123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- /* csymm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int csymm_(char *side, char *uplo, integer *m, integer *n,
- complex *alpha, complex *a, integer *lda, complex *b, integer *ldb,
- complex *beta, complex *c__, integer *ldc)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4, i__5, i__6;
- complex q__1, q__2, q__3, q__4, q__5;
- /* Local variables */
- integer i__, j, k, info;
- complex temp1, temp2;
- extern logical lsame_(char *, char *);
- integer nrowa;
- logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* CSYMM performs one of the matrix-matrix operations */
- /* C := alpha*A*B + beta*C, */
- /* or */
- /* C := alpha*B*A + beta*C, */
- /* where alpha and beta are scalars, A is a symmetric matrix and B and */
- /* C are m by n matrices. */
- /* Arguments */
- /* ========== */
- /* SIDE - CHARACTER*1. */
- /* On entry, SIDE specifies whether the symmetric matrix A */
- /* appears on the left or right in the operation as follows: */
- /* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */
- /* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */
- /* Unchanged on exit. */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the upper or lower */
- /* triangular part of the symmetric matrix A is to be */
- /* referenced as follows: */
- /* UPLO = 'U' or 'u' Only the upper triangular part of the */
- /* symmetric matrix is to be referenced. */
- /* UPLO = 'L' or 'l' Only the lower triangular part of the */
- /* symmetric matrix is to be referenced. */
- /* Unchanged on exit. */
- /* M - INTEGER. */
- /* On entry, M specifies the number of rows of the matrix C. */
- /* M must be at least zero. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the number of columns of the matrix C. */
- /* N must be at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - COMPLEX . */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is */
- /* m when SIDE = 'L' or 'l' and is n otherwise. */
- /* Before entry with SIDE = 'L' or 'l', the m by m part of */
- /* the array A must contain the symmetric matrix, such that */
- /* when UPLO = 'U' or 'u', the leading m by m upper triangular */
- /* part of the array A must contain the upper triangular part */
- /* of the symmetric matrix and the strictly lower triangular */
- /* part of A is not referenced, and when UPLO = 'L' or 'l', */
- /* the leading m by m lower triangular part of the array A */
- /* must contain the lower triangular part of the symmetric */
- /* matrix and the strictly upper triangular part of A is not */
- /* referenced. */
- /* Before entry with SIDE = 'R' or 'r', the n by n part of */
- /* the array A must contain the symmetric matrix, such that */
- /* when UPLO = 'U' or 'u', the leading n by n upper triangular */
- /* part of the array A must contain the upper triangular part */
- /* of the symmetric matrix and the strictly lower triangular */
- /* part of A is not referenced, and when UPLO = 'L' or 'l', */
- /* the leading n by n lower triangular part of the array A */
- /* must contain the lower triangular part of the symmetric */
- /* matrix and the strictly upper triangular part of A is not */
- /* referenced. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. When SIDE = 'L' or 'l' then */
- /* LDA must be at least max( 1, m ), otherwise LDA must be at */
- /* least max( 1, n ). */
- /* Unchanged on exit. */
- /* B - COMPLEX array of DIMENSION ( LDB, n ). */
- /* Before entry, the leading m by n part of the array B must */
- /* contain the matrix B. */
- /* Unchanged on exit. */
- /* LDB - INTEGER. */
- /* On entry, LDB specifies the first dimension of B as declared */
- /* in the calling (sub) program. LDB must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* BETA - COMPLEX . */
- /* On entry, BETA specifies the scalar beta. When BETA is */
- /* supplied as zero then C need not be set on input. */
- /* Unchanged on exit. */
- /* C - COMPLEX array of DIMENSION ( LDC, n ). */
- /* Before entry, the leading m by n part of the array C must */
- /* contain the matrix C, except when beta is zero, in which */
- /* case C need not be set on entry. */
- /* On exit, the array C is overwritten by the m by n updated */
- /* matrix. */
- /* LDC - INTEGER. */
- /* On entry, LDC specifies the first dimension of C as declared */
- /* in the calling (sub) program. LDC must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* Level 3 Blas routine. */
- /* -- Written on 8-February-1989. */
- /* Jack Dongarra, Argonne National Laboratory. */
- /* Iain Duff, AERE Harwell. */
- /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
- /* Sven Hammarling, Numerical Algorithms Group Ltd. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* Set NROWA as the number of rows of A. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- /* Function Body */
- if (lsame_(side, "L")) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- upper = lsame_(uplo, "U");
- /* Test the input parameters. */
- info = 0;
- if (! lsame_(side, "L") && ! lsame_(side, "R")) {
- info = 1;
- } else if (! upper && ! lsame_(uplo, "L")) {
- info = 2;
- } else if (*m < 0) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldb < max(1,*m)) {
- info = 9;
- } else if (*ldc < max(1,*m)) {
- info = 12;
- }
- if (info != 0) {
- xerbla_("CSYMM ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f && (beta->r
- == 1.f && beta->i == 0.f)) {
- return 0;
- }
- /* And when alpha.eq.zero. */
- if (alpha->r == 0.f && alpha->i == 0.f) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0.f, c__[i__3].i = 0.f;
- /* L10: */
- }
- /* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
- q__1.i = beta->r * c__[i__4].i + beta->i * c__[
- i__4].r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L30: */
- }
- /* L40: */
- }
- }
- return 0;
- }
- /* Start the operations. */
- if (lsame_(side, "L")) {
- /* Form C := alpha*A*B + beta*C. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- q__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3]
- .r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- i__4 = k + j * c_dim1;
- i__5 = k + j * c_dim1;
- i__6 = k + i__ * a_dim1;
- q__2.r = temp1.r * a[i__6].r - temp1.i * a[i__6].i,
- q__2.i = temp1.r * a[i__6].i + temp1.i * a[
- i__6].r;
- q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5].i +
- q__2.i;
- c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
- i__4 = k + j * b_dim1;
- i__5 = k + i__ * a_dim1;
- q__2.r = b[i__4].r * a[i__5].r - b[i__4].i * a[i__5]
- .i, q__2.i = b[i__4].r * a[i__5].i + b[i__4]
- .i * a[i__5].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- /* L50: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + i__ * a_dim1;
- q__2.r = temp1.r * a[i__4].r - temp1.i * a[i__4].i,
- q__2.i = temp1.r * a[i__4].i + temp1.i * a[
- i__4].r;
- q__3.r = alpha->r * temp2.r - alpha->i * temp2.i,
- q__3.i = alpha->r * temp2.i + alpha->i *
- temp2.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- i__5 = i__ + i__ * a_dim1;
- q__4.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- q__4.i = temp1.r * a[i__5].i + temp1.i * a[
- i__5].r;
- q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i;
- q__5.r = alpha->r * temp2.r - alpha->i * temp2.i,
- q__5.i = alpha->r * temp2.i + alpha->i *
- temp2.r;
- q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L60: */
- }
- /* L70: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- i__2 = i__ + j * b_dim1;
- q__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i,
- q__1.i = alpha->r * b[i__2].i + alpha->i * b[i__2]
- .r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- temp2.r = 0.f, temp2.i = 0.f;
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- i__3 = k + j * c_dim1;
- i__4 = k + j * c_dim1;
- i__5 = k + i__ * a_dim1;
- q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
- q__2.i = temp1.r * a[i__5].i + temp1.i * a[
- i__5].r;
- q__1.r = c__[i__4].r + q__2.r, q__1.i = c__[i__4].i +
- q__2.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- i__3 = k + j * b_dim1;
- i__4 = k + i__ * a_dim1;
- q__2.r = b[i__3].r * a[i__4].r - b[i__3].i * a[i__4]
- .i, q__2.i = b[i__3].r * a[i__4].i + b[i__3]
- .i * a[i__4].r;
- q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- /* L80: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__2 = i__ + j * c_dim1;
- i__3 = i__ + i__ * a_dim1;
- q__2.r = temp1.r * a[i__3].r - temp1.i * a[i__3].i,
- q__2.i = temp1.r * a[i__3].i + temp1.i * a[
- i__3].r;
- q__3.r = alpha->r * temp2.r - alpha->i * temp2.i,
- q__3.i = alpha->r * temp2.i + alpha->i *
- temp2.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__2].r = q__1.r, c__[i__2].i = q__1.i;
- } else {
- i__2 = i__ + j * c_dim1;
- i__3 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__3].r - beta->i * c__[i__3]
- .i, q__3.i = beta->r * c__[i__3].i + beta->i *
- c__[i__3].r;
- i__4 = i__ + i__ * a_dim1;
- q__4.r = temp1.r * a[i__4].r - temp1.i * a[i__4].i,
- q__4.i = temp1.r * a[i__4].i + temp1.i * a[
- i__4].r;
- q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i;
- q__5.r = alpha->r * temp2.r - alpha->i * temp2.i,
- q__5.i = alpha->r * temp2.i + alpha->i *
- temp2.r;
- q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
- c__[i__2].r = q__1.r, c__[i__2].i = q__1.i;
- }
- /* L90: */
- }
- /* L100: */
- }
- }
- } else {
- /* Form C := alpha*B*A + beta*C. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + j * a_dim1;
- q__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2].i, q__1.i =
- alpha->r * a[i__2].i + alpha->i * a[i__2].r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- if (beta->r == 0.f && beta->i == 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * b_dim1;
- q__1.r = temp1.r * b[i__4].r - temp1.i * b[i__4].i,
- q__1.i = temp1.r * b[i__4].i + temp1.i * b[i__4]
- .r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L110: */
- }
- } else {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__2.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
- q__2.i = beta->r * c__[i__4].i + beta->i * c__[
- i__4].r;
- i__5 = i__ + j * b_dim1;
- q__3.r = temp1.r * b[i__5].r - temp1.i * b[i__5].i,
- q__3.i = temp1.r * b[i__5].i + temp1.i * b[i__5]
- .r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L120: */
- }
- }
- i__2 = j - 1;
- for (k = 1; k <= i__2; ++k) {
- if (upper) {
- i__3 = k + j * a_dim1;
- q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
- q__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
- .r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- } else {
- i__3 = j + k * a_dim1;
- q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
- q__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
- .r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + k * b_dim1;
- q__2.r = temp1.r * b[i__6].r - temp1.i * b[i__6].i,
- q__2.i = temp1.r * b[i__6].i + temp1.i * b[i__6]
- .r;
- q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5].i +
- q__2.i;
- c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
- /* L130: */
- }
- /* L140: */
- }
- i__2 = *n;
- for (k = j + 1; k <= i__2; ++k) {
- if (upper) {
- i__3 = j + k * a_dim1;
- q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
- q__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
- .r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- } else {
- i__3 = k + j * a_dim1;
- q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
- q__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
- .r;
- temp1.r = q__1.r, temp1.i = q__1.i;
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + k * b_dim1;
- q__2.r = temp1.r * b[i__6].r - temp1.i * b[i__6].i,
- q__2.i = temp1.r * b[i__6].i + temp1.i * b[i__6]
- .r;
- q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5].i +
- q__2.i;
- c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
- /* L150: */
- }
- /* L160: */
- }
- /* L170: */
- }
- }
- return 0;
- /* End of CSYMM . */
- } /* csymm_ */
|