS);
- /// out-of-line slow case for operator==
- bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
- /// out-of-line slow case for countLeadingZeros
- unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countLeadingOnes.
- unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countTrailingZeros.
- unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countTrailingOnes
- unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countPopulation
- unsigned countPopulationSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for intersects.
- bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
- /// out-of-line slow case for isSubsetOf.
- bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
- /// out-of-line slow case for setBits.
- void setBitsSlowCase(unsigned loBit, unsigned hiBit);
- /// out-of-line slow case for flipAllBits.
- void flipAllBitsSlowCase();
- /// out-of-line slow case for operator&=.
- void AndAssignSlowCase(const APInt& RHS);
- /// out-of-line slow case for operator|=.
- void OrAssignSlowCase(const APInt& RHS);
- /// out-of-line slow case for operator^=.
- void XorAssignSlowCase(const APInt& RHS);
- /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
- /// to, or greater than RHS.
- int compare(const APInt &RHS) const LLVM_READONLY;
- /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
- /// to, or greater than RHS.
- int compareSigned(const APInt &RHS) const LLVM_READONLY;
- public:
- /// \name Constructors
- /// @{
- /// Create a new APInt of numBits width, initialized as val.
- ///
- /// If isSigned is true then val is treated as if it were a signed value
- /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
- /// will be done. Otherwise, no sign extension occurs (high order bits beyond
- /// the range of val are zero filled).
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param val the initial value of the APInt
- /// \param isSigned how to treat signedness of val
- APInt(unsigned numBits, uint64_t val, bool isSigned = false)
- : BitWidth(numBits) {
- assert(BitWidth && "bitwidth too small");
- if (isSingleWord()) {
- U.VAL = val;
- clearUnusedBits();
- } else {
- initSlowCase(val, isSigned);
- }
- }
- /// Construct an APInt of numBits width, initialized as bigVal[].
- ///
- /// Note that bigVal.size() can be smaller or larger than the corresponding
- /// bit width but any extraneous bits will be dropped.
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param bigVal a sequence of words to form the initial value of the APInt
- APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
- /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
- /// deprecated because this constructor is prone to ambiguity with the
- /// APInt(unsigned, uint64_t, bool) constructor.
- ///
- /// If this overload is ever deleted, care should be taken to prevent calls
- /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
- /// constructor.
- APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
- /// Construct an APInt from a string representation.
- ///
- /// This constructor interprets the string \p str in the given radix. The
- /// interpretation stops when the first character that is not suitable for the
- /// radix is encountered, or the end of the string. Acceptable radix values
- /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
- /// string to require more bits than numBits.
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param str the string to be interpreted
- /// \param radix the radix to use for the conversion
- APInt(unsigned numBits, StringRef str, uint8_t radix);
- /// Simply makes *this a copy of that.
- /// Copy Constructor.
- APInt(const APInt &that) : BitWidth(that.BitWidth) {
- if (isSingleWord())
- U.VAL = that.U.VAL;
- else
- initSlowCase(that);
- }
- /// Move Constructor.
- APInt(APInt &&that) : BitWidth(that.BitWidth) {
- memcpy(&U, &that.U, sizeof(U));
- that.BitWidth = 0;
- }
- /// Destructor.
- ~APInt() {
- if (needsCleanup())
- delete[] U.pVal;
- }
- /// Default constructor that creates an uninteresting APInt
- /// representing a 1-bit zero value.
- ///
- /// This is useful for object deserialization (pair this with the static
- /// method Read).
- explicit APInt() : BitWidth(1) { U.VAL = 0; }
- /// Returns whether this instance allocated memory.
- bool needsCleanup() const { return !isSingleWord(); }
- /// Used to insert APInt objects, or objects that contain APInt objects, into
- /// FoldingSets.
- void Profile(FoldingSetNodeID &id) const;
- /// @}
- /// \name Value Tests
- /// @{
- /// Determine sign of this APInt.
- ///
- /// This tests the high bit of this APInt to determine if it is set.
- ///
- /// \returns true if this APInt is negative, false otherwise
- bool isNegative() const { return (*this)[BitWidth - 1]; }
- /// Determine if this APInt Value is non-negative (>= 0)
- ///
- /// This tests the high bit of the APInt to determine if it is unset.
- bool isNonNegative() const { return !isNegative(); }
- /// Determine if sign bit of this APInt is set.
- ///
- /// This tests the high bit of this APInt to determine if it is set.
- ///
- /// \returns true if this APInt has its sign bit set, false otherwise.
- bool isSignBitSet() const { return (*this)[BitWidth-1]; }
- /// Determine if sign bit of this APInt is clear.
- ///
- /// This tests the high bit of this APInt to determine if it is clear.
- ///
- /// \returns true if this APInt has its sign bit clear, false otherwise.
- bool isSignBitClear() const { return !isSignBitSet(); }
- /// Determine if this APInt Value is positive.
- ///
- /// This tests if the value of this APInt is positive (> 0). Note
- /// that 0 is not a positive value.
- ///
- /// \returns true if this APInt is positive.
- bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
- /// Determine if this APInt Value is non-positive (<= 0).
- ///
- /// \returns true if this APInt is non-positive.
- bool isNonPositive() const { return !isStrictlyPositive(); }
- /// Determine if all bits are set
- ///
- /// This checks to see if the value has all bits of the APInt are set or not.
- bool isAllOnesValue() const {
- if (isSingleWord())
- return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
- return countTrailingOnesSlowCase() == BitWidth;
- }
- /// Determine if all bits are clear
- ///
- /// This checks to see if the value has all bits of the APInt are clear or
- /// not.
- bool isNullValue() const { return !*this; }
- /// Determine if this is a value of 1.
- ///
- /// This checks to see if the value of this APInt is one.
- bool isOneValue() const {
- if (isSingleWord())
- return U.VAL == 1;
- return countLeadingZerosSlowCase() == BitWidth - 1;
- }
- /// Determine if this is the largest unsigned value.
- ///
- /// This checks to see if the value of this APInt is the maximum unsigned
- /// value for the APInt's bit width.
- bool isMaxValue() const { return isAllOnesValue(); }
- /// Determine if this is the largest signed value.
- ///
- /// This checks to see if the value of this APInt is the maximum signed
- /// value for the APInt's bit width.
- bool isMaxSignedValue() const {
- if (isSingleWord())
- return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
- return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
- }
- /// Determine if this is the smallest unsigned value.
- ///
- /// This checks to see if the value of this APInt is the minimum unsigned
- /// value for the APInt's bit width.
- bool isMinValue() const { return isNullValue(); }
- /// Determine if this is the smallest signed value.
- ///
- /// This checks to see if the value of this APInt is the minimum signed
- /// value for the APInt's bit width.
- bool isMinSignedValue() const {
- if (isSingleWord())
- return U.VAL == (WordType(1) << (BitWidth - 1));
- return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
- }
- /// Check if this APInt has an N-bits unsigned integer value.
- bool isIntN(unsigned N) const {
- assert(N && "N == 0 ???");
- return getActiveBits() <= N;
- }
- /// Check if this APInt has an N-bits signed integer value.
- bool isSignedIntN(unsigned N) const {
- assert(N && "N == 0 ???");
- return getMinSignedBits() <= N;
- }
- /// Check if this APInt's value is a power of two greater than zero.
- ///
- /// \returns true if the argument APInt value is a power of two > 0.
- bool isPowerOf2() const {
- if (isSingleWord())
- return isPowerOf2_64(U.VAL);
- return countPopulationSlowCase() == 1;
- }
- /// Check if the APInt's value is returned by getSignMask.
- ///
- /// \returns true if this is the value returned by getSignMask.
- bool isSignMask() const { return isMinSignedValue(); }
- /// Convert APInt to a boolean value.
- ///
- /// This converts the APInt to a boolean value as a test against zero.
- bool getBoolValue() const { return !!*this; }
- /// If this value is smaller than the specified limit, return it, otherwise
- /// return the limit value. This causes the value to saturate to the limit.
- uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
- return ugt(Limit) ? Limit : getZExtValue();
- }
- /// Check if the APInt consists of a repeated bit pattern.
- ///
- /// e.g. 0x01010101 satisfies isSplat(8).
- /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
- /// width without remainder.
- bool isSplat(unsigned SplatSizeInBits) const;
- /// \returns true if this APInt value is a sequence of \param numBits ones
- /// starting at the least significant bit with the remainder zero.
- bool isMask(unsigned numBits) const {
- assert(numBits != 0 && "numBits must be non-zero");
- assert(numBits <= BitWidth && "numBits out of range");
- if (isSingleWord())
- return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
- unsigned Ones = countTrailingOnesSlowCase();
- return (numBits == Ones) &&
- ((Ones + countLeadingZerosSlowCase()) == BitWidth);
- }
- /// \returns true if this APInt is a non-empty sequence of ones starting at
- /// the least significant bit with the remainder zero.
- /// Ex. isMask(0x0000FFFFU) == true.
- bool isMask() const {
- if (isSingleWord())
- return isMask_64(U.VAL);
- unsigned Ones = countTrailingOnesSlowCase();
- return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
- }
- /// Return true if this APInt value contains a sequence of ones with
- /// the remainder zero.
- bool isShiftedMask() const {
- if (isSingleWord())
- return isShiftedMask_64(U.VAL);
- unsigned Ones = countPopulationSlowCase();
- unsigned LeadZ = countLeadingZerosSlowCase();
- return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
- }
- /// @}
- /// \name Value Generators
- /// @{
- /// Gets maximum unsigned value of APInt for specific bit width.
- static APInt getMaxValue(unsigned numBits) {
- return getAllOnesValue(numBits);
- }
- /// Gets maximum signed value of APInt for a specific bit width.
- static APInt getSignedMaxValue(unsigned numBits) {
- APInt API = getAllOnesValue(numBits);
- API.clearBit(numBits - 1);
- return API;
- }
- /// Gets minimum unsigned value of APInt for a specific bit width.
- static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
- /// Gets minimum signed value of APInt for a specific bit width.
- static APInt getSignedMinValue(unsigned numBits) {
- APInt API(numBits, 0);
- API.setBit(numBits - 1);
- return API;
- }
- /// Get the SignMask for a specific bit width.
- ///
- /// This is just a wrapper function of getSignedMinValue(), and it helps code
- /// readability when we want to get a SignMask.
- static APInt getSignMask(unsigned BitWidth) {
- return getSignedMinValue(BitWidth);
- }
- /// Get the all-ones value.
- ///
- /// \returns the all-ones value for an APInt of the specified bit-width.
- static APInt getAllOnesValue(unsigned numBits) {
- return APInt(numBits, WORDTYPE_MAX, true);
- }
- /// Get the '0' value.
- ///
- /// \returns the '0' value for an APInt of the specified bit-width.
- static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
- /// Compute an APInt containing numBits highbits from this APInt.
- ///
- /// Get an APInt with the same BitWidth as this APInt, just zero mask
- /// the low bits and right shift to the least significant bit.
- ///
- /// \returns the high "numBits" bits of this APInt.
- APInt getHiBits(unsigned numBits) const;
- /// Compute an APInt containing numBits lowbits from this APInt.
- ///
- /// Get an APInt with the same BitWidth as this APInt, just zero mask
- /// the high bits.
- ///
- /// \returns the low "numBits" bits of this APInt.
- APInt getLoBits(unsigned numBits) const;
- /// Return an APInt with exactly one bit set in the result.
- static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
- APInt Res(numBits, 0);
- Res.setBit(BitNo);
- return Res;
- }
- /// Get a value with a block of bits set.
- ///
- /// Constructs an APInt value that has a contiguous range of bits set. The
- /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
- /// bits will be zero. For example, with parameters(32, 0, 16) you would get
- /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
- /// \p hiBit.
- ///
- /// \param numBits the intended bit width of the result
- /// \param loBit the index of the lowest bit set.
- /// \param hiBit the index of the highest bit set.
- ///
- /// \returns An APInt value with the requested bits set.
- static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
- assert(loBit <= hiBit && "loBit greater than hiBit");
- APInt Res(numBits, 0);
- Res.setBits(loBit, hiBit);
- return Res;
- }
- /// Wrap version of getBitsSet.
- /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
- /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
- /// with parameters (32, 28, 4), you would get 0xF000000F.
- /// If \p hiBit is equal to \p loBit, you would get a result with all bits
- /// set.
- static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
- unsigned hiBit) {
- APInt Res(numBits, 0);
- Res.setBitsWithWrap(loBit, hiBit);
- return Res;
- }
- /// Get a value with upper bits starting at loBit set.
- ///
- /// Constructs an APInt value that has a contiguous range of bits set. The
- /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
- /// bits will be zero. For example, with parameters(32, 12) you would get
- /// 0xFFFFF000.
- ///
- /// \param numBits the intended bit width of the result
- /// \param loBit the index of the lowest bit to set.
- ///
- /// \returns An APInt value with the requested bits set.
- static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
- APInt Res(numBits, 0);
- Res.setBitsFrom(loBit);
- return Res;
- }
- /// Get a value with high bits set
- ///
- /// Constructs an APInt value that has the top hiBitsSet bits set.
- ///
- /// \param numBits the bitwidth of the result
- /// \param hiBitsSet the number of high-order bits set in the result.
- static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
- APInt Res(numBits, 0);
- Res.setHighBits(hiBitsSet);
- return Res;
- }
- /// Get a value with low bits set
- ///
- /// Constructs an APInt value that has the bottom loBitsSet bits set.
- ///
- /// \param numBits the bitwidth of the result
- /// \param loBitsSet the number of low-order bits set in the result.
- static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
- APInt Res(numBits, 0);
- Res.setLowBits(loBitsSet);
- return Res;
- }
- /// Return a value containing V broadcasted over NewLen bits.
- static APInt getSplat(unsigned NewLen, const APInt &V);
- /// Determine if two APInts have the same value, after zero-extending
- /// one of them (if needed!) to ensure that the bit-widths match.
- static bool isSameValue(const APInt &I1, const APInt &I2) {
- if (I1.getBitWidth() == I2.getBitWidth())
- return I1 == I2;
- if (I1.getBitWidth() > I2.getBitWidth())
- return I1 == I2.zext(I1.getBitWidth());
- return I1.zext(I2.getBitWidth()) == I2;
- }
- /// Overload to compute a hash_code for an APInt value.
- friend hash_code hash_value(const APInt &Arg);
- /// This function returns a pointer to the internal storage of the APInt.
- /// This is useful for writing out the APInt in binary form without any
- /// conversions.
- const uint64_t *getRawData() const {
- if (isSingleWord())
- return &U.VAL;
- return &U.pVal[0];
- }
- /// @}
- /// \name Unary Operators
- /// @{
- /// Postfix increment operator.
- ///
- /// Increments *this by 1.
- ///
- /// \returns a new APInt value representing the original value of *this.
- const APInt operator++(int) {
- APInt API(*this);
- ++(*this);
- return API;
- }
- /// Prefix increment operator.
- ///
- /// \returns *this incremented by one
- APInt &operator++();
- /// Postfix decrement operator.
- ///
- /// Decrements *this by 1.
- ///
- /// \returns a new APInt value representing the original value of *this.
- const APInt operator--(int) {
- APInt API(*this);
- --(*this);
- return API;
- }
- /// Prefix decrement operator.
- ///
- /// \returns *this decremented by one.
- APInt &operator--();
- /// Logical negation operator.
- ///
- /// Performs logical negation operation on this APInt.
- ///
- /// \returns true if *this is zero, false otherwise.
- bool operator!() const {
- if (isSingleWord())
- return U.VAL == 0;
- return countLeadingZerosSlowCase() == BitWidth;
- }
- /// @}
- /// \name Assignment Operators
- /// @{
- /// Copy assignment operator.
- ///
- /// \returns *this after assignment of RHS.
- APInt &operator=(const APInt &RHS) {
- // If the bitwidths are the same, we can avoid mucking with memory
- if (isSingleWord() && RHS.isSingleWord()) {
- U.VAL = RHS.U.VAL;
- BitWidth = RHS.BitWidth;
- return clearUnusedBits();
- }
- AssignSlowCase(RHS);
- return *this;
- }
- /// Move assignment operator.
- APInt &operator=(APInt &&that) {
- #ifdef EXPENSIVE_CHECKS
- // Some std::shuffle implementations still do self-assignment.
- if (this == &that)
- return *this;
- #endif
- assert(this != &that && "Self-move not supported");
- if (!isSingleWord())
- delete[] U.pVal;
- // Use memcpy so that type based alias analysis sees both VAL and pVal
- // as modified.
- memcpy(&U, &that.U, sizeof(U));
- BitWidth = that.BitWidth;
- that.BitWidth = 0;
- return *this;
- }
- /// Assignment operator.
- ///
- /// The RHS value is assigned to *this. If the significant bits in RHS exceed
- /// the bit width, the excess bits are truncated. If the bit width is larger
- /// than 64, the value is zero filled in the unspecified high order bits.
- ///
- /// \returns *this after assignment of RHS value.
- APInt &operator=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL = RHS;
- return clearUnusedBits();
- }
- U.pVal[0] = RHS;
- memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
- return *this;
- }
- /// Bitwise AND assignment operator.
- ///
- /// Performs a bitwise AND operation on this APInt and RHS. The result is
- /// assigned to *this.
- ///
- /// \returns *this after ANDing with RHS.
- APInt &operator&=(const APInt &RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL &= RHS.U.VAL;
- else
- AndAssignSlowCase(RHS);
- return *this;
- }
- /// Bitwise AND assignment operator.
- ///
- /// Performs a bitwise AND operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator&=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL &= RHS;
- return *this;
- }
- U.pVal[0] &= RHS;
- memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
- return *this;
- }
- /// Bitwise OR assignment operator.
- ///
- /// Performs a bitwise OR operation on this APInt and RHS. The result is
- /// assigned *this;
- ///
- /// \returns *this after ORing with RHS.
- APInt &operator|=(const APInt &RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL |= RHS.U.VAL;
- else
- OrAssignSlowCase(RHS);
- return *this;
- }
- /// Bitwise OR assignment operator.
- ///
- /// Performs a bitwise OR operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator|=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL |= RHS;
- return clearUnusedBits();
- }
- U.pVal[0] |= RHS;
- return *this;
- }
- /// Bitwise XOR assignment operator.
- ///
- /// Performs a bitwise XOR operation on this APInt and RHS. The result is
- /// assigned to *this.
- ///
- /// \returns *this after XORing with RHS.
- APInt &operator^=(const APInt &RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL ^= RHS.U.VAL;
- else
- XorAssignSlowCase(RHS);
- return *this;
- }
- /// Bitwise XOR assignment operator.
- ///
- /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator^=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL ^= RHS;
- return clearUnusedBits();
- }
- U.pVal[0] ^= RHS;
- return *this;
- }
- /// Multiplication assignment operator.
- ///
- /// Multiplies this APInt by RHS and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator*=(const APInt &RHS);
- APInt &operator*=(uint64_t RHS);
- /// Addition assignment operator.
- ///
- /// Adds RHS to *this and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator+=(const APInt &RHS);
- APInt &operator+=(uint64_t RHS);
- /// Subtraction assignment operator.
- ///
- /// Subtracts RHS from *this and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator-=(const APInt &RHS);
- APInt &operator-=(uint64_t RHS);
- /// Left-shift assignment function.
- ///
- /// Shifts *this left by shiftAmt and assigns the result to *this.
- ///
- /// \returns *this after shifting left by ShiftAmt
- APInt &operator<<=(unsigned ShiftAmt) {
- assert(ShiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- if (ShiftAmt == BitWidth)
- U.VAL = 0;
- else
- U.VAL <<= ShiftAmt;
- return clearUnusedBits();
- }
- shlSlowCase(ShiftAmt);
- return *this;
- }
- /// Left-shift assignment function.
- ///
- /// Shifts *this left by shiftAmt and assigns the result to *this.
- ///
- /// \returns *this after shifting left by ShiftAmt
- APInt &operator<<=(const APInt &ShiftAmt);
- /// @}
- /// \name Binary Operators
- /// @{
- /// Multiplication operator.
- ///
- /// Multiplies this APInt by RHS and returns the result.
- APInt operator*(const APInt &RHS) const;
- /// Left logical shift operator.
- ///
- /// Shifts this APInt left by \p Bits and returns the result.
- APInt operator<<(unsigned Bits) const { return shl(Bits); }
- /// Left logical shift operator.
- ///
- /// Shifts this APInt left by \p Bits and returns the result.
- APInt operator<<(const APInt &Bits) const { return shl(Bits); }
- /// Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift this APInt by shiftAmt.
- APInt ashr(unsigned ShiftAmt) const {
- APInt R(*this);
- R.ashrInPlace(ShiftAmt);
- return R;
- }
- /// Arithmetic right-shift this APInt by ShiftAmt in place.
- void ashrInPlace(unsigned ShiftAmt) {
- assert(ShiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
- if (ShiftAmt == BitWidth)
- U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
- else
- U.VAL = SExtVAL >> ShiftAmt;
- clearUnusedBits();
- return;
- }
- ashrSlowCase(ShiftAmt);
- }
- /// Logical right-shift function.
- ///
- /// Logical right-shift this APInt by shiftAmt.
- APInt lshr(unsigned shiftAmt) const {
- APInt R(*this);
- R.lshrInPlace(shiftAmt);
- return R;
- }
- /// Logical right-shift this APInt by ShiftAmt in place.
- void lshrInPlace(unsigned ShiftAmt) {
- assert(ShiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- if (ShiftAmt == BitWidth)
- U.VAL = 0;
- else
- U.VAL >>= ShiftAmt;
- return;
- }
- lshrSlowCase(ShiftAmt);
- }
- /// Left-shift function.
- ///
- /// Left-shift this APInt by shiftAmt.
- APInt shl(unsigned shiftAmt) const {
- APInt R(*this);
- R <<= shiftAmt;
- return R;
- }
- /// Rotate left by rotateAmt.
- APInt rotl(unsigned rotateAmt) const;
- /// Rotate right by rotateAmt.
- APInt rotr(unsigned rotateAmt) const;
- /// Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift this APInt by shiftAmt.
- APInt ashr(const APInt &ShiftAmt) const {
- APInt R(*this);
- R.ashrInPlace(ShiftAmt);
- return R;
- }
- /// Arithmetic right-shift this APInt by shiftAmt in place.
- void ashrInPlace(const APInt &shiftAmt);
- /// Logical right-shift function.
- ///
- /// Logical right-shift this APInt by shiftAmt.
- APInt lshr(const APInt &ShiftAmt) const {
- APInt R(*this);
- R.lshrInPlace(ShiftAmt);
- return R;
- }
- /// Logical right-shift this APInt by ShiftAmt in place.
- void lshrInPlace(const APInt &ShiftAmt);
- /// Left-shift function.
- ///
- /// Left-shift this APInt by shiftAmt.
- APInt shl(const APInt &ShiftAmt) const {
- APInt R(*this);
- R <<= ShiftAmt;
- return R;
- }
- /// Rotate left by rotateAmt.
- APInt rotl(const APInt &rotateAmt) const;
- /// Rotate right by rotateAmt.
- APInt rotr(const APInt &rotateAmt) const;
- /// Unsigned division operation.
- ///
- /// Perform an unsigned divide operation on this APInt by RHS. Both this and
- /// RHS are treated as unsigned quantities for purposes of this division.
- ///
- /// \returns a new APInt value containing the division result, rounded towards
- /// zero.
- APInt udiv(const APInt &RHS) const;
- APInt udiv(uint64_t RHS) const;
- /// Signed division function for APInt.
- ///
- /// Signed divide this APInt by APInt RHS.
- ///
- /// The result is rounded towards zero.
- APInt sdiv(const APInt &RHS) const;
- APInt sdiv(int64_t RHS) const;
- /// Unsigned remainder operation.
- ///
- /// Perform an unsigned remainder operation on this APInt with RHS being the
- /// divisor. Both this and RHS are treated as unsigned quantities for purposes
- /// of this operation. Note that this is a true remainder operation and not a
- /// modulo operation because the sign follows the sign of the dividend which
- /// is *this.
- ///
- /// \returns a new APInt value containing the remainder result
- APInt urem(const APInt &RHS) const;
- uint64_t urem(uint64_t RHS) const;
- /// Function for signed remainder operation.
- ///
- /// Signed remainder operation on APInt.
- APInt srem(const APInt &RHS) const;
- int64_t srem(int64_t RHS) const;
- /// Dual division/remainder interface.
- ///
- /// Sometimes it is convenient to divide two APInt values and obtain both the
- /// quotient and remainder. This function does both operations in the same
- /// computation making it a little more efficient. The pair of input arguments
- /// may overlap with the pair of output arguments. It is safe to call
- /// udivrem(X, Y, X, Y), for example.
- static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
- APInt &Remainder);
- static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
- uint64_t &Remainder);
- static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
- APInt &Remainder);
- static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
- int64_t &Remainder);
- // Operations that return overflow indicators.
- APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
- APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
- APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
- APInt usub_ov(const APInt &RHS, bool &Overflow) const;
- APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
- APInt smul_ov(const APInt &RHS, bool &Overflow) const;
- APInt umul_ov(const APInt &RHS, bool &Overflow) const;
- APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
- APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
- // Operations that saturate
- APInt sadd_sat(const APInt &RHS) const;
- APInt uadd_sat(const APInt &RHS) const;
- APInt ssub_sat(const APInt &RHS) const;
- APInt usub_sat(const APInt &RHS) const;
- APInt smul_sat(const APInt &RHS) const;
- APInt umul_sat(const APInt &RHS) const;
- APInt sshl_sat(const APInt &RHS) const;
- APInt ushl_sat(const APInt &RHS) const;
- /// Array-indexing support.
- ///
- /// \returns the bit value at bitPosition
- bool operator[](unsigned bitPosition) const {
- assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
- return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
- }
- /// @}
- /// \name Comparison Operators
- /// @{
- /// Equality operator.
- ///
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- bool operator==(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
- if (isSingleWord())
- return U.VAL == RHS.U.VAL;
- return EqualSlowCase(RHS);
- }
- /// Equality operator.
- ///
- /// Compares this APInt with a uint64_t for the validity of the equality
- /// relationship.
- ///
- /// \returns true if *this == Val
- bool operator==(uint64_t Val) const {
- return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
- }
- /// Equality comparison.
- ///
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- ///
- /// \returns true if *this == Val
- bool eq(const APInt &RHS) const { return (*this) == RHS; }
- /// Inequality operator.
- ///
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
- /// Inequality operator.
- ///
- /// Compares this APInt with a uint64_t for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool operator!=(uint64_t Val) const { return !((*this) == Val); }
- /// Inequality comparison
- ///
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool ne(const APInt &RHS) const { return !((*this) == RHS); }
- /// Unsigned less than comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when both are considered unsigned.
- bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
- /// Unsigned less than comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when considered unsigned.
- bool ult(uint64_t RHS) const {
- // Only need to check active bits if not a single word.
- return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
- }
- /// Signed less than comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when both are considered signed.
- bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
- /// Signed less than comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when considered signed.
- bool slt(int64_t RHS) const {
- return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
- : getSExtValue() < RHS;
- }
- /// Unsigned less or equal comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when both are considered unsigned.
- bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
- /// Unsigned less or equal comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when considered unsigned.
- bool ule(uint64_t RHS) const { return !ugt(RHS); }
- /// Signed less or equal comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when both are considered signed.
- bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
- /// Signed less or equal comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for the
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when considered signed.
- bool sle(uint64_t RHS) const { return !sgt(RHS); }
- /// Unsigned greater than comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when both are considered unsigned.
- bool ugt(const APInt &RHS) const { return !ule(RHS); }
- /// Unsigned greater than comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when considered unsigned.
- bool ugt(uint64_t RHS) const {
- // Only need to check active bits if not a single word.
- return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
- }
- /// Signed greater than comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for the
- /// validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when both are considered signed.
- bool sgt(const APInt &RHS) const { return !sle(RHS); }
- /// Signed greater than comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when considered signed.
- bool sgt(int64_t RHS) const {
- return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
- : getSExtValue() > RHS;
- }
- /// Unsigned greater or equal comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when both are considered unsigned.
- bool uge(const APInt &RHS) const { return !ult(RHS); }
- /// Unsigned greater or equal comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when considered unsigned.
- bool uge(uint64_t RHS) const { return !ult(RHS); }
- /// Signed greater or equal comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when both are considered signed.
- bool sge(const APInt &RHS) const { return !slt(RHS); }
- /// Signed greater or equal comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when considered signed.
- bool sge(int64_t RHS) const { return !slt(RHS); }
- /// This operation tests if there are any pairs of corresponding bits
- /// between this APInt and RHS that are both set.
- bool intersects(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return (U.VAL & RHS.U.VAL) != 0;
- return intersectsSlowCase(RHS);
- }
- /// This operation checks that all bits set in this APInt are also set in RHS.
- bool isSubsetOf(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return (U.VAL & ~RHS.U.VAL) == 0;
- return isSubsetOfSlowCase(RHS);
- }
- /// @}
- /// \name Resizing Operators
- /// @{
- /// Truncate to new width.
- ///
- /// Truncate the APInt to a specified width. It is an error to specify a width
- /// that is greater than or equal to the current width.
- APInt trunc(unsigned width) const;
- /// Truncate to new width with unsigned saturation.
- ///
- /// If the APInt, treated as unsigned integer, can be losslessly truncated to
- /// the new bitwidth, then return truncated APInt. Else, return max value.
- APInt truncUSat(unsigned width) const;
- /// Truncate to new width with signed saturation.
- ///
- /// If this APInt, treated as signed integer, can be losslessly truncated to
- /// the new bitwidth, then return truncated APInt. Else, return either
- /// signed min value if the APInt was negative, or signed max value.
- APInt truncSSat(unsigned width) const;
- /// Sign extend to a new width.
- ///
- /// This operation sign extends the APInt to a new width. If the high order
- /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
- /// It is an error to specify a width that is less than or equal to the
- /// current width.
- APInt sext(unsigned width) const;
- /// Zero extend to a new width.
- ///
- /// This operation zero extends the APInt to a new width. The high order bits
- /// are filled with 0 bits. It is an error to specify a width that is less
- /// than or equal to the current width.
- APInt zext(unsigned width) const;
- /// Sign extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, truncated, or left alone to make it that width.
- APInt sextOrTrunc(unsigned width) const;
- /// Zero extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, truncated, or left alone to make it that width.
- APInt zextOrTrunc(unsigned width) const;
- /// Truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is
- /// truncated or left alone to make it that width.
- APInt truncOrSelf(unsigned width) const;
- /// Sign extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, or left alone to make it that width.
- APInt sextOrSelf(unsigned width) const;
- /// Zero extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, or left alone to make it that width.
- APInt zextOrSelf(unsigned width) const;
- /// @}
- /// \name Bit Manipulation Operators
- /// @{
- /// Set every bit to 1.
- void setAllBits() {
- if (isSingleWord())
- U.VAL = WORDTYPE_MAX;
- else
- // Set all the bits in all the words.
- memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
- // Clear the unused ones
- clearUnusedBits();
- }
- /// Set a given bit to 1.
- ///
- /// Set the given bit to 1 whose position is given as "bitPosition".
- void setBit(unsigned BitPosition) {
- assert(BitPosition < BitWidth && "BitPosition out of range");
- WordType Mask = maskBit(BitPosition);
- if (isSingleWord())
- U.VAL |= Mask;
- else
- U.pVal[whichWord(BitPosition)] |= Mask;
- }
- /// Set the sign bit to 1.
- void setSignBit() {
- setBit(BitWidth - 1);
- }
- /// Set a given bit to a given value.
- void setBitVal(unsigned BitPosition, bool BitValue) {
- if (BitValue)
- setBit(BitPosition);
- else
- clearBit(BitPosition);
- }
- /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
- /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
- /// setBits when \p loBit < \p hiBit.
- /// For \p loBit == \p hiBit wrap case, set every bit to 1.
- void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
- assert(hiBit <= BitWidth && "hiBit out of range");
- assert(loBit <= BitWidth && "loBit out of range");
- if (loBit < hiBit) {
- setBits(loBit, hiBit);
- return;
- }
- setLowBits(hiBit);
- setHighBits(BitWidth - loBit);
- }
- /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
- /// This function handles case when \p loBit <= \p hiBit.
- void setBits(unsigned loBit, unsigned hiBit) {
- assert(hiBit <= BitWidth && "hiBit out of range");
- assert(loBit <= BitWidth && "loBit out of range");
- assert(loBit <= hiBit && "loBit greater than hiBit");
- if (loBit == hiBit)
- return;
- if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
- mask <<= loBit;
- if (isSingleWord())
- U.VAL |= mask;
- else
- U.pVal[0] |= mask;
- } else {
- setBitsSlowCase(loBit, hiBit);
- }
- }
- /// Set the top bits starting from loBit.
- void setBitsFrom(unsigned loBit) {
- return setBits(loBit, BitWidth);
- }
- /// Set the bottom loBits bits.
- void setLowBits(unsigned loBits) {
- return setBits(0, loBits);
- }
- /// Set the top hiBits bits.
- void setHighBits(unsigned hiBits) {
- return setBits(BitWidth - hiBits, BitWidth);
- }
- /// Set every bit to 0.
- void clearAllBits() {
- if (isSingleWord())
- U.VAL = 0;
- else
- memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
- }
- /// Set a given bit to 0.
- ///
- /// Set the given bit to 0 whose position is given as "bitPosition".
- void clearBit(unsigned BitPosition) {
- assert(BitPosition < BitWidth && "BitPosition out of range");
- WordType Mask = ~maskBit(BitPosition);
- if (isSingleWord())
- U.VAL &= Mask;
- else
- U.pVal[whichWord(BitPosition)] &= Mask;
- }
- /// Set bottom loBits bits to 0.
- void clearLowBits(unsigned loBits) {
- assert(loBits <= BitWidth && "More bits than bitwidth");
- APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
- *this &= Keep;
- }
- /// Set the sign bit to 0.
- void clearSignBit() {
- clearBit(BitWidth - 1);
- }
- /// Toggle every bit to its opposite value.
- void flipAllBits() {
- if (isSingleWord()) {
- U.VAL ^= WORDTYPE_MAX;
- clearUnusedBits();
- } else {
- flipAllBitsSlowCase();
- }
- }
- /// Toggles a given bit to its opposite value.
- ///
- /// Toggle a given bit to its opposite value whose position is given
- /// as "bitPosition".
- void flipBit(unsigned bitPosition);
- /// Negate this APInt in place.
- void negate() {
- flipAllBits();
- ++(*this);
- }
- /// Insert the bits from a smaller APInt starting at bitPosition.
- void insertBits(const APInt &SubBits, unsigned bitPosition);
- void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
- /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
- APInt extractBits(unsigned numBits, unsigned bitPosition) const;
- uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
- /// @}
- /// \name Value Characterization Functions
- /// @{
- /// Return the number of bits in the APInt.
- unsigned getBitWidth() const { return BitWidth; }
- /// Get the number of words.
- ///
- /// Here one word's bitwidth equals to that of uint64_t.
- ///
- /// \returns the number of words to hold the integer value of this APInt.
- unsigned getNumWords() const { return getNumWords(BitWidth); }
- /// Get the number of words.
- ///
- /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
- ///
- /// \returns the number of words to hold the integer value with a given bit
- /// width.
- static unsigned getNumWords(unsigned BitWidth) {
- return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
- }
- /// Compute the number of active bits in the value
- ///
- /// This function returns the number of active bits which is defined as the
- /// bit width minus the number of leading zeros. This is used in several
- /// computations to see how "wide" the value is.
- unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
- /// Compute the number of active words in the value of this APInt.
- ///
- /// This is used in conjunction with getActiveData to extract the raw value of
- /// the APInt.
- unsigned getActiveWords() const {
- unsigned numActiveBits = getActiveBits();
- return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
- }
- /// Get the minimum bit size for this signed APInt
- ///
- /// Computes the minimum bit width for this APInt while considering it to be a
- /// signed (and probably negative) value. If the value is not negative, this
- /// function returns the same value as getActiveBits()+1. Otherwise, it
- /// returns the smallest bit width that will retain the negative value. For
- /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
- /// for -1, this function will always return 1.
- unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
- /// Get zero extended value
- ///
- /// This method attempts to return the value of this APInt as a zero extended
- /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
- /// uint64_t. Otherwise an assertion will result.
- uint64_t getZExtValue() const {
- if (isSingleWord())
- return U.VAL;
- assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
- return U.pVal[0];
- }
- /// Get sign extended value
- ///
- /// This method attempts to return the value of this APInt as a sign extended
- /// int64_t. The bit width must be <= 64 or the value must fit within an
- /// int64_t. Otherwise an assertion will result.
- int64_t getSExtValue() const {
- if (isSingleWord())
- return SignExtend64(U.VAL, BitWidth);
- assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
- return int64_t(U.pVal[0]);
- }
- /// Get bits required for string value.
- ///
- /// This method determines how many bits are required to hold the APInt
- /// equivalent of the string given by \p str.
- static unsigned getBitsNeeded(StringRef str, uint8_t radix);
- /// The APInt version of the countLeadingZeros functions in
- /// MathExtras.h.
- ///
- /// It counts the number of zeros from the most significant bit to the first
- /// one bit.
- ///
- /// \returns BitWidth if the value is zero, otherwise returns the number of
- /// zeros from the most significant bit to the first one bits.
- unsigned countLeadingZeros() const {
- if (isSingleWord()) {
- unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
- return llvm::countLeadingZeros(U.VAL) - unusedBits;
- }
- return countLeadingZerosSlowCase();
- }
- /// Count the number of leading one bits.
- ///
- /// This function is an APInt version of the countLeadingOnes
- /// functions in MathExtras.h. It counts the number of ones from the most
- /// significant bit to the first zero bit.
- ///
- /// \returns 0 if the high order bit is not set, otherwise returns the number
- /// of 1 bits from the most significant to the least
- unsigned countLeadingOnes() const {
- if (isSingleWord())
- return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
- return countLeadingOnesSlowCase();
- }
- /// Computes the number of leading bits of this APInt that are equal to its
- /// sign bit.
- unsigned getNumSignBits() const {
- return isNegative() ? countLeadingOnes() : countLeadingZeros();
- }
- /// Count the number of trailing zero bits.
- ///
- /// This function is an APInt version of the countTrailingZeros
- /// functions in MathExtras.h. It counts the number of zeros from the least
- /// significant bit to the first set bit.
- ///
- /// \returns BitWidth if the value is zero, otherwise returns the number of
- /// zeros from the least significant bit to the first one bit.
- unsigned countTrailingZeros() const {
- if (isSingleWord())
- return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
- return countTrailingZerosSlowCase();
- }
- /// Count the number of trailing one bits.
- ///
- /// This function is an APInt version of the countTrailingOnes
- /// functions in MathExtras.h. It counts the number of ones from the least
- /// significant bit to the first zero bit.
- ///
- /// \returns BitWidth if the value is all ones, otherwise returns the number
- /// of ones from the least significant bit to the first zero bit.
- unsigned countTrailingOnes() const {
- if (isSingleWord())
- return llvm::countTrailingOnes(U.VAL);
- return countTrailingOnesSlowCase();
- }
- /// Count the number of bits set.
- ///
- /// This function is an APInt version of the countPopulation functions
- /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
- ///
- /// \returns 0 if the value is zero, otherwise returns the number of set bits.
- unsigned countPopulation() const {
- if (isSingleWord())
- return llvm::countPopulation(U.VAL);
- return countPopulationSlowCase();
- }
- /// @}
- /// \name Conversion Functions
- /// @{
- void print(raw_ostream &OS, bool isSigned) const;
- /// Converts an APInt to a string and append it to Str. Str is commonly a
- /// SmallString.
- void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
- bool formatAsCLiteral = false) const;
- /// Considers the APInt to be unsigned and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10 16, or 36.
- void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
- toString(Str, Radix, false, false);
- }
- /// Considers the APInt to be signed and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10, 16, or 36.
- void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
- toString(Str, Radix, true, false);
- }
- /// Return the APInt as a std::string.
- ///
- /// Note that this is an inefficient method. It is better to pass in a
- /// SmallVector/SmallString to the methods above to avoid thrashing the heap
- /// for the string.
- std::string toString(unsigned Radix, bool Signed) const;
- /// \returns a byte-swapped representation of this APInt Value.
- APInt byteSwap() const;
- /// \returns the value with the bit representation reversed of this APInt
- /// Value.
- APInt reverseBits() const;
- /// Converts this APInt to a double value.
- double roundToDouble(bool isSigned) const;
- /// Converts this unsigned APInt to a double value.
- double roundToDouble() const { return roundToDouble(false); }
- /// Converts this signed APInt to a double value.
- double signedRoundToDouble() const { return roundToDouble(true); }
- /// Converts APInt bits to a double
- ///
- /// The conversion does not do a translation from integer to double, it just
- /// re-interprets the bits as a double. Note that it is valid to do this on
- /// any bit width. Exactly 64 bits will be translated.
- double bitsToDouble() const {
- return BitsToDouble(getWord(0));
- }
- /// Converts APInt bits to a float
- ///
- /// The conversion does not do a translation from integer to float, it just
- /// re-interprets the bits as a float. Note that it is valid to do this on
- /// any bit width. Exactly 32 bits will be translated.
- float bitsToFloat() const {
- return BitsToFloat(static_cast<uint32_t>(getWord(0)));
- }
- /// Converts a double to APInt bits.
- ///
- /// The conversion does not do a translation from double to integer, it just
- /// re-interprets the bits of the double.
- static APInt doubleToBits(double V) {
- return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
- }
- /// Converts a float to APInt bits.
- ///
- /// The conversion does not do a translation from float to integer, it just
- /// re-interprets the bits of the float.
- static APInt floatToBits(float V) {
- return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
- }
- /// @}
- /// \name Mathematics Operations
- /// @{
- /// \returns the floor log base 2 of this APInt.
- unsigned logBase2() const { return getActiveBits() - 1; }
- /// \returns the ceil log base 2 of this APInt.
- unsigned ceilLogBase2() const {
- APInt temp(*this);
- --temp;
- return temp.getActiveBits();
- }
- /// \returns the nearest log base 2 of this APInt. Ties round up.
- ///
- /// NOTE: When we have a BitWidth of 1, we define:
- ///
- /// log2(0) = UINT32_MAX
- /// log2(1) = 0
- ///
- /// to get around any mathematical concerns resulting from
- /// referencing 2 in a space where 2 does no exist.
- unsigned nearestLogBase2() const {
- // Special case when we have a bitwidth of 1. If VAL is 1, then we
- // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
- // UINT32_MAX.
- if (BitWidth == 1)
- return U.VAL - 1;
- // Handle the zero case.
- if (isNullValue())
- return UINT32_MAX;
- // The non-zero case is handled by computing:
- //
- // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
- //
- // where x[i] is referring to the value of the ith bit of x.
- unsigned lg = logBase2();
- return lg + unsigned((*this)[lg - 1]);
- }
- /// \returns the log base 2 of this APInt if its an exact power of two, -1
- /// otherwise
- int32_t exactLogBase2() const {
- if (!isPowerOf2())
- return -1;
- return logBase2();
- }
- /// Compute the square root
- APInt sqrt() const;
- /// Get the absolute value;
- ///
- /// If *this is < 0 then return -(*this), otherwise *this;
- APInt abs() const {
- if (isNegative())
- return -(*this);
- return *this;
- }
- /// \returns the multiplicative inverse for a given modulo.
- APInt multiplicativeInverse(const APInt &modulo) const;
- /// @}
- /// \name Support for division by constant
- /// @{
- /// Calculate the magic number for signed division by a constant.
- struct ms;
- ms magic() const;
- /// Calculate the magic number for unsigned division by a constant.
- struct mu;
- mu magicu(unsigned LeadingZeros = 0) const;
- /// @}
- /// \name Building-block Operations for APInt and APFloat
- /// @{
- // These building block operations operate on a representation of arbitrary
- // precision, two's-complement, bignum integer values. They should be
- // sufficient to implement APInt and APFloat bignum requirements. Inputs are
- // generally a pointer to the base of an array of integer parts, representing
- // an unsigned bignum, and a count of how many parts there are.
- /// Sets the least significant part of a bignum to the input value, and zeroes
- /// out higher parts.
- static void tcSet(WordType *, WordType, unsigned);
- /// Assign one bignum to another.
- static void tcAssign(WordType *, const WordType *, unsigned);
- /// Returns true if a bignum is zero, false otherwise.
- static bool tcIsZero(const WordType *, unsigned);
- /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
- static int tcExtractBit(const WordType *, unsigned bit);
- /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
- /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
- /// significant bit of DST. All high bits above srcBITS in DST are
- /// zero-filled.
- static void tcExtract(WordType *, unsigned dstCount,
- const WordType *, unsigned srcBits,
- unsigned srcLSB);
- /// Set the given bit of a bignum. Zero-based.
- static void tcSetBit(WordType *, unsigned bit);
- /// Clear the given bit of a bignum. Zero-based.
- static void tcClearBit(WordType *, unsigned bit);
- /// Returns the bit number of the least or most significant set bit of a
- /// number. If the input number has no bits set -1U is returned.
- static unsigned tcLSB(const WordType *, unsigned n);
- static unsigned tcMSB(const WordType *parts, unsigned n);
- /// Negate a bignum in-place.
- static void tcNegate(WordType *, unsigned);
- /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
- static WordType tcAdd(WordType *, const WordType *,
- WordType carry, unsigned);
- /// DST += RHS. Returns the carry flag.
- static WordType tcAddPart(WordType *, WordType, unsigned);
- /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
- static WordType tcSubtract(WordType *, const WordType *,
- WordType carry, unsigned);
- /// DST -= RHS. Returns the carry flag.
- static WordType tcSubtractPart(WordType *, WordType, unsigned);
- /// DST += SRC * MULTIPLIER + PART if add is true
- /// DST = SRC * MULTIPLIER + PART if add is false
- ///
- /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
- /// start at the same point, i.e. DST == SRC.
- ///
- /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
- /// Otherwise DST is filled with the least significant DSTPARTS parts of the
- /// result, and if all of the omitted higher parts were zero return zero,
- /// otherwise overflow occurred and return one.
- static int tcMultiplyPart(WordType *dst, const WordType *src,
- WordType multiplier, WordType carry,
- unsigned srcParts, unsigned dstParts,
- bool add);
- /// DST = LHS * RHS, where DST has the same width as the operands and is
- /// filled with the least significant parts of the result. Returns one if
- /// overflow occurred, otherwise zero. DST must be disjoint from both
- /// operands.
- static int tcMultiply(WordType *, const WordType *, const WordType *,
- unsigned);
- /// DST = LHS * RHS, where DST has width the sum of the widths of the
- /// operands. No overflow occurs. DST must be disjoint from both operands.
- static void tcFullMultiply(WordType *, const WordType *,
- const WordType *, unsigned, unsigned);
- /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
- /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
- /// REMAINDER to the remainder, return zero. i.e.
- ///
- /// OLD_LHS = RHS * LHS + REMAINDER
- ///
- /// SCRATCH is a bignum of the same size as the operands and result for use by
- /// the routine; its contents need not be initialized and are destroyed. LHS,
- /// REMAINDER and SCRATCH must be distinct.
- static int tcDivide(WordType *lhs, const WordType *rhs,
- WordType *remainder, WordType *scratch,
- unsigned parts);
- /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
- /// restrictions on Count.
- static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
- /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
- /// restrictions on Count.
- static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
- /// The obvious AND, OR and XOR and complement operations.
- static void tcAnd(WordType *, const WordType *, unsigned);
- static void tcOr(WordType *, const WordType *, unsigned);
- static void tcXor(WordType *, const WordType *, unsigned);
- static void tcComplement(WordType *, unsigned);
- /// Comparison (unsigned) of two bignums.
- static int tcCompare(const WordType *, const WordType *, unsigned);
- /// Increment a bignum in-place. Return the carry flag.
- static WordType tcIncrement(WordType *dst, unsigned parts) {
- return tcAddPart(dst, 1, parts);
- }
- /// Decrement a bignum in-place. Return the borrow flag.
- static WordType tcDecrement(WordType *dst, unsigned parts) {
- return tcSubtractPart(dst, 1, parts);
- }
- /// Set the least significant BITS and clear the rest.
- static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
- /// debug method
- void dump() const;
- /// @}
- };
- /// Magic data for optimising signed division by a constant.
- struct APInt::ms {
- APInt m; ///< magic number
- unsigned s; ///< shift amount
- };
- /// Magic data for optimising unsigned division by a constant.
- struct APInt::mu {
- APInt m; ///< magic number
- bool a; ///< add indicator
- unsigned s; ///< shift amount
- };
- inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
- inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
- /// Unary bitwise complement operator.
- ///
- /// \returns an APInt that is the bitwise complement of \p v.
- inline APInt operator~(APInt v) {
- v.flipAllBits();
- return v;
- }
- inline APInt operator&(APInt a, const APInt &b) {
- a &= b;
- return a;
- }
- inline APInt operator&(const APInt &a, APInt &&b) {
- b &= a;
- return std::move(b);
- }
- inline APInt operator&(APInt a, uint64_t RHS) {
- a &= RHS;
- return a;
- }
- inline APInt operator&(uint64_t LHS, APInt b) {
- b &= LHS;
- return b;
- }
- inline APInt operator|(APInt a, const APInt &b) {
- a |= b;
- return a;
- }
- inline APInt operator|(const APInt &a, APInt &&b) {
- b |= a;
- return std::move(b);
- }
- inline APInt operator|(APInt a, uint64_t RHS) {
- a |= RHS;
- return a;
- }
- inline APInt operator|(uint64_t LHS, APInt b) {
- b |= LHS;
- return b;
- }
- inline APInt operator^(APInt a, const APInt &b) {
- a ^= b;
- return a;
- }
- inline APInt operator^(const APInt &a, APInt &&b) {
- b ^= a;
- return std::move(b);
- }
- inline APInt operator^(APInt a, uint64_t RHS) {
- a ^= RHS;
- return a;
- }
- inline APInt operator^(uint64_t LHS, APInt b) {
- b ^= LHS;
- return b;
- }
- inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
- I.print(OS, true);
- return OS;
- }
- inline APInt operator-(APInt v) {
- v.negate();
- return v;
- }
- inline APInt operator+(APInt a, const APInt &b) {
- a += b;
- return a;
- }
- inline APInt operator+(const APInt &a, APInt &&b) {
- b += a;
- return std::move(b);
- }
- inline APInt operator+(APInt a, uint64_t RHS) {
- a += RHS;
- return a;
- }
- inline APInt operator+(uint64_t LHS, APInt b) {
- b += LHS;
- return b;
- }
- inline APInt operator-(APInt a, const APInt &b) {
- a -= b;
- return a;
- }
- inline APInt operator-(const APInt &a, APInt &&b) {
- b.negate();
- b += a;
- return std::move(b);
- }
- inline APInt operator-(APInt a, uint64_t RHS) {
- a -= RHS;
- return a;
- }
- inline APInt operator-(uint64_t LHS, APInt b) {
- b.negate();
- b += LHS;
- return b;
- }
- inline APInt operator*(APInt a, uint64_t RHS) {
- a *= RHS;
- return a;
- }
- inline APInt operator*(uint64_t LHS, APInt b) {
- b *= LHS;
- return b;
- }
- namespace APIntOps {
- /// Determine the smaller of two APInts considered to be signed.
- inline const APInt &smin(const APInt &A, const APInt &B) {
- return A.slt(B) ? A : B;
- }
- /// Determine the larger of two APInts considered to be signed.
- inline const APInt &smax(const APInt &A, const APInt &B) {
- return A.sgt(B) ? A : B;
- }
- /// Determine the smaller of two APInts considered to be signed.
- inline const APInt &umin(const APInt &A, const APInt &B) {
- return A.ult(B) ? A : B;
- }
- /// Determine the larger of two APInts considered to be unsigned.
- inline const APInt &umax(const APInt &A, const APInt &B) {
- return A.ugt(B) ? A : B;
- }
- /// Compute GCD of two unsigned APInt values.
- ///
- /// This function returns the greatest common divisor of the two APInt values
- /// using Stein's algorithm.
- ///
- /// \returns the greatest common divisor of A and B.
- APInt GreatestCommonDivisor(APInt A, APInt B);
- /// Converts the given APInt to a double value.
- ///
- /// Treats the APInt as an unsigned value for conversion purposes.
- inline double RoundAPIntToDouble(const APInt &APIVal) {
- return APIVal.roundToDouble();
- }
- /// Converts the given APInt to a double value.
- ///
- /// Treats the APInt as a signed value for conversion purposes.
- inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
- return APIVal.signedRoundToDouble();
- }
- /// Converts the given APInt to a float vlalue.
- inline float RoundAPIntToFloat(const APInt &APIVal) {
- return float(RoundAPIntToDouble(APIVal));
- }
- /// Converts the given APInt to a float value.
- ///
- /// Treats the APInt as a signed value for conversion purposes.
- inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
- return float(APIVal.signedRoundToDouble());
- }
- /// Converts the given double value into a APInt.
- ///
- /// This function convert a double value to an APInt value.
- APInt RoundDoubleToAPInt(double Double, unsigned width);
- /// Converts a float value into a APInt.
- ///
- /// Converts a float value into an APInt value.
- inline APInt RoundFloatToAPInt(float Float, unsigned width) {
- return RoundDoubleToAPInt(double(Float), width);
- }
- /// Return A unsign-divided by B, rounded by the given rounding mode.
- APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
- /// Return A sign-divided by B, rounded by the given rounding mode.
- APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
- /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
- /// (e.g. 32 for i32).
- /// This function finds the smallest number n, such that
- /// (a) n >= 0 and q(n) = 0, or
- /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
- /// integers, belong to two different intervals [Rk, Rk+R),
- /// where R = 2^BW, and k is an integer.
- /// The idea here is to find when q(n) "overflows" 2^BW, while at the
- /// same time "allowing" subtraction. In unsigned modulo arithmetic a
- /// subtraction (treated as addition of negated numbers) would always
- /// count as an overflow, but here we want to allow values to decrease
- /// and increase as long as they are within the same interval.
- /// Specifically, adding of two negative numbers should not cause an
- /// overflow (as long as the magnitude does not exceed the bit width).
- /// On the other hand, given a positive number, adding a negative
- /// number to it can give a negative result, which would cause the
- /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
- /// treated as a special case of an overflow.
- ///
- /// This function returns None if after finding k that minimizes the
- /// positive solution to q(n) = kR, both solutions are contained between
- /// two consecutive integers.
- ///
- /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
- /// in arithmetic modulo 2^BW, and treating the values as signed) by the
- /// virtue of *signed* overflow. This function will *not* find such an n,
- /// however it may find a value of n satisfying the inequalities due to
- /// an *unsigned* overflow (if the values are treated as unsigned).
- /// To find a solution for a signed overflow, treat it as a problem of
- /// finding an unsigned overflow with a range with of BW-1.
- ///
- /// The returned value may have a different bit width from the input
- /// coefficients.
- Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
- unsigned RangeWidth);
- /// Compare two values, and if they are different, return the position of the
- /// most significant bit that is different in the values.
- Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
- const APInt &B);
- } // End of APIntOps namespace
- // See friend declaration above. This additional declaration is required in
- // order to compile LLVM with IBM xlC compiler.
- hash_code hash_value(const APInt &Arg);
- /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
- /// with the integer held in IntVal.
- void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
- /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
- /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
- void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|