12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631 |
- //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "MCTargetDesc/X86BaseInfo.h"
- #include "MCTargetDesc/X86FixupKinds.h"
- #include "llvm/ADT/StringSwitch.h"
- #include "llvm/BinaryFormat/ELF.h"
- #include "llvm/BinaryFormat/MachO.h"
- #include "llvm/MC/MCAsmBackend.h"
- #include "llvm/MC/MCAsmLayout.h"
- #include "llvm/MC/MCAssembler.h"
- #include "llvm/MC/MCCodeEmitter.h"
- #include "llvm/MC/MCContext.h"
- #include "llvm/MC/MCDwarf.h"
- #include "llvm/MC/MCELFObjectWriter.h"
- #include "llvm/MC/MCExpr.h"
- #include "llvm/MC/MCFixupKindInfo.h"
- #include "llvm/MC/MCInst.h"
- #include "llvm/MC/MCInstrInfo.h"
- #include "llvm/MC/MCMachObjectWriter.h"
- #include "llvm/MC/MCObjectStreamer.h"
- #include "llvm/MC/MCObjectWriter.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/MC/MCSectionMachO.h"
- #include "llvm/MC/MCSubtargetInfo.h"
- #include "llvm/MC/MCValue.h"
- #include "llvm/MC/TargetRegistry.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- namespace {
- /// A wrapper for holding a mask of the values from X86::AlignBranchBoundaryKind
- class X86AlignBranchKind {
- private:
- uint8_t AlignBranchKind = 0;
- public:
- void operator=(const std::string &Val) {
- if (Val.empty())
- return;
- SmallVector<StringRef, 6> BranchTypes;
- StringRef(Val).split(BranchTypes, '+', -1, false);
- for (auto BranchType : BranchTypes) {
- if (BranchType == "fused")
- addKind(X86::AlignBranchFused);
- else if (BranchType == "jcc")
- addKind(X86::AlignBranchJcc);
- else if (BranchType == "jmp")
- addKind(X86::AlignBranchJmp);
- else if (BranchType == "call")
- addKind(X86::AlignBranchCall);
- else if (BranchType == "ret")
- addKind(X86::AlignBranchRet);
- else if (BranchType == "indirect")
- addKind(X86::AlignBranchIndirect);
- else {
- errs() << "invalid argument " << BranchType.str()
- << " to -x86-align-branch=; each element must be one of: fused, "
- "jcc, jmp, call, ret, indirect.(plus separated)\n";
- }
- }
- }
- operator uint8_t() const { return AlignBranchKind; }
- void addKind(X86::AlignBranchBoundaryKind Value) { AlignBranchKind |= Value; }
- };
- X86AlignBranchKind X86AlignBranchKindLoc;
- cl::opt<unsigned> X86AlignBranchBoundary(
- "x86-align-branch-boundary", cl::init(0),
- cl::desc(
- "Control how the assembler should align branches with NOP. If the "
- "boundary's size is not 0, it should be a power of 2 and no less "
- "than 32. Branches will be aligned to prevent from being across or "
- "against the boundary of specified size. The default value 0 does not "
- "align branches."));
- cl::opt<X86AlignBranchKind, true, cl::parser<std::string>> X86AlignBranch(
- "x86-align-branch",
- cl::desc(
- "Specify types of branches to align (plus separated list of types):"
- "\njcc indicates conditional jumps"
- "\nfused indicates fused conditional jumps"
- "\njmp indicates direct unconditional jumps"
- "\ncall indicates direct and indirect calls"
- "\nret indicates rets"
- "\nindirect indicates indirect unconditional jumps"),
- cl::location(X86AlignBranchKindLoc));
- cl::opt<bool> X86AlignBranchWithin32BBoundaries(
- "x86-branches-within-32B-boundaries", cl::init(false),
- cl::desc(
- "Align selected instructions to mitigate negative performance impact "
- "of Intel's micro code update for errata skx102. May break "
- "assumptions about labels corresponding to particular instructions, "
- "and should be used with caution."));
- cl::opt<unsigned> X86PadMaxPrefixSize(
- "x86-pad-max-prefix-size", cl::init(0),
- cl::desc("Maximum number of prefixes to use for padding"));
- cl::opt<bool> X86PadForAlign(
- "x86-pad-for-align", cl::init(false), cl::Hidden,
- cl::desc("Pad previous instructions to implement align directives"));
- cl::opt<bool> X86PadForBranchAlign(
- "x86-pad-for-branch-align", cl::init(true), cl::Hidden,
- cl::desc("Pad previous instructions to implement branch alignment"));
- class X86AsmBackend : public MCAsmBackend {
- const MCSubtargetInfo &STI;
- std::unique_ptr<const MCInstrInfo> MCII;
- X86AlignBranchKind AlignBranchType;
- Align AlignBoundary;
- unsigned TargetPrefixMax = 0;
- MCInst PrevInst;
- MCBoundaryAlignFragment *PendingBA = nullptr;
- std::pair<MCFragment *, size_t> PrevInstPosition;
- bool CanPadInst;
- uint8_t determinePaddingPrefix(const MCInst &Inst) const;
- bool isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const;
- bool needAlign(const MCInst &Inst) const;
- bool canPadBranches(MCObjectStreamer &OS) const;
- bool canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const;
- public:
- X86AsmBackend(const Target &T, const MCSubtargetInfo &STI)
- : MCAsmBackend(support::little), STI(STI),
- MCII(T.createMCInstrInfo()) {
- if (X86AlignBranchWithin32BBoundaries) {
- // At the moment, this defaults to aligning fused branches, unconditional
- // jumps, and (unfused) conditional jumps with nops. Both the
- // instructions aligned and the alignment method (nop vs prefix) may
- // change in the future.
- AlignBoundary = assumeAligned(32);;
- AlignBranchType.addKind(X86::AlignBranchFused);
- AlignBranchType.addKind(X86::AlignBranchJcc);
- AlignBranchType.addKind(X86::AlignBranchJmp);
- }
- // Allow overriding defaults set by main flag
- if (X86AlignBranchBoundary.getNumOccurrences())
- AlignBoundary = assumeAligned(X86AlignBranchBoundary);
- if (X86AlignBranch.getNumOccurrences())
- AlignBranchType = X86AlignBranchKindLoc;
- if (X86PadMaxPrefixSize.getNumOccurrences())
- TargetPrefixMax = X86PadMaxPrefixSize;
- }
- bool allowAutoPadding() const override;
- bool allowEnhancedRelaxation() const override;
- void emitInstructionBegin(MCObjectStreamer &OS, const MCInst &Inst,
- const MCSubtargetInfo &STI) override;
- void emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst) override;
- unsigned getNumFixupKinds() const override {
- return X86::NumTargetFixupKinds;
- }
- Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
- const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
- bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
- const MCValue &Target) override;
- void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
- const MCValue &Target, MutableArrayRef<char> Data,
- uint64_t Value, bool IsResolved,
- const MCSubtargetInfo *STI) const override;
- bool mayNeedRelaxation(const MCInst &Inst,
- const MCSubtargetInfo &STI) const override;
- bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
- const MCRelaxableFragment *DF,
- const MCAsmLayout &Layout) const override;
- void relaxInstruction(MCInst &Inst,
- const MCSubtargetInfo &STI) const override;
- bool padInstructionViaRelaxation(MCRelaxableFragment &RF,
- MCCodeEmitter &Emitter,
- unsigned &RemainingSize) const;
- bool padInstructionViaPrefix(MCRelaxableFragment &RF, MCCodeEmitter &Emitter,
- unsigned &RemainingSize) const;
- bool padInstructionEncoding(MCRelaxableFragment &RF, MCCodeEmitter &Emitter,
- unsigned &RemainingSize) const;
- void finishLayout(MCAssembler const &Asm, MCAsmLayout &Layout) const override;
- unsigned getMaximumNopSize(const MCSubtargetInfo &STI) const override;
- bool writeNopData(raw_ostream &OS, uint64_t Count,
- const MCSubtargetInfo *STI) const override;
- };
- } // end anonymous namespace
- static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool Is16BitMode) {
- unsigned Op = Inst.getOpcode();
- switch (Op) {
- default:
- return Op;
- case X86::JCC_1:
- return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4;
- case X86::JMP_1:
- return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4;
- }
- }
- static unsigned getRelaxedOpcodeArith(const MCInst &Inst) {
- unsigned Op = Inst.getOpcode();
- switch (Op) {
- default:
- return Op;
- // IMUL
- case X86::IMUL16rri8: return X86::IMUL16rri;
- case X86::IMUL16rmi8: return X86::IMUL16rmi;
- case X86::IMUL32rri8: return X86::IMUL32rri;
- case X86::IMUL32rmi8: return X86::IMUL32rmi;
- case X86::IMUL64rri8: return X86::IMUL64rri32;
- case X86::IMUL64rmi8: return X86::IMUL64rmi32;
- // AND
- case X86::AND16ri8: return X86::AND16ri;
- case X86::AND16mi8: return X86::AND16mi;
- case X86::AND32ri8: return X86::AND32ri;
- case X86::AND32mi8: return X86::AND32mi;
- case X86::AND64ri8: return X86::AND64ri32;
- case X86::AND64mi8: return X86::AND64mi32;
- // OR
- case X86::OR16ri8: return X86::OR16ri;
- case X86::OR16mi8: return X86::OR16mi;
- case X86::OR32ri8: return X86::OR32ri;
- case X86::OR32mi8: return X86::OR32mi;
- case X86::OR64ri8: return X86::OR64ri32;
- case X86::OR64mi8: return X86::OR64mi32;
- // XOR
- case X86::XOR16ri8: return X86::XOR16ri;
- case X86::XOR16mi8: return X86::XOR16mi;
- case X86::XOR32ri8: return X86::XOR32ri;
- case X86::XOR32mi8: return X86::XOR32mi;
- case X86::XOR64ri8: return X86::XOR64ri32;
- case X86::XOR64mi8: return X86::XOR64mi32;
- // ADD
- case X86::ADD16ri8: return X86::ADD16ri;
- case X86::ADD16mi8: return X86::ADD16mi;
- case X86::ADD32ri8: return X86::ADD32ri;
- case X86::ADD32mi8: return X86::ADD32mi;
- case X86::ADD64ri8: return X86::ADD64ri32;
- case X86::ADD64mi8: return X86::ADD64mi32;
- // ADC
- case X86::ADC16ri8: return X86::ADC16ri;
- case X86::ADC16mi8: return X86::ADC16mi;
- case X86::ADC32ri8: return X86::ADC32ri;
- case X86::ADC32mi8: return X86::ADC32mi;
- case X86::ADC64ri8: return X86::ADC64ri32;
- case X86::ADC64mi8: return X86::ADC64mi32;
- // SUB
- case X86::SUB16ri8: return X86::SUB16ri;
- case X86::SUB16mi8: return X86::SUB16mi;
- case X86::SUB32ri8: return X86::SUB32ri;
- case X86::SUB32mi8: return X86::SUB32mi;
- case X86::SUB64ri8: return X86::SUB64ri32;
- case X86::SUB64mi8: return X86::SUB64mi32;
- // SBB
- case X86::SBB16ri8: return X86::SBB16ri;
- case X86::SBB16mi8: return X86::SBB16mi;
- case X86::SBB32ri8: return X86::SBB32ri;
- case X86::SBB32mi8: return X86::SBB32mi;
- case X86::SBB64ri8: return X86::SBB64ri32;
- case X86::SBB64mi8: return X86::SBB64mi32;
- // CMP
- case X86::CMP16ri8: return X86::CMP16ri;
- case X86::CMP16mi8: return X86::CMP16mi;
- case X86::CMP32ri8: return X86::CMP32ri;
- case X86::CMP32mi8: return X86::CMP32mi;
- case X86::CMP64ri8: return X86::CMP64ri32;
- case X86::CMP64mi8: return X86::CMP64mi32;
- // PUSH
- case X86::PUSH32i8: return X86::PUSHi32;
- case X86::PUSH16i8: return X86::PUSHi16;
- case X86::PUSH64i8: return X86::PUSH64i32;
- }
- }
- static unsigned getRelaxedOpcode(const MCInst &Inst, bool Is16BitMode) {
- unsigned R = getRelaxedOpcodeArith(Inst);
- if (R != Inst.getOpcode())
- return R;
- return getRelaxedOpcodeBranch(Inst, Is16BitMode);
- }
- static X86::CondCode getCondFromBranch(const MCInst &MI,
- const MCInstrInfo &MCII) {
- unsigned Opcode = MI.getOpcode();
- switch (Opcode) {
- default:
- return X86::COND_INVALID;
- case X86::JCC_1: {
- const MCInstrDesc &Desc = MCII.get(Opcode);
- return static_cast<X86::CondCode>(
- MI.getOperand(Desc.getNumOperands() - 1).getImm());
- }
- }
- }
- static X86::SecondMacroFusionInstKind
- classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII) {
- X86::CondCode CC = getCondFromBranch(MI, MCII);
- return classifySecondCondCodeInMacroFusion(CC);
- }
- /// Check if the instruction uses RIP relative addressing.
- static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII) {
- unsigned Opcode = MI.getOpcode();
- const MCInstrDesc &Desc = MCII.get(Opcode);
- uint64_t TSFlags = Desc.TSFlags;
- unsigned CurOp = X86II::getOperandBias(Desc);
- int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
- if (MemoryOperand < 0)
- return false;
- unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg;
- unsigned BaseReg = MI.getOperand(BaseRegNum).getReg();
- return (BaseReg == X86::RIP);
- }
- /// Check if the instruction is a prefix.
- static bool isPrefix(const MCInst &MI, const MCInstrInfo &MCII) {
- return X86II::isPrefix(MCII.get(MI.getOpcode()).TSFlags);
- }
- /// Check if the instruction is valid as the first instruction in macro fusion.
- static bool isFirstMacroFusibleInst(const MCInst &Inst,
- const MCInstrInfo &MCII) {
- // An Intel instruction with RIP relative addressing is not macro fusible.
- if (isRIPRelative(Inst, MCII))
- return false;
- X86::FirstMacroFusionInstKind FIK =
- X86::classifyFirstOpcodeInMacroFusion(Inst.getOpcode());
- return FIK != X86::FirstMacroFusionInstKind::Invalid;
- }
- /// X86 can reduce the bytes of NOP by padding instructions with prefixes to
- /// get a better peformance in some cases. Here, we determine which prefix is
- /// the most suitable.
- ///
- /// If the instruction has a segment override prefix, use the existing one.
- /// If the target is 64-bit, use the CS.
- /// If the target is 32-bit,
- /// - If the instruction has a ESP/EBP base register, use SS.
- /// - Otherwise use DS.
- uint8_t X86AsmBackend::determinePaddingPrefix(const MCInst &Inst) const {
- assert((STI.hasFeature(X86::Mode32Bit) || STI.hasFeature(X86::Mode64Bit)) &&
- "Prefixes can be added only in 32-bit or 64-bit mode.");
- const MCInstrDesc &Desc = MCII->get(Inst.getOpcode());
- uint64_t TSFlags = Desc.TSFlags;
- // Determine where the memory operand starts, if present.
- int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
- if (MemoryOperand != -1)
- MemoryOperand += X86II::getOperandBias(Desc);
- unsigned SegmentReg = 0;
- if (MemoryOperand >= 0) {
- // Check for explicit segment override on memory operand.
- SegmentReg = Inst.getOperand(MemoryOperand + X86::AddrSegmentReg).getReg();
- }
- switch (TSFlags & X86II::FormMask) {
- default:
- break;
- case X86II::RawFrmDstSrc: {
- // Check segment override opcode prefix as needed (not for %ds).
- if (Inst.getOperand(2).getReg() != X86::DS)
- SegmentReg = Inst.getOperand(2).getReg();
- break;
- }
- case X86II::RawFrmSrc: {
- // Check segment override opcode prefix as needed (not for %ds).
- if (Inst.getOperand(1).getReg() != X86::DS)
- SegmentReg = Inst.getOperand(1).getReg();
- break;
- }
- case X86II::RawFrmMemOffs: {
- // Check segment override opcode prefix as needed.
- SegmentReg = Inst.getOperand(1).getReg();
- break;
- }
- }
- if (SegmentReg != 0)
- return X86::getSegmentOverridePrefixForReg(SegmentReg);
- if (STI.hasFeature(X86::Mode64Bit))
- return X86::CS_Encoding;
- if (MemoryOperand >= 0) {
- unsigned BaseRegNum = MemoryOperand + X86::AddrBaseReg;
- unsigned BaseReg = Inst.getOperand(BaseRegNum).getReg();
- if (BaseReg == X86::ESP || BaseReg == X86::EBP)
- return X86::SS_Encoding;
- }
- return X86::DS_Encoding;
- }
- /// Check if the two instructions will be macro-fused on the target cpu.
- bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const {
- const MCInstrDesc &InstDesc = MCII->get(Jcc.getOpcode());
- if (!InstDesc.isConditionalBranch())
- return false;
- if (!isFirstMacroFusibleInst(Cmp, *MCII))
- return false;
- const X86::FirstMacroFusionInstKind CmpKind =
- X86::classifyFirstOpcodeInMacroFusion(Cmp.getOpcode());
- const X86::SecondMacroFusionInstKind BranchKind =
- classifySecondInstInMacroFusion(Jcc, *MCII);
- return X86::isMacroFused(CmpKind, BranchKind);
- }
- /// Check if the instruction has a variant symbol operand.
- static bool hasVariantSymbol(const MCInst &MI) {
- for (auto &Operand : MI) {
- if (!Operand.isExpr())
- continue;
- const MCExpr &Expr = *Operand.getExpr();
- if (Expr.getKind() == MCExpr::SymbolRef &&
- cast<MCSymbolRefExpr>(Expr).getKind() != MCSymbolRefExpr::VK_None)
- return true;
- }
- return false;
- }
- bool X86AsmBackend::allowAutoPadding() const {
- return (AlignBoundary != Align(1) && AlignBranchType != X86::AlignBranchNone);
- }
- bool X86AsmBackend::allowEnhancedRelaxation() const {
- return allowAutoPadding() && TargetPrefixMax != 0 && X86PadForBranchAlign;
- }
- /// X86 has certain instructions which enable interrupts exactly one
- /// instruction *after* the instruction which stores to SS. Return true if the
- /// given instruction has such an interrupt delay slot.
- static bool hasInterruptDelaySlot(const MCInst &Inst) {
- switch (Inst.getOpcode()) {
- case X86::POPSS16:
- case X86::POPSS32:
- case X86::STI:
- return true;
- case X86::MOV16sr:
- case X86::MOV32sr:
- case X86::MOV64sr:
- case X86::MOV16sm:
- if (Inst.getOperand(0).getReg() == X86::SS)
- return true;
- break;
- }
- return false;
- }
- /// Check if the instruction to be emitted is right after any data.
- static bool
- isRightAfterData(MCFragment *CurrentFragment,
- const std::pair<MCFragment *, size_t> &PrevInstPosition) {
- MCFragment *F = CurrentFragment;
- // Empty data fragments may be created to prevent further data being
- // added into the previous fragment, we need to skip them since they
- // have no contents.
- for (; isa_and_nonnull<MCDataFragment>(F); F = F->getPrevNode())
- if (cast<MCDataFragment>(F)->getContents().size() != 0)
- break;
- // Since data is always emitted into a DataFragment, our check strategy is
- // simple here.
- // - If the fragment is a DataFragment
- // - If it's not the fragment where the previous instruction is,
- // returns true.
- // - If it's the fragment holding the previous instruction but its
- // size changed since the the previous instruction was emitted into
- // it, returns true.
- // - Otherwise returns false.
- // - If the fragment is not a DataFragment, returns false.
- if (auto *DF = dyn_cast_or_null<MCDataFragment>(F))
- return DF != PrevInstPosition.first ||
- DF->getContents().size() != PrevInstPosition.second;
- return false;
- }
- /// \returns the fragment size if it has instructions, otherwise returns 0.
- static size_t getSizeForInstFragment(const MCFragment *F) {
- if (!F || !F->hasInstructions())
- return 0;
- // MCEncodedFragmentWithContents being templated makes this tricky.
- switch (F->getKind()) {
- default:
- llvm_unreachable("Unknown fragment with instructions!");
- case MCFragment::FT_Data:
- return cast<MCDataFragment>(*F).getContents().size();
- case MCFragment::FT_Relaxable:
- return cast<MCRelaxableFragment>(*F).getContents().size();
- case MCFragment::FT_CompactEncodedInst:
- return cast<MCCompactEncodedInstFragment>(*F).getContents().size();
- }
- }
- /// Return true if we can insert NOP or prefixes automatically before the
- /// the instruction to be emitted.
- bool X86AsmBackend::canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const {
- if (hasVariantSymbol(Inst))
- // Linker may rewrite the instruction with variant symbol operand(e.g.
- // TLSCALL).
- return false;
- if (hasInterruptDelaySlot(PrevInst))
- // If this instruction follows an interrupt enabling instruction with a one
- // instruction delay, inserting a nop would change behavior.
- return false;
- if (isPrefix(PrevInst, *MCII))
- // If this instruction follows a prefix, inserting a nop/prefix would change
- // semantic.
- return false;
- if (isPrefix(Inst, *MCII))
- // If this instruction is a prefix, inserting a prefix would change
- // semantic.
- return false;
- if (isRightAfterData(OS.getCurrentFragment(), PrevInstPosition))
- // If this instruction follows any data, there is no clear
- // instruction boundary, inserting a nop/prefix would change semantic.
- return false;
- return true;
- }
- bool X86AsmBackend::canPadBranches(MCObjectStreamer &OS) const {
- if (!OS.getAllowAutoPadding())
- return false;
- assert(allowAutoPadding() && "incorrect initialization!");
- // We only pad in text section.
- if (!OS.getCurrentSectionOnly()->getKind().isText())
- return false;
- // To be Done: Currently don't deal with Bundle cases.
- if (OS.getAssembler().isBundlingEnabled())
- return false;
- // Branches only need to be aligned in 32-bit or 64-bit mode.
- if (!(STI.hasFeature(X86::Mode64Bit) || STI.hasFeature(X86::Mode32Bit)))
- return false;
- return true;
- }
- /// Check if the instruction operand needs to be aligned.
- bool X86AsmBackend::needAlign(const MCInst &Inst) const {
- const MCInstrDesc &Desc = MCII->get(Inst.getOpcode());
- return (Desc.isConditionalBranch() &&
- (AlignBranchType & X86::AlignBranchJcc)) ||
- (Desc.isUnconditionalBranch() &&
- (AlignBranchType & X86::AlignBranchJmp)) ||
- (Desc.isCall() && (AlignBranchType & X86::AlignBranchCall)) ||
- (Desc.isReturn() && (AlignBranchType & X86::AlignBranchRet)) ||
- (Desc.isIndirectBranch() &&
- (AlignBranchType & X86::AlignBranchIndirect));
- }
- /// Insert BoundaryAlignFragment before instructions to align branches.
- void X86AsmBackend::emitInstructionBegin(MCObjectStreamer &OS,
- const MCInst &Inst, const MCSubtargetInfo &STI) {
- CanPadInst = canPadInst(Inst, OS);
- if (!canPadBranches(OS))
- return;
- if (!isMacroFused(PrevInst, Inst))
- // Macro fusion doesn't happen indeed, clear the pending.
- PendingBA = nullptr;
- if (!CanPadInst)
- return;
- if (PendingBA && OS.getCurrentFragment()->getPrevNode() == PendingBA) {
- // Macro fusion actually happens and there is no other fragment inserted
- // after the previous instruction.
- //
- // Do nothing here since we already inserted a BoudaryAlign fragment when
- // we met the first instruction in the fused pair and we'll tie them
- // together in emitInstructionEnd.
- //
- // Note: When there is at least one fragment, such as MCAlignFragment,
- // inserted after the previous instruction, e.g.
- //
- // \code
- // cmp %rax %rcx
- // .align 16
- // je .Label0
- // \ endcode
- //
- // We will treat the JCC as a unfused branch although it may be fused
- // with the CMP.
- return;
- }
- if (needAlign(Inst) || ((AlignBranchType & X86::AlignBranchFused) &&
- isFirstMacroFusibleInst(Inst, *MCII))) {
- // If we meet a unfused branch or the first instuction in a fusiable pair,
- // insert a BoundaryAlign fragment.
- OS.insert(PendingBA = new MCBoundaryAlignFragment(AlignBoundary, STI));
- }
- }
- /// Set the last fragment to be aligned for the BoundaryAlignFragment.
- void X86AsmBackend::emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst) {
- PrevInst = Inst;
- MCFragment *CF = OS.getCurrentFragment();
- PrevInstPosition = std::make_pair(CF, getSizeForInstFragment(CF));
- if (auto *F = dyn_cast_or_null<MCRelaxableFragment>(CF))
- F->setAllowAutoPadding(CanPadInst);
- if (!canPadBranches(OS))
- return;
- if (!needAlign(Inst) || !PendingBA)
- return;
- // Tie the aligned instructions into a a pending BoundaryAlign.
- PendingBA->setLastFragment(CF);
- PendingBA = nullptr;
- // We need to ensure that further data isn't added to the current
- // DataFragment, so that we can get the size of instructions later in
- // MCAssembler::relaxBoundaryAlign. The easiest way is to insert a new empty
- // DataFragment.
- if (isa_and_nonnull<MCDataFragment>(CF))
- OS.insert(new MCDataFragment());
- // Update the maximum alignment on the current section if necessary.
- MCSection *Sec = OS.getCurrentSectionOnly();
- if (AlignBoundary.value() > Sec->getAlignment())
- Sec->setAlignment(AlignBoundary);
- }
- Optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name) const {
- if (STI.getTargetTriple().isOSBinFormatELF()) {
- unsigned Type;
- if (STI.getTargetTriple().getArch() == Triple::x86_64) {
- Type = llvm::StringSwitch<unsigned>(Name)
- #define ELF_RELOC(X, Y) .Case(#X, Y)
- #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
- #undef ELF_RELOC
- .Case("BFD_RELOC_NONE", ELF::R_X86_64_NONE)
- .Case("BFD_RELOC_8", ELF::R_X86_64_8)
- .Case("BFD_RELOC_16", ELF::R_X86_64_16)
- .Case("BFD_RELOC_32", ELF::R_X86_64_32)
- .Case("BFD_RELOC_64", ELF::R_X86_64_64)
- .Default(-1u);
- } else {
- Type = llvm::StringSwitch<unsigned>(Name)
- #define ELF_RELOC(X, Y) .Case(#X, Y)
- #include "llvm/BinaryFormat/ELFRelocs/i386.def"
- #undef ELF_RELOC
- .Case("BFD_RELOC_NONE", ELF::R_386_NONE)
- .Case("BFD_RELOC_8", ELF::R_386_8)
- .Case("BFD_RELOC_16", ELF::R_386_16)
- .Case("BFD_RELOC_32", ELF::R_386_32)
- .Default(-1u);
- }
- if (Type == -1u)
- return None;
- return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
- }
- return MCAsmBackend::getFixupKind(Name);
- }
- const MCFixupKindInfo &X86AsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
- const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
- {"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
- {"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
- {"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
- {"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
- {"reloc_signed_4byte", 0, 32, 0},
- {"reloc_signed_4byte_relax", 0, 32, 0},
- {"reloc_global_offset_table", 0, 32, 0},
- {"reloc_global_offset_table8", 0, 64, 0},
- {"reloc_branch_4byte_pcrel", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
- };
- // Fixup kinds from .reloc directive are like R_386_NONE/R_X86_64_NONE. They
- // do not require any extra processing.
- if (Kind >= FirstLiteralRelocationKind)
- return MCAsmBackend::getFixupKindInfo(FK_NONE);
- if (Kind < FirstTargetFixupKind)
- return MCAsmBackend::getFixupKindInfo(Kind);
- assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
- "Invalid kind!");
- assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!");
- return Infos[Kind - FirstTargetFixupKind];
- }
- bool X86AsmBackend::shouldForceRelocation(const MCAssembler &,
- const MCFixup &Fixup,
- const MCValue &) {
- return Fixup.getKind() >= FirstLiteralRelocationKind;
- }
- static unsigned getFixupKindSize(unsigned Kind) {
- switch (Kind) {
- default:
- llvm_unreachable("invalid fixup kind!");
- case FK_NONE:
- return 0;
- case FK_PCRel_1:
- case FK_SecRel_1:
- case FK_Data_1:
- return 1;
- case FK_PCRel_2:
- case FK_SecRel_2:
- case FK_Data_2:
- return 2;
- case FK_PCRel_4:
- case X86::reloc_riprel_4byte:
- case X86::reloc_riprel_4byte_relax:
- case X86::reloc_riprel_4byte_relax_rex:
- case X86::reloc_riprel_4byte_movq_load:
- case X86::reloc_signed_4byte:
- case X86::reloc_signed_4byte_relax:
- case X86::reloc_global_offset_table:
- case X86::reloc_branch_4byte_pcrel:
- case FK_SecRel_4:
- case FK_Data_4:
- return 4;
- case FK_PCRel_8:
- case FK_SecRel_8:
- case FK_Data_8:
- case X86::reloc_global_offset_table8:
- return 8;
- }
- }
- void X86AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
- const MCValue &Target,
- MutableArrayRef<char> Data,
- uint64_t Value, bool IsResolved,
- const MCSubtargetInfo *STI) const {
- unsigned Kind = Fixup.getKind();
- if (Kind >= FirstLiteralRelocationKind)
- return;
- unsigned Size = getFixupKindSize(Kind);
- assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!");
- int64_t SignedValue = static_cast<int64_t>(Value);
- if ((Target.isAbsolute() || IsResolved) &&
- getFixupKindInfo(Fixup.getKind()).Flags &
- MCFixupKindInfo::FKF_IsPCRel) {
- // check that PC relative fixup fits into the fixup size.
- if (Size > 0 && !isIntN(Size * 8, SignedValue))
- Asm.getContext().reportError(
- Fixup.getLoc(), "value of " + Twine(SignedValue) +
- " is too large for field of " + Twine(Size) +
- ((Size == 1) ? " byte." : " bytes."));
- } else {
- // Check that uppper bits are either all zeros or all ones.
- // Specifically ignore overflow/underflow as long as the leakage is
- // limited to the lower bits. This is to remain compatible with
- // other assemblers.
- assert((Size == 0 || isIntN(Size * 8 + 1, SignedValue)) &&
- "Value does not fit in the Fixup field");
- }
- for (unsigned i = 0; i != Size; ++i)
- Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
- }
- bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst,
- const MCSubtargetInfo &STI) const {
- // Branches can always be relaxed in either mode.
- if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode())
- return true;
- // Check if this instruction is ever relaxable.
- if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode())
- return false;
- // Check if the relaxable operand has an expression. For the current set of
- // relaxable instructions, the relaxable operand is always the last operand.
- unsigned RelaxableOp = Inst.getNumOperands() - 1;
- if (Inst.getOperand(RelaxableOp).isExpr())
- return true;
- return false;
- }
- bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
- uint64_t Value,
- const MCRelaxableFragment *DF,
- const MCAsmLayout &Layout) const {
- // Relax if the value is too big for a (signed) i8.
- return !isInt<8>(Value);
- }
- // FIXME: Can tblgen help at all here to verify there aren't other instructions
- // we can relax?
- void X86AsmBackend::relaxInstruction(MCInst &Inst,
- const MCSubtargetInfo &STI) const {
- // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
- bool Is16BitMode = STI.getFeatureBits()[X86::Mode16Bit];
- unsigned RelaxedOp = getRelaxedOpcode(Inst, Is16BitMode);
- if (RelaxedOp == Inst.getOpcode()) {
- SmallString<256> Tmp;
- raw_svector_ostream OS(Tmp);
- Inst.dump_pretty(OS);
- OS << "\n";
- report_fatal_error("unexpected instruction to relax: " + OS.str());
- }
- Inst.setOpcode(RelaxedOp);
- }
- /// Return true if this instruction has been fully relaxed into it's most
- /// general available form.
- static bool isFullyRelaxed(const MCRelaxableFragment &RF) {
- auto &Inst = RF.getInst();
- auto &STI = *RF.getSubtargetInfo();
- bool Is16BitMode = STI.getFeatureBits()[X86::Mode16Bit];
- return getRelaxedOpcode(Inst, Is16BitMode) == Inst.getOpcode();
- }
- bool X86AsmBackend::padInstructionViaPrefix(MCRelaxableFragment &RF,
- MCCodeEmitter &Emitter,
- unsigned &RemainingSize) const {
- if (!RF.getAllowAutoPadding())
- return false;
- // If the instruction isn't fully relaxed, shifting it around might require a
- // larger value for one of the fixups then can be encoded. The outer loop
- // will also catch this before moving to the next instruction, but we need to
- // prevent padding this single instruction as well.
- if (!isFullyRelaxed(RF))
- return false;
- const unsigned OldSize = RF.getContents().size();
- if (OldSize == 15)
- return false;
- const unsigned MaxPossiblePad = std::min(15 - OldSize, RemainingSize);
- const unsigned RemainingPrefixSize = [&]() -> unsigned {
- SmallString<15> Code;
- raw_svector_ostream VecOS(Code);
- Emitter.emitPrefix(RF.getInst(), VecOS, STI);
- assert(Code.size() < 15 && "The number of prefixes must be less than 15.");
- // TODO: It turns out we need a decent amount of plumbing for the target
- // specific bits to determine number of prefixes its safe to add. Various
- // targets (older chips mostly, but also Atom family) encounter decoder
- // stalls with too many prefixes. For testing purposes, we set the value
- // externally for the moment.
- unsigned ExistingPrefixSize = Code.size();
- if (TargetPrefixMax <= ExistingPrefixSize)
- return 0;
- return TargetPrefixMax - ExistingPrefixSize;
- }();
- const unsigned PrefixBytesToAdd =
- std::min(MaxPossiblePad, RemainingPrefixSize);
- if (PrefixBytesToAdd == 0)
- return false;
- const uint8_t Prefix = determinePaddingPrefix(RF.getInst());
- SmallString<256> Code;
- Code.append(PrefixBytesToAdd, Prefix);
- Code.append(RF.getContents().begin(), RF.getContents().end());
- RF.getContents() = Code;
- // Adjust the fixups for the change in offsets
- for (auto &F : RF.getFixups()) {
- F.setOffset(F.getOffset() + PrefixBytesToAdd);
- }
- RemainingSize -= PrefixBytesToAdd;
- return true;
- }
- bool X86AsmBackend::padInstructionViaRelaxation(MCRelaxableFragment &RF,
- MCCodeEmitter &Emitter,
- unsigned &RemainingSize) const {
- if (isFullyRelaxed(RF))
- // TODO: There are lots of other tricks we could apply for increasing
- // encoding size without impacting performance.
- return false;
- MCInst Relaxed = RF.getInst();
- relaxInstruction(Relaxed, *RF.getSubtargetInfo());
- SmallVector<MCFixup, 4> Fixups;
- SmallString<15> Code;
- raw_svector_ostream VecOS(Code);
- Emitter.encodeInstruction(Relaxed, VecOS, Fixups, *RF.getSubtargetInfo());
- const unsigned OldSize = RF.getContents().size();
- const unsigned NewSize = Code.size();
- assert(NewSize >= OldSize && "size decrease during relaxation?");
- unsigned Delta = NewSize - OldSize;
- if (Delta > RemainingSize)
- return false;
- RF.setInst(Relaxed);
- RF.getContents() = Code;
- RF.getFixups() = Fixups;
- RemainingSize -= Delta;
- return true;
- }
- bool X86AsmBackend::padInstructionEncoding(MCRelaxableFragment &RF,
- MCCodeEmitter &Emitter,
- unsigned &RemainingSize) const {
- bool Changed = false;
- if (RemainingSize != 0)
- Changed |= padInstructionViaRelaxation(RF, Emitter, RemainingSize);
- if (RemainingSize != 0)
- Changed |= padInstructionViaPrefix(RF, Emitter, RemainingSize);
- return Changed;
- }
- void X86AsmBackend::finishLayout(MCAssembler const &Asm,
- MCAsmLayout &Layout) const {
- // See if we can further relax some instructions to cut down on the number of
- // nop bytes required for code alignment. The actual win is in reducing
- // instruction count, not number of bytes. Modern X86-64 can easily end up
- // decode limited. It is often better to reduce the number of instructions
- // (i.e. eliminate nops) even at the cost of increasing the size and
- // complexity of others.
- if (!X86PadForAlign && !X86PadForBranchAlign)
- return;
- // The processed regions are delimitered by LabeledFragments. -g may have more
- // MCSymbols and therefore different relaxation results. X86PadForAlign is
- // disabled by default to eliminate the -g vs non -g difference.
- DenseSet<MCFragment *> LabeledFragments;
- for (const MCSymbol &S : Asm.symbols())
- LabeledFragments.insert(S.getFragment(false));
- for (MCSection &Sec : Asm) {
- if (!Sec.getKind().isText())
- continue;
- SmallVector<MCRelaxableFragment *, 4> Relaxable;
- for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
- MCFragment &F = *I;
- if (LabeledFragments.count(&F))
- Relaxable.clear();
- if (F.getKind() == MCFragment::FT_Data ||
- F.getKind() == MCFragment::FT_CompactEncodedInst)
- // Skip and ignore
- continue;
- if (F.getKind() == MCFragment::FT_Relaxable) {
- auto &RF = cast<MCRelaxableFragment>(*I);
- Relaxable.push_back(&RF);
- continue;
- }
- auto canHandle = [](MCFragment &F) -> bool {
- switch (F.getKind()) {
- default:
- return false;
- case MCFragment::FT_Align:
- return X86PadForAlign;
- case MCFragment::FT_BoundaryAlign:
- return X86PadForBranchAlign;
- }
- };
- // For any unhandled kind, assume we can't change layout.
- if (!canHandle(F)) {
- Relaxable.clear();
- continue;
- }
- #ifndef NDEBUG
- const uint64_t OrigOffset = Layout.getFragmentOffset(&F);
- #endif
- const uint64_t OrigSize = Asm.computeFragmentSize(Layout, F);
- // To keep the effects local, prefer to relax instructions closest to
- // the align directive. This is purely about human understandability
- // of the resulting code. If we later find a reason to expand
- // particular instructions over others, we can adjust.
- MCFragment *FirstChangedFragment = nullptr;
- unsigned RemainingSize = OrigSize;
- while (!Relaxable.empty() && RemainingSize != 0) {
- auto &RF = *Relaxable.pop_back_val();
- // Give the backend a chance to play any tricks it wishes to increase
- // the encoding size of the given instruction. Target independent code
- // will try further relaxation, but target's may play further tricks.
- if (padInstructionEncoding(RF, Asm.getEmitter(), RemainingSize))
- FirstChangedFragment = &RF;
- // If we have an instruction which hasn't been fully relaxed, we can't
- // skip past it and insert bytes before it. Changing its starting
- // offset might require a larger negative offset than it can encode.
- // We don't need to worry about larger positive offsets as none of the
- // possible offsets between this and our align are visible, and the
- // ones afterwards aren't changing.
- if (!isFullyRelaxed(RF))
- break;
- }
- Relaxable.clear();
- if (FirstChangedFragment) {
- // Make sure the offsets for any fragments in the effected range get
- // updated. Note that this (conservatively) invalidates the offsets of
- // those following, but this is not required.
- Layout.invalidateFragmentsFrom(FirstChangedFragment);
- }
- // BoundaryAlign explicitly tracks it's size (unlike align)
- if (F.getKind() == MCFragment::FT_BoundaryAlign)
- cast<MCBoundaryAlignFragment>(F).setSize(RemainingSize);
- #ifndef NDEBUG
- const uint64_t FinalOffset = Layout.getFragmentOffset(&F);
- const uint64_t FinalSize = Asm.computeFragmentSize(Layout, F);
- assert(OrigOffset + OrigSize == FinalOffset + FinalSize &&
- "can't move start of next fragment!");
- assert(FinalSize == RemainingSize && "inconsistent size computation?");
- #endif
- // If we're looking at a boundary align, make sure we don't try to pad
- // its target instructions for some following directive. Doing so would
- // break the alignment of the current boundary align.
- if (auto *BF = dyn_cast<MCBoundaryAlignFragment>(&F)) {
- const MCFragment *LastFragment = BF->getLastFragment();
- if (!LastFragment)
- continue;
- while (&*I != LastFragment)
- ++I;
- }
- }
- }
- // The layout is done. Mark every fragment as valid.
- for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
- MCSection &Section = *Layout.getSectionOrder()[i];
- Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
- Asm.computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
- }
- }
- unsigned X86AsmBackend::getMaximumNopSize(const MCSubtargetInfo &STI) const {
- if (STI.hasFeature(X86::Mode16Bit))
- return 4;
- if (!STI.hasFeature(X86::FeatureNOPL) && !STI.hasFeature(X86::Mode64Bit))
- return 1;
- if (STI.getFeatureBits()[X86::TuningFast7ByteNOP])
- return 7;
- if (STI.getFeatureBits()[X86::TuningFast15ByteNOP])
- return 15;
- if (STI.getFeatureBits()[X86::TuningFast11ByteNOP])
- return 11;
- // FIXME: handle 32-bit mode
- // 15-bytes is the longest single NOP instruction, but 10-bytes is
- // commonly the longest that can be efficiently decoded.
- return 10;
- }
- /// Write a sequence of optimal nops to the output, covering \p Count
- /// bytes.
- /// \return - true on success, false on failure
- bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
- const MCSubtargetInfo *STI) const {
- static const char Nops32Bit[10][11] = {
- // nop
- "\x90",
- // xchg %ax,%ax
- "\x66\x90",
- // nopl (%[re]ax)
- "\x0f\x1f\x00",
- // nopl 0(%[re]ax)
- "\x0f\x1f\x40\x00",
- // nopl 0(%[re]ax,%[re]ax,1)
- "\x0f\x1f\x44\x00\x00",
- // nopw 0(%[re]ax,%[re]ax,1)
- "\x66\x0f\x1f\x44\x00\x00",
- // nopl 0L(%[re]ax)
- "\x0f\x1f\x80\x00\x00\x00\x00",
- // nopl 0L(%[re]ax,%[re]ax,1)
- "\x0f\x1f\x84\x00\x00\x00\x00\x00",
- // nopw 0L(%[re]ax,%[re]ax,1)
- "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
- // nopw %cs:0L(%[re]ax,%[re]ax,1)
- "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
- };
- // 16-bit mode uses different nop patterns than 32-bit.
- static const char Nops16Bit[4][11] = {
- // nop
- "\x90",
- // xchg %eax,%eax
- "\x66\x90",
- // lea 0(%si),%si
- "\x8d\x74\x00",
- // lea 0w(%si),%si
- "\x8d\xb4\x00\x00",
- };
- const char(*Nops)[11] =
- STI->getFeatureBits()[X86::Mode16Bit] ? Nops16Bit : Nops32Bit;
- uint64_t MaxNopLength = (uint64_t)getMaximumNopSize(*STI);
- // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining
- // length.
- do {
- const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
- const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
- for (uint8_t i = 0; i < Prefixes; i++)
- OS << '\x66';
- const uint8_t Rest = ThisNopLength - Prefixes;
- if (Rest != 0)
- OS.write(Nops[Rest - 1], Rest);
- Count -= ThisNopLength;
- } while (Count != 0);
- return true;
- }
- /* *** */
- namespace {
- class ELFX86AsmBackend : public X86AsmBackend {
- public:
- uint8_t OSABI;
- ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI)
- : X86AsmBackend(T, STI), OSABI(OSABI) {}
- };
- class ELFX86_32AsmBackend : public ELFX86AsmBackend {
- public:
- ELFX86_32AsmBackend(const Target &T, uint8_t OSABI,
- const MCSubtargetInfo &STI)
- : ELFX86AsmBackend(T, OSABI, STI) {}
- std::unique_ptr<MCObjectTargetWriter>
- createObjectTargetWriter() const override {
- return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_386);
- }
- };
- class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
- public:
- ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI,
- const MCSubtargetInfo &STI)
- : ELFX86AsmBackend(T, OSABI, STI) {}
- std::unique_ptr<MCObjectTargetWriter>
- createObjectTargetWriter() const override {
- return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
- ELF::EM_X86_64);
- }
- };
- class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
- public:
- ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI,
- const MCSubtargetInfo &STI)
- : ELFX86AsmBackend(T, OSABI, STI) {}
- std::unique_ptr<MCObjectTargetWriter>
- createObjectTargetWriter() const override {
- return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
- ELF::EM_IAMCU);
- }
- };
- class ELFX86_64AsmBackend : public ELFX86AsmBackend {
- public:
- ELFX86_64AsmBackend(const Target &T, uint8_t OSABI,
- const MCSubtargetInfo &STI)
- : ELFX86AsmBackend(T, OSABI, STI) {}
- std::unique_ptr<MCObjectTargetWriter>
- createObjectTargetWriter() const override {
- return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, ELF::EM_X86_64);
- }
- };
- class WindowsX86AsmBackend : public X86AsmBackend {
- bool Is64Bit;
- public:
- WindowsX86AsmBackend(const Target &T, bool is64Bit,
- const MCSubtargetInfo &STI)
- : X86AsmBackend(T, STI)
- , Is64Bit(is64Bit) {
- }
- Optional<MCFixupKind> getFixupKind(StringRef Name) const override {
- return StringSwitch<Optional<MCFixupKind>>(Name)
- .Case("dir32", FK_Data_4)
- .Case("secrel32", FK_SecRel_4)
- .Case("secidx", FK_SecRel_2)
- .Default(MCAsmBackend::getFixupKind(Name));
- }
- std::unique_ptr<MCObjectTargetWriter>
- createObjectTargetWriter() const override {
- return createX86WinCOFFObjectWriter(Is64Bit);
- }
- };
- namespace CU {
- /// Compact unwind encoding values.
- enum CompactUnwindEncodings {
- /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
- /// the return address, then [RE]SP is moved to [RE]BP.
- UNWIND_MODE_BP_FRAME = 0x01000000,
- /// A frameless function with a small constant stack size.
- UNWIND_MODE_STACK_IMMD = 0x02000000,
- /// A frameless function with a large constant stack size.
- UNWIND_MODE_STACK_IND = 0x03000000,
- /// No compact unwind encoding is available.
- UNWIND_MODE_DWARF = 0x04000000,
- /// Mask for encoding the frame registers.
- UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
- /// Mask for encoding the frameless registers.
- UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
- };
- } // namespace CU
- class DarwinX86AsmBackend : public X86AsmBackend {
- const MCRegisterInfo &MRI;
- /// Number of registers that can be saved in a compact unwind encoding.
- enum { CU_NUM_SAVED_REGS = 6 };
- mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
- Triple TT;
- bool Is64Bit;
- unsigned OffsetSize; ///< Offset of a "push" instruction.
- unsigned MoveInstrSize; ///< Size of a "move" instruction.
- unsigned StackDivide; ///< Amount to adjust stack size by.
- protected:
- /// Size of a "push" instruction for the given register.
- unsigned PushInstrSize(unsigned Reg) const {
- switch (Reg) {
- case X86::EBX:
- case X86::ECX:
- case X86::EDX:
- case X86::EDI:
- case X86::ESI:
- case X86::EBP:
- case X86::RBX:
- case X86::RBP:
- return 1;
- case X86::R12:
- case X86::R13:
- case X86::R14:
- case X86::R15:
- return 2;
- }
- return 1;
- }
- private:
- /// Get the compact unwind number for a given register. The number
- /// corresponds to the enum lists in compact_unwind_encoding.h.
- int getCompactUnwindRegNum(unsigned Reg) const {
- static const MCPhysReg CU32BitRegs[7] = {
- X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
- };
- static const MCPhysReg CU64BitRegs[] = {
- X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
- };
- const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
- for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
- if (*CURegs == Reg)
- return Idx;
- return -1;
- }
- /// Return the registers encoded for a compact encoding with a frame
- /// pointer.
- uint32_t encodeCompactUnwindRegistersWithFrame() const {
- // Encode the registers in the order they were saved --- 3-bits per
- // register. The list of saved registers is assumed to be in reverse
- // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
- uint32_t RegEnc = 0;
- for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
- unsigned Reg = SavedRegs[i];
- if (Reg == 0) break;
- int CURegNum = getCompactUnwindRegNum(Reg);
- if (CURegNum == -1) return ~0U;
- // Encode the 3-bit register number in order, skipping over 3-bits for
- // each register.
- RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
- }
- assert((RegEnc & 0x3FFFF) == RegEnc &&
- "Invalid compact register encoding!");
- return RegEnc;
- }
- /// Create the permutation encoding used with frameless stacks. It is
- /// passed the number of registers to be saved and an array of the registers
- /// saved.
- uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
- // The saved registers are numbered from 1 to 6. In order to encode the
- // order in which they were saved, we re-number them according to their
- // place in the register order. The re-numbering is relative to the last
- // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
- // that order:
- //
- // Orig Re-Num
- // ---- ------
- // 6 6
- // 2 2
- // 4 3
- // 5 3
- //
- for (unsigned i = 0; i < RegCount; ++i) {
- int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
- if (CUReg == -1) return ~0U;
- SavedRegs[i] = CUReg;
- }
- // Reverse the list.
- std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
- uint32_t RenumRegs[CU_NUM_SAVED_REGS];
- for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
- unsigned Countless = 0;
- for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
- if (SavedRegs[j] < SavedRegs[i])
- ++Countless;
- RenumRegs[i] = SavedRegs[i] - Countless - 1;
- }
- // Take the renumbered values and encode them into a 10-bit number.
- uint32_t permutationEncoding = 0;
- switch (RegCount) {
- case 6:
- permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
- + 6 * RenumRegs[2] + 2 * RenumRegs[3]
- + RenumRegs[4];
- break;
- case 5:
- permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
- + 6 * RenumRegs[3] + 2 * RenumRegs[4]
- + RenumRegs[5];
- break;
- case 4:
- permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
- + 3 * RenumRegs[4] + RenumRegs[5];
- break;
- case 3:
- permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
- + RenumRegs[5];
- break;
- case 2:
- permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
- break;
- case 1:
- permutationEncoding |= RenumRegs[5];
- break;
- }
- assert((permutationEncoding & 0x3FF) == permutationEncoding &&
- "Invalid compact register encoding!");
- return permutationEncoding;
- }
- public:
- DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const MCSubtargetInfo &STI)
- : X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()),
- Is64Bit(TT.isArch64Bit()) {
- memset(SavedRegs, 0, sizeof(SavedRegs));
- OffsetSize = Is64Bit ? 8 : 4;
- MoveInstrSize = Is64Bit ? 3 : 2;
- StackDivide = Is64Bit ? 8 : 4;
- }
- std::unique_ptr<MCObjectTargetWriter>
- createObjectTargetWriter() const override {
- uint32_t CPUType = cantFail(MachO::getCPUType(TT));
- uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TT));
- return createX86MachObjectWriter(Is64Bit, CPUType, CPUSubType);
- }
- /// Implementation of algorithm to generate the compact unwind encoding
- /// for the CFI instructions.
- uint32_t
- generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const override {
- if (Instrs.empty()) return 0;
- // Reset the saved registers.
- unsigned SavedRegIdx = 0;
- memset(SavedRegs, 0, sizeof(SavedRegs));
- bool HasFP = false;
- // Encode that we are using EBP/RBP as the frame pointer.
- uint32_t CompactUnwindEncoding = 0;
- unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
- unsigned InstrOffset = 0;
- unsigned StackAdjust = 0;
- unsigned StackSize = 0;
- unsigned NumDefCFAOffsets = 0;
- int MinAbsOffset = std::numeric_limits<int>::max();
- for (const MCCFIInstruction &Inst : Instrs) {
- switch (Inst.getOperation()) {
- default:
- // Any other CFI directives indicate a frame that we aren't prepared
- // to represent via compact unwind, so just bail out.
- return 0;
- case MCCFIInstruction::OpDefCfaRegister: {
- // Defines a frame pointer. E.g.
- //
- // movq %rsp, %rbp
- // L0:
- // .cfi_def_cfa_register %rbp
- //
- HasFP = true;
- // If the frame pointer is other than esp/rsp, we do not have a way to
- // generate a compact unwinding representation, so bail out.
- if (*MRI.getLLVMRegNum(Inst.getRegister(), true) !=
- (Is64Bit ? X86::RBP : X86::EBP))
- return 0;
- // Reset the counts.
- memset(SavedRegs, 0, sizeof(SavedRegs));
- StackAdjust = 0;
- SavedRegIdx = 0;
- MinAbsOffset = std::numeric_limits<int>::max();
- InstrOffset += MoveInstrSize;
- break;
- }
- case MCCFIInstruction::OpDefCfaOffset: {
- // Defines a new offset for the CFA. E.g.
- //
- // With frame:
- //
- // pushq %rbp
- // L0:
- // .cfi_def_cfa_offset 16
- //
- // Without frame:
- //
- // subq $72, %rsp
- // L0:
- // .cfi_def_cfa_offset 80
- //
- StackSize = Inst.getOffset() / StackDivide;
- ++NumDefCFAOffsets;
- break;
- }
- case MCCFIInstruction::OpOffset: {
- // Defines a "push" of a callee-saved register. E.g.
- //
- // pushq %r15
- // pushq %r14
- // pushq %rbx
- // L0:
- // subq $120, %rsp
- // L1:
- // .cfi_offset %rbx, -40
- // .cfi_offset %r14, -32
- // .cfi_offset %r15, -24
- //
- if (SavedRegIdx == CU_NUM_SAVED_REGS)
- // If there are too many saved registers, we cannot use a compact
- // unwind encoding.
- return CU::UNWIND_MODE_DWARF;
- unsigned Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
- SavedRegs[SavedRegIdx++] = Reg;
- StackAdjust += OffsetSize;
- MinAbsOffset = std::min(MinAbsOffset, abs(Inst.getOffset()));
- InstrOffset += PushInstrSize(Reg);
- break;
- }
- }
- }
- StackAdjust /= StackDivide;
- if (HasFP) {
- if ((StackAdjust & 0xFF) != StackAdjust)
- // Offset was too big for a compact unwind encoding.
- return CU::UNWIND_MODE_DWARF;
- // We don't attempt to track a real StackAdjust, so if the saved registers
- // aren't adjacent to rbp we can't cope.
- if (SavedRegIdx != 0 && MinAbsOffset != 3 * (int)OffsetSize)
- return CU::UNWIND_MODE_DWARF;
- // Get the encoding of the saved registers when we have a frame pointer.
- uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
- if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
- CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
- CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
- CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
- } else {
- SubtractInstrIdx += InstrOffset;
- ++StackAdjust;
- if ((StackSize & 0xFF) == StackSize) {
- // Frameless stack with a small stack size.
- CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
- // Encode the stack size.
- CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
- } else {
- if ((StackAdjust & 0x7) != StackAdjust)
- // The extra stack adjustments are too big for us to handle.
- return CU::UNWIND_MODE_DWARF;
- // Frameless stack with an offset too large for us to encode compactly.
- CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
- // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
- // instruction.
- CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
- // Encode any extra stack adjustments (done via push instructions).
- CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
- }
- // Encode the number of registers saved. (Reverse the list first.)
- std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
- CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
- // Get the encoding of the saved registers when we don't have a frame
- // pointer.
- uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
- if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
- // Encode the register encoding.
- CompactUnwindEncoding |=
- RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
- }
- return CompactUnwindEncoding;
- }
- };
- } // end anonymous namespace
- MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
- const MCSubtargetInfo &STI,
- const MCRegisterInfo &MRI,
- const MCTargetOptions &Options) {
- const Triple &TheTriple = STI.getTargetTriple();
- if (TheTriple.isOSBinFormatMachO())
- return new DarwinX86AsmBackend(T, MRI, STI);
- if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
- return new WindowsX86AsmBackend(T, false, STI);
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
- if (TheTriple.isOSIAMCU())
- return new ELFX86_IAMCUAsmBackend(T, OSABI, STI);
- return new ELFX86_32AsmBackend(T, OSABI, STI);
- }
- MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
- const MCSubtargetInfo &STI,
- const MCRegisterInfo &MRI,
- const MCTargetOptions &Options) {
- const Triple &TheTriple = STI.getTargetTriple();
- if (TheTriple.isOSBinFormatMachO())
- return new DarwinX86AsmBackend(T, MRI, STI);
- if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
- return new WindowsX86AsmBackend(T, true, STI);
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
- if (TheTriple.isX32())
- return new ELFX86_X32AsmBackend(T, OSABI, STI);
- return new ELFX86_64AsmBackend(T, OSABI, STI);
- }
|