123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- // Copyright 2010 Google Inc. All Rights Reserved.
- //
- // Use of this source code is governed by a BSD-style license
- // that can be found in the COPYING file in the root of the source
- // tree. An additional intellectual property rights grant can be found
- // in the file PATENTS. All contributing project authors may
- // be found in the AUTHORS file in the root of the source tree.
- // -----------------------------------------------------------------------------
- //
- // inline YUV<->RGB conversion function
- //
- // The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
- // More information at: https://en.wikipedia.org/wiki/YCbCr
- // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
- // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
- // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
- // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
- //
- // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
- // R = 1.164 * (Y-16) + 1.596 * (V-128)
- // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
- // B = 1.164 * (Y-16) + 2.018 * (U-128)
- // where Y is in the [16,235] range, and U/V in the [16,240] range.
- //
- // The fixed-point implementation used here is:
- // R = (19077 . y + 26149 . v - 14234) >> 6
- // G = (19077 . y - 6419 . u - 13320 . v + 8708) >> 6
- // B = (19077 . y + 33050 . u - 17685) >> 6
- // where the '.' operator is the mulhi_epu16 variant:
- // a . b = ((a << 8) * b) >> 16
- // that preserves 8 bits of fractional precision before final descaling.
- // Author: Skal (pascal.massimino@gmail.com)
- #ifndef WEBP_DSP_YUV_H_
- #define WEBP_DSP_YUV_H_
- #include "./dsp.h"
- #include "../dec/vp8_dec.h"
- //------------------------------------------------------------------------------
- // YUV -> RGB conversion
- #ifdef __cplusplus
- extern "C" {
- #endif
- enum {
- YUV_FIX = 16, // fixed-point precision for RGB->YUV
- YUV_HALF = 1 << (YUV_FIX - 1),
- YUV_FIX2 = 6, // fixed-point precision for YUV->RGB
- YUV_MASK2 = (256 << YUV_FIX2) - 1
- };
- //------------------------------------------------------------------------------
- // slower on x86 by ~7-8%, but bit-exact with the SSE2/NEON version
- static WEBP_INLINE int MultHi(int v, int coeff) { // _mm_mulhi_epu16 emulation
- return (v * coeff) >> 8;
- }
- static WEBP_INLINE int VP8Clip8(int v) {
- return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
- }
- static WEBP_INLINE int VP8YUVToR(int y, int v) {
- return VP8Clip8(MultHi(y, 19077) + MultHi(v, 26149) - 14234);
- }
- static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
- return VP8Clip8(MultHi(y, 19077) - MultHi(u, 6419) - MultHi(v, 13320) + 8708);
- }
- static WEBP_INLINE int VP8YUVToB(int y, int u) {
- return VP8Clip8(MultHi(y, 19077) + MultHi(u, 33050) - 17685);
- }
- static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
- uint8_t* const rgb) {
- rgb[0] = VP8YUVToR(y, v);
- rgb[1] = VP8YUVToG(y, u, v);
- rgb[2] = VP8YUVToB(y, u);
- }
- static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
- uint8_t* const bgr) {
- bgr[0] = VP8YUVToB(y, u);
- bgr[1] = VP8YUVToG(y, u, v);
- bgr[2] = VP8YUVToR(y, v);
- }
- static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
- uint8_t* const rgb) {
- const int r = VP8YUVToR(y, v); // 5 usable bits
- const int g = VP8YUVToG(y, u, v); // 6 usable bits
- const int b = VP8YUVToB(y, u); // 5 usable bits
- const int rg = (r & 0xf8) | (g >> 5);
- const int gb = ((g << 3) & 0xe0) | (b >> 3);
- #if (WEBP_SWAP_16BIT_CSP == 1)
- rgb[0] = gb;
- rgb[1] = rg;
- #else
- rgb[0] = rg;
- rgb[1] = gb;
- #endif
- }
- static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
- uint8_t* const argb) {
- const int r = VP8YUVToR(y, v); // 4 usable bits
- const int g = VP8YUVToG(y, u, v); // 4 usable bits
- const int b = VP8YUVToB(y, u); // 4 usable bits
- const int rg = (r & 0xf0) | (g >> 4);
- const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
- #if (WEBP_SWAP_16BIT_CSP == 1)
- argb[0] = ba;
- argb[1] = rg;
- #else
- argb[0] = rg;
- argb[1] = ba;
- #endif
- }
- //-----------------------------------------------------------------------------
- // Alpha handling variants
- static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
- uint8_t* const argb) {
- argb[0] = 0xff;
- VP8YuvToRgb(y, u, v, argb + 1);
- }
- static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
- uint8_t* const bgra) {
- VP8YuvToBgr(y, u, v, bgra);
- bgra[3] = 0xff;
- }
- static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
- uint8_t* const rgba) {
- VP8YuvToRgb(y, u, v, rgba);
- rgba[3] = 0xff;
- }
- //-----------------------------------------------------------------------------
- // SSE2 extra functions (mostly for upsampling_sse2.c)
- #if defined(WEBP_USE_SSE2)
- // Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
- void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u,
- const uint8_t* v, uint8_t* dst);
- void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- #endif // WEBP_USE_SSE2
- //-----------------------------------------------------------------------------
- // SSE41 extra functions (mostly for upsampling_sse41.c)
- #if defined(WEBP_USE_SSE41)
- // Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
- void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
- uint8_t* dst);
- #endif // WEBP_USE_SSE41
- //------------------------------------------------------------------------------
- // RGB -> YUV conversion
- // Stub functions that can be called with various rounding values:
- static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
- uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
- return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
- }
- static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
- const int luma = 16839 * r + 33059 * g + 6420 * b;
- return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip
- }
- static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
- const int u = -9719 * r - 19081 * g + 28800 * b;
- return VP8ClipUV(u, rounding);
- }
- static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
- const int v = +28800 * r - 24116 * g - 4684 * b;
- return VP8ClipUV(v, rounding);
- }
- #ifdef __cplusplus
- } // extern "C"
- #endif
- #endif // WEBP_DSP_YUV_H_
|