123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- #include "jemalloc/internal/jemalloc_preamble.h"
- #include "jemalloc/internal/jemalloc_internal_includes.h"
- #include "jemalloc/internal/thread_event.h"
- /*
- * Signatures for event specific functions. These functions should be defined
- * by the modules owning each event. The signatures here verify that the
- * definitions follow the right format.
- *
- * The first two are functions computing new / postponed event wait time. New
- * event wait time is the time till the next event if an event is currently
- * being triggered; postponed event wait time is the time till the next event
- * if an event should be triggered but needs to be postponed, e.g. when the TSD
- * is not nominal or during reentrancy.
- *
- * The third is the event handler function, which is called whenever an event
- * is triggered. The parameter is the elapsed time since the last time an
- * event of the same type was triggered.
- */
- #define E(event, condition_unused, is_alloc_event_unused) \
- uint64_t event##_new_event_wait(tsd_t *tsd); \
- uint64_t event##_postponed_event_wait(tsd_t *tsd); \
- void event##_event_handler(tsd_t *tsd, uint64_t elapsed);
- ITERATE_OVER_ALL_EVENTS
- #undef E
- /* Signatures for internal functions fetching elapsed time. */
- #define E(event, condition_unused, is_alloc_event_unused) \
- static uint64_t event##_fetch_elapsed(tsd_t *tsd);
- ITERATE_OVER_ALL_EVENTS
- #undef E
- static uint64_t
- tcache_gc_fetch_elapsed(tsd_t *tsd) {
- return TE_INVALID_ELAPSED;
- }
- static uint64_t
- tcache_gc_dalloc_fetch_elapsed(tsd_t *tsd) {
- return TE_INVALID_ELAPSED;
- }
- static uint64_t
- prof_sample_fetch_elapsed(tsd_t *tsd) {
- uint64_t last_event = thread_allocated_last_event_get(tsd);
- uint64_t last_sample_event = prof_sample_last_event_get(tsd);
- prof_sample_last_event_set(tsd, last_event);
- return last_event - last_sample_event;
- }
- static uint64_t
- stats_interval_fetch_elapsed(tsd_t *tsd) {
- uint64_t last_event = thread_allocated_last_event_get(tsd);
- uint64_t last_stats_event = stats_interval_last_event_get(tsd);
- stats_interval_last_event_set(tsd, last_event);
- return last_event - last_stats_event;
- }
- static uint64_t
- peak_alloc_fetch_elapsed(tsd_t *tsd) {
- return TE_INVALID_ELAPSED;
- }
- static uint64_t
- peak_dalloc_fetch_elapsed(tsd_t *tsd) {
- return TE_INVALID_ELAPSED;
- }
- /* Per event facilities done. */
- static bool
- te_ctx_has_active_events(te_ctx_t *ctx) {
- assert(config_debug);
- #define E(event, condition, alloc_event) \
- if (condition && alloc_event == ctx->is_alloc) { \
- return true; \
- }
- ITERATE_OVER_ALL_EVENTS
- #undef E
- return false;
- }
- static uint64_t
- te_next_event_compute(tsd_t *tsd, bool is_alloc) {
- uint64_t wait = TE_MAX_START_WAIT;
- #define E(event, condition, alloc_event) \
- if (is_alloc == alloc_event && condition) { \
- uint64_t event_wait = \
- event##_event_wait_get(tsd); \
- assert(event_wait <= TE_MAX_START_WAIT); \
- if (event_wait > 0U && event_wait < wait) { \
- wait = event_wait; \
- } \
- }
- ITERATE_OVER_ALL_EVENTS
- #undef E
- assert(wait <= TE_MAX_START_WAIT);
- return wait;
- }
- static void
- te_assert_invariants_impl(tsd_t *tsd, te_ctx_t *ctx) {
- uint64_t current_bytes = te_ctx_current_bytes_get(ctx);
- uint64_t last_event = te_ctx_last_event_get(ctx);
- uint64_t next_event = te_ctx_next_event_get(ctx);
- uint64_t next_event_fast = te_ctx_next_event_fast_get(ctx);
- assert(last_event != next_event);
- if (next_event > TE_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) {
- assert(next_event_fast == 0U);
- } else {
- assert(next_event_fast == next_event);
- }
- /* The subtraction is intentionally susceptible to underflow. */
- uint64_t interval = next_event - last_event;
- /* The subtraction is intentionally susceptible to underflow. */
- assert(current_bytes - last_event < interval);
- uint64_t min_wait = te_next_event_compute(tsd, te_ctx_is_alloc(ctx));
- /*
- * next_event should have been pushed up only except when no event is
- * on and the TSD is just initialized. The last_event == 0U guard
- * below is stronger than needed, but having an exactly accurate guard
- * is more complicated to implement.
- */
- assert((!te_ctx_has_active_events(ctx) && last_event == 0U) ||
- interval == min_wait ||
- (interval < min_wait && interval == TE_MAX_INTERVAL));
- }
- void
- te_assert_invariants_debug(tsd_t *tsd) {
- te_ctx_t ctx;
- te_ctx_get(tsd, &ctx, true);
- te_assert_invariants_impl(tsd, &ctx);
- te_ctx_get(tsd, &ctx, false);
- te_assert_invariants_impl(tsd, &ctx);
- }
- /*
- * Synchronization around the fast threshold in tsd --
- * There are two threads to consider in the synchronization here:
- * - The owner of the tsd being updated by a slow path change
- * - The remote thread, doing that slow path change.
- *
- * As a design constraint, we want to ensure that a slow-path transition cannot
- * be ignored for arbitrarily long, and that if the remote thread causes a
- * slow-path transition and then communicates with the owner thread that it has
- * occurred, then the owner will go down the slow path on the next allocator
- * operation (so that we don't want to just wait until the owner hits its slow
- * path reset condition on its own).
- *
- * Here's our strategy to do that:
- *
- * The remote thread will update the slow-path stores to TSD variables, issue a
- * SEQ_CST fence, and then update the TSD next_event_fast counter. The owner
- * thread will update next_event_fast, issue an SEQ_CST fence, and then check
- * its TSD to see if it's on the slow path.
- * This is fairly straightforward when 64-bit atomics are supported. Assume that
- * the remote fence is sandwiched between two owner fences in the reset pathway.
- * The case where there is no preceding or trailing owner fence (i.e. because
- * the owner thread is near the beginning or end of its life) can be analyzed
- * similarly. The owner store to next_event_fast preceding the earlier owner
- * fence will be earlier in coherence order than the remote store to it, so that
- * the owner thread will go down the slow path once the store becomes visible to
- * it, which is no later than the time of the second fence.
- * The case where we don't support 64-bit atomics is trickier, since word
- * tearing is possible. We'll repeat the same analysis, and look at the two
- * owner fences sandwiching the remote fence. The next_event_fast stores done
- * alongside the earlier owner fence cannot overwrite any of the remote stores
- * (since they precede the earlier owner fence in sb, which precedes the remote
- * fence in sc, which precedes the remote stores in sb). After the second owner
- * fence there will be a re-check of the slow-path variables anyways, so the
- * "owner will notice that it's on the slow path eventually" guarantee is
- * satisfied. To make sure that the out-of-band-messaging constraint is as well,
- * note that either the message passing is sequenced before the second owner
- * fence (in which case the remote stores happen before the second set of owner
- * stores, so malloc sees a value of zero for next_event_fast and goes down the
- * slow path), or it is not (in which case the owner sees the tsd slow-path
- * writes on its previous update). This leaves open the possibility that the
- * remote thread will (at some arbitrary point in the future) zero out one half
- * of the owner thread's next_event_fast, but that's always safe (it just sends
- * it down the slow path earlier).
- */
- static void
- te_ctx_next_event_fast_update(te_ctx_t *ctx) {
- uint64_t next_event = te_ctx_next_event_get(ctx);
- uint64_t next_event_fast = (next_event <= TE_NEXT_EVENT_FAST_MAX) ?
- next_event : 0U;
- te_ctx_next_event_fast_set(ctx, next_event_fast);
- }
- void
- te_recompute_fast_threshold(tsd_t *tsd) {
- if (tsd_state_get(tsd) != tsd_state_nominal) {
- /* Check first because this is also called on purgatory. */
- te_next_event_fast_set_non_nominal(tsd);
- return;
- }
- te_ctx_t ctx;
- te_ctx_get(tsd, &ctx, true);
- te_ctx_next_event_fast_update(&ctx);
- te_ctx_get(tsd, &ctx, false);
- te_ctx_next_event_fast_update(&ctx);
- atomic_fence(ATOMIC_SEQ_CST);
- if (tsd_state_get(tsd) != tsd_state_nominal) {
- te_next_event_fast_set_non_nominal(tsd);
- }
- }
- static void
- te_adjust_thresholds_helper(tsd_t *tsd, te_ctx_t *ctx,
- uint64_t wait) {
- /*
- * The next threshold based on future events can only be adjusted after
- * progressing the last_event counter (which is set to current).
- */
- assert(te_ctx_current_bytes_get(ctx) == te_ctx_last_event_get(ctx));
- assert(wait <= TE_MAX_START_WAIT);
- uint64_t next_event = te_ctx_last_event_get(ctx) + (wait <=
- TE_MAX_INTERVAL ? wait : TE_MAX_INTERVAL);
- te_ctx_next_event_set(tsd, ctx, next_event);
- }
- static uint64_t
- te_clip_event_wait(uint64_t event_wait) {
- assert(event_wait > 0U);
- if (TE_MIN_START_WAIT > 1U &&
- unlikely(event_wait < TE_MIN_START_WAIT)) {
- event_wait = TE_MIN_START_WAIT;
- }
- if (TE_MAX_START_WAIT < UINT64_MAX &&
- unlikely(event_wait > TE_MAX_START_WAIT)) {
- event_wait = TE_MAX_START_WAIT;
- }
- return event_wait;
- }
- void
- te_event_trigger(tsd_t *tsd, te_ctx_t *ctx) {
- /* usize has already been added to thread_allocated. */
- uint64_t bytes_after = te_ctx_current_bytes_get(ctx);
- /* The subtraction is intentionally susceptible to underflow. */
- uint64_t accumbytes = bytes_after - te_ctx_last_event_get(ctx);
- te_ctx_last_event_set(ctx, bytes_after);
- bool allow_event_trigger = tsd_nominal(tsd) &&
- tsd_reentrancy_level_get(tsd) == 0;
- bool is_alloc = ctx->is_alloc;
- uint64_t wait = TE_MAX_START_WAIT;
- #define E(event, condition, alloc_event) \
- bool is_##event##_triggered = false; \
- if (is_alloc == alloc_event && condition) { \
- uint64_t event_wait = event##_event_wait_get(tsd); \
- assert(event_wait <= TE_MAX_START_WAIT); \
- if (event_wait > accumbytes) { \
- event_wait -= accumbytes; \
- } else if (!allow_event_trigger) { \
- event_wait = event##_postponed_event_wait(tsd); \
- } else { \
- is_##event##_triggered = true; \
- event_wait = event##_new_event_wait(tsd); \
- } \
- event_wait = te_clip_event_wait(event_wait); \
- event##_event_wait_set(tsd, event_wait); \
- if (event_wait < wait) { \
- wait = event_wait; \
- } \
- }
- ITERATE_OVER_ALL_EVENTS
- #undef E
- assert(wait <= TE_MAX_START_WAIT);
- te_adjust_thresholds_helper(tsd, ctx, wait);
- te_assert_invariants(tsd);
- #define E(event, condition, alloc_event) \
- if (is_alloc == alloc_event && condition && \
- is_##event##_triggered) { \
- assert(allow_event_trigger); \
- uint64_t elapsed = event##_fetch_elapsed(tsd); \
- event##_event_handler(tsd, elapsed); \
- }
- ITERATE_OVER_ALL_EVENTS
- #undef E
- te_assert_invariants(tsd);
- }
- static void
- te_init(tsd_t *tsd, bool is_alloc) {
- te_ctx_t ctx;
- te_ctx_get(tsd, &ctx, is_alloc);
- /*
- * Reset the last event to current, which starts the events from a clean
- * state. This is necessary when re-init the tsd event counters.
- *
- * The event counters maintain a relationship with the current bytes:
- * last_event <= current < next_event. When a reinit happens (e.g.
- * reincarnated tsd), the last event needs progressing because all
- * events start fresh from the current bytes.
- */
- te_ctx_last_event_set(&ctx, te_ctx_current_bytes_get(&ctx));
- uint64_t wait = TE_MAX_START_WAIT;
- #define E(event, condition, alloc_event) \
- if (is_alloc == alloc_event && condition) { \
- uint64_t event_wait = event##_new_event_wait(tsd); \
- event_wait = te_clip_event_wait(event_wait); \
- event##_event_wait_set(tsd, event_wait); \
- if (event_wait < wait) { \
- wait = event_wait; \
- } \
- }
- ITERATE_OVER_ALL_EVENTS
- #undef E
- te_adjust_thresholds_helper(tsd, &ctx, wait);
- }
- void
- tsd_te_init(tsd_t *tsd) {
- /* Make sure no overflow for the bytes accumulated on event_trigger. */
- assert(TE_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1);
- te_init(tsd, true);
- te_init(tsd, false);
- te_assert_invariants(tsd);
- }
|