123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475 |
- // Copyright 2011 Google Inc. All Rights Reserved.
- //
- // Use of this source code is governed by a BSD-style license
- // that can be found in the COPYING file in the root of the source
- // tree. An additional intellectual property rights grant can be found
- // in the file PATENTS. All contributing project authors may
- // be found in the AUTHORS file in the root of the source tree.
- // -----------------------------------------------------------------------------
- //
- // Macroblock analysis
- //
- // Author: Skal (pascal.massimino@gmail.com)
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include "./vp8i_enc.h"
- #include "./cost_enc.h"
- #include "../utils/utils.h"
- #define MAX_ITERS_K_MEANS 6
- //------------------------------------------------------------------------------
- // Smooth the segment map by replacing isolated block by the majority of its
- // neighbours.
- static void SmoothSegmentMap(VP8Encoder* const enc) {
- int n, x, y;
- const int w = enc->mb_w_;
- const int h = enc->mb_h_;
- const int majority_cnt_3_x_3_grid = 5;
- uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
- assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
- if (tmp == NULL) return;
- for (y = 1; y < h - 1; ++y) {
- for (x = 1; x < w - 1; ++x) {
- int cnt[NUM_MB_SEGMENTS] = { 0 };
- const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
- int majority_seg = mb->segment_;
- // Check the 8 neighbouring segment values.
- cnt[mb[-w - 1].segment_]++; // top-left
- cnt[mb[-w + 0].segment_]++; // top
- cnt[mb[-w + 1].segment_]++; // top-right
- cnt[mb[ - 1].segment_]++; // left
- cnt[mb[ + 1].segment_]++; // right
- cnt[mb[ w - 1].segment_]++; // bottom-left
- cnt[mb[ w + 0].segment_]++; // bottom
- cnt[mb[ w + 1].segment_]++; // bottom-right
- for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
- if (cnt[n] >= majority_cnt_3_x_3_grid) {
- majority_seg = n;
- break;
- }
- }
- tmp[x + y * w] = majority_seg;
- }
- }
- for (y = 1; y < h - 1; ++y) {
- for (x = 1; x < w - 1; ++x) {
- VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
- mb->segment_ = tmp[x + y * w];
- }
- }
- WebPSafeFree(tmp);
- }
- //------------------------------------------------------------------------------
- // set segment susceptibility alpha_ / beta_
- static WEBP_INLINE int clip(int v, int m, int M) {
- return (v < m) ? m : (v > M) ? M : v;
- }
- static void SetSegmentAlphas(VP8Encoder* const enc,
- const int centers[NUM_MB_SEGMENTS],
- int mid) {
- const int nb = enc->segment_hdr_.num_segments_;
- int min = centers[0], max = centers[0];
- int n;
- if (nb > 1) {
- for (n = 0; n < nb; ++n) {
- if (min > centers[n]) min = centers[n];
- if (max < centers[n]) max = centers[n];
- }
- }
- if (max == min) max = min + 1;
- assert(mid <= max && mid >= min);
- for (n = 0; n < nb; ++n) {
- const int alpha = 255 * (centers[n] - mid) / (max - min);
- const int beta = 255 * (centers[n] - min) / (max - min);
- enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
- enc->dqm_[n].beta_ = clip(beta, 0, 255);
- }
- }
- //------------------------------------------------------------------------------
- // Compute susceptibility based on DCT-coeff histograms:
- // the higher, the "easier" the macroblock is to compress.
- #define MAX_ALPHA 255 // 8b of precision for susceptibilities.
- #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
- #define DEFAULT_ALPHA (-1)
- #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
- static int FinalAlphaValue(int alpha) {
- alpha = MAX_ALPHA - alpha;
- return clip(alpha, 0, MAX_ALPHA);
- }
- static int GetAlpha(const VP8Histogram* const histo) {
- // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
- // values which happen to be mostly noise. This leaves the maximum precision
- // for handling the useful small values which contribute most.
- const int max_value = histo->max_value;
- const int last_non_zero = histo->last_non_zero;
- const int alpha =
- (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
- return alpha;
- }
- static void InitHistogram(VP8Histogram* const histo) {
- histo->max_value = 0;
- histo->last_non_zero = 1;
- }
- //------------------------------------------------------------------------------
- // Simplified k-Means, to assign Nb segments based on alpha-histogram
- static void AssignSegments(VP8Encoder* const enc,
- const int alphas[MAX_ALPHA + 1]) {
- // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
- // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
- // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
- const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
- enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
- int centers[NUM_MB_SEGMENTS];
- int weighted_average = 0;
- int map[MAX_ALPHA + 1];
- int a, n, k;
- int min_a = 0, max_a = MAX_ALPHA, range_a;
- // 'int' type is ok for histo, and won't overflow
- int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
- assert(nb >= 1);
- assert(nb <= NUM_MB_SEGMENTS);
- // bracket the input
- for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
- min_a = n;
- for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
- max_a = n;
- range_a = max_a - min_a;
- // Spread initial centers evenly
- for (k = 0, n = 1; k < nb; ++k, n += 2) {
- assert(n < 2 * nb);
- centers[k] = min_a + (n * range_a) / (2 * nb);
- }
- for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
- int total_weight;
- int displaced;
- // Reset stats
- for (n = 0; n < nb; ++n) {
- accum[n] = 0;
- dist_accum[n] = 0;
- }
- // Assign nearest center for each 'a'
- n = 0; // track the nearest center for current 'a'
- for (a = min_a; a <= max_a; ++a) {
- if (alphas[a]) {
- while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
- n++;
- }
- map[a] = n;
- // accumulate contribution into best centroid
- dist_accum[n] += a * alphas[a];
- accum[n] += alphas[a];
- }
- }
- // All point are classified. Move the centroids to the
- // center of their respective cloud.
- displaced = 0;
- weighted_average = 0;
- total_weight = 0;
- for (n = 0; n < nb; ++n) {
- if (accum[n]) {
- const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
- displaced += abs(centers[n] - new_center);
- centers[n] = new_center;
- weighted_average += new_center * accum[n];
- total_weight += accum[n];
- }
- }
- weighted_average = (weighted_average + total_weight / 2) / total_weight;
- if (displaced < 5) break; // no need to keep on looping...
- }
- // Map each original value to the closest centroid
- for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
- VP8MBInfo* const mb = &enc->mb_info_[n];
- const int alpha = mb->alpha_;
- mb->segment_ = map[alpha];
- mb->alpha_ = centers[map[alpha]]; // for the record.
- }
- if (nb > 1) {
- const int smooth = (enc->config_->preprocessing & 1);
- if (smooth) SmoothSegmentMap(enc);
- }
- SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
- }
- //------------------------------------------------------------------------------
- // Macroblock analysis: collect histogram for each mode, deduce the maximal
- // susceptibility and set best modes for this macroblock.
- // Segment assignment is done later.
- // Number of modes to inspect for alpha_ evaluation. We don't need to test all
- // the possible modes during the analysis phase: we risk falling into a local
- // optimum, or be subject to boundary effect
- #define MAX_INTRA16_MODE 2
- #define MAX_INTRA4_MODE 2
- #define MAX_UV_MODE 2
- static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
- const int max_mode = MAX_INTRA16_MODE;
- int mode;
- int best_alpha = DEFAULT_ALPHA;
- int best_mode = 0;
- VP8MakeLuma16Preds(it);
- for (mode = 0; mode < max_mode; ++mode) {
- VP8Histogram histo;
- int alpha;
- InitHistogram(&histo);
- VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
- it->yuv_p_ + VP8I16ModeOffsets[mode],
- 0, 16, &histo);
- alpha = GetAlpha(&histo);
- if (IS_BETTER_ALPHA(alpha, best_alpha)) {
- best_alpha = alpha;
- best_mode = mode;
- }
- }
- VP8SetIntra16Mode(it, best_mode);
- return best_alpha;
- }
- static int FastMBAnalyze(VP8EncIterator* const it) {
- // Empirical cut-off value, should be around 16 (~=block size). We use the
- // [8-17] range and favor intra4 at high quality, intra16 for low quality.
- const int q = (int)it->enc_->config_->quality;
- const uint32_t kThreshold = 8 + (17 - 8) * q / 100;
- int k;
- uint32_t dc[16], m, m2;
- for (k = 0; k < 16; k += 4) {
- VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]);
- }
- for (m = 0, m2 = 0, k = 0; k < 16; ++k) {
- m += dc[k];
- m2 += dc[k] * dc[k];
- }
- if (kThreshold * m2 < m * m) {
- VP8SetIntra16Mode(it, 0); // DC16
- } else {
- const uint8_t modes[16] = { 0 }; // DC4
- VP8SetIntra4Mode(it, modes);
- }
- return 0;
- }
- static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
- int best_alpha = DEFAULT_ALPHA;
- int smallest_alpha = 0;
- int best_mode = 0;
- const int max_mode = MAX_UV_MODE;
- int mode;
- VP8MakeChroma8Preds(it);
- for (mode = 0; mode < max_mode; ++mode) {
- VP8Histogram histo;
- int alpha;
- InitHistogram(&histo);
- VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
- it->yuv_p_ + VP8UVModeOffsets[mode],
- 16, 16 + 4 + 4, &histo);
- alpha = GetAlpha(&histo);
- if (IS_BETTER_ALPHA(alpha, best_alpha)) {
- best_alpha = alpha;
- }
- // The best prediction mode tends to be the one with the smallest alpha.
- if (mode == 0 || alpha < smallest_alpha) {
- smallest_alpha = alpha;
- best_mode = mode;
- }
- }
- VP8SetIntraUVMode(it, best_mode);
- return best_alpha;
- }
- static void MBAnalyze(VP8EncIterator* const it,
- int alphas[MAX_ALPHA + 1],
- int* const alpha, int* const uv_alpha) {
- const VP8Encoder* const enc = it->enc_;
- int best_alpha, best_uv_alpha;
- VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
- VP8SetSkip(it, 0); // not skipped
- VP8SetSegment(it, 0); // default segment, spec-wise.
- if (enc->method_ <= 1) {
- best_alpha = FastMBAnalyze(it);
- } else {
- best_alpha = MBAnalyzeBestIntra16Mode(it);
- }
- best_uv_alpha = MBAnalyzeBestUVMode(it);
- // Final susceptibility mix
- best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
- best_alpha = FinalAlphaValue(best_alpha);
- alphas[best_alpha]++;
- it->mb_->alpha_ = best_alpha; // for later remapping.
- // Accumulate for later complexity analysis.
- *alpha += best_alpha; // mixed susceptibility (not just luma)
- *uv_alpha += best_uv_alpha;
- }
- static void DefaultMBInfo(VP8MBInfo* const mb) {
- mb->type_ = 1; // I16x16
- mb->uv_mode_ = 0;
- mb->skip_ = 0; // not skipped
- mb->segment_ = 0; // default segment
- mb->alpha_ = 0;
- }
- //------------------------------------------------------------------------------
- // Main analysis loop:
- // Collect all susceptibilities for each macroblock and record their
- // distribution in alphas[]. Segments is assigned a-posteriori, based on
- // this histogram.
- // We also pick an intra16 prediction mode, which shouldn't be considered
- // final except for fast-encode settings. We can also pick some intra4 modes
- // and decide intra4/intra16, but that's usually almost always a bad choice at
- // this stage.
- static void ResetAllMBInfo(VP8Encoder* const enc) {
- int n;
- for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
- DefaultMBInfo(&enc->mb_info_[n]);
- }
- // Default susceptibilities.
- enc->dqm_[0].alpha_ = 0;
- enc->dqm_[0].beta_ = 0;
- // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
- enc->alpha_ = 0;
- enc->uv_alpha_ = 0;
- WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
- }
- // struct used to collect job result
- typedef struct {
- WebPWorker worker;
- int alphas[MAX_ALPHA + 1];
- int alpha, uv_alpha;
- VP8EncIterator it;
- int delta_progress;
- } SegmentJob;
- // main work call
- static int DoSegmentsJob(void* arg1, void* arg2) {
- SegmentJob* const job = (SegmentJob*)arg1;
- VP8EncIterator* const it = (VP8EncIterator*)arg2;
- int ok = 1;
- if (!VP8IteratorIsDone(it)) {
- uint8_t tmp[32 + WEBP_ALIGN_CST];
- uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
- do {
- // Let's pretend we have perfect lossless reconstruction.
- VP8IteratorImport(it, scratch);
- MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
- ok = VP8IteratorProgress(it, job->delta_progress);
- } while (ok && VP8IteratorNext(it));
- }
- return ok;
- }
- static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
- int i;
- for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
- dst->alpha += src->alpha;
- dst->uv_alpha += src->uv_alpha;
- }
- // initialize the job struct with some tasks to perform
- static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
- int start_row, int end_row) {
- WebPGetWorkerInterface()->Init(&job->worker);
- job->worker.data1 = job;
- job->worker.data2 = &job->it;
- job->worker.hook = DoSegmentsJob;
- VP8IteratorInit(enc, &job->it);
- VP8IteratorSetRow(&job->it, start_row);
- VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
- memset(job->alphas, 0, sizeof(job->alphas));
- job->alpha = 0;
- job->uv_alpha = 0;
- // only one of both jobs can record the progress, since we don't
- // expect the user's hook to be multi-thread safe
- job->delta_progress = (start_row == 0) ? 20 : 0;
- }
- // main entry point
- int VP8EncAnalyze(VP8Encoder* const enc) {
- int ok = 1;
- const int do_segments =
- enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
- (enc->segment_hdr_.num_segments_ > 1) ||
- (enc->method_ <= 1); // for method 0 - 1, we need preds_[] to be filled.
- if (do_segments) {
- const int last_row = enc->mb_h_;
- // We give a little more than a half work to the main thread.
- const int split_row = (9 * last_row + 15) >> 4;
- const int total_mb = last_row * enc->mb_w_;
- #ifdef WEBP_USE_THREAD
- const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it
- const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
- #else
- const int do_mt = 0;
- #endif
- const WebPWorkerInterface* const worker_interface =
- WebPGetWorkerInterface();
- SegmentJob main_job;
- if (do_mt) {
- SegmentJob side_job;
- // Note the use of '&' instead of '&&' because we must call the functions
- // no matter what.
- InitSegmentJob(enc, &main_job, 0, split_row);
- InitSegmentJob(enc, &side_job, split_row, last_row);
- // we don't need to call Reset() on main_job.worker, since we're calling
- // WebPWorkerExecute() on it
- ok &= worker_interface->Reset(&side_job.worker);
- // launch the two jobs in parallel
- if (ok) {
- worker_interface->Launch(&side_job.worker);
- worker_interface->Execute(&main_job.worker);
- ok &= worker_interface->Sync(&side_job.worker);
- ok &= worker_interface->Sync(&main_job.worker);
- }
- worker_interface->End(&side_job.worker);
- if (ok) MergeJobs(&side_job, &main_job); // merge results together
- } else {
- // Even for single-thread case, we use the generic Worker tools.
- InitSegmentJob(enc, &main_job, 0, last_row);
- worker_interface->Execute(&main_job.worker);
- ok &= worker_interface->Sync(&main_job.worker);
- }
- worker_interface->End(&main_job.worker);
- if (ok) {
- enc->alpha_ = main_job.alpha / total_mb;
- enc->uv_alpha_ = main_job.uv_alpha / total_mb;
- AssignSegments(enc, main_job.alphas);
- }
- } else { // Use only one default segment.
- ResetAllMBInfo(enc);
- }
- return ok;
- }
|