12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203 |
- //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the SelectionDAG class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineConstantPool.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
- #include "llvm/CodeGen/TargetFrameLowering.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CodeGen.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Mutex.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <limits>
- #include <set>
- #include <string>
- #include <utility>
- #include <vector>
- using namespace llvm;
- /// makeVTList - Return an instance of the SDVTList struct initialized with the
- /// specified members.
- static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
- SDVTList Res = {VTs, NumVTs};
- return Res;
- }
- // Default null implementations of the callbacks.
- void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
- void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
- void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
- void SelectionDAG::DAGNodeDeletedListener::anchor() {}
- #define DEBUG_TYPE "selectiondag"
- static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
- cl::Hidden, cl::init(true),
- cl::desc("Gang up loads and stores generated by inlining of memcpy"));
- static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
- cl::desc("Number limit for gluing ld/st of memcpy."),
- cl::Hidden, cl::init(0));
- static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
- LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
- }
- //===----------------------------------------------------------------------===//
- // ConstantFPSDNode Class
- //===----------------------------------------------------------------------===//
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
- bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
- return getValueAPF().bitwiseIsEqual(V);
- }
- bool ConstantFPSDNode::isValueValidForType(EVT VT,
- const APFloat& Val) {
- assert(VT.isFloatingPoint() && "Can only convert between FP types");
- // convert modifies in place, so make a copy.
- APFloat Val2 = APFloat(Val);
- bool losesInfo;
- (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven,
- &losesInfo);
- return !losesInfo;
- }
- //===----------------------------------------------------------------------===//
- // ISD Namespace
- //===----------------------------------------------------------------------===//
- bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
- if (N->getOpcode() == ISD::SPLAT_VECTOR) {
- unsigned EltSize =
- N->getValueType(0).getVectorElementType().getSizeInBits();
- if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
- SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
- return true;
- }
- if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
- SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
- return true;
- }
- }
- auto *BV = dyn_cast<BuildVectorSDNode>(N);
- if (!BV)
- return false;
- APInt SplatUndef;
- unsigned SplatBitSize;
- bool HasUndefs;
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
- return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
- EltSize) &&
- EltSize == SplatBitSize;
- }
- // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
- // specializations of the more general isConstantSplatVector()?
- bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
- // Look through a bit convert.
- while (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
- APInt SplatVal;
- return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
- }
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).isUndef())
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-~0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target and
- // a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all ones, not whether the individual
- // constants are.
- SDValue NotZero = N->getOperand(i);
- unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
- if (CN->getAPIntValue().countTrailingOnes() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
- return false;
- } else
- return false;
- // Okay, we have at least one ~0 value, check to see if the rest match or are
- // undefs. Even with the above element type twiddling, this should be OK, as
- // the same type legalization should have applied to all the elements.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
- return false;
- return true;
- }
- bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
- // Look through a bit convert.
- while (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
- APInt SplatVal;
- return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
- }
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- bool IsAllUndef = true;
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- IsAllUndef = false;
- // Do not accept build_vectors that aren't all constants or which have non-0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target
- // and a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all zeros, not whether the individual
- // constants are.
- unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
- if (CN->getAPIntValue().countTrailingZeros() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
- return false;
- } else
- return false;
- }
- // Do not accept an all-undef vector.
- if (IsAllUndef)
- return false;
- return true;
- }
- bool ISD::isBuildVectorAllOnes(const SDNode *N) {
- return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
- }
- bool ISD::isBuildVectorAllZeros(const SDNode *N) {
- return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
- }
- bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- if (!isa<ConstantSDNode>(Op))
- return false;
- }
- return true;
- }
- bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- if (!isa<ConstantFPSDNode>(Op))
- return false;
- }
- return true;
- }
- bool ISD::allOperandsUndef(const SDNode *N) {
- // Return false if the node has no operands.
- // This is "logically inconsistent" with the definition of "all" but
- // is probably the desired behavior.
- if (N->getNumOperands() == 0)
- return false;
- return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
- }
- bool ISD::matchUnaryPredicate(SDValue Op,
- std::function<bool(ConstantSDNode *)> Match,
- bool AllowUndefs) {
- // FIXME: Add support for scalar UNDEF cases?
- if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
- return Match(Cst);
- // FIXME: Add support for vector UNDEF cases?
- if (ISD::BUILD_VECTOR != Op.getOpcode() &&
- ISD::SPLAT_VECTOR != Op.getOpcode())
- return false;
- EVT SVT = Op.getValueType().getScalarType();
- for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
- if (AllowUndefs && Op.getOperand(i).isUndef()) {
- if (!Match(nullptr))
- return false;
- continue;
- }
- auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
- if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
- return false;
- }
- return true;
- }
- bool ISD::matchBinaryPredicate(
- SDValue LHS, SDValue RHS,
- std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
- bool AllowUndefs, bool AllowTypeMismatch) {
- if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
- return false;
- // TODO: Add support for scalar UNDEF cases?
- if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
- if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
- return Match(LHSCst, RHSCst);
- // TODO: Add support for vector UNDEF cases?
- if (LHS.getOpcode() != RHS.getOpcode() ||
- (LHS.getOpcode() != ISD::BUILD_VECTOR &&
- LHS.getOpcode() != ISD::SPLAT_VECTOR))
- return false;
- EVT SVT = LHS.getValueType().getScalarType();
- for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
- SDValue LHSOp = LHS.getOperand(i);
- SDValue RHSOp = RHS.getOperand(i);
- bool LHSUndef = AllowUndefs && LHSOp.isUndef();
- bool RHSUndef = AllowUndefs && RHSOp.isUndef();
- auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
- auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
- if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
- return false;
- if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
- LHSOp.getValueType() != RHSOp.getValueType()))
- return false;
- if (!Match(LHSCst, RHSCst))
- return false;
- }
- return true;
- }
- ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
- switch (VecReduceOpcode) {
- default:
- llvm_unreachable("Expected VECREDUCE opcode");
- case ISD::VECREDUCE_FADD:
- case ISD::VECREDUCE_SEQ_FADD:
- case ISD::VP_REDUCE_FADD:
- case ISD::VP_REDUCE_SEQ_FADD:
- return ISD::FADD;
- case ISD::VECREDUCE_FMUL:
- case ISD::VECREDUCE_SEQ_FMUL:
- case ISD::VP_REDUCE_FMUL:
- case ISD::VP_REDUCE_SEQ_FMUL:
- return ISD::FMUL;
- case ISD::VECREDUCE_ADD:
- case ISD::VP_REDUCE_ADD:
- return ISD::ADD;
- case ISD::VECREDUCE_MUL:
- case ISD::VP_REDUCE_MUL:
- return ISD::MUL;
- case ISD::VECREDUCE_AND:
- case ISD::VP_REDUCE_AND:
- return ISD::AND;
- case ISD::VECREDUCE_OR:
- case ISD::VP_REDUCE_OR:
- return ISD::OR;
- case ISD::VECREDUCE_XOR:
- case ISD::VP_REDUCE_XOR:
- return ISD::XOR;
- case ISD::VECREDUCE_SMAX:
- case ISD::VP_REDUCE_SMAX:
- return ISD::SMAX;
- case ISD::VECREDUCE_SMIN:
- case ISD::VP_REDUCE_SMIN:
- return ISD::SMIN;
- case ISD::VECREDUCE_UMAX:
- case ISD::VP_REDUCE_UMAX:
- return ISD::UMAX;
- case ISD::VECREDUCE_UMIN:
- case ISD::VP_REDUCE_UMIN:
- return ISD::UMIN;
- case ISD::VECREDUCE_FMAX:
- case ISD::VP_REDUCE_FMAX:
- return ISD::FMAXNUM;
- case ISD::VECREDUCE_FMIN:
- case ISD::VP_REDUCE_FMIN:
- return ISD::FMINNUM;
- }
- }
- bool ISD::isVPOpcode(unsigned Opcode) {
- switch (Opcode) {
- default:
- return false;
- #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
- case ISD::VPSD: \
- return true;
- #include "llvm/IR/VPIntrinsics.def"
- }
- }
- bool ISD::isVPBinaryOp(unsigned Opcode) {
- switch (Opcode) {
- default:
- break;
- #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
- #define VP_PROPERTY_BINARYOP return true;
- #define END_REGISTER_VP_SDNODE(VPSD) break;
- #include "llvm/IR/VPIntrinsics.def"
- }
- return false;
- }
- bool ISD::isVPReduction(unsigned Opcode) {
- switch (Opcode) {
- default:
- break;
- #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
- #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
- #define END_REGISTER_VP_SDNODE(VPSD) break;
- #include "llvm/IR/VPIntrinsics.def"
- }
- return false;
- }
- /// The operand position of the vector mask.
- Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
- switch (Opcode) {
- default:
- return None;
- #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
- case ISD::VPSD: \
- return MASKPOS;
- #include "llvm/IR/VPIntrinsics.def"
- }
- }
- /// The operand position of the explicit vector length parameter.
- Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
- switch (Opcode) {
- default:
- return None;
- #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
- case ISD::VPSD: \
- return EVLPOS;
- #include "llvm/IR/VPIntrinsics.def"
- }
- }
- ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
- switch (ExtType) {
- case ISD::EXTLOAD:
- return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
- case ISD::SEXTLOAD:
- return ISD::SIGN_EXTEND;
- case ISD::ZEXTLOAD:
- return ISD::ZERO_EXTEND;
- default:
- break;
- }
- llvm_unreachable("Invalid LoadExtType");
- }
- ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
- // To perform this operation, we just need to swap the L and G bits of the
- // operation.
- unsigned OldL = (Operation >> 2) & 1;
- unsigned OldG = (Operation >> 1) & 1;
- return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
- (OldL << 1) | // New G bit
- (OldG << 2)); // New L bit.
- }
- static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
- unsigned Operation = Op;
- if (isIntegerLike)
- Operation ^= 7; // Flip L, G, E bits, but not U.
- else
- Operation ^= 15; // Flip all of the condition bits.
- if (Operation > ISD::SETTRUE2)
- Operation &= ~8; // Don't let N and U bits get set.
- return ISD::CondCode(Operation);
- }
- ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
- return getSetCCInverseImpl(Op, Type.isInteger());
- }
- ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
- bool isIntegerLike) {
- return getSetCCInverseImpl(Op, isIntegerLike);
- }
- /// For an integer comparison, return 1 if the comparison is a signed operation
- /// and 2 if the result is an unsigned comparison. Return zero if the operation
- /// does not depend on the sign of the input (setne and seteq).
- static int isSignedOp(ISD::CondCode Opcode) {
- switch (Opcode) {
- default: llvm_unreachable("Illegal integer setcc operation!");
- case ISD::SETEQ:
- case ISD::SETNE: return 0;
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETGT:
- case ISD::SETGE: return 1;
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETUGT:
- case ISD::SETUGE: return 2;
- }
- }
- ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- EVT Type) {
- bool IsInteger = Type.isInteger();
- if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed integer setcc with an unsigned integer setcc.
- return ISD::SETCC_INVALID;
- unsigned Op = Op1 | Op2; // Combine all of the condition bits.
- // If the N and U bits get set, then the resultant comparison DOES suddenly
- // care about orderedness, and it is true when ordered.
- if (Op > ISD::SETTRUE2)
- Op &= ~16; // Clear the U bit if the N bit is set.
- // Canonicalize illegal integer setcc's.
- if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
- Op = ISD::SETNE;
- return ISD::CondCode(Op);
- }
- ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- EVT Type) {
- bool IsInteger = Type.isInteger();
- if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed setcc with an unsigned setcc.
- return ISD::SETCC_INVALID;
- // Combine all of the condition bits.
- ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
- // Canonicalize illegal integer setcc's.
- if (IsInteger) {
- switch (Result) {
- default: break;
- case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
- case ISD::SETOEQ: // SETEQ & SETU[LG]E
- case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
- case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
- case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
- }
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // SDNode Profile Support
- //===----------------------------------------------------------------------===//
- /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
- static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
- ID.AddInteger(OpC);
- }
- /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
- /// solely with their pointer.
- static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
- ID.AddPointer(VTList.VTs);
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- ArrayRef<SDValue> Ops) {
- for (auto& Op : Ops) {
- ID.AddPointer(Op.getNode());
- ID.AddInteger(Op.getResNo());
- }
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- ArrayRef<SDUse> Ops) {
- for (auto& Op : Ops) {
- ID.AddPointer(Op.getNode());
- ID.AddInteger(Op.getResNo());
- }
- }
- static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
- SDVTList VTList, ArrayRef<SDValue> OpList) {
- AddNodeIDOpcode(ID, OpC);
- AddNodeIDValueTypes(ID, VTList);
- AddNodeIDOperands(ID, OpList);
- }
- /// If this is an SDNode with special info, add this info to the NodeID data.
- static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
- switch (N->getOpcode()) {
- case ISD::TargetExternalSymbol:
- case ISD::ExternalSymbol:
- case ISD::MCSymbol:
- llvm_unreachable("Should only be used on nodes with operands");
- default: break; // Normal nodes don't need extra info.
- case ISD::TargetConstant:
- case ISD::Constant: {
- const ConstantSDNode *C = cast<ConstantSDNode>(N);
- ID.AddPointer(C->getConstantIntValue());
- ID.AddBoolean(C->isOpaque());
- break;
- }
- case ISD::TargetConstantFP:
- case ISD::ConstantFP:
- ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
- break;
- case ISD::TargetGlobalAddress:
- case ISD::GlobalAddress:
- case ISD::TargetGlobalTLSAddress:
- case ISD::GlobalTLSAddress: {
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
- ID.AddPointer(GA->getGlobal());
- ID.AddInteger(GA->getOffset());
- ID.AddInteger(GA->getTargetFlags());
- break;
- }
- case ISD::BasicBlock:
- ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
- break;
- case ISD::Register:
- ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
- break;
- case ISD::RegisterMask:
- ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
- break;
- case ISD::SRCVALUE:
- ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
- break;
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
- break;
- case ISD::LIFETIME_START:
- case ISD::LIFETIME_END:
- if (cast<LifetimeSDNode>(N)->hasOffset()) {
- ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
- ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
- }
- break;
- case ISD::PSEUDO_PROBE:
- ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
- ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
- ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
- break;
- case ISD::JumpTable:
- case ISD::TargetJumpTable:
- ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
- ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
- break;
- case ISD::ConstantPool:
- case ISD::TargetConstantPool: {
- const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
- ID.AddInteger(CP->getAlign().value());
- ID.AddInteger(CP->getOffset());
- if (CP->isMachineConstantPoolEntry())
- CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
- else
- ID.AddPointer(CP->getConstVal());
- ID.AddInteger(CP->getTargetFlags());
- break;
- }
- case ISD::TargetIndex: {
- const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
- ID.AddInteger(TI->getIndex());
- ID.AddInteger(TI->getOffset());
- ID.AddInteger(TI->getTargetFlags());
- break;
- }
- case ISD::LOAD: {
- const LoadSDNode *LD = cast<LoadSDNode>(N);
- ID.AddInteger(LD->getMemoryVT().getRawBits());
- ID.AddInteger(LD->getRawSubclassData());
- ID.AddInteger(LD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::STORE: {
- const StoreSDNode *ST = cast<StoreSDNode>(N);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VP_LOAD: {
- const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
- ID.AddInteger(ELD->getMemoryVT().getRawBits());
- ID.AddInteger(ELD->getRawSubclassData());
- ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VP_STORE: {
- const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
- ID.AddInteger(EST->getMemoryVT().getRawBits());
- ID.AddInteger(EST->getRawSubclassData());
- ID.AddInteger(EST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VP_GATHER: {
- const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
- ID.AddInteger(EG->getMemoryVT().getRawBits());
- ID.AddInteger(EG->getRawSubclassData());
- ID.AddInteger(EG->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VP_SCATTER: {
- const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
- ID.AddInteger(ES->getMemoryVT().getRawBits());
- ID.AddInteger(ES->getRawSubclassData());
- ID.AddInteger(ES->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MLOAD: {
- const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
- ID.AddInteger(MLD->getMemoryVT().getRawBits());
- ID.AddInteger(MLD->getRawSubclassData());
- ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MSTORE: {
- const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
- ID.AddInteger(MST->getMemoryVT().getRawBits());
- ID.AddInteger(MST->getRawSubclassData());
- ID.AddInteger(MST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MGATHER: {
- const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
- ID.AddInteger(MG->getMemoryVT().getRawBits());
- ID.AddInteger(MG->getRawSubclassData());
- ID.AddInteger(MG->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MSCATTER: {
- const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
- ID.AddInteger(MS->getMemoryVT().getRawBits());
- ID.AddInteger(MS->getRawSubclassData());
- ID.AddInteger(MS->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_CLR:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX:
- case ISD::ATOMIC_LOAD:
- case ISD::ATOMIC_STORE: {
- const AtomicSDNode *AT = cast<AtomicSDNode>(N);
- ID.AddInteger(AT->getMemoryVT().getRawBits());
- ID.AddInteger(AT->getRawSubclassData());
- ID.AddInteger(AT->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::PREFETCH: {
- const MemSDNode *PF = cast<MemSDNode>(N);
- ID.AddInteger(PF->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
- i != e; ++i)
- ID.AddInteger(SVN->getMaskElt(i));
- break;
- }
- case ISD::TargetBlockAddress:
- case ISD::BlockAddress: {
- const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
- ID.AddPointer(BA->getBlockAddress());
- ID.AddInteger(BA->getOffset());
- ID.AddInteger(BA->getTargetFlags());
- break;
- }
- } // end switch (N->getOpcode())
- // Target specific memory nodes could also have address spaces to check.
- if (N->isTargetMemoryOpcode())
- ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
- }
- /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
- /// data.
- static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
- AddNodeIDOpcode(ID, N->getOpcode());
- // Add the return value info.
- AddNodeIDValueTypes(ID, N->getVTList());
- // Add the operand info.
- AddNodeIDOperands(ID, N->ops());
- // Handle SDNode leafs with special info.
- AddNodeIDCustom(ID, N);
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG Class
- //===----------------------------------------------------------------------===//
- /// doNotCSE - Return true if CSE should not be performed for this node.
- static bool doNotCSE(SDNode *N) {
- if (N->getValueType(0) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- switch (N->getOpcode()) {
- default: break;
- case ISD::HANDLENODE:
- case ISD::EH_LABEL:
- return true; // Never CSE these nodes.
- }
- // Check that remaining values produced are not flags.
- for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
- if (N->getValueType(i) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- return false;
- }
- /// RemoveDeadNodes - This method deletes all unreachable nodes in the
- /// SelectionDAG.
- void SelectionDAG::RemoveDeadNodes() {
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted.
- HandleSDNode Dummy(getRoot());
- SmallVector<SDNode*, 128> DeadNodes;
- // Add all obviously-dead nodes to the DeadNodes worklist.
- for (SDNode &Node : allnodes())
- if (Node.use_empty())
- DeadNodes.push_back(&Node);
- RemoveDeadNodes(DeadNodes);
- // If the root changed (e.g. it was a dead load, update the root).
- setRoot(Dummy.getValue());
- }
- /// RemoveDeadNodes - This method deletes the unreachable nodes in the
- /// given list, and any nodes that become unreachable as a result.
- void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
- // Process the worklist, deleting the nodes and adding their uses to the
- // worklist.
- while (!DeadNodes.empty()) {
- SDNode *N = DeadNodes.pop_back_val();
- // Skip to next node if we've already managed to delete the node. This could
- // happen if replacing a node causes a node previously added to the node to
- // be deleted.
- if (N->getOpcode() == ISD::DELETED_NODE)
- continue;
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, nullptr);
- // Take the node out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Next, brutally remove the operand list. This is safe to do, as there are
- // no cycles in the graph.
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Operand = Use.getNode();
- Use.set(SDValue());
- // Now that we removed this operand, see if there are no uses of it left.
- if (Operand->use_empty())
- DeadNodes.push_back(Operand);
- }
- DeallocateNode(N);
- }
- }
- void SelectionDAG::RemoveDeadNode(SDNode *N){
- SmallVector<SDNode*, 16> DeadNodes(1, N);
- // Create a dummy node that adds a reference to the root node, preventing
- // it from being deleted. (This matters if the root is an operand of the
- // dead node.)
- HandleSDNode Dummy(getRoot());
- RemoveDeadNodes(DeadNodes);
- }
- void SelectionDAG::DeleteNode(SDNode *N) {
- // First take this out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Finally, remove uses due to operands of this node, remove from the
- // AllNodes list, and delete the node.
- DeleteNodeNotInCSEMaps(N);
- }
- void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
- assert(N->getIterator() != AllNodes.begin() &&
- "Cannot delete the entry node!");
- assert(N->use_empty() && "Cannot delete a node that is not dead!");
- // Drop all of the operands and decrement used node's use counts.
- N->DropOperands();
- DeallocateNode(N);
- }
- void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
- assert(!(V->isVariadic() && isParameter));
- if (isParameter)
- ByvalParmDbgValues.push_back(V);
- else
- DbgValues.push_back(V);
- for (const SDNode *Node : V->getSDNodes())
- if (Node)
- DbgValMap[Node].push_back(V);
- }
- void SDDbgInfo::erase(const SDNode *Node) {
- DbgValMapType::iterator I = DbgValMap.find(Node);
- if (I == DbgValMap.end())
- return;
- for (auto &Val: I->second)
- Val->setIsInvalidated();
- DbgValMap.erase(I);
- }
- void SelectionDAG::DeallocateNode(SDNode *N) {
- // If we have operands, deallocate them.
- removeOperands(N);
- NodeAllocator.Deallocate(AllNodes.remove(N));
- // Set the opcode to DELETED_NODE to help catch bugs when node
- // memory is reallocated.
- // FIXME: There are places in SDag that have grown a dependency on the opcode
- // value in the released node.
- __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
- N->NodeType = ISD::DELETED_NODE;
- // If any of the SDDbgValue nodes refer to this SDNode, invalidate
- // them and forget about that node.
- DbgInfo->erase(N);
- }
- #ifndef NDEBUG
- /// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
- static void VerifySDNode(SDNode *N) {
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::BUILD_PAIR: {
- EVT VT = N->getValueType(0);
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
- "Wrong return type!");
- assert(N->getNumOperands() == 2 && "Wrong number of operands!");
- assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
- "Mismatched operand types!");
- assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
- "Wrong operand type!");
- assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
- "Wrong return type size");
- break;
- }
- case ISD::BUILD_VECTOR: {
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(N->getValueType(0).isVector() && "Wrong return type!");
- assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
- "Wrong number of operands!");
- EVT EltVT = N->getValueType(0).getVectorElementType();
- for (const SDUse &Op : N->ops()) {
- assert((Op.getValueType() == EltVT ||
- (EltVT.isInteger() && Op.getValueType().isInteger() &&
- EltVT.bitsLE(Op.getValueType()))) &&
- "Wrong operand type!");
- assert(Op.getValueType() == N->getOperand(0).getValueType() &&
- "Operands must all have the same type");
- }
- break;
- }
- }
- }
- #endif // NDEBUG
- /// Insert a newly allocated node into the DAG.
- ///
- /// Handles insertion into the all nodes list and CSE map, as well as
- /// verification and other common operations when a new node is allocated.
- void SelectionDAG::InsertNode(SDNode *N) {
- AllNodes.push_back(N);
- #ifndef NDEBUG
- N->PersistentId = NextPersistentId++;
- VerifySDNode(N);
- #endif
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeInserted(N);
- }
- /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
- /// correspond to it. This is useful when we're about to delete or repurpose
- /// the node. We don't want future request for structurally identical nodes
- /// to return N anymore.
- bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
- bool Erased = false;
- switch (N->getOpcode()) {
- case ISD::HANDLENODE: return false; // noop.
- case ISD::CONDCODE:
- assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
- "Cond code doesn't exist!");
- Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
- CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
- break;
- case ISD::ExternalSymbol:
- Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
- break;
- case ISD::TargetExternalSymbol: {
- ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
- Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
- ESN->getSymbol(), ESN->getTargetFlags()));
- break;
- }
- case ISD::MCSymbol: {
- auto *MCSN = cast<MCSymbolSDNode>(N);
- Erased = MCSymbols.erase(MCSN->getMCSymbol());
- break;
- }
- case ISD::VALUETYPE: {
- EVT VT = cast<VTSDNode>(N)->getVT();
- if (VT.isExtended()) {
- Erased = ExtendedValueTypeNodes.erase(VT);
- } else {
- Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
- ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
- }
- break;
- }
- default:
- // Remove it from the CSE Map.
- assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
- assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
- Erased = CSEMap.RemoveNode(N);
- break;
- }
- #ifndef NDEBUG
- // Verify that the node was actually in one of the CSE maps, unless it has a
- // flag result (which cannot be CSE'd) or is one of the special cases that are
- // not subject to CSE.
- if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
- !N->isMachineOpcode() && !doNotCSE(N)) {
- N->dump(this);
- dbgs() << "\n";
- llvm_unreachable("Node is not in map!");
- }
- #endif
- return Erased;
- }
- /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
- /// maps and modified in place. Add it back to the CSE maps, unless an identical
- /// node already exists, in which case transfer all its users to the existing
- /// node. This transfer can potentially trigger recursive merging.
- void
- SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
- // For node types that aren't CSE'd, just act as if no identical node
- // already exists.
- if (!doNotCSE(N)) {
- SDNode *Existing = CSEMap.GetOrInsertNode(N);
- if (Existing != N) {
- // If there was already an existing matching node, use ReplaceAllUsesWith
- // to replace the dead one with the existing one. This can cause
- // recursive merging of other unrelated nodes down the line.
- ReplaceAllUsesWith(N, Existing);
- // N is now dead. Inform the listeners and delete it.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, Existing);
- DeleteNodeNotInCSEMaps(N);
- return;
- }
- }
- // If the node doesn't already exist, we updated it. Inform listeners.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeUpdated(N);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- SDValue Ops[] = { Op };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
- if (Node)
- Node->intersectFlagsWith(N->getFlags());
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- SDValue Op1, SDValue Op2,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- SDValue Ops[] = { Op1, Op2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
- if (Node)
- Node->intersectFlagsWith(N->getFlags());
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
- if (Node)
- Node->intersectFlagsWith(N->getFlags());
- return Node;
- }
- Align SelectionDAG::getEVTAlign(EVT VT) const {
- Type *Ty = VT == MVT::iPTR ?
- PointerType::get(Type::getInt8Ty(*getContext()), 0) :
- VT.getTypeForEVT(*getContext());
- return getDataLayout().getABITypeAlign(Ty);
- }
- // EntryNode could meaningfully have debug info if we can find it...
- SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
- : TM(tm), OptLevel(OL),
- EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
- Root(getEntryNode()) {
- InsertNode(&EntryNode);
- DbgInfo = new SDDbgInfo();
- }
- void SelectionDAG::init(MachineFunction &NewMF,
- OptimizationRemarkEmitter &NewORE,
- Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
- LegacyDivergenceAnalysis * Divergence,
- ProfileSummaryInfo *PSIin,
- BlockFrequencyInfo *BFIin) {
- MF = &NewMF;
- SDAGISelPass = PassPtr;
- ORE = &NewORE;
- TLI = getSubtarget().getTargetLowering();
- TSI = getSubtarget().getSelectionDAGInfo();
- LibInfo = LibraryInfo;
- Context = &MF->getFunction().getContext();
- DA = Divergence;
- PSI = PSIin;
- BFI = BFIin;
- }
- SelectionDAG::~SelectionDAG() {
- assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
- allnodes_clear();
- OperandRecycler.clear(OperandAllocator);
- delete DbgInfo;
- }
- bool SelectionDAG::shouldOptForSize() const {
- return MF->getFunction().hasOptSize() ||
- llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
- }
- void SelectionDAG::allnodes_clear() {
- assert(&*AllNodes.begin() == &EntryNode);
- AllNodes.remove(AllNodes.begin());
- while (!AllNodes.empty())
- DeallocateNode(&AllNodes.front());
- #ifndef NDEBUG
- NextPersistentId = 0;
- #endif
- }
- SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
- void *&InsertPos) {
- SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- if (N) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::Constant:
- case ISD::ConstantFP:
- llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
- "debug location. Use another overload.");
- }
- }
- return N;
- }
- SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
- const SDLoc &DL, void *&InsertPos) {
- SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- if (N) {
- switch (N->getOpcode()) {
- case ISD::Constant:
- case ISD::ConstantFP:
- // Erase debug location from the node if the node is used at several
- // different places. Do not propagate one location to all uses as it
- // will cause a worse single stepping debugging experience.
- if (N->getDebugLoc() != DL.getDebugLoc())
- N->setDebugLoc(DebugLoc());
- break;
- default:
- // When the node's point of use is located earlier in the instruction
- // sequence than its prior point of use, update its debug info to the
- // earlier location.
- if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
- N->setDebugLoc(DL.getDebugLoc());
- break;
- }
- }
- return N;
- }
- void SelectionDAG::clear() {
- allnodes_clear();
- OperandRecycler.clear(OperandAllocator);
- OperandAllocator.Reset();
- CSEMap.clear();
- ExtendedValueTypeNodes.clear();
- ExternalSymbols.clear();
- TargetExternalSymbols.clear();
- MCSymbols.clear();
- SDCallSiteDbgInfo.clear();
- std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
- static_cast<CondCodeSDNode*>(nullptr));
- std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
- static_cast<SDNode*>(nullptr));
- EntryNode.UseList = nullptr;
- InsertNode(&EntryNode);
- Root = getEntryNode();
- DbgInfo->clear();
- }
- SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType())
- ? getNode(ISD::FP_EXTEND, DL, VT, Op)
- : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
- }
- std::pair<SDValue, SDValue>
- SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
- const SDLoc &DL, EVT VT) {
- assert(!VT.bitsEq(Op.getValueType()) &&
- "Strict no-op FP extend/round not allowed.");
- SDValue Res =
- VT.bitsGT(Op.getValueType())
- ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
- : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
- {Chain, Op, getIntPtrConstant(0, DL)});
- return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
- }
- SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ANY_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
- EVT OpVT) {
- if (VT.bitsLE(Op.getValueType()))
- return getNode(ISD::TRUNCATE, SL, VT, Op);
- TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
- return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
- }
- SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
- EVT OpVT = Op.getValueType();
- assert(VT.isInteger() && OpVT.isInteger() &&
- "Cannot getZeroExtendInReg FP types");
- assert(VT.isVector() == OpVT.isVector() &&
- "getZeroExtendInReg type should be vector iff the operand "
- "type is vector!");
- assert((!VT.isVector() ||
- VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
- "Vector element counts must match in getZeroExtendInReg");
- assert(VT.bitsLE(OpVT) && "Not extending!");
- if (OpVT == VT)
- return Op;
- APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
- VT.getScalarSizeInBits());
- return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
- }
- SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- // Only unsigned pointer semantics are supported right now. In the future this
- // might delegate to TLI to check pointer signedness.
- return getZExtOrTrunc(Op, DL, VT);
- }
- SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
- // Only unsigned pointer semantics are supported right now. In the future this
- // might delegate to TLI to check pointer signedness.
- return getZeroExtendInReg(Op, DL, VT);
- }
- /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
- SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
- return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
- }
- SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
- SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
- return getNode(ISD::XOR, DL, VT, Val, TrueValue);
- }
- SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
- EVT OpVT) {
- if (!V)
- return getConstant(0, DL, VT);
- switch (TLI->getBooleanContents(OpVT)) {
- case TargetLowering::ZeroOrOneBooleanContent:
- case TargetLowering::UndefinedBooleanContent:
- return getConstant(1, DL, VT);
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- return getAllOnesConstant(DL, VT);
- }
- llvm_unreachable("Unexpected boolean content enum!");
- }
- SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
- bool isT, bool isO) {
- EVT EltVT = VT.getScalarType();
- assert((EltVT.getSizeInBits() >= 64 ||
- (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
- "getConstant with a uint64_t value that doesn't fit in the type!");
- return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
- }
- SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
- bool isT, bool isO) {
- return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
- }
- SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
- EVT VT, bool isT, bool isO) {
- assert(VT.isInteger() && "Cannot create FP integer constant!");
- EVT EltVT = VT.getScalarType();
- const ConstantInt *Elt = &Val;
- // In some cases the vector type is legal but the element type is illegal and
- // needs to be promoted, for example v8i8 on ARM. In this case, promote the
- // inserted value (the type does not need to match the vector element type).
- // Any extra bits introduced will be truncated away.
- if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypePromoteInteger) {
- EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
- Elt = ConstantInt::get(*getContext(), NewVal);
- }
- // In other cases the element type is illegal and needs to be expanded, for
- // example v2i64 on MIPS32. In this case, find the nearest legal type, split
- // the value into n parts and use a vector type with n-times the elements.
- // Then bitcast to the type requested.
- // Legalizing constants too early makes the DAGCombiner's job harder so we
- // only legalize if the DAG tells us we must produce legal types.
- else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
- TLI->getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypeExpandInteger) {
- const APInt &NewVal = Elt->getValue();
- EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
- // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
- if (VT.isScalableVector()) {
- assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
- "Can only handle an even split!");
- unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
- SmallVector<SDValue, 2> ScalarParts;
- for (unsigned i = 0; i != Parts; ++i)
- ScalarParts.push_back(getConstant(
- NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
- ViaEltVT, isT, isO));
- return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
- }
- unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
- EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
- // Check the temporary vector is the correct size. If this fails then
- // getTypeToTransformTo() probably returned a type whose size (in bits)
- // isn't a power-of-2 factor of the requested type size.
- assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
- SmallVector<SDValue, 2> EltParts;
- for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
- EltParts.push_back(getConstant(
- NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
- ViaEltVT, isT, isO));
- // EltParts is currently in little endian order. If we actually want
- // big-endian order then reverse it now.
- if (getDataLayout().isBigEndian())
- std::reverse(EltParts.begin(), EltParts.end());
- // The elements must be reversed when the element order is different
- // to the endianness of the elements (because the BITCAST is itself a
- // vector shuffle in this situation). However, we do not need any code to
- // perform this reversal because getConstant() is producing a vector
- // splat.
- // This situation occurs in MIPS MSA.
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
- llvm::append_range(Ops, EltParts);
- SDValue V =
- getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
- return V;
- }
- assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
- "APInt size does not match type size!");
- unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
- ID.AddPointer(Elt);
- ID.AddBoolean(isO);
- void *IP = nullptr;
- SDNode *N = nullptr;
- if ((N = FindNodeOrInsertPos(ID, DL, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
- }
- SDValue Result(N, 0);
- if (VT.isScalableVector())
- Result = getSplatVector(VT, DL, Result);
- else if (VT.isVector())
- Result = getSplatBuildVector(VT, DL, Result);
- return Result;
- }
- SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
- bool isTarget) {
- return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
- }
- SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
- const SDLoc &DL, bool LegalTypes) {
- assert(VT.isInteger() && "Shift amount is not an integer type!");
- EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
- return getConstant(Val, DL, ShiftVT);
- }
- SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
- bool isTarget) {
- return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
- bool isTarget) {
- return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
- EVT VT, bool isTarget) {
- assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
- EVT EltVT = VT.getScalarType();
- // Do the map lookup using the actual bit pattern for the floating point
- // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
- // we don't have issues with SNANs.
- unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
- ID.AddPointer(&V);
- void *IP = nullptr;
- SDNode *N = nullptr;
- if ((N = FindNodeOrInsertPos(ID, DL, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- }
- SDValue Result(N, 0);
- if (VT.isScalableVector())
- Result = getSplatVector(VT, DL, Result);
- else if (VT.isVector())
- Result = getSplatBuildVector(VT, DL, Result);
- NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
- return Result;
- }
- SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
- bool isTarget) {
- EVT EltVT = VT.getScalarType();
- if (EltVT == MVT::f32)
- return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
- if (EltVT == MVT::f64)
- return getConstantFP(APFloat(Val), DL, VT, isTarget);
- if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
- EltVT == MVT::f16 || EltVT == MVT::bf16) {
- bool Ignored;
- APFloat APF = APFloat(Val);
- APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
- &Ignored);
- return getConstantFP(APF, DL, VT, isTarget);
- }
- llvm_unreachable("Unsupported type in getConstantFP");
- }
- SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
- EVT VT, int64_t Offset, bool isTargetGA,
- unsigned TargetFlags) {
- assert((TargetFlags == 0 || isTargetGA) &&
- "Cannot set target flags on target-independent globals");
- // Truncate (with sign-extension) the offset value to the pointer size.
- unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
- if (BitWidth < 64)
- Offset = SignExtend64(Offset, BitWidth);
- unsigned Opc;
- if (GV->isThreadLocal())
- Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
- else
- Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddPointer(GV);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<GlobalAddressSDNode>(
- Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
- unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(FI);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
- unsigned TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent jump tables");
- unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(JTI);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
- MaybeAlign Alignment, int Offset,
- bool isTarget, unsigned TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (!Alignment)
- Alignment = shouldOptForSize()
- ? getDataLayout().getABITypeAlign(C->getType())
- : getDataLayout().getPrefTypeAlign(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(Alignment->value());
- ID.AddInteger(Offset);
- ID.AddPointer(C);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
- return V;
- }
- SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
- MaybeAlign Alignment, int Offset,
- bool isTarget, unsigned TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (!Alignment)
- Alignment = getDataLayout().getPrefTypeAlign(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(Alignment->value());
- ID.AddInteger(Offset);
- C->addSelectionDAGCSEId(ID);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
- unsigned TargetFlags) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
- ID.AddInteger(Index);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
- ID.AddPointer(MBB);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<BasicBlockSDNode>(MBB);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getValueType(EVT VT) {
- if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
- ValueTypeNodes.size())
- ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
- SDNode *&N = VT.isExtended() ?
- ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
- if (N) return SDValue(N, 0);
- N = newSDNode<VTSDNode>(VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
- SDNode *&N = ExternalSymbols[Sym];
- if (N) return SDValue(N, 0);
- N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
- SDNode *&N = MCSymbols[Sym];
- if (N)
- return SDValue(N, 0);
- N = newSDNode<MCSymbolSDNode>(Sym, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
- unsigned TargetFlags) {
- SDNode *&N =
- TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
- if (N) return SDValue(N, 0);
- N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
- if ((unsigned)Cond >= CondCodeNodes.size())
- CondCodeNodes.resize(Cond+1);
- if (!CondCodeNodes[Cond]) {
- auto *N = newSDNode<CondCodeSDNode>(Cond);
- CondCodeNodes[Cond] = N;
- InsertNode(N);
- }
- return SDValue(CondCodeNodes[Cond], 0);
- }
- SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
- APInt One(ResVT.getScalarSizeInBits(), 1);
- return getStepVector(DL, ResVT, One);
- }
- SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
- assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
- if (ResVT.isScalableVector())
- return getNode(
- ISD::STEP_VECTOR, DL, ResVT,
- getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
- SmallVector<SDValue, 16> OpsStepConstants;
- for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
- OpsStepConstants.push_back(
- getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
- return getBuildVector(ResVT, DL, OpsStepConstants);
- }
- /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
- /// point at N1 to point at N2 and indices that point at N2 to point at N1.
- static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
- std::swap(N1, N2);
- ShuffleVectorSDNode::commuteMask(M);
- }
- SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
- SDValue N2, ArrayRef<int> Mask) {
- assert(VT.getVectorNumElements() == Mask.size() &&
- "Must have the same number of vector elements as mask elements!");
- assert(VT == N1.getValueType() && VT == N2.getValueType() &&
- "Invalid VECTOR_SHUFFLE");
- // Canonicalize shuffle undef, undef -> undef
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- // Validate that all indices in Mask are within the range of the elements
- // input to the shuffle.
- int NElts = Mask.size();
- assert(llvm::all_of(Mask,
- [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
- "Index out of range");
- // Copy the mask so we can do any needed cleanup.
- SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
- // Canonicalize shuffle v, v -> v, undef
- if (N1 == N2) {
- N2 = getUNDEF(VT);
- for (int i = 0; i != NElts; ++i)
- if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
- }
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N1.isUndef())
- commuteShuffle(N1, N2, MaskVec);
- if (TLI->hasVectorBlend()) {
- // If shuffling a splat, try to blend the splat instead. We do this here so
- // that even when this arises during lowering we don't have to re-handle it.
- auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
- BitVector UndefElements;
- SDValue Splat = BV->getSplatValue(&UndefElements);
- if (!Splat)
- return;
- for (int i = 0; i < NElts; ++i) {
- if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
- continue;
- // If this input comes from undef, mark it as such.
- if (UndefElements[MaskVec[i] - Offset]) {
- MaskVec[i] = -1;
- continue;
- }
- // If we can blend a non-undef lane, use that instead.
- if (!UndefElements[i])
- MaskVec[i] = i + Offset;
- }
- };
- if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
- BlendSplat(N1BV, 0);
- if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
- BlendSplat(N2BV, NElts);
- }
- // Canonicalize all index into lhs, -> shuffle lhs, undef
- // Canonicalize all index into rhs, -> shuffle rhs, undef
- bool AllLHS = true, AllRHS = true;
- bool N2Undef = N2.isUndef();
- for (int i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= NElts) {
- if (N2Undef)
- MaskVec[i] = -1;
- else
- AllLHS = false;
- } else if (MaskVec[i] >= 0) {
- AllRHS = false;
- }
- }
- if (AllLHS && AllRHS)
- return getUNDEF(VT);
- if (AllLHS && !N2Undef)
- N2 = getUNDEF(VT);
- if (AllRHS) {
- N1 = getUNDEF(VT);
- commuteShuffle(N1, N2, MaskVec);
- }
- // Reset our undef status after accounting for the mask.
- N2Undef = N2.isUndef();
- // Re-check whether both sides ended up undef.
- if (N1.isUndef() && N2Undef)
- return getUNDEF(VT);
- // If Identity shuffle return that node.
- bool Identity = true, AllSame = true;
- for (int i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
- if (MaskVec[i] != MaskVec[0]) AllSame = false;
- }
- if (Identity && NElts)
- return N1;
- // Shuffling a constant splat doesn't change the result.
- if (N2Undef) {
- SDValue V = N1;
- // Look through any bitcasts. We check that these don't change the number
- // (and size) of elements and just changes their types.
- while (V.getOpcode() == ISD::BITCAST)
- V = V->getOperand(0);
- // A splat should always show up as a build vector node.
- if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
- BitVector UndefElements;
- SDValue Splat = BV->getSplatValue(&UndefElements);
- // If this is a splat of an undef, shuffling it is also undef.
- if (Splat && Splat.isUndef())
- return getUNDEF(VT);
- bool SameNumElts =
- V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
- // We only have a splat which can skip shuffles if there is a splatted
- // value and no undef lanes rearranged by the shuffle.
- if (Splat && UndefElements.none()) {
- // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
- // number of elements match or the value splatted is a zero constant.
- if (SameNumElts)
- return N1;
- if (auto *C = dyn_cast<ConstantSDNode>(Splat))
- if (C->isZero())
- return N1;
- }
- // If the shuffle itself creates a splat, build the vector directly.
- if (AllSame && SameNumElts) {
- EVT BuildVT = BV->getValueType(0);
- const SDValue &Splatted = BV->getOperand(MaskVec[0]);
- SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
- // We may have jumped through bitcasts, so the type of the
- // BUILD_VECTOR may not match the type of the shuffle.
- if (BuildVT != VT)
- NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
- return NewBV;
- }
- }
- }
- FoldingSetNodeID ID;
- SDValue Ops[2] = { N1, N2 };
- AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
- for (int i = 0; i != NElts; ++i)
- ID.AddInteger(MaskVec[i]);
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- // Allocate the mask array for the node out of the BumpPtrAllocator, since
- // SDNode doesn't have access to it. This memory will be "leaked" when
- // the node is deallocated, but recovered when the NodeAllocator is released.
- int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
- llvm::copy(MaskVec, MaskAlloc);
- auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
- dl.getDebugLoc(), MaskAlloc);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
- EVT VT = SV.getValueType(0);
- SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
- ShuffleVectorSDNode::commuteMask(MaskVec);
- SDValue Op0 = SV.getOperand(0);
- SDValue Op1 = SV.getOperand(1);
- return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
- }
- SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
- ID.AddInteger(RegNo);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
- N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
- ID.AddPointer(RegMask);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
- MCSymbol *Label) {
- return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
- }
- SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
- SDValue Root, MCSymbol *Label) {
- FoldingSetNodeID ID;
- SDValue Ops[] = { Root };
- AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
- ID.AddPointer(Label);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N =
- newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
- int64_t Offset, bool isTarget,
- unsigned TargetFlags) {
- unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddPointer(BA);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getSrcValue(const Value *V) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<SrcValueSDNode>(V);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMDNode(const MDNode *MD) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
- ID.AddPointer(MD);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<MDNodeSDNode>(MD);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
- if (VT == V.getValueType())
- return V;
- return getNode(ISD::BITCAST, SDLoc(V), VT, V);
- }
- SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
- unsigned SrcAS, unsigned DestAS) {
- SDValue Ops[] = {Ptr};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
- ID.AddInteger(SrcAS);
- ID.AddInteger(DestAS);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
- VT, SrcAS, DestAS);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getFreeze(SDValue V) {
- return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
- }
- /// getShiftAmountOperand - Return the specified value casted to
- /// the target's desired shift amount type.
- SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
- EVT OpTy = Op.getValueType();
- EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
- if (OpTy == ShTy || OpTy.isVector()) return Op;
- return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
- }
- SDValue SelectionDAG::expandVAArg(SDNode *Node) {
- SDLoc dl(Node);
- const TargetLowering &TLI = getTargetLoweringInfo();
- const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
- EVT VT = Node->getValueType(0);
- SDValue Tmp1 = Node->getOperand(0);
- SDValue Tmp2 = Node->getOperand(1);
- const MaybeAlign MA(Node->getConstantOperandVal(3));
- SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
- Tmp2, MachinePointerInfo(V));
- SDValue VAList = VAListLoad;
- if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
- VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
- getConstant(MA->value() - 1, dl, VAList.getValueType()));
- VAList =
- getNode(ISD::AND, dl, VAList.getValueType(), VAList,
- getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
- }
- // Increment the pointer, VAList, to the next vaarg
- Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
- getConstant(getDataLayout().getTypeAllocSize(
- VT.getTypeForEVT(*getContext())),
- dl, VAList.getValueType()));
- // Store the incremented VAList to the legalized pointer
- Tmp1 =
- getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
- // Load the actual argument out of the pointer VAList
- return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
- }
- SDValue SelectionDAG::expandVACopy(SDNode *Node) {
- SDLoc dl(Node);
- const TargetLowering &TLI = getTargetLoweringInfo();
- // This defaults to loading a pointer from the input and storing it to the
- // output, returning the chain.
- const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
- const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
- SDValue Tmp1 =
- getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
- Node->getOperand(2), MachinePointerInfo(VS));
- return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
- MachinePointerInfo(VD));
- }
- Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
- const DataLayout &DL = getDataLayout();
- Type *Ty = VT.getTypeForEVT(*getContext());
- Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
- if (TLI->isTypeLegal(VT) || !VT.isVector())
- return RedAlign;
- const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
- const Align StackAlign = TFI->getStackAlign();
- // See if we can choose a smaller ABI alignment in cases where it's an
- // illegal vector type that will get broken down.
- if (RedAlign > StackAlign) {
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
- NumIntermediates, RegisterVT);
- Ty = IntermediateVT.getTypeForEVT(*getContext());
- Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
- if (RedAlign2 < RedAlign)
- RedAlign = RedAlign2;
- }
- return RedAlign;
- }
- SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
- MachineFrameInfo &MFI = MF->getFrameInfo();
- const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
- int StackID = 0;
- if (Bytes.isScalable())
- StackID = TFI->getStackIDForScalableVectors();
- // The stack id gives an indication of whether the object is scalable or
- // not, so it's safe to pass in the minimum size here.
- int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
- false, nullptr, StackID);
- return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
- }
- SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
- Type *Ty = VT.getTypeForEVT(*getContext());
- Align StackAlign =
- std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
- return CreateStackTemporary(VT.getStoreSize(), StackAlign);
- }
- SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
- TypeSize VT1Size = VT1.getStoreSize();
- TypeSize VT2Size = VT2.getStoreSize();
- assert(VT1Size.isScalable() == VT2Size.isScalable() &&
- "Don't know how to choose the maximum size when creating a stack "
- "temporary");
- TypeSize Bytes =
- VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
- Type *Ty1 = VT1.getTypeForEVT(*getContext());
- Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const DataLayout &DL = getDataLayout();
- Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
- return CreateStackTemporary(Bytes, Align);
- }
- SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
- ISD::CondCode Cond, const SDLoc &dl) {
- EVT OpVT = N1.getValueType();
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
- case ISD::SETOEQ:
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETONE:
- case ISD::SETO:
- case ISD::SETUO:
- case ISD::SETUEQ:
- case ISD::SETUNE:
- assert(!OpVT.isInteger() && "Illegal setcc for integer!");
- break;
- }
- if (OpVT.isInteger()) {
- // For EQ and NE, we can always pick a value for the undef to make the
- // predicate pass or fail, so we can return undef.
- // Matches behavior in llvm::ConstantFoldCompareInstruction.
- // icmp eq/ne X, undef -> undef.
- if ((N1.isUndef() || N2.isUndef()) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE))
- return getUNDEF(VT);
- // If both operands are undef, we can return undef for int comparison.
- // icmp undef, undef -> undef.
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- // icmp X, X -> true/false
- // icmp X, undef -> true/false because undef could be X.
- if (N1 == N2)
- return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
- }
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
- const APInt &C2 = N2C->getAPIntValue();
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
- return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
- dl, VT, OpVT);
- }
- }
- auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- if (N1CFP && N2CFP) {
- APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
- switch (Cond) {
- default: break;
- case ISD::SETEQ: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETNE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpLessThan, dl, VT,
- OpVT);
- case ISD::SETLT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
- OpVT);
- case ISD::SETGT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
- VT, OpVT);
- case ISD::SETLE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
- R==APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETGE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpEqual, dl, VT, OpVT);
- case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
- OpVT);
- case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
- OpVT);
- case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpLessThan, dl, VT,
- OpVT);
- case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpUnordered, dl, VT,
- OpVT);
- case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
- VT, OpVT);
- case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
- OpVT);
- }
- } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
- // Ensure that the constant occurs on the RHS.
- ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
- if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
- return SDValue();
- return getSetCC(dl, VT, N2, N1, SwappedCond);
- } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
- (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
- // If an operand is known to be a nan (or undef that could be a nan), we can
- // fold it.
- // Choosing NaN for the undef will always make unordered comparison succeed
- // and ordered comparison fails.
- // Matches behavior in llvm::ConstantFoldCompareInstruction.
- switch (ISD::getUnorderedFlavor(Cond)) {
- default:
- llvm_unreachable("Unknown flavor!");
- case 0: // Known false.
- return getBoolConstant(false, dl, VT, OpVT);
- case 1: // Known true.
- return getBoolConstant(true, dl, VT, OpVT);
- case 2: // Undefined.
- return getUNDEF(VT);
- }
- }
- // Could not fold it.
- return SDValue();
- }
- /// See if the specified operand can be simplified with the knowledge that only
- /// the bits specified by DemandedBits are used.
- /// TODO: really we should be making this into the DAG equivalent of
- /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
- SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
- EVT VT = V.getValueType();
- if (VT.isScalableVector())
- return SDValue();
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return GetDemandedBits(V, DemandedBits, DemandedElts);
- }
- /// See if the specified operand can be simplified with the knowledge that only
- /// the bits specified by DemandedBits are used in the elements specified by
- /// DemandedElts.
- /// TODO: really we should be making this into the DAG equivalent of
- /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
- SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
- const APInt &DemandedElts) {
- switch (V.getOpcode()) {
- default:
- return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
- *this);
- case ISD::Constant: {
- const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
- APInt NewVal = CVal & DemandedBits;
- if (NewVal != CVal)
- return getConstant(NewVal, SDLoc(V), V.getValueType());
- break;
- }
- case ISD::SRL:
- // Only look at single-use SRLs.
- if (!V.getNode()->hasOneUse())
- break;
- if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
- // See if we can recursively simplify the LHS.
- unsigned Amt = RHSC->getZExtValue();
- // Watch out for shift count overflow though.
- if (Amt >= DemandedBits.getBitWidth())
- break;
- APInt SrcDemandedBits = DemandedBits << Amt;
- if (SDValue SimplifyLHS =
- GetDemandedBits(V.getOperand(0), SrcDemandedBits))
- return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
- V.getOperand(1));
- }
- break;
- }
- return SDValue();
- }
- /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
- /// use this predicate to simplify operations downstream.
- bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
- }
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
- /// this predicate to simplify operations downstream. Mask is known to be zero
- /// for bits that V cannot have.
- bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
- unsigned Depth) const {
- return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
- }
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
- /// DemandedElts. We use this predicate to simplify operations downstream.
- /// Mask is known to be zero for bits that V cannot have.
- bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
- const APInt &DemandedElts,
- unsigned Depth) const {
- return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
- }
- /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
- bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
- unsigned Depth) const {
- return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
- }
- /// isSplatValue - Return true if the vector V has the same value
- /// across all DemandedElts. For scalable vectors it does not make
- /// sense to specify which elements are demanded or undefined, therefore
- /// they are simply ignored.
- bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
- APInt &UndefElts, unsigned Depth) const {
- unsigned Opcode = V.getOpcode();
- EVT VT = V.getValueType();
- assert(VT.isVector() && "Vector type expected");
- if (!VT.isScalableVector() && !DemandedElts)
- return false; // No demanded elts, better to assume we don't know anything.
- if (Depth >= MaxRecursionDepth)
- return false; // Limit search depth.
- // Deal with some common cases here that work for both fixed and scalable
- // vector types.
- switch (Opcode) {
- case ISD::SPLAT_VECTOR:
- UndefElts = V.getOperand(0).isUndef()
- ? APInt::getAllOnes(DemandedElts.getBitWidth())
- : APInt(DemandedElts.getBitWidth(), 0);
- return true;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::AND:
- case ISD::XOR:
- case ISD::OR: {
- APInt UndefLHS, UndefRHS;
- SDValue LHS = V.getOperand(0);
- SDValue RHS = V.getOperand(1);
- if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
- isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
- UndefElts = UndefLHS | UndefRHS;
- return true;
- }
- return false;
- }
- case ISD::ABS:
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
- default:
- if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
- Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
- return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
- break;
- }
- // We don't support other cases than those above for scalable vectors at
- // the moment.
- if (VT.isScalableVector())
- return false;
- unsigned NumElts = VT.getVectorNumElements();
- assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
- UndefElts = APInt::getZero(NumElts);
- switch (Opcode) {
- case ISD::BUILD_VECTOR: {
- SDValue Scl;
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue Op = V.getOperand(i);
- if (Op.isUndef()) {
- UndefElts.setBit(i);
- continue;
- }
- if (!DemandedElts[i])
- continue;
- if (Scl && Scl != Op)
- return false;
- Scl = Op;
- }
- return true;
- }
- case ISD::VECTOR_SHUFFLE: {
- // Check if this is a shuffle node doing a splat.
- // TODO: Do we need to handle shuffle(splat, undef, mask)?
- int SplatIndex = -1;
- ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
- for (int i = 0; i != (int)NumElts; ++i) {
- int M = Mask[i];
- if (M < 0) {
- UndefElts.setBit(i);
- continue;
- }
- if (!DemandedElts[i])
- continue;
- if (0 <= SplatIndex && SplatIndex != M)
- return false;
- SplatIndex = M;
- }
- return true;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // Offset the demanded elts by the subvector index.
- SDValue Src = V.getOperand(0);
- // We don't support scalable vectors at the moment.
- if (Src.getValueType().isScalableVector())
- return false;
- uint64_t Idx = V.getConstantOperandVal(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt UndefSrcElts;
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
- UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
- return true;
- }
- break;
- }
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- // Widen the demanded elts by the src element count.
- SDValue Src = V.getOperand(0);
- // We don't support scalable vectors at the moment.
- if (Src.getValueType().isScalableVector())
- return false;
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt UndefSrcElts;
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
- if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
- UndefElts = UndefSrcElts.truncOrSelf(NumElts);
- return true;
- }
- break;
- }
- }
- return false;
- }
- /// Helper wrapper to main isSplatValue function.
- bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
- EVT VT = V.getValueType();
- assert(VT.isVector() && "Vector type expected");
- APInt UndefElts;
- APInt DemandedElts;
- // For now we don't support this with scalable vectors.
- if (!VT.isScalableVector())
- DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
- return isSplatValue(V, DemandedElts, UndefElts) &&
- (AllowUndefs || !UndefElts);
- }
- SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
- V = peekThroughExtractSubvectors(V);
- EVT VT = V.getValueType();
- unsigned Opcode = V.getOpcode();
- switch (Opcode) {
- default: {
- APInt UndefElts;
- APInt DemandedElts;
- if (!VT.isScalableVector())
- DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
- if (isSplatValue(V, DemandedElts, UndefElts)) {
- if (VT.isScalableVector()) {
- // DemandedElts and UndefElts are ignored for scalable vectors, since
- // the only supported cases are SPLAT_VECTOR nodes.
- SplatIdx = 0;
- } else {
- // Handle case where all demanded elements are UNDEF.
- if (DemandedElts.isSubsetOf(UndefElts)) {
- SplatIdx = 0;
- return getUNDEF(VT);
- }
- SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
- }
- return V;
- }
- break;
- }
- case ISD::SPLAT_VECTOR:
- SplatIdx = 0;
- return V;
- case ISD::VECTOR_SHUFFLE: {
- if (VT.isScalableVector())
- return SDValue();
- // Check if this is a shuffle node doing a splat.
- // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
- // getTargetVShiftNode currently struggles without the splat source.
- auto *SVN = cast<ShuffleVectorSDNode>(V);
- if (!SVN->isSplat())
- break;
- int Idx = SVN->getSplatIndex();
- int NumElts = V.getValueType().getVectorNumElements();
- SplatIdx = Idx % NumElts;
- return V.getOperand(Idx / NumElts);
- }
- }
- return SDValue();
- }
- SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
- int SplatIdx;
- if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
- EVT SVT = SrcVector.getValueType().getScalarType();
- EVT LegalSVT = SVT;
- if (LegalTypes && !TLI->isTypeLegal(SVT)) {
- if (!SVT.isInteger())
- return SDValue();
- LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
- if (LegalSVT.bitsLT(SVT))
- return SDValue();
- }
- return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
- getVectorIdxConstant(SplatIdx, SDLoc(V)));
- }
- return SDValue();
- }
- const APInt *
- SelectionDAG::getValidShiftAmountConstant(SDValue V,
- const APInt &DemandedElts) const {
- assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
- V.getOpcode() == ISD::SRA) &&
- "Unknown shift node");
- unsigned BitWidth = V.getScalarValueSizeInBits();
- if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
- // Shifting more than the bitwidth is not valid.
- const APInt &ShAmt = SA->getAPIntValue();
- if (ShAmt.ult(BitWidth))
- return &ShAmt;
- }
- return nullptr;
- }
- const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
- SDValue V, const APInt &DemandedElts) const {
- assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
- V.getOpcode() == ISD::SRA) &&
- "Unknown shift node");
- if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
- return ValidAmt;
- unsigned BitWidth = V.getScalarValueSizeInBits();
- auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
- if (!BV)
- return nullptr;
- const APInt *MinShAmt = nullptr;
- for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
- if (!SA)
- return nullptr;
- // Shifting more than the bitwidth is not valid.
- const APInt &ShAmt = SA->getAPIntValue();
- if (ShAmt.uge(BitWidth))
- return nullptr;
- if (MinShAmt && MinShAmt->ule(ShAmt))
- continue;
- MinShAmt = &ShAmt;
- }
- return MinShAmt;
- }
- const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
- SDValue V, const APInt &DemandedElts) const {
- assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
- V.getOpcode() == ISD::SRA) &&
- "Unknown shift node");
- if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
- return ValidAmt;
- unsigned BitWidth = V.getScalarValueSizeInBits();
- auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
- if (!BV)
- return nullptr;
- const APInt *MaxShAmt = nullptr;
- for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
- if (!SA)
- return nullptr;
- // Shifting more than the bitwidth is not valid.
- const APInt &ShAmt = SA->getAPIntValue();
- if (ShAmt.uge(BitWidth))
- return nullptr;
- if (MaxShAmt && MaxShAmt->uge(ShAmt))
- continue;
- MaxShAmt = &ShAmt;
- }
- return MaxShAmt;
- }
- /// Determine which bits of Op are known to be either zero or one and return
- /// them in Known. For vectors, the known bits are those that are shared by
- /// every vector element.
- KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
- EVT VT = Op.getValueType();
- // TOOD: Until we have a plan for how to represent demanded elements for
- // scalable vectors, we can just bail out for now.
- if (Op.getValueType().isScalableVector()) {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- return KnownBits(BitWidth);
- }
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return computeKnownBits(Op, DemandedElts, Depth);
- }
- /// Determine which bits of Op are known to be either zero or one and return
- /// them in Known. The DemandedElts argument allows us to only collect the known
- /// bits that are shared by the requested vector elements.
- KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
- unsigned Depth) const {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- KnownBits Known(BitWidth); // Don't know anything.
- // TOOD: Until we have a plan for how to represent demanded elements for
- // scalable vectors, we can just bail out for now.
- if (Op.getValueType().isScalableVector())
- return Known;
- if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
- // We know all of the bits for a constant!
- return KnownBits::makeConstant(C->getAPIntValue());
- }
- if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
- // We know all of the bits for a constant fp!
- return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
- }
- if (Depth >= MaxRecursionDepth)
- return Known; // Limit search depth.
- KnownBits Known2;
- unsigned NumElts = DemandedElts.getBitWidth();
- assert((!Op.getValueType().isVector() ||
- NumElts == Op.getValueType().getVectorNumElements()) &&
- "Unexpected vector size");
- if (!DemandedElts)
- return Known; // No demanded elts, better to assume we don't know anything.
- unsigned Opcode = Op.getOpcode();
- switch (Opcode) {
- case ISD::BUILD_VECTOR:
- // Collect the known bits that are shared by every demanded vector element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- SDValue SrcOp = Op.getOperand(i);
- Known2 = computeKnownBits(SrcOp, Depth + 1);
- // BUILD_VECTOR can implicitly truncate sources, we must handle this.
- if (SrcOp.getValueSizeInBits() != BitWidth) {
- assert(SrcOp.getValueSizeInBits() > BitWidth &&
- "Expected BUILD_VECTOR implicit truncation");
- Known2 = Known2.trunc(BitWidth);
- }
- // Known bits are the values that are shared by every demanded element.
- Known = KnownBits::commonBits(Known, Known2);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- break;
- case ISD::VECTOR_SHUFFLE: {
- // Collect the known bits that are shared by every vector element referenced
- // by the shuffle.
- APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
- Known.Zero.setAllBits(); Known.One.setAllBits();
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
- assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- int M = SVN->getMaskElt(i);
- if (M < 0) {
- // For UNDEF elements, we don't know anything about the common state of
- // the shuffle result.
- Known.resetAll();
- DemandedLHS.clearAllBits();
- DemandedRHS.clearAllBits();
- break;
- }
- if ((unsigned)M < NumElts)
- DemandedLHS.setBit((unsigned)M % NumElts);
- else
- DemandedRHS.setBit((unsigned)M % NumElts);
- }
- // Known bits are the values that are shared by every demanded element.
- if (!!DemandedLHS) {
- SDValue LHS = Op.getOperand(0);
- Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
- Known = KnownBits::commonBits(Known, Known2);
- }
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- if (!!DemandedRHS) {
- SDValue RHS = Op.getOperand(1);
- Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
- Known = KnownBits::commonBits(Known, Known2);
- }
- break;
- }
- case ISD::CONCAT_VECTORS: {
- // Split DemandedElts and test each of the demanded subvectors.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- EVT SubVectorVT = Op.getOperand(0).getValueType();
- unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
- unsigned NumSubVectors = Op.getNumOperands();
- for (unsigned i = 0; i != NumSubVectors; ++i) {
- APInt DemandedSub =
- DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
- if (!!DemandedSub) {
- SDValue Sub = Op.getOperand(i);
- Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
- Known = KnownBits::commonBits(Known, Known2);
- }
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- // Demand any elements from the subvector and the remainder from the src its
- // inserted into.
- SDValue Src = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- uint64_t Idx = Op.getConstantOperandVal(2);
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- APInt DemandedSrcElts = DemandedElts;
- DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
- Known.One.setAllBits();
- Known.Zero.setAllBits();
- if (!!DemandedSubElts) {
- Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
- if (Known.isUnknown())
- break; // early-out.
- }
- if (!!DemandedSrcElts) {
- Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
- Known = KnownBits::commonBits(Known, Known2);
- }
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // Offset the demanded elts by the subvector index.
- SDValue Src = Op.getOperand(0);
- // Bail until we can represent demanded elements for scalable vectors.
- if (Src.getValueType().isScalableVector())
- break;
- uint64_t Idx = Op.getConstantOperandVal(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
- break;
- }
- case ISD::SCALAR_TO_VECTOR: {
- // We know about scalar_to_vector as much as we know about it source,
- // which becomes the first element of otherwise unknown vector.
- if (DemandedElts != 1)
- break;
- SDValue N0 = Op.getOperand(0);
- Known = computeKnownBits(N0, Depth + 1);
- if (N0.getValueSizeInBits() != BitWidth)
- Known = Known.trunc(BitWidth);
- break;
- }
- case ISD::BITCAST: {
- SDValue N0 = Op.getOperand(0);
- EVT SubVT = N0.getValueType();
- unsigned SubBitWidth = SubVT.getScalarSizeInBits();
- // Ignore bitcasts from unsupported types.
- if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
- break;
- // Fast handling of 'identity' bitcasts.
- if (BitWidth == SubBitWidth) {
- Known = computeKnownBits(N0, DemandedElts, Depth + 1);
- break;
- }
- bool IsLE = getDataLayout().isLittleEndian();
- // Bitcast 'small element' vector to 'large element' scalar/vector.
- if ((BitWidth % SubBitWidth) == 0) {
- assert(N0.getValueType().isVector() && "Expected bitcast from vector");
- // Collect known bits for the (larger) output by collecting the known
- // bits from each set of sub elements and shift these into place.
- // We need to separately call computeKnownBits for each set of
- // sub elements as the knownbits for each is likely to be different.
- unsigned SubScale = BitWidth / SubBitWidth;
- APInt SubDemandedElts(NumElts * SubScale, 0);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SubDemandedElts.setBit(i * SubScale);
- for (unsigned i = 0; i != SubScale; ++i) {
- Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
- Depth + 1);
- unsigned Shifts = IsLE ? i : SubScale - 1 - i;
- Known.insertBits(Known2, SubBitWidth * Shifts);
- }
- }
- // Bitcast 'large element' scalar/vector to 'small element' vector.
- if ((SubBitWidth % BitWidth) == 0) {
- assert(Op.getValueType().isVector() && "Expected bitcast to vector");
- // Collect known bits for the (smaller) output by collecting the known
- // bits from the overlapping larger input elements and extracting the
- // sub sections we actually care about.
- unsigned SubScale = SubBitWidth / BitWidth;
- APInt SubDemandedElts =
- APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
- Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Shifts = IsLE ? i : NumElts - 1 - i;
- unsigned Offset = (Shifts % SubScale) * BitWidth;
- Known = KnownBits::commonBits(Known,
- Known2.extractBits(BitWidth, Offset));
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- }
- break;
- }
- case ISD::AND:
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known &= Known2;
- break;
- case ISD::OR:
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known |= Known2;
- break;
- case ISD::XOR:
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known ^= Known2;
- break;
- case ISD::MUL: {
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
- // TODO: SelfMultiply can be poison, but not undef.
- SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
- Op.getOperand(0), DemandedElts, false, Depth + 1);
- Known = KnownBits::mul(Known, Known2, SelfMultiply);
- break;
- }
- case ISD::MULHU: {
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = KnownBits::mulhu(Known, Known2);
- break;
- }
- case ISD::MULHS: {
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = KnownBits::mulhs(Known, Known2);
- break;
- }
- case ISD::UMUL_LOHI: {
- assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
- if (Op.getResNo() == 0)
- Known = KnownBits::mul(Known, Known2, SelfMultiply);
- else
- Known = KnownBits::mulhu(Known, Known2);
- break;
- }
- case ISD::SMUL_LOHI: {
- assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
- if (Op.getResNo() == 0)
- Known = KnownBits::mul(Known, Known2, SelfMultiply);
- else
- Known = KnownBits::mulhs(Known, Known2);
- break;
- }
- case ISD::UDIV: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::udiv(Known, Known2);
- break;
- }
- case ISD::SELECT:
- case ISD::VSELECT:
- Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(Known, Known2);
- break;
- case ISD::SELECT_CC:
- Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(Known, Known2);
- break;
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents.
- // If we know the result of a setcc has the top bits zero, use this info.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- case ISD::SETCC:
- case ISD::STRICT_FSETCC:
- case ISD::STRICT_FSETCCS: {
- unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- case ISD::SHL:
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::shl(Known, Known2);
- // Minimum shift low bits are known zero.
- if (const APInt *ShMinAmt =
- getValidMinimumShiftAmountConstant(Op, DemandedElts))
- Known.Zero.setLowBits(ShMinAmt->getZExtValue());
- break;
- case ISD::SRL:
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::lshr(Known, Known2);
- // Minimum shift high bits are known zero.
- if (const APInt *ShMinAmt =
- getValidMinimumShiftAmountConstant(Op, DemandedElts))
- Known.Zero.setHighBits(ShMinAmt->getZExtValue());
- break;
- case ISD::SRA:
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::ashr(Known, Known2);
- // TODO: Add minimum shift high known sign bits.
- break;
- case ISD::FSHL:
- case ISD::FSHR:
- if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
- unsigned Amt = C->getAPIntValue().urem(BitWidth);
- // For fshl, 0-shift returns the 1st arg.
- // For fshr, 0-shift returns the 2nd arg.
- if (Amt == 0) {
- Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
- DemandedElts, Depth + 1);
- break;
- }
- // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
- // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- if (Opcode == ISD::FSHL) {
- Known.One <<= Amt;
- Known.Zero <<= Amt;
- Known2.One.lshrInPlace(BitWidth - Amt);
- Known2.Zero.lshrInPlace(BitWidth - Amt);
- } else {
- Known.One <<= BitWidth - Amt;
- Known.Zero <<= BitWidth - Amt;
- Known2.One.lshrInPlace(Amt);
- Known2.Zero.lshrInPlace(Amt);
- }
- Known.One |= Known2.One;
- Known.Zero |= Known2.Zero;
- }
- break;
- case ISD::SIGN_EXTEND_INREG: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- Known = Known.sextInReg(EVT.getScalarSizeInBits());
- break;
- }
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleTZ = Known2.countMaxTrailingZeros();
- unsigned LowBits = Log2_32(PossibleTZ) + 1;
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleLZ = Known2.countMaxLeadingZeros();
- unsigned LowBits = Log2_32(PossibleLZ) + 1;
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case ISD::CTPOP: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we know some of the bits are zero, they can't be one.
- unsigned PossibleOnes = Known2.countMaxPopulation();
- Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
- break;
- }
- case ISD::PARITY: {
- // Parity returns 0 everywhere but the LSB.
- Known.Zero.setBitsFrom(1);
- break;
- }
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
- if (ISD::isNON_EXTLoad(LD) && Cst) {
- // Determine any common known bits from the loaded constant pool value.
- Type *CstTy = Cst->getType();
- if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
- // If its a vector splat, then we can (quickly) reuse the scalar path.
- // NOTE: We assume all elements match and none are UNDEF.
- if (CstTy->isVectorTy()) {
- if (const Constant *Splat = Cst->getSplatValue()) {
- Cst = Splat;
- CstTy = Cst->getType();
- }
- }
- // TODO - do we need to handle different bitwidths?
- if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
- // Iterate across all vector elements finding common known bits.
- Known.One.setAllBits();
- Known.Zero.setAllBits();
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- if (Constant *Elt = Cst->getAggregateElement(i)) {
- if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
- const APInt &Value = CInt->getValue();
- Known.One &= Value;
- Known.Zero &= ~Value;
- continue;
- }
- if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
- APInt Value = CFP->getValueAPF().bitcastToAPInt();
- Known.One &= Value;
- Known.Zero &= ~Value;
- continue;
- }
- }
- Known.One.clearAllBits();
- Known.Zero.clearAllBits();
- break;
- }
- } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
- if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
- Known = KnownBits::makeConstant(CInt->getValue());
- } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
- Known =
- KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
- }
- }
- }
- } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
- // If this is a ZEXTLoad and we are looking at the loaded value.
- EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getScalarSizeInBits();
- Known.Zero.setBitsFrom(MemBits);
- } else if (const MDNode *Ranges = LD->getRanges()) {
- if (LD->getExtensionType() == ISD::NON_EXTLOAD)
- computeKnownBitsFromRangeMetadata(*Ranges, Known);
- }
- break;
- }
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- EVT InVT = Op.getOperand(0).getValueType();
- APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
- Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
- Known = Known.zext(BitWidth);
- break;
- }
- case ISD::ZERO_EXTEND: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known.zext(BitWidth);
- break;
- }
- case ISD::SIGN_EXTEND_VECTOR_INREG: {
- EVT InVT = Op.getOperand(0).getValueType();
- APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
- Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
- // If the sign bit is known to be zero or one, then sext will extend
- // it to the top bits, else it will just zext.
- Known = Known.sext(BitWidth);
- break;
- }
- case ISD::SIGN_EXTEND: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If the sign bit is known to be zero or one, then sext will extend
- // it to the top bits, else it will just zext.
- Known = Known.sext(BitWidth);
- break;
- }
- case ISD::ANY_EXTEND_VECTOR_INREG: {
- EVT InVT = Op.getOperand(0).getValueType();
- APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
- Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
- Known = Known.anyext(BitWidth);
- break;
- }
- case ISD::ANY_EXTEND: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known.anyext(BitWidth);
- break;
- }
- case ISD::TRUNCATE: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known.trunc(BitWidth);
- break;
- }
- case ISD::AssertZext: {
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
- Known = computeKnownBits(Op.getOperand(0), Depth+1);
- Known.Zero |= (~InMask);
- Known.One &= (~Known.Zero);
- break;
- }
- case ISD::AssertAlign: {
- unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
- assert(LogOfAlign != 0);
- // TODO: Should use maximum with source
- // If a node is guaranteed to be aligned, set low zero bits accordingly as
- // well as clearing one bits.
- Known.Zero.setLowBits(LogOfAlign);
- Known.One.clearLowBits(LogOfAlign);
- break;
- }
- case ISD::FGETSIGN:
- // All bits are zero except the low bit.
- Known.Zero.setBitsFrom(1);
- break;
- case ISD::USUBO:
- case ISD::SSUBO:
- if (Op.getResNo() == 1) {
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- LLVM_FALLTHROUGH;
- case ISD::SUB:
- case ISD::SUBC: {
- assert(Op.getResNo() == 0 &&
- "We only compute knownbits for the difference here.");
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
- Known, Known2);
- break;
- }
- case ISD::UADDO:
- case ISD::SADDO:
- case ISD::ADDCARRY:
- if (Op.getResNo() == 1) {
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- LLVM_FALLTHROUGH;
- case ISD::ADD:
- case ISD::ADDC:
- case ISD::ADDE: {
- assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
- // With ADDE and ADDCARRY, a carry bit may be added in.
- KnownBits Carry(1);
- if (Opcode == ISD::ADDE)
- // Can't track carry from glue, set carry to unknown.
- Carry.resetAll();
- else if (Opcode == ISD::ADDCARRY)
- // TODO: Compute known bits for the carry operand. Not sure if it is worth
- // the trouble (how often will we find a known carry bit). And I haven't
- // tested this very much yet, but something like this might work:
- // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
- // Carry = Carry.zextOrTrunc(1, false);
- Carry.resetAll();
- else
- Carry.setAllZero();
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
- break;
- }
- case ISD::SREM: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::srem(Known, Known2);
- break;
- }
- case ISD::UREM: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::urem(Known, Known2);
- break;
- }
- case ISD::EXTRACT_ELEMENT: {
- Known = computeKnownBits(Op.getOperand(0), Depth+1);
- const unsigned Index = Op.getConstantOperandVal(1);
- const unsigned EltBitWidth = Op.getValueSizeInBits();
- // Remove low part of known bits mask
- Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
- Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
- // Remove high part of known bit mask
- Known = Known.trunc(EltBitWidth);
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue InVec = Op.getOperand(0);
- SDValue EltNo = Op.getOperand(1);
- EVT VecVT = InVec.getValueType();
- // computeKnownBits not yet implemented for scalable vectors.
- if (VecVT.isScalableVector())
- break;
- const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
- const unsigned NumSrcElts = VecVT.getVectorNumElements();
- // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
- // anything about the extended bits.
- if (BitWidth > EltBitWidth)
- Known = Known.trunc(EltBitWidth);
- // If we know the element index, just demand that vector element, else for
- // an unknown element index, ignore DemandedElts and demand them all.
- APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
- auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
- DemandedSrcElts =
- APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
- Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
- if (BitWidth > EltBitWidth)
- Known = Known.anyext(BitWidth);
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- // If we know the element index, split the demand between the
- // source vector and the inserted element, otherwise assume we need
- // the original demanded vector elements and the value.
- SDValue InVec = Op.getOperand(0);
- SDValue InVal = Op.getOperand(1);
- SDValue EltNo = Op.getOperand(2);
- bool DemandedVal = true;
- APInt DemandedVecElts = DemandedElts;
- auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
- unsigned EltIdx = CEltNo->getZExtValue();
- DemandedVal = !!DemandedElts[EltIdx];
- DemandedVecElts.clearBit(EltIdx);
- }
- Known.One.setAllBits();
- Known.Zero.setAllBits();
- if (DemandedVal) {
- Known2 = computeKnownBits(InVal, Depth + 1);
- Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
- }
- if (!!DemandedVecElts) {
- Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
- Known = KnownBits::commonBits(Known, Known2);
- }
- break;
- }
- case ISD::BITREVERSE: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known2.reverseBits();
- break;
- }
- case ISD::BSWAP: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known2.byteSwap();
- break;
- }
- case ISD::ABS: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known2.abs();
- break;
- }
- case ISD::USUBSAT: {
- // The result of usubsat will never be larger than the LHS.
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known.Zero.setHighBits(Known2.countMinLeadingZeros());
- break;
- }
- case ISD::UMIN: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::umin(Known, Known2);
- break;
- }
- case ISD::UMAX: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known = KnownBits::umax(Known, Known2);
- break;
- }
- case ISD::SMIN:
- case ISD::SMAX: {
- // If we have a clamp pattern, we know that the number of sign bits will be
- // the minimum of the clamp min/max range.
- bool IsMax = (Opcode == ISD::SMAX);
- ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
- if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
- if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
- CstHigh =
- isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
- if (CstLow && CstHigh) {
- if (!IsMax)
- std::swap(CstLow, CstHigh);
- const APInt &ValueLow = CstLow->getAPIntValue();
- const APInt &ValueHigh = CstHigh->getAPIntValue();
- if (ValueLow.sle(ValueHigh)) {
- unsigned LowSignBits = ValueLow.getNumSignBits();
- unsigned HighSignBits = ValueHigh.getNumSignBits();
- unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
- if (ValueLow.isNegative() && ValueHigh.isNegative()) {
- Known.One.setHighBits(MinSignBits);
- break;
- }
- if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
- Known.Zero.setHighBits(MinSignBits);
- break;
- }
- }
- }
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- if (IsMax)
- Known = KnownBits::smax(Known, Known2);
- else
- Known = KnownBits::smin(Known, Known2);
- break;
- }
- case ISD::FP_TO_UINT_SAT: {
- // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
- break;
- }
- case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
- if (Op.getResNo() == 1) {
- // The boolean result conforms to getBooleanContents.
- // If we know the result of a setcc has the top bits zero, use this info.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- LLVM_FALLTHROUGH;
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_CLR:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX:
- case ISD::ATOMIC_LOAD: {
- unsigned MemBits =
- cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
- // If we are looking at the loaded value.
- if (Op.getResNo() == 0) {
- if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
- Known.Zero.setBitsFrom(MemBits);
- }
- break;
- }
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
- Known, getMachineFunction());
- break;
- default:
- if (Opcode < ISD::BUILTIN_OP_END)
- break;
- LLVM_FALLTHROUGH;
- case ISD::INTRINSIC_WO_CHAIN:
- case ISD::INTRINSIC_W_CHAIN:
- case ISD::INTRINSIC_VOID:
- // Allow the target to implement this method for its nodes.
- TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
- break;
- }
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- return Known;
- }
- SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
- SDValue N1) const {
- // X + 0 never overflow
- if (isNullConstant(N1))
- return OFK_Never;
- KnownBits N1Known = computeKnownBits(N1);
- if (N1Known.Zero.getBoolValue()) {
- KnownBits N0Known = computeKnownBits(N0);
- bool overflow;
- (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
- if (!overflow)
- return OFK_Never;
- }
- // mulhi + 1 never overflow
- if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
- (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
- return OFK_Never;
- if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
- KnownBits N0Known = computeKnownBits(N0);
- if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
- return OFK_Never;
- }
- return OFK_Sometime;
- }
- bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
- EVT OpVT = Val.getValueType();
- unsigned BitWidth = OpVT.getScalarSizeInBits();
- // Is the constant a known power of 2?
- if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
- return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
- // A left-shift of a constant one will have exactly one bit set because
- // shifting the bit off the end is undefined.
- if (Val.getOpcode() == ISD::SHL) {
- auto *C = isConstOrConstSplat(Val.getOperand(0));
- if (C && C->getAPIntValue() == 1)
- return true;
- }
- // Similarly, a logical right-shift of a constant sign-bit will have exactly
- // one bit set.
- if (Val.getOpcode() == ISD::SRL) {
- auto *C = isConstOrConstSplat(Val.getOperand(0));
- if (C && C->getAPIntValue().isSignMask())
- return true;
- }
- // Are all operands of a build vector constant powers of two?
- if (Val.getOpcode() == ISD::BUILD_VECTOR)
- if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
- return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
- return false;
- }))
- return true;
- // Is the operand of a splat vector a constant power of two?
- if (Val.getOpcode() == ISD::SPLAT_VECTOR)
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
- if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
- return true;
- // More could be done here, though the above checks are enough
- // to handle some common cases.
- // Fall back to computeKnownBits to catch other known cases.
- KnownBits Known = computeKnownBits(Val);
- return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
- }
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
- EVT VT = Op.getValueType();
- // TODO: Assume we don't know anything for now.
- if (VT.isScalableVector())
- return 1;
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return ComputeNumSignBits(Op, DemandedElts, Depth);
- }
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
- unsigned Depth) const {
- EVT VT = Op.getValueType();
- assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
- unsigned VTBits = VT.getScalarSizeInBits();
- unsigned NumElts = DemandedElts.getBitWidth();
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
- const APInt &Val = C->getAPIntValue();
- return Val.getNumSignBits();
- }
- if (Depth >= MaxRecursionDepth)
- return 1; // Limit search depth.
- if (!DemandedElts || VT.isScalableVector())
- return 1; // No demanded elts, better to assume we don't know anything.
- unsigned Opcode = Op.getOpcode();
- switch (Opcode) {
- default: break;
- case ISD::AssertSext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::AssertZext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp;
- case ISD::BUILD_VECTOR:
- Tmp = VTBits;
- for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
- if (!DemandedElts[i])
- continue;
- SDValue SrcOp = Op.getOperand(i);
- Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
- // BUILD_VECTOR can implicitly truncate sources, we must handle this.
- if (SrcOp.getValueSizeInBits() != VTBits) {
- assert(SrcOp.getValueSizeInBits() > VTBits &&
- "Expected BUILD_VECTOR implicit truncation");
- unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
- Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
- }
- Tmp = std::min(Tmp, Tmp2);
- }
- return Tmp;
- case ISD::VECTOR_SHUFFLE: {
- // Collect the minimum number of sign bits that are shared by every vector
- // element referenced by the shuffle.
- APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
- assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = SVN->getMaskElt(i);
- if (!DemandedElts[i])
- continue;
- // For UNDEF elements, we don't know anything about the common state of
- // the shuffle result.
- if (M < 0)
- return 1;
- if ((unsigned)M < NumElts)
- DemandedLHS.setBit((unsigned)M % NumElts);
- else
- DemandedRHS.setBit((unsigned)M % NumElts);
- }
- Tmp = std::numeric_limits<unsigned>::max();
- if (!!DemandedLHS)
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
- if (!!DemandedRHS) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- // If we don't know anything, early out and try computeKnownBits fall-back.
- if (Tmp == 1)
- break;
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::BITCAST: {
- SDValue N0 = Op.getOperand(0);
- EVT SrcVT = N0.getValueType();
- unsigned SrcBits = SrcVT.getScalarSizeInBits();
- // Ignore bitcasts from unsupported types..
- if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
- break;
- // Fast handling of 'identity' bitcasts.
- if (VTBits == SrcBits)
- return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
- bool IsLE = getDataLayout().isLittleEndian();
- // Bitcast 'large element' scalar/vector to 'small element' vector.
- if ((SrcBits % VTBits) == 0) {
- assert(VT.isVector() && "Expected bitcast to vector");
- unsigned Scale = SrcBits / VTBits;
- APInt SrcDemandedElts =
- APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
- // Fast case - sign splat can be simply split across the small elements.
- Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
- if (Tmp == SrcBits)
- return VTBits;
- // Slow case - determine how far the sign extends into each sub-element.
- Tmp2 = VTBits;
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned SubOffset = i % Scale;
- SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
- SubOffset = SubOffset * VTBits;
- if (Tmp <= SubOffset)
- return 1;
- Tmp2 = std::min(Tmp2, Tmp - SubOffset);
- }
- return Tmp2;
- }
- break;
- }
- case ISD::FP_TO_SINT_SAT:
- // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
- return VTBits - Tmp + 1;
- case ISD::SIGN_EXTEND:
- Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
- return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
- case ISD::SIGN_EXTEND_INREG:
- // Max of the input and what this extends.
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
- Tmp = VTBits-Tmp+1;
- Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
- return std::max(Tmp, Tmp2);
- case ISD::SIGN_EXTEND_VECTOR_INREG: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
- Tmp = VTBits - SrcVT.getScalarSizeInBits();
- return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
- }
- case ISD::SRA:
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // SRA X, C -> adds C sign bits.
- if (const APInt *ShAmt =
- getValidMinimumShiftAmountConstant(Op, DemandedElts))
- Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
- return Tmp;
- case ISD::SHL:
- if (const APInt *ShAmt =
- getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
- // shl destroys sign bits, ensure it doesn't shift out all sign bits.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- if (ShAmt->ult(Tmp))
- return Tmp - ShAmt->getZExtValue();
- }
- break;
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
- case ISD::SELECT:
- case ISD::VSELECT:
- Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SELECT_CC:
- Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SMIN:
- case ISD::SMAX: {
- // If we have a clamp pattern, we know that the number of sign bits will be
- // the minimum of the clamp min/max range.
- bool IsMax = (Opcode == ISD::SMAX);
- ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
- if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
- if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
- CstHigh =
- isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
- if (CstLow && CstHigh) {
- if (!IsMax)
- std::swap(CstLow, CstHigh);
- if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
- Tmp = CstLow->getAPIntValue().getNumSignBits();
- Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
- return std::min(Tmp, Tmp2);
- }
- }
- // Fallback - just get the minimum number of sign bits of the operands.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- if (Tmp == 1)
- return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
- return std::min(Tmp, Tmp2);
- }
- case ISD::UMIN:
- case ISD::UMAX:
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- if (Tmp == 1)
- return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
- return std::min(Tmp, Tmp2);
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents. Fall through.
- // If setcc returns 0/-1, all bits are sign bits.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(VT.isVector(), false) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::SETCC:
- case ISD::STRICT_FSETCC:
- case ISD::STRICT_FSETCCS: {
- unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
- // If setcc returns 0/-1, all bits are sign bits.
- if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- }
- case ISD::ROTL:
- case ISD::ROTR:
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
- if (Tmp == VTBits)
- return VTBits;
- if (ConstantSDNode *C =
- isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
- unsigned RotAmt = C->getAPIntValue().urem(VTBits);
- // Handle rotate right by N like a rotate left by 32-N.
- if (Opcode == ISD::ROTR)
- RotAmt = (VTBits - RotAmt) % VTBits;
- // If we aren't rotating out all of the known-in sign bits, return the
- // number that are left. This handles rotl(sext(x), 1) for example.
- if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
- }
- break;
- case ISD::ADD:
- case ISD::ADDC:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (ConstantSDNode *CRHS =
- isConstOrConstSplat(Op.getOperand(1), DemandedElts))
- if (CRHS->isAllOnes()) {
- KnownBits Known =
- computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((Known.Zero | 1).isAllOnes())
- return VTBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (Known.isNonNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
- if (Tmp2 == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2) - 1;
- case ISD::SUB:
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
- if (Tmp2 == 1) return 1; // Early out.
- // Handle NEG.
- if (ConstantSDNode *CLHS =
- isConstOrConstSplat(Op.getOperand(0), DemandedElts))
- if (CLHS->isZero()) {
- KnownBits Known =
- computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((Known.Zero | 1).isAllOnes())
- return VTBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (Known.isNonNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2) - 1;
- case ISD::MUL: {
- // The output of the Mul can be at most twice the valid bits in the inputs.
- unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
- if (SignBitsOp0 == 1)
- break;
- unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
- if (SignBitsOp1 == 1)
- break;
- unsigned OutValidBits =
- (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
- return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
- }
- case ISD::SREM:
- // The sign bit is the LHS's sign bit, except when the result of the
- // remainder is zero. The magnitude of the result should be less than or
- // equal to the magnitude of the LHS. Therefore, the result should have
- // at least as many sign bits as the left hand side.
- return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
- case ISD::TRUNCATE: {
- // Check if the sign bits of source go down as far as the truncated value.
- unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
- unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
- if (NumSrcSignBits > (NumSrcBits - VTBits))
- return NumSrcSignBits - (NumSrcBits - VTBits);
- break;
- }
- case ISD::EXTRACT_ELEMENT: {
- const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- const int BitWidth = Op.getValueSizeInBits();
- const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
- // Get reverse index (starting from 1), Op1 value indexes elements from
- // little end. Sign starts at big end.
- const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
- // If the sign portion ends in our element the subtraction gives correct
- // result. Otherwise it gives either negative or > bitwidth result
- return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
- }
- case ISD::INSERT_VECTOR_ELT: {
- // If we know the element index, split the demand between the
- // source vector and the inserted element, otherwise assume we need
- // the original demanded vector elements and the value.
- SDValue InVec = Op.getOperand(0);
- SDValue InVal = Op.getOperand(1);
- SDValue EltNo = Op.getOperand(2);
- bool DemandedVal = true;
- APInt DemandedVecElts = DemandedElts;
- auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
- unsigned EltIdx = CEltNo->getZExtValue();
- DemandedVal = !!DemandedElts[EltIdx];
- DemandedVecElts.clearBit(EltIdx);
- }
- Tmp = std::numeric_limits<unsigned>::max();
- if (DemandedVal) {
- // TODO - handle implicit truncation of inserted elements.
- if (InVal.getScalarValueSizeInBits() != VTBits)
- break;
- Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- if (!!DemandedVecElts) {
- Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue InVec = Op.getOperand(0);
- SDValue EltNo = Op.getOperand(1);
- EVT VecVT = InVec.getValueType();
- // ComputeNumSignBits not yet implemented for scalable vectors.
- if (VecVT.isScalableVector())
- break;
- const unsigned BitWidth = Op.getValueSizeInBits();
- const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
- const unsigned NumSrcElts = VecVT.getVectorNumElements();
- // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
- // anything about sign bits. But if the sizes match we can derive knowledge
- // about sign bits from the vector operand.
- if (BitWidth != EltBitWidth)
- break;
- // If we know the element index, just demand that vector element, else for
- // an unknown element index, ignore DemandedElts and demand them all.
- APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
- auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
- DemandedSrcElts =
- APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
- return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // Offset the demanded elts by the subvector index.
- SDValue Src = Op.getOperand(0);
- // Bail until we can represent demanded elements for scalable vectors.
- if (Src.getValueType().isScalableVector())
- break;
- uint64_t Idx = Op.getConstantOperandVal(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
- }
- case ISD::CONCAT_VECTORS: {
- // Determine the minimum number of sign bits across all demanded
- // elts of the input vectors. Early out if the result is already 1.
- Tmp = std::numeric_limits<unsigned>::max();
- EVT SubVectorVT = Op.getOperand(0).getValueType();
- unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
- unsigned NumSubVectors = Op.getNumOperands();
- for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
- APInt DemandedSub =
- DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
- if (!DemandedSub)
- continue;
- Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::INSERT_SUBVECTOR: {
- // Demand any elements from the subvector and the remainder from the src its
- // inserted into.
- SDValue Src = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- uint64_t Idx = Op.getConstantOperandVal(2);
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- APInt DemandedSrcElts = DemandedElts;
- DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
- Tmp = std::numeric_limits<unsigned>::max();
- if (!!DemandedSubElts) {
- Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
- if (Tmp == 1)
- return 1; // early-out
- }
- if (!!DemandedSrcElts) {
- Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_CLR:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX:
- case ISD::ATOMIC_LOAD: {
- Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
- // If we are looking at the loaded value.
- if (Op.getResNo() == 0) {
- if (Tmp == VTBits)
- return 1; // early-out
- if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
- return VTBits - Tmp + 1;
- if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
- return VTBits - Tmp;
- }
- break;
- }
- }
- // If we are looking at the loaded value of the SDNode.
- if (Op.getResNo() == 0) {
- // Handle LOADX separately here. EXTLOAD case will fallthrough.
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
- unsigned ExtType = LD->getExtensionType();
- switch (ExtType) {
- default: break;
- case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
- Tmp = LD->getMemoryVT().getScalarSizeInBits();
- return VTBits - Tmp + 1;
- case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
- Tmp = LD->getMemoryVT().getScalarSizeInBits();
- return VTBits - Tmp;
- case ISD::NON_EXTLOAD:
- if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
- // We only need to handle vectors - computeKnownBits should handle
- // scalar cases.
- Type *CstTy = Cst->getType();
- if (CstTy->isVectorTy() &&
- (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
- VTBits == CstTy->getScalarSizeInBits()) {
- Tmp = VTBits;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- if (Constant *Elt = Cst->getAggregateElement(i)) {
- if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
- const APInt &Value = CInt->getValue();
- Tmp = std::min(Tmp, Value.getNumSignBits());
- continue;
- }
- if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
- APInt Value = CFP->getValueAPF().bitcastToAPInt();
- Tmp = std::min(Tmp, Value.getNumSignBits());
- continue;
- }
- }
- // Unknown type. Conservatively assume no bits match sign bit.
- return 1;
- }
- return Tmp;
- }
- }
- break;
- }
- }
- }
- // Allow the target to implement this method for its nodes.
- if (Opcode >= ISD::BUILTIN_OP_END ||
- Opcode == ISD::INTRINSIC_WO_CHAIN ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::INTRINSIC_VOID) {
- unsigned NumBits =
- TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
- if (NumBits > 1)
- FirstAnswer = std::max(FirstAnswer, NumBits);
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
- return std::max(FirstAnswer, Known.countMinSignBits());
- }
- unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
- unsigned Depth) const {
- unsigned SignBits = ComputeNumSignBits(Op, Depth);
- return Op.getScalarValueSizeInBits() - SignBits + 1;
- }
- unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
- const APInt &DemandedElts,
- unsigned Depth) const {
- unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
- return Op.getScalarValueSizeInBits() - SignBits + 1;
- }
- bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
- unsigned Depth) const {
- // Early out for FREEZE.
- if (Op.getOpcode() == ISD::FREEZE)
- return true;
- // TODO: Assume we don't know anything for now.
- EVT VT = Op.getValueType();
- if (VT.isScalableVector())
- return false;
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
- }
- bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
- const APInt &DemandedElts,
- bool PoisonOnly,
- unsigned Depth) const {
- unsigned Opcode = Op.getOpcode();
- // Early out for FREEZE.
- if (Opcode == ISD::FREEZE)
- return true;
- if (Depth >= MaxRecursionDepth)
- return false; // Limit search depth.
- if (isIntOrFPConstant(Op))
- return true;
- switch (Opcode) {
- case ISD::UNDEF:
- return PoisonOnly;
- case ISD::BUILD_VECTOR:
- // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
- // this shouldn't affect the result.
- for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
- if (!DemandedElts[i])
- continue;
- if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
- Depth + 1))
- return false;
- }
- return true;
- // TODO: Search for noundef attributes from library functions.
- // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
- default:
- // Allow the target to implement this method for its nodes.
- if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
- Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
- return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
- Op, DemandedElts, *this, PoisonOnly, Depth);
- break;
- }
- return false;
- }
- bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
- if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
- !isa<ConstantSDNode>(Op.getOperand(1)))
- return false;
- if (Op.getOpcode() == ISD::OR &&
- !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
- return false;
- return true;
- }
- bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
- // If we're told that NaNs won't happen, assume they won't.
- if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
- return true;
- if (Depth >= MaxRecursionDepth)
- return false; // Limit search depth.
- // TODO: Handle vectors.
- // If the value is a constant, we can obviously see if it is a NaN or not.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
- return !C->getValueAPF().isNaN() ||
- (SNaN && !C->getValueAPF().isSignaling());
- }
- unsigned Opcode = Op.getOpcode();
- switch (Opcode) {
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::FSIN:
- case ISD::FCOS: {
- if (SNaN)
- return true;
- // TODO: Need isKnownNeverInfinity
- return false;
- }
- case ISD::FCANONICALIZE:
- case ISD::FEXP:
- case ISD::FEXP2:
- case ISD::FTRUNC:
- case ISD::FFLOOR:
- case ISD::FCEIL:
- case ISD::FROUND:
- case ISD::FROUNDEVEN:
- case ISD::FRINT:
- case ISD::FNEARBYINT: {
- if (SNaN)
- return true;
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- case ISD::FABS:
- case ISD::FNEG:
- case ISD::FCOPYSIGN: {
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- case ISD::SELECT:
- return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
- case ISD::FP_EXTEND:
- case ISD::FP_ROUND: {
- if (SNaN)
- return true;
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- return true;
- case ISD::FMA:
- case ISD::FMAD: {
- if (SNaN)
- return true;
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
- }
- case ISD::FSQRT: // Need is known positive
- case ISD::FLOG:
- case ISD::FLOG2:
- case ISD::FLOG10:
- case ISD::FPOWI:
- case ISD::FPOW: {
- if (SNaN)
- return true;
- // TODO: Refine on operand
- return false;
- }
- case ISD::FMINNUM:
- case ISD::FMAXNUM: {
- // Only one needs to be known not-nan, since it will be returned if the
- // other ends up being one.
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
- isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
- }
- case ISD::FMINNUM_IEEE:
- case ISD::FMAXNUM_IEEE: {
- if (SNaN)
- return true;
- // This can return a NaN if either operand is an sNaN, or if both operands
- // are NaN.
- return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
- isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
- (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
- isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
- }
- case ISD::FMINIMUM:
- case ISD::FMAXIMUM: {
- // TODO: Does this quiet or return the origina NaN as-is?
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- default:
- if (Opcode >= ISD::BUILTIN_OP_END ||
- Opcode == ISD::INTRINSIC_WO_CHAIN ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::INTRINSIC_VOID) {
- return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
- }
- return false;
- }
- }
- bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
- assert(Op.getValueType().isFloatingPoint() &&
- "Floating point type expected");
- // If the value is a constant, we can obviously see if it is a zero or not.
- // TODO: Add BuildVector support.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
- return !C->isZero();
- return false;
- }
- bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
- assert(!Op.getValueType().isFloatingPoint() &&
- "Floating point types unsupported - use isKnownNeverZeroFloat");
- // If the value is a constant, we can obviously see if it is a zero or not.
- if (ISD::matchUnaryPredicate(Op,
- [](ConstantSDNode *C) { return !C->isZero(); }))
- return true;
- // TODO: Recognize more cases here.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::OR:
- if (isKnownNeverZero(Op.getOperand(1)) ||
- isKnownNeverZero(Op.getOperand(0)))
- return true;
- break;
- }
- return false;
- }
- bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
- // Check the obvious case.
- if (A == B) return true;
- // For for negative and positive zero.
- if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
- if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
- if (CA->isZero() && CB->isZero()) return true;
- // Otherwise they may not be equal.
- return false;
- }
- // FIXME: unify with llvm::haveNoCommonBitsSet.
- bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
- assert(A.getValueType() == B.getValueType() &&
- "Values must have the same type");
- // Match masked merge pattern (X & ~M) op (Y & M)
- if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
- auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
- if (isBitwiseNot(NotM, true)) {
- SDValue NotOperand = NotM->getOperand(0);
- return NotOperand == And->getOperand(0) ||
- NotOperand == And->getOperand(1);
- }
- return false;
- };
- if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
- MatchNoCommonBitsPattern(A->getOperand(1), B) ||
- MatchNoCommonBitsPattern(B->getOperand(0), A) ||
- MatchNoCommonBitsPattern(B->getOperand(1), A))
- return true;
- }
- return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
- computeKnownBits(B));
- }
- static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
- SelectionDAG &DAG) {
- if (cast<ConstantSDNode>(Step)->isZero())
- return DAG.getConstant(0, DL, VT);
- return SDValue();
- }
- static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops,
- SelectionDAG &DAG) {
- int NumOps = Ops.size();
- assert(NumOps != 0 && "Can't build an empty vector!");
- assert(!VT.isScalableVector() &&
- "BUILD_VECTOR cannot be used with scalable types");
- assert(VT.getVectorNumElements() == (unsigned)NumOps &&
- "Incorrect element count in BUILD_VECTOR!");
- // BUILD_VECTOR of UNDEFs is UNDEF.
- if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
- return DAG.getUNDEF(VT);
- // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
- SDValue IdentitySrc;
- bool IsIdentity = true;
- for (int i = 0; i != NumOps; ++i) {
- if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- Ops[i].getOperand(0).getValueType() != VT ||
- (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
- !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
- cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
- IsIdentity = false;
- break;
- }
- IdentitySrc = Ops[i].getOperand(0);
- }
- if (IsIdentity)
- return IdentitySrc;
- return SDValue();
- }
- /// Try to simplify vector concatenation to an input value, undef, or build
- /// vector.
- static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops,
- SelectionDAG &DAG) {
- assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
- assert(llvm::all_of(Ops,
- [Ops](SDValue Op) {
- return Ops[0].getValueType() == Op.getValueType();
- }) &&
- "Concatenation of vectors with inconsistent value types!");
- assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
- VT.getVectorElementCount() &&
- "Incorrect element count in vector concatenation!");
- if (Ops.size() == 1)
- return Ops[0];
- // Concat of UNDEFs is UNDEF.
- if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
- return DAG.getUNDEF(VT);
- // Scan the operands and look for extract operations from a single source
- // that correspond to insertion at the same location via this concatenation:
- // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
- SDValue IdentitySrc;
- bool IsIdentity = true;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- SDValue Op = Ops[i];
- unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
- if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
- Op.getOperand(0).getValueType() != VT ||
- (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
- Op.getConstantOperandVal(1) != IdentityIndex) {
- IsIdentity = false;
- break;
- }
- assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
- "Unexpected identity source vector for concat of extracts");
- IdentitySrc = Op.getOperand(0);
- }
- if (IsIdentity) {
- assert(IdentitySrc && "Failed to set source vector of extracts");
- return IdentitySrc;
- }
- // The code below this point is only designed to work for fixed width
- // vectors, so we bail out for now.
- if (VT.isScalableVector())
- return SDValue();
- // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
- // simplified to one big BUILD_VECTOR.
- // FIXME: Add support for SCALAR_TO_VECTOR as well.
- EVT SVT = VT.getScalarType();
- SmallVector<SDValue, 16> Elts;
- for (SDValue Op : Ops) {
- EVT OpVT = Op.getValueType();
- if (Op.isUndef())
- Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
- else if (Op.getOpcode() == ISD::BUILD_VECTOR)
- Elts.append(Op->op_begin(), Op->op_end());
- else
- return SDValue();
- }
- // BUILD_VECTOR requires all inputs to be of the same type, find the
- // maximum type and extend them all.
- for (SDValue Op : Elts)
- SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
- if (SVT.bitsGT(VT.getScalarType())) {
- for (SDValue &Op : Elts) {
- if (Op.isUndef())
- Op = DAG.getUNDEF(SVT);
- else
- Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
- ? DAG.getZExtOrTrunc(Op, DL, SVT)
- : DAG.getSExtOrTrunc(Op, DL, SVT);
- }
- }
- SDValue V = DAG.getBuildVector(VT, DL, Elts);
- NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
- return V;
- }
- /// Gets or creates the specified node.
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, getVTList(VT), None);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
- getVTList(VT));
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue Operand) {
- SDNodeFlags Flags;
- if (Inserter)
- Flags = Inserter->getFlags();
- return getNode(Opcode, DL, VT, Operand, Flags);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue Operand, const SDNodeFlags Flags) {
- assert(Operand.getOpcode() != ISD::DELETED_NODE &&
- "Operand is DELETED_NODE!");
- // Constant fold unary operations with an integer constant operand. Even
- // opaque constant will be folded, because the folding of unary operations
- // doesn't create new constants with different values. Nevertheless, the
- // opaque flag is preserved during folding to prevent future folding with
- // other constants.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
- const APInt &Val = C->getAPIntValue();
- switch (Opcode) {
- default: break;
- case ISD::SIGN_EXTEND:
- return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::TRUNCATE:
- if (C->isOpaque())
- break;
- LLVM_FALLTHROUGH;
- case ISD::ZERO_EXTEND:
- return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::ANY_EXTEND:
- // Some targets like RISCV prefer to sign extend some types.
- if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
- return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP: {
- APFloat apf(EVTToAPFloatSemantics(VT),
- APInt::getZero(VT.getSizeInBits()));
- (void)apf.convertFromAPInt(Val,
- Opcode==ISD::SINT_TO_FP,
- APFloat::rmNearestTiesToEven);
- return getConstantFP(apf, DL, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
- return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
- if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
- if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
- if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
- return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
- break;
- case ISD::ABS:
- return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::BITREVERSE:
- return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::BSWAP:
- return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTPOP:
- return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::FP16_TO_FP: {
- bool Ignored;
- APFloat FPV(APFloat::IEEEhalf(),
- (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)FPV.convert(EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &Ignored);
- return getConstantFP(FPV, DL, VT);
- }
- case ISD::STEP_VECTOR: {
- if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
- return V;
- break;
- }
- }
- }
- // Constant fold unary operations with a floating point constant operand.
- if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
- APFloat V = C->getValueAPF(); // make copy
- switch (Opcode) {
- case ISD::FNEG:
- V.changeSign();
- return getConstantFP(V, DL, VT);
- case ISD::FABS:
- V.clearSign();
- return getConstantFP(V, DL, VT);
- case ISD::FCEIL: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FTRUNC: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FFLOOR: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FP_EXTEND: {
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, DL, VT);
- }
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT: {
- bool ignored;
- APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
- // FIXME need to be more flexible about rounding mode.
- APFloat::opStatus s =
- V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
- if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
- break;
- return getConstant(IntVal, DL, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
- return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
- return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
- return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
- return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
- break;
- case ISD::FP_TO_FP16: {
- bool Ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(APFloat::IEEEhalf(),
- APFloat::rmNearestTiesToEven, &Ignored);
- return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
- }
- }
- }
- // Constant fold unary operations with a vector integer or float operand.
- switch (Opcode) {
- default:
- // FIXME: Entirely reasonable to perform folding of other unary
- // operations here as the need arises.
- break;
- case ISD::FNEG:
- case ISD::FABS:
- case ISD::FCEIL:
- case ISD::FTRUNC:
- case ISD::FFLOOR:
- case ISD::FP_EXTEND:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- case ISD::TRUNCATE:
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP:
- case ISD::ABS:
- case ISD::BITREVERSE:
- case ISD::BSWAP:
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTPOP: {
- SDValue Ops = {Operand};
- if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
- return Fold;
- }
- }
- unsigned OpOpcode = Operand.getNode()->getOpcode();
- switch (Opcode) {
- case ISD::STEP_VECTOR:
- assert(VT.isScalableVector() &&
- "STEP_VECTOR can only be used with scalable types");
- assert(OpOpcode == ISD::TargetConstant &&
- VT.getVectorElementType() == Operand.getValueType() &&
- "Unexpected step operand");
- break;
- case ISD::FREEZE:
- assert(VT == Operand.getValueType() && "Unexpected VT!");
- break;
- case ISD::TokenFactor:
- case ISD::MERGE_VALUES:
- case ISD::CONCAT_VECTORS:
- return Operand; // Factor, merge or concat of one node? No need.
- case ISD::BUILD_VECTOR: {
- // Attempt to simplify BUILD_VECTOR.
- SDValue Ops[] = {Operand};
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
- case ISD::FP_EXTEND:
- assert(VT.isFloatingPoint() &&
- Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
- if (Operand.getValueType() == VT) return Operand; // noop conversion.
- assert((!VT.isVector() ||
- VT.getVectorElementCount() ==
- Operand.getValueType().getVectorElementCount()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid fpext node, dst < src!");
- if (Operand.isUndef())
- return getUNDEF(VT);
- break;
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- if (Operand.isUndef())
- return getUNDEF(VT);
- break;
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- // [us]itofp(undef) = 0, because the result value is bounded.
- if (Operand.isUndef())
- return getConstantFP(0.0, DL, VT);
- break;
- case ISD::SIGN_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid SIGN_EXTEND!");
- assert(VT.isVector() == Operand.getValueType().isVector() &&
- "SIGN_EXTEND result type type should be vector iff the operand "
- "type is vector!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert((!VT.isVector() ||
- VT.getVectorElementCount() ==
- Operand.getValueType().getVectorElementCount()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid sext node, dst < src!");
- if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
- return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- // sext(undef) = 0, because the top bits will all be the same.
- return getConstant(0, DL, VT);
- break;
- case ISD::ZERO_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ZERO_EXTEND!");
- assert(VT.isVector() == Operand.getValueType().isVector() &&
- "ZERO_EXTEND result type type should be vector iff the operand "
- "type is vector!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert((!VT.isVector() ||
- VT.getVectorElementCount() ==
- Operand.getValueType().getVectorElementCount()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid zext node, dst < src!");
- if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
- return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- // zext(undef) = 0, because the top bits will be zero.
- return getConstant(0, DL, VT);
- break;
- case ISD::ANY_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ANY_EXTEND!");
- assert(VT.isVector() == Operand.getValueType().isVector() &&
- "ANY_EXTEND result type type should be vector iff the operand "
- "type is vector!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert((!VT.isVector() ||
- VT.getVectorElementCount() ==
- Operand.getValueType().getVectorElementCount()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid anyext node, dst < src!");
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND)
- // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
- return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // (ext (trunc x)) -> x
- if (OpOpcode == ISD::TRUNCATE) {
- SDValue OpOp = Operand.getOperand(0);
- if (OpOp.getValueType() == VT) {
- transferDbgValues(Operand, OpOp);
- return OpOp;
- }
- }
- break;
- case ISD::TRUNCATE:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid TRUNCATE!");
- assert(VT.isVector() == Operand.getValueType().isVector() &&
- "TRUNCATE result type type should be vector iff the operand "
- "type is vector!");
- if (Operand.getValueType() == VT) return Operand; // noop truncate
- assert((!VT.isVector() ||
- VT.getVectorElementCount() ==
- Operand.getValueType().getVectorElementCount()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsGT(VT) &&
- "Invalid truncate node, src < dst!");
- if (OpOpcode == ISD::TRUNCATE)
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND) {
- // If the source is smaller than the dest, we still need an extend.
- if (Operand.getOperand(0).getValueType().getScalarType()
- .bitsLT(VT.getScalarType()))
- return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
- if (Operand.getOperand(0).getValueType().bitsGT(VT))
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
- return Operand.getOperand(0);
- }
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
- return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
- break;
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(Operand.getValueType().bitsLE(VT) &&
- "The input must be the same size or smaller than the result.");
- assert(VT.getVectorMinNumElements() <
- Operand.getValueType().getVectorMinNumElements() &&
- "The destination vector type must have fewer lanes than the input.");
- break;
- case ISD::ABS:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid ABS!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BSWAP:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid BSWAP!");
- assert((VT.getScalarSizeInBits() % 16 == 0) &&
- "BSWAP types must be a multiple of 16 bits!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // bswap(bswap(X)) -> X.
- if (OpOpcode == ISD::BSWAP)
- return Operand.getOperand(0);
- break;
- case ISD::BITREVERSE:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid BITREVERSE!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BITCAST:
- assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
- "Cannot BITCAST between types of different sizes!");
- if (VT == Operand.getValueType()) return Operand; // noop conversion.
- if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
- return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SCALAR_TO_VECTOR:
- assert(VT.isVector() && !Operand.getValueType().isVector() &&
- (VT.getVectorElementType() == Operand.getValueType() ||
- (VT.getVectorElementType().isInteger() &&
- Operand.getValueType().isInteger() &&
- VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
- "Illegal SCALAR_TO_VECTOR node!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
- if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
- isa<ConstantSDNode>(Operand.getOperand(1)) &&
- Operand.getConstantOperandVal(1) == 0 &&
- Operand.getOperand(0).getValueType() == VT)
- return Operand.getOperand(0);
- break;
- case ISD::FNEG:
- // Negation of an unknown bag of bits is still completely undefined.
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- if (OpOpcode == ISD::FNEG) // --X -> X
- return Operand.getOperand(0);
- break;
- case ISD::FABS:
- if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
- return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
- break;
- case ISD::VSCALE:
- assert(VT == Operand.getValueType() && "Unexpected VT!");
- break;
- case ISD::CTPOP:
- if (Operand.getValueType().getScalarType() == MVT::i1)
- return Operand;
- break;
- case ISD::CTLZ:
- case ISD::CTTZ:
- if (Operand.getValueType().getScalarType() == MVT::i1)
- return getNOT(DL, Operand, Operand.getValueType());
- break;
- case ISD::VECREDUCE_SMIN:
- case ISD::VECREDUCE_UMAX:
- if (Operand.getValueType().getScalarType() == MVT::i1)
- return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
- break;
- case ISD::VECREDUCE_SMAX:
- case ISD::VECREDUCE_UMIN:
- if (Operand.getValueType().getScalarType() == MVT::i1)
- return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
- break;
- }
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = {Operand};
- if (VT != MVT::Glue) { // Don't CSE flag producing nodes
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- E->intersectFlagsWith(Flags);
- return SDValue(E, 0);
- }
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- N->setFlags(Flags);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
- const APInt &C2) {
- switch (Opcode) {
- case ISD::ADD: return C1 + C2;
- case ISD::SUB: return C1 - C2;
- case ISD::MUL: return C1 * C2;
- case ISD::AND: return C1 & C2;
- case ISD::OR: return C1 | C2;
- case ISD::XOR: return C1 ^ C2;
- case ISD::SHL: return C1 << C2;
- case ISD::SRL: return C1.lshr(C2);
- case ISD::SRA: return C1.ashr(C2);
- case ISD::ROTL: return C1.rotl(C2);
- case ISD::ROTR: return C1.rotr(C2);
- case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
- case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
- case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
- case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
- case ISD::SADDSAT: return C1.sadd_sat(C2);
- case ISD::UADDSAT: return C1.uadd_sat(C2);
- case ISD::SSUBSAT: return C1.ssub_sat(C2);
- case ISD::USUBSAT: return C1.usub_sat(C2);
- case ISD::SSHLSAT: return C1.sshl_sat(C2);
- case ISD::USHLSAT: return C1.ushl_sat(C2);
- case ISD::UDIV:
- if (!C2.getBoolValue())
- break;
- return C1.udiv(C2);
- case ISD::UREM:
- if (!C2.getBoolValue())
- break;
- return C1.urem(C2);
- case ISD::SDIV:
- if (!C2.getBoolValue())
- break;
- return C1.sdiv(C2);
- case ISD::SREM:
- if (!C2.getBoolValue())
- break;
- return C1.srem(C2);
- case ISD::MULHS: {
- unsigned FullWidth = C1.getBitWidth() * 2;
- APInt C1Ext = C1.sext(FullWidth);
- APInt C2Ext = C2.sext(FullWidth);
- return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
- }
- case ISD::MULHU: {
- unsigned FullWidth = C1.getBitWidth() * 2;
- APInt C1Ext = C1.zext(FullWidth);
- APInt C2Ext = C2.zext(FullWidth);
- return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
- }
- }
- return llvm::None;
- }
- SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
- const GlobalAddressSDNode *GA,
- const SDNode *N2) {
- if (GA->getOpcode() != ISD::GlobalAddress)
- return SDValue();
- if (!TLI->isOffsetFoldingLegal(GA))
- return SDValue();
- auto *C2 = dyn_cast<ConstantSDNode>(N2);
- if (!C2)
- return SDValue();
- int64_t Offset = C2->getSExtValue();
- switch (Opcode) {
- case ISD::ADD: break;
- case ISD::SUB: Offset = -uint64_t(Offset); break;
- default: return SDValue();
- }
- return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
- GA->getOffset() + uint64_t(Offset));
- }
- bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
- switch (Opcode) {
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM: {
- // If a divisor is zero/undef or any element of a divisor vector is
- // zero/undef, the whole op is undef.
- assert(Ops.size() == 2 && "Div/rem should have 2 operands");
- SDValue Divisor = Ops[1];
- if (Divisor.isUndef() || isNullConstant(Divisor))
- return true;
- return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
- llvm::any_of(Divisor->op_values(),
- [](SDValue V) { return V.isUndef() ||
- isNullConstant(V); });
- // TODO: Handle signed overflow.
- }
- // TODO: Handle oversized shifts.
- default:
- return false;
- }
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
- EVT VT, ArrayRef<SDValue> Ops) {
- // If the opcode is a target-specific ISD node, there's nothing we can
- // do here and the operand rules may not line up with the below, so
- // bail early.
- // We can't create a scalar CONCAT_VECTORS so skip it. It will break
- // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
- // foldCONCAT_VECTORS in getNode before this is called.
- if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
- return SDValue();
- unsigned NumOps = Ops.size();
- if (NumOps == 0)
- return SDValue();
- if (isUndef(Opcode, Ops))
- return getUNDEF(VT);
- // Handle binops special cases.
- if (NumOps == 2) {
- if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
- return CFP;
- if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
- if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
- if (C1->isOpaque() || C2->isOpaque())
- return SDValue();
- Optional<APInt> FoldAttempt =
- FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
- if (!FoldAttempt)
- return SDValue();
- SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
- assert((!Folded || !VT.isVector()) &&
- "Can't fold vectors ops with scalar operands");
- return Folded;
- }
- }
- // fold (add Sym, c) -> Sym+c
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
- return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
- if (TLI->isCommutativeBinOp(Opcode))
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
- return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
- }
- // This is for vector folding only from here on.
- if (!VT.isVector())
- return SDValue();
- ElementCount NumElts = VT.getVectorElementCount();
- // See if we can fold through bitcasted integer ops.
- // TODO: Can we handle undef elements?
- if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
- Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
- Ops[0].getOpcode() == ISD::BITCAST &&
- Ops[1].getOpcode() == ISD::BITCAST) {
- SDValue N1 = peekThroughBitcasts(Ops[0]);
- SDValue N2 = peekThroughBitcasts(Ops[1]);
- auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
- auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
- EVT BVVT = N1.getValueType();
- if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
- bool IsLE = getDataLayout().isLittleEndian();
- unsigned EltBits = VT.getScalarSizeInBits();
- SmallVector<APInt> RawBits1, RawBits2;
- BitVector UndefElts1, UndefElts2;
- if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
- BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
- UndefElts1.none() && UndefElts2.none()) {
- SmallVector<APInt> RawBits;
- for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
- Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
- if (!Fold)
- break;
- RawBits.push_back(Fold.getValue());
- }
- if (RawBits.size() == NumElts.getFixedValue()) {
- // We have constant folded, but we need to cast this again back to
- // the original (possibly legalized) type.
- SmallVector<APInt> DstBits;
- BitVector DstUndefs;
- BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
- DstBits, RawBits, DstUndefs,
- BitVector(RawBits.size(), false));
- EVT BVEltVT = BV1->getOperand(0).getValueType();
- unsigned BVEltBits = BVEltVT.getSizeInBits();
- SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
- for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
- if (DstUndefs[I])
- continue;
- Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
- }
- return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
- }
- }
- }
- }
- // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
- // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
- if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
- Ops[0].getOpcode() == ISD::STEP_VECTOR) {
- APInt RHSVal;
- if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
- APInt NewStep = Opcode == ISD::MUL
- ? Ops[0].getConstantOperandAPInt(0) * RHSVal
- : Ops[0].getConstantOperandAPInt(0) << RHSVal;
- return getStepVector(DL, VT, NewStep);
- }
- }
- auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
- return !Op.getValueType().isVector() ||
- Op.getValueType().getVectorElementCount() == NumElts;
- };
- auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
- return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
- Op.getOpcode() == ISD::BUILD_VECTOR ||
- Op.getOpcode() == ISD::SPLAT_VECTOR;
- };
- // All operands must be vector types with the same number of elements as
- // the result type and must be either UNDEF or a build/splat vector
- // or UNDEF scalars.
- if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
- !llvm::all_of(Ops, IsScalarOrSameVectorSize))
- return SDValue();
- // If we are comparing vectors, then the result needs to be a i1 boolean
- // that is then sign-extended back to the legal result type.
- EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
- // Find legal integer scalar type for constant promotion and
- // ensure that its scalar size is at least as large as source.
- EVT LegalSVT = VT.getScalarType();
- if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
- LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
- if (LegalSVT.bitsLT(VT.getScalarType()))
- return SDValue();
- }
- // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
- // only have one operand to check. For fixed-length vector types we may have
- // a combination of BUILD_VECTOR and SPLAT_VECTOR.
- unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
- // Constant fold each scalar lane separately.
- SmallVector<SDValue, 4> ScalarResults;
- for (unsigned I = 0; I != NumVectorElts; I++) {
- SmallVector<SDValue, 4> ScalarOps;
- for (SDValue Op : Ops) {
- EVT InSVT = Op.getValueType().getScalarType();
- if (Op.getOpcode() != ISD::BUILD_VECTOR &&
- Op.getOpcode() != ISD::SPLAT_VECTOR) {
- if (Op.isUndef())
- ScalarOps.push_back(getUNDEF(InSVT));
- else
- ScalarOps.push_back(Op);
- continue;
- }
- SDValue ScalarOp =
- Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
- EVT ScalarVT = ScalarOp.getValueType();
- // Build vector (integer) scalar operands may need implicit
- // truncation - do this before constant folding.
- if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
- // Don't create illegally-typed nodes unless they're constants or undef
- // - if we fail to constant fold we can't guarantee the (dead) nodes
- // we're creating will be cleaned up before being visited for
- // legalization.
- if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
- !isa<ConstantSDNode>(ScalarOp) &&
- TLI->getTypeAction(*getContext(), InSVT) !=
- TargetLowering::TypeLegal)
- return SDValue();
- ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
- }
- ScalarOps.push_back(ScalarOp);
- }
- // Constant fold the scalar operands.
- SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
- // Legalize the (integer) scalar constant if necessary.
- if (LegalSVT != SVT)
- ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
- // Scalar folding only succeeded if the result is a constant or UNDEF.
- if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
- ScalarResult.getOpcode() != ISD::ConstantFP)
- return SDValue();
- ScalarResults.push_back(ScalarResult);
- }
- SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
- : getBuildVector(VT, DL, ScalarResults);
- NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
- return V;
- }
- SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
- EVT VT, SDValue N1, SDValue N2) {
- // TODO: We don't do any constant folding for strict FP opcodes here, but we
- // should. That will require dealing with a potentially non-default
- // rounding mode, checking the "opStatus" return value from the APFloat
- // math calculations, and possibly other variations.
- ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
- ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
- if (N1CFP && N2CFP) {
- APFloat C1 = N1CFP->getValueAPF(); // make copy
- const APFloat &C2 = N2CFP->getValueAPF();
- switch (Opcode) {
- case ISD::FADD:
- C1.add(C2, APFloat::rmNearestTiesToEven);
- return getConstantFP(C1, DL, VT);
- case ISD::FSUB:
- C1.subtract(C2, APFloat::rmNearestTiesToEven);
- return getConstantFP(C1, DL, VT);
- case ISD::FMUL:
- C1.multiply(C2, APFloat::rmNearestTiesToEven);
- return getConstantFP(C1, DL, VT);
- case ISD::FDIV:
- C1.divide(C2, APFloat::rmNearestTiesToEven);
- return getConstantFP(C1, DL, VT);
- case ISD::FREM:
- C1.mod(C2);
- return getConstantFP(C1, DL, VT);
- case ISD::FCOPYSIGN:
- C1.copySign(C2);
- return getConstantFP(C1, DL, VT);
- case ISD::FMINNUM:
- return getConstantFP(minnum(C1, C2), DL, VT);
- case ISD::FMAXNUM:
- return getConstantFP(maxnum(C1, C2), DL, VT);
- case ISD::FMINIMUM:
- return getConstantFP(minimum(C1, C2), DL, VT);
- case ISD::FMAXIMUM:
- return getConstantFP(maximum(C1, C2), DL, VT);
- default: break;
- }
- }
- if (N1CFP && Opcode == ISD::FP_ROUND) {
- APFloat C1 = N1CFP->getValueAPF(); // make copy
- bool Unused;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
- &Unused);
- return getConstantFP(C1, DL, VT);
- }
- switch (Opcode) {
- case ISD::FSUB:
- // -0.0 - undef --> undef (consistent with "fneg undef")
- if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
- if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::FADD:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- // If both operands are undef, the result is undef. If 1 operand is undef,
- // the result is NaN. This should match the behavior of the IR optimizer.
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- if (N1.isUndef() || N2.isUndef())
- return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
- }
- return SDValue();
- }
- SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
- assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
- // There's no need to assert on a byte-aligned pointer. All pointers are at
- // least byte aligned.
- if (A == Align(1))
- return Val;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
- ID.AddInteger(A.value());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
- Val.getValueType(), A);
- createOperands(N, {Val});
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2) {
- SDNodeFlags Flags;
- if (Inserter)
- Flags = Inserter->getFlags();
- return getNode(Opcode, DL, VT, N1, N2, Flags);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, const SDNodeFlags Flags) {
- assert(N1.getOpcode() != ISD::DELETED_NODE &&
- N2.getOpcode() != ISD::DELETED_NODE &&
- "Operand is DELETED_NODE!");
- // Canonicalize constant to RHS if commutative.
- if (TLI->isCommutativeBinOp(Opcode)) {
- bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
- bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
- bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
- bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
- if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
- std::swap(N1, N2);
- }
- auto *N1C = dyn_cast<ConstantSDNode>(N1);
- auto *N2C = dyn_cast<ConstantSDNode>(N2);
- // Don't allow undefs in vector splats - we might be returning N2 when folding
- // to zero etc.
- ConstantSDNode *N2CV =
- isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
- switch (Opcode) {
- default: break;
- case ISD::TokenFactor:
- assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
- N2.getValueType() == MVT::Other && "Invalid token factor!");
- // Fold trivial token factors.
- if (N1.getOpcode() == ISD::EntryToken) return N2;
- if (N2.getOpcode() == ISD::EntryToken) return N1;
- if (N1 == N2) return N1;
- break;
- case ISD::BUILD_VECTOR: {
- // Attempt to simplify BUILD_VECTOR.
- SDValue Ops[] = {N1, N2};
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::CONCAT_VECTORS: {
- SDValue Ops[] = {N1, N2};
- if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::AND:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
- // worth handling here.
- if (N2CV && N2CV->isZero())
- return N2;
- if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
- return N1;
- break;
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
- // it's worth handling here.
- if (N2CV && N2CV->isZero())
- return N1;
- if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
- VT.getVectorElementType() == MVT::i1)
- return getNode(ISD::XOR, DL, VT, N1, N2);
- break;
- case ISD::MUL:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
- return getNode(ISD::AND, DL, VT, N1, N2);
- if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
- const APInt &MulImm = N1->getConstantOperandAPInt(0);
- const APInt &N2CImm = N2C->getAPIntValue();
- return getVScale(DL, VT, MulImm * N2CImm);
- }
- break;
- case ISD::UDIV:
- case ISD::UREM:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::SDIV:
- case ISD::SREM:
- case ISD::SADDSAT:
- case ISD::SSUBSAT:
- case ISD::UADDSAT:
- case ISD::USUBSAT:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
- // fold (add_sat x, y) -> (or x, y) for bool types.
- if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
- return getNode(ISD::OR, DL, VT, N1, N2);
- // fold (sub_sat x, y) -> (and x, ~y) for bool types.
- if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
- return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
- }
- break;
- case ISD::SMIN:
- case ISD::UMAX:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
- return getNode(ISD::OR, DL, VT, N1, N2);
- break;
- case ISD::SMAX:
- case ISD::UMIN:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
- return getNode(ISD::AND, DL, VT, N1, N2);
- break;
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
- return V;
- break;
- case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
- assert(N1.getValueType() == VT &&
- N1.getValueType().isFloatingPoint() &&
- N2.getValueType().isFloatingPoint() &&
- "Invalid FCOPYSIGN!");
- break;
- case ISD::SHL:
- if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
- const APInt &MulImm = N1->getConstantOperandAPInt(0);
- const APInt &ShiftImm = N2C->getAPIntValue();
- return getVScale(DL, VT, MulImm << ShiftImm);
- }
- LLVM_FALLTHROUGH;
- case ISD::SRA:
- case ISD::SRL:
- if (SDValue V = simplifyShift(N1, N2))
- return V;
- LLVM_FALLTHROUGH;
- case ISD::ROTL:
- case ISD::ROTR:
- assert(VT == N1.getValueType() &&
- "Shift operators return type must be the same as their first arg");
- assert(VT.isInteger() && N2.getValueType().isInteger() &&
- "Shifts only work on integers");
- assert((!VT.isVector() || VT == N2.getValueType()) &&
- "Vector shift amounts must be in the same as their first arg");
- // Verify that the shift amount VT is big enough to hold valid shift
- // amounts. This catches things like trying to shift an i1024 value by an
- // i8, which is easy to fall into in generic code that uses
- // TLI.getShiftAmount().
- assert(N2.getValueType().getScalarSizeInBits() >=
- Log2_32_Ceil(VT.getScalarSizeInBits()) &&
- "Invalid use of small shift amount with oversized value!");
- // Always fold shifts of i1 values so the code generator doesn't need to
- // handle them. Since we know the size of the shift has to be less than the
- // size of the value, the shift/rotate count is guaranteed to be zero.
- if (VT == MVT::i1)
- return N1;
- if (N2CV && N2CV->isZero())
- return N1;
- break;
- case ISD::FP_ROUND:
- assert(VT.isFloatingPoint() &&
- N1.getValueType().isFloatingPoint() &&
- VT.bitsLE(N1.getValueType()) &&
- N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
- "Invalid FP_ROUND!");
- if (N1.getValueType() == VT) return N1; // noop conversion.
- break;
- case ISD::AssertSext:
- case ISD::AssertZext: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(!EVT.isVector() &&
- "AssertSExt/AssertZExt type should be the vector element type "
- "rather than the vector type!");
- assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
- if (VT.getScalarType() == EVT) return N1; // noop assertion.
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(EVT.isVector() == VT.isVector() &&
- "SIGN_EXTEND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
- "Vector element counts must match in SIGN_EXTEND_INREG");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (EVT == VT) return N1; // Not actually extending
- auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
- unsigned FromBits = EVT.getScalarSizeInBits();
- Val <<= Val.getBitWidth() - FromBits;
- Val.ashrInPlace(Val.getBitWidth() - FromBits);
- return getConstant(Val, DL, ConstantVT);
- };
- if (N1C) {
- const APInt &Val = N1C->getAPIntValue();
- return SignExtendInReg(Val, VT);
- }
- if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
- SmallVector<SDValue, 8> Ops;
- llvm::EVT OpVT = N1.getOperand(0).getValueType();
- for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
- SDValue Op = N1.getOperand(i);
- if (Op.isUndef()) {
- Ops.push_back(getUNDEF(OpVT));
- continue;
- }
- ConstantSDNode *C = cast<ConstantSDNode>(Op);
- APInt Val = C->getAPIntValue();
- Ops.push_back(SignExtendInReg(Val, OpVT));
- }
- return getBuildVector(VT, DL, Ops);
- }
- break;
- }
- case ISD::FP_TO_SINT_SAT:
- case ISD::FP_TO_UINT_SAT: {
- assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
- N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
- assert(N1.getValueType().isVector() == VT.isVector() &&
- "FP_TO_*INT_SAT type should be vector iff the operand type is "
- "vector!");
- assert((!VT.isVector() || VT.getVectorNumElements() ==
- N1.getValueType().getVectorNumElements()) &&
- "Vector element counts must match in FP_TO_*INT_SAT");
- assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
- "Type to saturate to must be a scalar.");
- assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
- "Not extending!");
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT:
- assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
- "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
- element type of the vector.");
- // Extract from an undefined value or using an undefined index is undefined.
- if (N1.isUndef() || N2.isUndef())
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
- // vectors. For scalable vectors we will provide appropriate support for
- // dealing with arbitrary indices.
- if (N2C && N1.getValueType().isFixedLengthVector() &&
- N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
- // expanding copies of large vectors from registers. This only works for
- // fixed length vectors, since we need to know the exact number of
- // elements.
- if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
- N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
- unsigned Factor =
- N1.getOperand(0).getValueType().getVectorNumElements();
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
- N1.getOperand(N2C->getZExtValue() / Factor),
- getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
- }
- // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
- // lowering is expanding large vector constants.
- if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
- N1.getOpcode() == ISD::SPLAT_VECTOR)) {
- assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
- N1.getValueType().isFixedLengthVector()) &&
- "BUILD_VECTOR used for scalable vectors");
- unsigned Index =
- N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
- SDValue Elt = N1.getOperand(Index);
- if (VT != Elt.getValueType())
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated, and the result implicitly
- // extended. Make that explicit here.
- Elt = getAnyExtOrTrunc(Elt, DL, VT);
- return Elt;
- }
- // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
- // operations are lowered to scalars.
- if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
- // If the indices are the same, return the inserted element else
- // if the indices are known different, extract the element from
- // the original vector.
- SDValue N1Op2 = N1.getOperand(2);
- ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
- if (N1Op2C && N2C) {
- if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
- if (VT == N1.getOperand(1).getValueType())
- return N1.getOperand(1);
- return getSExtOrTrunc(N1.getOperand(1), DL, VT);
- }
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
- }
- }
- // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
- // when vector types are scalarized and v1iX is legal.
- // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
- // Here we are completely ignoring the extract element index (N2),
- // which is fine for fixed width vectors, since any index other than 0
- // is undefined anyway. However, this cannot be ignored for scalable
- // vectors - in theory we could support this, but we don't want to do this
- // without a profitability check.
- if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N1.getValueType().isFixedLengthVector() &&
- N1.getValueType().getVectorNumElements() == 1) {
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
- N1.getOperand(1));
- }
- break;
- case ISD::EXTRACT_ELEMENT:
- assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
- assert(!N1.getValueType().isVector() && !VT.isVector() &&
- (N1.getValueType().isInteger() == VT.isInteger()) &&
- N1.getValueType() != VT &&
- "Wrong types for EXTRACT_ELEMENT!");
- // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
- // 64-bit integers into 32-bit parts. Instead of building the extract of
- // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
- if (N1.getOpcode() == ISD::BUILD_PAIR)
- return N1.getOperand(N2C->getZExtValue());
- // EXTRACT_ELEMENT of a constant int is also very common.
- if (N1C) {
- unsigned ElementSize = VT.getSizeInBits();
- unsigned Shift = ElementSize * N2C->getZExtValue();
- const APInt &Val = N1C->getAPIntValue();
- return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
- }
- break;
- case ISD::EXTRACT_SUBVECTOR: {
- EVT N1VT = N1.getValueType();
- assert(VT.isVector() && N1VT.isVector() &&
- "Extract subvector VTs must be vectors!");
- assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
- "Extract subvector VTs must have the same element type!");
- assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
- "Cannot extract a scalable vector from a fixed length vector!");
- assert((VT.isScalableVector() != N1VT.isScalableVector() ||
- VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
- "Extract subvector must be from larger vector to smaller vector!");
- assert(N2C && "Extract subvector index must be a constant");
- assert((VT.isScalableVector() != N1VT.isScalableVector() ||
- (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
- N1VT.getVectorMinNumElements()) &&
- "Extract subvector overflow!");
- assert(N2C->getAPIntValue().getBitWidth() ==
- TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
- "Constant index for EXTRACT_SUBVECTOR has an invalid size");
- // Trivial extraction.
- if (VT == N1VT)
- return N1;
- // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
- if (N1.isUndef())
- return getUNDEF(VT);
- // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
- // the concat have the same type as the extract.
- if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
- VT == N1.getOperand(0).getValueType()) {
- unsigned Factor = VT.getVectorMinNumElements();
- return N1.getOperand(N2C->getZExtValue() / Factor);
- }
- // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
- // during shuffle legalization.
- if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
- VT == N1.getOperand(1).getValueType())
- return N1.getOperand(1);
- break;
- }
- }
- // Perform trivial constant folding.
- if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
- return SV;
- // Canonicalize an UNDEF to the RHS, even over a constant.
- if (N1.isUndef()) {
- if (TLI->isCommutativeBinOp(Opcode)) {
- std::swap(N1, N2);
- } else {
- switch (Opcode) {
- case ISD::SIGN_EXTEND_INREG:
- case ISD::SUB:
- return getUNDEF(VT); // fold op(undef, arg2) -> undef
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
- }
- }
- }
- // Fold a bunch of operators when the RHS is undef.
- if (N2.isUndef()) {
- switch (Opcode) {
- case ISD::XOR:
- if (N1.isUndef())
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return getConstant(0, DL, VT);
- LLVM_FALLTHROUGH;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- return getUNDEF(VT); // fold op(arg1, undef) -> undef
- case ISD::MUL:
- case ISD::AND:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
- case ISD::OR:
- case ISD::SADDSAT:
- case ISD::UADDSAT:
- return getAllOnesConstant(DL, VT);
- }
- }
- // Memoize this node if possible.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = {N1, N2};
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- E->intersectFlagsWith(Flags);
- return SDValue(E, 0);
- }
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- N->setFlags(Flags);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3) {
- SDNodeFlags Flags;
- if (Inserter)
- Flags = Inserter->getFlags();
- return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- const SDNodeFlags Flags) {
- assert(N1.getOpcode() != ISD::DELETED_NODE &&
- N2.getOpcode() != ISD::DELETED_NODE &&
- N3.getOpcode() != ISD::DELETED_NODE &&
- "Operand is DELETED_NODE!");
- // Perform various simplifications.
- switch (Opcode) {
- case ISD::FMA: {
- assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
- assert(N1.getValueType() == VT && N2.getValueType() == VT &&
- N3.getValueType() == VT && "FMA types must match!");
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
- if (N1CFP && N2CFP && N3CFP) {
- APFloat V1 = N1CFP->getValueAPF();
- const APFloat &V2 = N2CFP->getValueAPF();
- const APFloat &V3 = N3CFP->getValueAPF();
- V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
- return getConstantFP(V1, DL, VT);
- }
- break;
- }
- case ISD::BUILD_VECTOR: {
- // Attempt to simplify BUILD_VECTOR.
- SDValue Ops[] = {N1, N2, N3};
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::CONCAT_VECTORS: {
- SDValue Ops[] = {N1, N2, N3};
- if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::SETCC: {
- assert(VT.isInteger() && "SETCC result type must be an integer!");
- assert(N1.getValueType() == N2.getValueType() &&
- "SETCC operands must have the same type!");
- assert(VT.isVector() == N1.getValueType().isVector() &&
- "SETCC type should be vector iff the operand type is vector!");
- assert((!VT.isVector() || VT.getVectorElementCount() ==
- N1.getValueType().getVectorElementCount()) &&
- "SETCC vector element counts must match!");
- // Use FoldSetCC to simplify SETCC's.
- if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
- return V;
- // Vector constant folding.
- SDValue Ops[] = {N1, N2, N3};
- if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
- NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
- return V;
- }
- break;
- }
- case ISD::SELECT:
- case ISD::VSELECT:
- if (SDValue V = simplifySelect(N1, N2, N3))
- return V;
- break;
- case ISD::VECTOR_SHUFFLE:
- llvm_unreachable("should use getVectorShuffle constructor!");
- case ISD::VECTOR_SPLICE: {
- if (cast<ConstantSDNode>(N3)->isNullValue())
- return N1;
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
- // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
- // for scalable vectors where we will generate appropriate code to
- // deal with out-of-bounds cases correctly.
- if (N3C && N1.getValueType().isFixedLengthVector() &&
- N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
- return getUNDEF(VT);
- // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
- if (N3.isUndef())
- return getUNDEF(VT);
- // If the inserted element is an UNDEF, just use the input vector.
- if (N2.isUndef())
- return N1;
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- // Inserting undef into undef is still undef.
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- EVT N2VT = N2.getValueType();
- assert(VT == N1.getValueType() &&
- "Dest and insert subvector source types must match!");
- assert(VT.isVector() && N2VT.isVector() &&
- "Insert subvector VTs must be vectors!");
- assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
- "Cannot insert a scalable vector into a fixed length vector!");
- assert((VT.isScalableVector() != N2VT.isScalableVector() ||
- VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
- "Insert subvector must be from smaller vector to larger vector!");
- assert(isa<ConstantSDNode>(N3) &&
- "Insert subvector index must be constant");
- assert((VT.isScalableVector() != N2VT.isScalableVector() ||
- (N2VT.getVectorMinNumElements() +
- cast<ConstantSDNode>(N3)->getZExtValue()) <=
- VT.getVectorMinNumElements()) &&
- "Insert subvector overflow!");
- assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
- TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
- "Constant index for INSERT_SUBVECTOR has an invalid size");
- // Trivial insertion.
- if (VT == N2VT)
- return N2;
- // If this is an insert of an extracted vector into an undef vector, we
- // can just use the input to the extract.
- if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
- return N2.getOperand(0);
- break;
- }
- case ISD::BITCAST:
- // Fold bit_convert nodes from a type to themselves.
- if (N1.getValueType() == VT)
- return N1;
- break;
- }
- // Memoize node if it doesn't produce a flag.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = {N1, N2, N3};
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- E->intersectFlagsWith(Flags);
- return SDValue(E, 0);
- }
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- N->setFlags(Flags);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VT, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4,
- SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VT, Ops);
- }
- /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
- /// the incoming stack arguments to be loaded from the stack.
- SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
- SmallVector<SDValue, 8> ArgChains;
- // Include the original chain at the beginning of the list. When this is
- // used by target LowerCall hooks, this helps legalize find the
- // CALLSEQ_BEGIN node.
- ArgChains.push_back(Chain);
- // Add a chain value for each stack argument.
- for (SDNode *U : getEntryNode().getNode()->uses())
- if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
- if (FI->getIndex() < 0)
- ArgChains.push_back(SDValue(L, 1));
- // Build a tokenfactor for all the chains.
- return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
- }
- /// getMemsetValue - Vectorized representation of the memset value
- /// operand.
- static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
- const SDLoc &dl) {
- assert(!Value.isUndef());
- unsigned NumBits = VT.getScalarSizeInBits();
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
- assert(C->getAPIntValue().getBitWidth() == 8);
- APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
- if (VT.isInteger()) {
- bool IsOpaque = VT.getSizeInBits() > 64 ||
- !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
- return DAG.getConstant(Val, dl, VT, false, IsOpaque);
- }
- return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
- VT);
- }
- assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
- EVT IntVT = VT.getScalarType();
- if (!IntVT.isInteger())
- IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
- Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
- if (NumBits > 8) {
- // Use a multiplication with 0x010101... to extend the input to the
- // required length.
- APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
- Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
- DAG.getConstant(Magic, dl, IntVT));
- }
- if (VT != Value.getValueType() && !VT.isInteger())
- Value = DAG.getBitcast(VT.getScalarType(), Value);
- if (VT != Value.getValueType())
- Value = DAG.getSplatBuildVector(VT, dl, Value);
- return Value;
- }
- /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
- /// used when a memcpy is turned into a memset when the source is a constant
- /// string ptr.
- static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
- const TargetLowering &TLI,
- const ConstantDataArraySlice &Slice) {
- // Handle vector with all elements zero.
- if (Slice.Array == nullptr) {
- if (VT.isInteger())
- return DAG.getConstant(0, dl, VT);
- if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
- return DAG.getConstantFP(0.0, dl, VT);
- if (VT.isVector()) {
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getConstant(0, dl,
- EVT::getVectorVT(*DAG.getContext(),
- EltVT, NumElts)));
- }
- llvm_unreachable("Expected type!");
- }
- assert(!VT.isVector() && "Can't handle vector type here!");
- unsigned NumVTBits = VT.getSizeInBits();
- unsigned NumVTBytes = NumVTBits / 8;
- unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
- APInt Val(NumVTBits, 0);
- if (DAG.getDataLayout().isLittleEndian()) {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
- } else {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
- }
- // If the "cost" of materializing the integer immediate is less than the cost
- // of a load, then it is cost effective to turn the load into the immediate.
- Type *Ty = VT.getTypeForEVT(*DAG.getContext());
- if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
- return DAG.getConstant(Val, dl, VT);
- return SDValue();
- }
- SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
- const SDLoc &DL,
- const SDNodeFlags Flags) {
- EVT VT = Base.getValueType();
- SDValue Index;
- if (Offset.isScalable())
- Index = getVScale(DL, Base.getValueType(),
- APInt(Base.getValueSizeInBits().getFixedSize(),
- Offset.getKnownMinSize()));
- else
- Index = getConstant(Offset.getFixedSize(), DL, VT);
- return getMemBasePlusOffset(Base, Index, DL, Flags);
- }
- SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
- const SDLoc &DL,
- const SDNodeFlags Flags) {
- assert(Offset.getValueType().isInteger());
- EVT BasePtrVT = Ptr.getValueType();
- return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
- }
- /// Returns true if memcpy source is constant data.
- static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
- uint64_t SrcDelta = 0;
- GlobalAddressSDNode *G = nullptr;
- if (Src.getOpcode() == ISD::GlobalAddress)
- G = cast<GlobalAddressSDNode>(Src);
- else if (Src.getOpcode() == ISD::ADD &&
- Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
- Src.getOperand(1).getOpcode() == ISD::Constant) {
- G = cast<GlobalAddressSDNode>(Src.getOperand(0));
- SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
- }
- if (!G)
- return false;
- return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
- SrcDelta + G->getOffset());
- }
- static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
- SelectionDAG &DAG) {
- // On Darwin, -Os means optimize for size without hurting performance, so
- // only really optimize for size when -Oz (MinSize) is used.
- if (MF.getTarget().getTargetTriple().isOSDarwin())
- return MF.getFunction().hasMinSize();
- return DAG.shouldOptForSize();
- }
- static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
- SmallVector<SDValue, 32> &OutChains, unsigned From,
- unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
- SmallVector<SDValue, 16> &OutStoreChains) {
- assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
- assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
- SmallVector<SDValue, 16> GluedLoadChains;
- for (unsigned i = From; i < To; ++i) {
- OutChains.push_back(OutLoadChains[i]);
- GluedLoadChains.push_back(OutLoadChains[i]);
- }
- // Chain for all loads.
- SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- GluedLoadChains);
- for (unsigned i = From; i < To; ++i) {
- StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
- SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
- ST->getBasePtr(), ST->getMemoryVT(),
- ST->getMemOperand());
- OutChains.push_back(NewStore);
- }
- }
- static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src,
- uint64_t Size, Align Alignment,
- bool isVol, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo,
- const AAMDNodes &AAInfo) {
- // Turn a memcpy of undef to nop.
- // FIXME: We need to honor volatile even is Src is undef.
- if (Src.isUndef())
- return Chain;
- // Expand memcpy to a series of load and store ops if the size operand falls
- // below a certain threshold.
- // TODO: In the AlwaysInline case, if the size is big then generate a loop
- // rather than maybe a humongous number of loads and stores.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- LLVMContext &C = *DAG.getContext();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
- if (!SrcAlign || Alignment > *SrcAlign)
- SrcAlign = Alignment;
- assert(SrcAlign && "SrcAlign must be set");
- ConstantDataArraySlice Slice;
- // If marked as volatile, perform a copy even when marked as constant.
- bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
- bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
- const MemOp Op = isZeroConstant
- ? MemOp::Set(Size, DstAlignCanChange, Alignment,
- /*IsZeroMemset*/ true, isVol)
- : MemOp::Copy(Size, DstAlignCanChange, Alignment,
- *SrcAlign, isVol, CopyFromConstant);
- if (!TLI.findOptimalMemOpLowering(
- MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
- SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(C);
- Align NewAlign = DL.getABITypeAlign(Ty);
- // Don't promote to an alignment that would require dynamic stack
- // realignment.
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!TRI->hasStackRealignment(MF))
- while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
- NewAlign = NewAlign / 2;
- if (NewAlign > Alignment) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
- MFI.setObjectAlignment(FI->getIndex(), NewAlign);
- Alignment = NewAlign;
- }
- }
- // Prepare AAInfo for loads/stores after lowering this memcpy.
- AAMDNodes NewAAInfo = AAInfo;
- NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
- MachineMemOperand::Flags MMOFlags =
- isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
- SmallVector<SDValue, 16> OutLoadChains;
- SmallVector<SDValue, 16> OutStoreChains;
- SmallVector<SDValue, 32> OutChains;
- unsigned NumMemOps = MemOps.size();
- uint64_t SrcOff = 0, DstOff = 0;
- for (unsigned i = 0; i != NumMemOps; ++i) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- SrcOff -= VTSize - Size;
- DstOff -= VTSize - Size;
- }
- if (CopyFromConstant &&
- (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
- // It's unlikely a store of a vector immediate can be done in a single
- // instruction. It would require a load from a constantpool first.
- // We only handle zero vectors here.
- // FIXME: Handle other cases where store of vector immediate is done in
- // a single instruction.
- ConstantDataArraySlice SubSlice;
- if (SrcOff < Slice.Length) {
- SubSlice = Slice;
- SubSlice.move(SrcOff);
- } else {
- // This is an out-of-bounds access and hence UB. Pretend we read zero.
- SubSlice.Array = nullptr;
- SubSlice.Offset = 0;
- SubSlice.Length = VTSize;
- }
- Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
- if (Value.getNode()) {
- Store = DAG.getStore(
- Chain, dl, Value,
- DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
- DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
- OutChains.push_back(Store);
- }
- }
- if (!Store.getNode()) {
- // The type might not be legal for the target. This should only happen
- // if the type is smaller than a legal type, as on PPC, so the right
- // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
- // to Load/Store if NVT==VT.
- // FIXME does the case above also need this?
- EVT NVT = TLI.getTypeToTransformTo(C, VT);
- assert(NVT.bitsGE(VT));
- bool isDereferenceable =
- SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
- MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
- if (isDereferenceable)
- SrcMMOFlags |= MachineMemOperand::MODereferenceable;
- Value = DAG.getExtLoad(
- ISD::EXTLOAD, dl, NVT, Chain,
- DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
- SrcPtrInfo.getWithOffset(SrcOff), VT,
- commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
- OutLoadChains.push_back(Value.getValue(1));
- Store = DAG.getTruncStore(
- Chain, dl, Value,
- DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
- DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
- OutStoreChains.push_back(Store);
- }
- SrcOff += VTSize;
- DstOff += VTSize;
- Size -= VTSize;
- }
- unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
- TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
- unsigned NumLdStInMemcpy = OutStoreChains.size();
- if (NumLdStInMemcpy) {
- // It may be that memcpy might be converted to memset if it's memcpy
- // of constants. In such a case, we won't have loads and stores, but
- // just stores. In the absence of loads, there is nothing to gang up.
- if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
- // If target does not care, just leave as it.
- for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
- OutChains.push_back(OutLoadChains[i]);
- OutChains.push_back(OutStoreChains[i]);
- }
- } else {
- // Ld/St less than/equal limit set by target.
- if (NumLdStInMemcpy <= GluedLdStLimit) {
- chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
- NumLdStInMemcpy, OutLoadChains,
- OutStoreChains);
- } else {
- unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
- unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
- unsigned GlueIter = 0;
- for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
- unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
- unsigned IndexTo = NumLdStInMemcpy - GlueIter;
- chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
- OutLoadChains, OutStoreChains);
- GlueIter += GluedLdStLimit;
- }
- // Residual ld/st.
- if (RemainingLdStInMemcpy) {
- chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
- RemainingLdStInMemcpy, OutLoadChains,
- OutStoreChains);
- }
- }
- }
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src,
- uint64_t Size, Align Alignment,
- bool isVol, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo,
- const AAMDNodes &AAInfo) {
- // Turn a memmove of undef to nop.
- // FIXME: We need to honor volatile even is Src is undef.
- if (Src.isUndef())
- return Chain;
- // Expand memmove to a series of load and store ops if the size operand falls
- // below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- LLVMContext &C = *DAG.getContext();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
- if (!SrcAlign || Alignment > *SrcAlign)
- SrcAlign = Alignment;
- assert(SrcAlign && "SrcAlign must be set");
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
- if (!TLI.findOptimalMemOpLowering(
- MemOps, Limit,
- MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
- /*IsVolatile*/ true),
- DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
- MF.getFunction().getAttributes()))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(C);
- Align NewAlign = DL.getABITypeAlign(Ty);
- if (NewAlign > Alignment) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
- MFI.setObjectAlignment(FI->getIndex(), NewAlign);
- Alignment = NewAlign;
- }
- }
- // Prepare AAInfo for loads/stores after lowering this memmove.
- AAMDNodes NewAAInfo = AAInfo;
- NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
- MachineMemOperand::Flags MMOFlags =
- isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
- uint64_t SrcOff = 0, DstOff = 0;
- SmallVector<SDValue, 8> LoadValues;
- SmallVector<SDValue, 8> LoadChains;
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value;
- bool isDereferenceable =
- SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
- MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
- if (isDereferenceable)
- SrcMMOFlags |= MachineMemOperand::MODereferenceable;
- Value = DAG.getLoad(
- VT, dl, Chain,
- DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
- SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
- LoadValues.push_back(Value);
- LoadChains.push_back(Value.getValue(1));
- SrcOff += VTSize;
- }
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
- OutChains.clear();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Store;
- Store = DAG.getStore(
- Chain, dl, LoadValues[i],
- DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
- DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
- OutChains.push_back(Store);
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- /// Lower the call to 'memset' intrinsic function into a series of store
- /// operations.
- ///
- /// \param DAG Selection DAG where lowered code is placed.
- /// \param dl Link to corresponding IR location.
- /// \param Chain Control flow dependency.
- /// \param Dst Pointer to destination memory location.
- /// \param Src Value of byte to write into the memory.
- /// \param Size Number of bytes to write.
- /// \param Alignment Alignment of the destination in bytes.
- /// \param isVol True if destination is volatile.
- /// \param DstPtrInfo IR information on the memory pointer.
- /// \returns New head in the control flow, if lowering was successful, empty
- /// SDValue otherwise.
- ///
- /// The function tries to replace 'llvm.memset' intrinsic with several store
- /// operations and value calculation code. This is usually profitable for small
- /// memory size.
- static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src,
- uint64_t Size, Align Alignment, bool isVol,
- MachinePointerInfo DstPtrInfo,
- const AAMDNodes &AAInfo) {
- // Turn a memset of undef to nop.
- // FIXME: We need to honor volatile even is Src is undef.
- if (Src.isUndef())
- return Chain;
- // Expand memset to a series of load/store ops if the size operand
- // falls below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- bool IsZeroVal =
- isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
- if (!TLI.findOptimalMemOpLowering(
- MemOps, TLI.getMaxStoresPerMemset(OptSize),
- MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
- DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
- if (NewAlign > Alignment) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
- MFI.setObjectAlignment(FI->getIndex(), NewAlign);
- Alignment = NewAlign;
- }
- }
- SmallVector<SDValue, 8> OutChains;
- uint64_t DstOff = 0;
- unsigned NumMemOps = MemOps.size();
- // Find the largest store and generate the bit pattern for it.
- EVT LargestVT = MemOps[0];
- for (unsigned i = 1; i < NumMemOps; i++)
- if (MemOps[i].bitsGT(LargestVT))
- LargestVT = MemOps[i];
- SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
- // Prepare AAInfo for loads/stores after lowering this memset.
- AAMDNodes NewAAInfo = AAInfo;
- NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- DstOff -= VTSize - Size;
- }
- // If this store is smaller than the largest store see whether we can get
- // the smaller value for free with a truncate.
- SDValue Value = MemSetValue;
- if (VT.bitsLT(LargestVT)) {
- if (!LargestVT.isVector() && !VT.isVector() &&
- TLI.isTruncateFree(LargestVT, VT))
- Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
- else
- Value = getMemsetValue(Src, VT, DAG, dl);
- }
- assert(Value.getValueType() == VT && "Value with wrong type.");
- SDValue Store = DAG.getStore(
- Chain, dl, Value,
- DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
- DstPtrInfo.getWithOffset(DstOff), Alignment,
- isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
- NewAAInfo);
- OutChains.push_back(Store);
- DstOff += VT.getSizeInBits() / 8;
- Size -= VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
- unsigned AS) {
- // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
- // pointer operands can be losslessly bitcasted to pointers of address space 0
- if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
- report_fatal_error("cannot lower memory intrinsic in address space " +
- Twine(AS));
- }
- }
- SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
- SDValue Src, SDValue Size, Align Alignment,
- bool isVol, bool AlwaysInline, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo,
- const AAMDNodes &AAInfo) {
- // Check to see if we should lower the memcpy to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memcpy with size zero? Just return the original chain.
- if (ConstantSize->isZero())
- return Chain;
- SDValue Result = getMemcpyLoadsAndStores(
- *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
- isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memcpy with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemcpy(
- *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
- DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // If we really need inline code and the target declined to provide it,
- // use a (potentially long) sequence of loads and stores.
- if (AlwaysInline) {
- assert(ConstantSize && "AlwaysInline requires a constant size!");
- return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Alignment,
- isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
- }
- checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
- checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
- // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
- // memcpy is not guaranteed to be safe. libc memcpys aren't required to
- // respect volatile, so they may do things like read or write memory
- // beyond the given memory regions. But fixing this isn't easy, and most
- // people don't care.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = Type::getInt8PtrTy(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
- Dst.getValueType().getTypeForEVT(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
- SDValue Dst, unsigned DstAlign,
- SDValue Src, unsigned SrcAlign,
- SDValue Size, Type *SizeTy,
- unsigned ElemSz, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst;
- Args.push_back(Entry);
- Entry.Node = Src;
- Args.push_back(Entry);
- Entry.Ty = SizeTy;
- Entry.Node = Size;
- Args.push_back(Entry);
- RTLIB::Libcall LibraryCall =
- RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
- if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported element size");
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(LibraryCall),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
- SDValue Src, SDValue Size, Align Alignment,
- bool isVol, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo,
- const AAMDNodes &AAInfo) {
- // Check to see if we should lower the memmove to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memmove with size zero? Just return the original chain.
- if (ConstantSize->isZero())
- return Chain;
- SDValue Result = getMemmoveLoadsAndStores(
- *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
- isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memmove with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result =
- TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
- Alignment, isVol, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
- checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
- // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
- // not be safe. See memcpy above for more details.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = Type::getInt8PtrTy(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
- Dst.getValueType().getTypeForEVT(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
- SDValue Dst, unsigned DstAlign,
- SDValue Src, unsigned SrcAlign,
- SDValue Size, Type *SizeTy,
- unsigned ElemSz, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst;
- Args.push_back(Entry);
- Entry.Node = Src;
- Args.push_back(Entry);
- Entry.Ty = SizeTy;
- Entry.Node = Size;
- Args.push_back(Entry);
- RTLIB::Libcall LibraryCall =
- RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
- if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported element size");
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(LibraryCall),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
- SDValue Src, SDValue Size, Align Alignment,
- bool isVol, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- const AAMDNodes &AAInfo) {
- // Check to see if we should lower the memset to stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memset with size zero? Just return the original chain.
- if (ConstantSize->isZero())
- return Chain;
- SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Alignment,
- isVol, DstPtrInfo, AAInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memset with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemset(
- *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
- if (Result.getNode())
- return Result;
- }
- checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
- Args.push_back(Entry);
- Entry.Node = Src;
- Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
- Args.push_back(Entry);
- Entry.Node = Size;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
- Dst.getValueType().getTypeForEVT(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
- SDValue Dst, unsigned DstAlign,
- SDValue Value, SDValue Size, Type *SizeTy,
- unsigned ElemSz, bool isTailCall,
- MachinePointerInfo DstPtrInfo) {
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst;
- Args.push_back(Entry);
- Entry.Ty = Type::getInt8Ty(*getContext());
- Entry.Node = Value;
- Args.push_back(Entry);
- Entry.Ty = SizeTy;
- Entry.Node = Size;
- Args.push_back(Entry);
- RTLIB::Libcall LibraryCall =
- RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
- if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported element size");
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(LibraryCall),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- SDVTList VTList, ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO) {
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
- EVT MemVT, SDVTList VTs, SDValue Chain,
- SDValue Ptr, SDValue Cmp, SDValue Swp,
- MachineMemOperand *MMO) {
- assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
- Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
- assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- SDValue Chain, SDValue Ptr, SDValue Val,
- MachineMemOperand *MMO) {
- assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
- Opcode == ISD::ATOMIC_LOAD_SUB ||
- Opcode == ISD::ATOMIC_LOAD_AND ||
- Opcode == ISD::ATOMIC_LOAD_CLR ||
- Opcode == ISD::ATOMIC_LOAD_OR ||
- Opcode == ISD::ATOMIC_LOAD_XOR ||
- Opcode == ISD::ATOMIC_LOAD_NAND ||
- Opcode == ISD::ATOMIC_LOAD_MIN ||
- Opcode == ISD::ATOMIC_LOAD_MAX ||
- Opcode == ISD::ATOMIC_LOAD_UMIN ||
- Opcode == ISD::ATOMIC_LOAD_UMAX ||
- Opcode == ISD::ATOMIC_LOAD_FADD ||
- Opcode == ISD::ATOMIC_LOAD_FSUB ||
- Opcode == ISD::ATOMIC_SWAP ||
- Opcode == ISD::ATOMIC_STORE) &&
- "Invalid Atomic Op");
- EVT VT = Val.getValueType();
- SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
- getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr, Val};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- EVT VT, SDValue Chain, SDValue Ptr,
- MachineMemOperand *MMO) {
- assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
- SDVTList VTs = getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
- }
- /// getMergeValues - Create a MERGE_VALUES node from the given operands.
- SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
- if (Ops.size() == 1)
- return Ops[0];
- SmallVector<EVT, 4> VTs;
- VTs.reserve(Ops.size());
- for (const SDValue &Op : Ops)
- VTs.push_back(Op.getValueType());
- return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
- }
- SDValue SelectionDAG::getMemIntrinsicNode(
- unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
- EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
- MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
- if (!Size && MemVT.isScalableVector())
- Size = MemoryLocation::UnknownSize;
- else if (!Size)
- Size = MemVT.getStoreSize();
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
- return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
- }
- SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
- SDVTList VTList,
- ArrayRef<SDValue> Ops, EVT MemVT,
- MachineMemOperand *MMO) {
- assert((Opcode == ISD::INTRINSIC_VOID ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::PREFETCH ||
- ((int)Opcode <= std::numeric_limits<int>::max() &&
- (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
- "Opcode is not a memory-accessing opcode!");
- // Memoize the node unless it returns a flag.
- MemIntrinsicSDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
- Opcode, dl.getIROrder(), VTList, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
- SDValue Chain, int FrameIndex,
- int64_t Size, int64_t Offset) {
- const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
- const auto VTs = getVTList(MVT::Other);
- SDValue Ops[2] = {
- Chain,
- getFrameIndex(FrameIndex,
- getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
- true)};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- ID.AddInteger(FrameIndex);
- ID.AddInteger(Size);
- ID.AddInteger(Offset);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
- Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
- uint64_t Guid, uint64_t Index,
- uint32_t Attr) {
- const unsigned Opcode = ISD::PSEUDO_PROBE;
- const auto VTs = getVTList(MVT::Other);
- SDValue Ops[] = {Chain};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- ID.AddInteger(Guid);
- ID.AddInteger(Index);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<PseudoProbeSDNode>(
- Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
- SelectionDAG &DAG, SDValue Ptr,
- int64_t Offset = 0) {
- // If this is FI+Offset, we can model it.
- if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
- return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
- FI->getIndex(), Offset);
- // If this is (FI+Offset1)+Offset2, we can model it.
- if (Ptr.getOpcode() != ISD::ADD ||
- !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
- !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
- return Info;
- int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- return MachinePointerInfo::getFixedStack(
- DAG.getMachineFunction(), FI,
- Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
- SelectionDAG &DAG, SDValue Ptr,
- SDValue OffsetOp) {
- // If the 'Offset' value isn't a constant, we can't handle this.
- if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
- return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
- if (OffsetOp.isUndef())
- return InferPointerInfo(Info, DAG, Ptr);
- return Info;
- }
- SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Offset,
- MachinePointerInfo PtrInfo, EVT MemVT,
- Align Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo, const MDNode *Ranges) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- MMOFlags |= MachineMemOperand::MOLoad;
- assert((MMOFlags & MachineMemOperand::MOStore) == 0);
- // If we don't have a PtrInfo, infer the trivial frame index case to simplify
- // clients.
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
- uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
- Alignment, AAInfo, Ranges);
- return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
- }
- SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Offset, EVT MemVT,
- MachineMemOperand *MMO) {
- if (VT == MemVT) {
- ExtType = ISD::NON_EXTLOAD;
- } else if (ExtType == ISD::NON_EXTLOAD) {
- assert(VT == MemVT && "Non-extending load from different memory type!");
- } else {
- // Extending load.
- assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be an extending load, not truncating!");
- assert(VT.isInteger() == MemVT.isInteger() &&
- "Cannot convert from FP to Int or Int -> FP!");
- assert(VT.isVector() == MemVT.isVector() &&
- "Cannot use an ext load to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
- "Cannot use an ext load to change the number of vector elements!");
- }
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
- SDVTList VTs = Indexed ?
- getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
- dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<LoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- ExtType, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- MaybeAlign Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo, const MDNode *Ranges) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
- }
- SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, MachineMemOperand *MMO) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- VT, MMO);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
- EVT VT, SDValue Chain, SDValue Ptr,
- MachinePointerInfo PtrInfo, EVT MemVT,
- MaybeAlign Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
- MemVT, Alignment, MMOFlags, AAInfo);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
- EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
- MachineMemOperand *MMO) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
- MemVT, MMO);
- }
- SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
- assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
- // Don't propagate the invariant or dereferenceable flags.
- auto MMOFlags =
- LD->getMemOperand()->getFlags() &
- ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
- return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
- LD->getChain(), Base, Offset, LD->getPointerInfo(),
- LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
- }
- SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- Align Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo) {
- assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
- MMOFlags |= MachineMemOperand::MOStore;
- assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
- MachineFunction &MF = getMachineFunction();
- uint64_t Size =
- MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
- return getStore(Chain, dl, Val, Ptr, MMO);
- }
- SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, MachineMemOperand *MMO) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- EVT VT = Val.getValueType();
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
- dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, false, VT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- EVT SVT, Align Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- MMOFlags |= MachineMemOperand::MOStore;
- assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
- Alignment, AAInfo);
- return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, EVT SVT,
- MachineMemOperand *MMO) {
- EVT VT = Val.getValueType();
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (VT == SVT)
- return getStore(Chain, dl, Val, Ptr, MMO);
- assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be a truncating store, not extending!");
- assert(VT.isInteger() == SVT.isInteger() &&
- "Can't do FP-INT conversion!");
- assert(VT.isVector() == SVT.isVector() &&
- "Cannot use trunc store to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
- "Cannot use trunc store to change the number of vector elements!");
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
- dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, true, SVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
- assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
- SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
- SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- ST->isTruncatingStore(), ST->getMemoryVT(),
- ST->getMemOperand());
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getLoadVP(
- ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
- SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
- MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
- MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
- const MDNode *Ranges, bool IsExpanding) {
- assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
- MMOFlags |= MachineMemOperand::MOLoad;
- assert((MMOFlags & MachineMemOperand::MOStore) == 0);
- // If we don't have a PtrInfo, infer the trivial frame index case to simplify
- // clients.
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
- uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
- Alignment, AAInfo, Ranges);
- return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
- MMO, IsExpanding);
- }
- SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
- ISD::LoadExtType ExtType, EVT VT,
- const SDLoc &dl, SDValue Chain, SDValue Ptr,
- SDValue Offset, SDValue Mask, SDValue EVL,
- EVT MemVT, MachineMemOperand *MMO,
- bool IsExpanding) {
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
- SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
- : getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
- dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<VPLoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- ExtType, IsExpanding, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Mask, SDValue EVL,
- MachinePointerInfo PtrInfo,
- MaybeAlign Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo, const MDNode *Ranges,
- bool IsExpanding) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
- IsExpanding);
- }
- SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Mask, SDValue EVL,
- MachineMemOperand *MMO, bool IsExpanding) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- Mask, EVL, VT, MMO, IsExpanding);
- }
- SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
- EVT VT, SDValue Chain, SDValue Ptr,
- SDValue Mask, SDValue EVL,
- MachinePointerInfo PtrInfo, EVT MemVT,
- MaybeAlign Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo, bool IsExpanding) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
- EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
- IsExpanding);
- }
- SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
- EVT VT, SDValue Chain, SDValue Ptr,
- SDValue Mask, SDValue EVL, EVT MemVT,
- MachineMemOperand *MMO, bool IsExpanding) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
- EVL, MemVT, MMO, IsExpanding);
- }
- SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- auto *LD = cast<VPLoadSDNode>(OrigLoad);
- assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
- // Don't propagate the invariant or dereferenceable flags.
- auto MMOFlags =
- LD->getMemOperand()->getFlags() &
- ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
- return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
- LD->getChain(), Base, Offset, LD->getMask(),
- LD->getVectorLength(), LD->getPointerInfo(),
- LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
- nullptr, LD->isExpandingLoad());
- }
- SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, SDValue Offset, SDValue Mask,
- SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
- ISD::MemIndexedMode AM, bool IsTruncating,
- bool IsCompressing) {
- assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
- SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
- : getVTList(MVT::Other);
- SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
- dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<VPStoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- IsTruncating, IsCompressing, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
- SDValue Val, SDValue Ptr, SDValue Mask,
- SDValue EVL, MachinePointerInfo PtrInfo,
- EVT SVT, Align Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo,
- bool IsCompressing) {
- assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
- MMOFlags |= MachineMemOperand::MOStore;
- assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
- Alignment, AAInfo);
- return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
- IsCompressing);
- }
- SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
- SDValue Val, SDValue Ptr, SDValue Mask,
- SDValue EVL, EVT SVT,
- MachineMemOperand *MMO,
- bool IsCompressing) {
- EVT VT = Val.getValueType();
- assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
- if (VT == SVT)
- return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
- EVL, VT, MMO, ISD::UNINDEXED,
- /*IsTruncating*/ false, IsCompressing);
- assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be a truncating store, not extending!");
- assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
- assert(VT.isVector() == SVT.isVector() &&
- "Cannot use trunc store to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
- "Cannot use trunc store to change the number of vector elements!");
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
- ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
- dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<VPStoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N =
- newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- auto *ST = cast<VPStoreSDNode>(OrigStore);
- assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
- SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
- SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
- Offset, ST->getMask(), ST->getVectorLength()};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<VPStoreSDNode>(
- dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
- ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
- ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
- ISD::MemIndexType IndexType) {
- assert(Ops.size() == 6 && "Incompatible number of operands");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
- dl.getIROrder(), VTs, VT, MMO, IndexType));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<VPGatherSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- VT, MMO, IndexType);
- createOperands(N, Ops);
- assert(N->getMask().getValueType().getVectorElementCount() ==
- N->getValueType(0).getVectorElementCount() &&
- "Vector width mismatch between mask and data");
- assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
- N->getValueType(0).getVectorElementCount().isScalable() &&
- "Scalable flags of index and data do not match");
- assert(ElementCount::isKnownGE(
- N->getIndex().getValueType().getVectorElementCount(),
- N->getValueType(0).getVectorElementCount()) &&
- "Vector width mismatch between index and data");
- assert(isa<ConstantSDNode>(N->getScale()) &&
- cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
- "Scale should be a constant power of 2");
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO,
- ISD::MemIndexType IndexType) {
- assert(Ops.size() == 7 && "Incompatible number of operands");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
- dl.getIROrder(), VTs, VT, MMO, IndexType));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<VPScatterSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- VT, MMO, IndexType);
- createOperands(N, Ops);
- assert(N->getMask().getValueType().getVectorElementCount() ==
- N->getValue().getValueType().getVectorElementCount() &&
- "Vector width mismatch between mask and data");
- assert(
- N->getIndex().getValueType().getVectorElementCount().isScalable() ==
- N->getValue().getValueType().getVectorElementCount().isScalable() &&
- "Scalable flags of index and data do not match");
- assert(ElementCount::isKnownGE(
- N->getIndex().getValueType().getVectorElementCount(),
- N->getValue().getValueType().getVectorElementCount()) &&
- "Vector width mismatch between index and data");
- assert(isa<ConstantSDNode>(N->getScale()) &&
- cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
- "Scale should be a constant power of 2");
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Base, SDValue Offset, SDValue Mask,
- SDValue PassThru, EVT MemVT,
- MachineMemOperand *MMO,
- ISD::MemIndexedMode AM,
- ISD::LoadExtType ExtTy, bool isExpanding) {
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.isUndef()) &&
- "Unindexed masked load with an offset!");
- SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
- : getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
- dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- AM, ExtTy, isExpanding, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
- assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
- return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
- Offset, LD->getMask(), LD->getPassThru(),
- LD->getMemoryVT(), LD->getMemOperand(), AM,
- LD->getExtensionType(), LD->isExpandingLoad());
- }
- SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
- SDValue Val, SDValue Base, SDValue Offset,
- SDValue Mask, EVT MemVT,
- MachineMemOperand *MMO,
- ISD::MemIndexedMode AM, bool IsTruncating,
- bool IsCompressing) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.isUndef()) &&
- "Unindexed masked store with an offset!");
- SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
- : getVTList(MVT::Other);
- SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
- dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N =
- newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- IsTruncating, IsCompressing, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
- assert(ST->getOffset().isUndef() &&
- "Masked store is already a indexed store!");
- return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
- ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
- AM, ST->isTruncatingStore(), ST->isCompressingStore());
- }
- SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO,
- ISD::MemIndexType IndexType,
- ISD::LoadExtType ExtTy) {
- assert(Ops.size() == 6 && "Incompatible number of operands");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
- dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
- auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
- VTs, MemVT, MMO, IndexType, ExtTy);
- createOperands(N, Ops);
- assert(N->getPassThru().getValueType() == N->getValueType(0) &&
- "Incompatible type of the PassThru value in MaskedGatherSDNode");
- assert(N->getMask().getValueType().getVectorElementCount() ==
- N->getValueType(0).getVectorElementCount() &&
- "Vector width mismatch between mask and data");
- assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
- N->getValueType(0).getVectorElementCount().isScalable() &&
- "Scalable flags of index and data do not match");
- assert(ElementCount::isKnownGE(
- N->getIndex().getValueType().getVectorElementCount(),
- N->getValueType(0).getVectorElementCount()) &&
- "Vector width mismatch between index and data");
- assert(isa<ConstantSDNode>(N->getScale()) &&
- cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
- "Scale should be a constant power of 2");
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO,
- ISD::MemIndexType IndexType,
- bool IsTrunc) {
- assert(Ops.size() == 6 && "Incompatible number of operands");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
- dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
- auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
- VTs, MemVT, MMO, IndexType, IsTrunc);
- createOperands(N, Ops);
- assert(N->getMask().getValueType().getVectorElementCount() ==
- N->getValue().getValueType().getVectorElementCount() &&
- "Vector width mismatch between mask and data");
- assert(
- N->getIndex().getValueType().getVectorElementCount().isScalable() ==
- N->getValue().getValueType().getVectorElementCount().isScalable() &&
- "Scalable flags of index and data do not match");
- assert(ElementCount::isKnownGE(
- N->getIndex().getValueType().getVectorElementCount(),
- N->getValue().getValueType().getVectorElementCount()) &&
- "Vector width mismatch between index and data");
- assert(isa<ConstantSDNode>(N->getScale()) &&
- cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
- "Scale should be a constant power of 2");
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
- // select undef, T, F --> T (if T is a constant), otherwise F
- // select, ?, undef, F --> F
- // select, ?, T, undef --> T
- if (Cond.isUndef())
- return isConstantValueOfAnyType(T) ? T : F;
- if (T.isUndef())
- return F;
- if (F.isUndef())
- return T;
- // select true, T, F --> T
- // select false, T, F --> F
- if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
- return CondC->isZero() ? F : T;
- // TODO: This should simplify VSELECT with constant condition using something
- // like this (but check boolean contents to be complete?):
- // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
- // return T;
- // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
- // return F;
- // select ?, T, T --> T
- if (T == F)
- return T;
- return SDValue();
- }
- SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
- // shift undef, Y --> 0 (can always assume that the undef value is 0)
- if (X.isUndef())
- return getConstant(0, SDLoc(X.getNode()), X.getValueType());
- // shift X, undef --> undef (because it may shift by the bitwidth)
- if (Y.isUndef())
- return getUNDEF(X.getValueType());
- // shift 0, Y --> 0
- // shift X, 0 --> X
- if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
- return X;
- // shift X, C >= bitwidth(X) --> undef
- // All vector elements must be too big (or undef) to avoid partial undefs.
- auto isShiftTooBig = [X](ConstantSDNode *Val) {
- return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
- };
- if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
- return getUNDEF(X.getValueType());
- return SDValue();
- }
- SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
- SDNodeFlags Flags) {
- // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
- // (an undef operand can be chosen to be Nan/Inf), then the result of this
- // operation is poison. That result can be relaxed to undef.
- ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
- ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
- bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
- (YC && YC->getValueAPF().isNaN());
- bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
- (YC && YC->getValueAPF().isInfinity());
- if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
- return getUNDEF(X.getValueType());
- if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
- return getUNDEF(X.getValueType());
- if (!YC)
- return SDValue();
- // X + -0.0 --> X
- if (Opcode == ISD::FADD)
- if (YC->getValueAPF().isNegZero())
- return X;
- // X - +0.0 --> X
- if (Opcode == ISD::FSUB)
- if (YC->getValueAPF().isPosZero())
- return X;
- // X * 1.0 --> X
- // X / 1.0 --> X
- if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
- if (YC->getValueAPF().isExactlyValue(1.0))
- return X;
- // X * 0.0 --> 0.0
- if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
- if (YC->getValueAPF().isZero())
- return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
- return SDValue();
- }
- SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue SV, unsigned Align) {
- SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
- return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- ArrayRef<SDUse> Ops) {
- switch (Ops.size()) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- // Copy from an SDUse array into an SDValue array for use with
- // the regular getNode logic.
- SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
- return getNode(Opcode, DL, VT, NewOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops) {
- SDNodeFlags Flags;
- if (Inserter)
- Flags = Inserter->getFlags();
- return getNode(Opcode, DL, VT, Ops, Flags);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
- unsigned NumOps = Ops.size();
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
- default: break;
- }
- #ifndef NDEBUG
- for (auto &Op : Ops)
- assert(Op.getOpcode() != ISD::DELETED_NODE &&
- "Operand is DELETED_NODE!");
- #endif
- switch (Opcode) {
- default: break;
- case ISD::BUILD_VECTOR:
- // Attempt to simplify BUILD_VECTOR.
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- case ISD::CONCAT_VECTORS:
- if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
- return V;
- break;
- case ISD::SELECT_CC:
- assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
- assert(Ops[0].getValueType() == Ops[1].getValueType() &&
- "LHS and RHS of condition must have same type!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "True and False arms of SelectCC must have same type!");
- assert(Ops[2].getValueType() == VT &&
- "select_cc node must be of same type as true and false value!");
- break;
- case ISD::BR_CC:
- assert(NumOps == 5 && "BR_CC takes 5 operands!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "LHS/RHS of comparison should match types!");
- break;
- }
- // Memoize nodes.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- N->setFlags(Flags);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
- ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
- return getNode(Opcode, DL, getVTList(ResultTys), Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- ArrayRef<SDValue> Ops) {
- SDNodeFlags Flags;
- if (Inserter)
- Flags = Inserter->getFlags();
- return getNode(Opcode, DL, VTList, Ops, Flags);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
- if (VTList.NumVTs == 1)
- return getNode(Opcode, DL, VTList.VTs[0], Ops);
- #ifndef NDEBUG
- for (auto &Op : Ops)
- assert(Op.getOpcode() != ISD::DELETED_NODE &&
- "Operand is DELETED_NODE!");
- #endif
- switch (Opcode) {
- case ISD::STRICT_FP_EXTEND:
- assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
- "Invalid STRICT_FP_EXTEND!");
- assert(VTList.VTs[0].isFloatingPoint() &&
- Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
- assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
- "STRICT_FP_EXTEND result type should be vector iff the operand "
- "type is vector!");
- assert((!VTList.VTs[0].isVector() ||
- VTList.VTs[0].getVectorNumElements() ==
- Ops[1].getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
- "Invalid fpext node, dst <= src!");
- break;
- case ISD::STRICT_FP_ROUND:
- assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
- assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
- "STRICT_FP_ROUND result type should be vector iff the operand "
- "type is vector!");
- assert((!VTList.VTs[0].isVector() ||
- VTList.VTs[0].getVectorNumElements() ==
- Ops[1].getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(VTList.VTs[0].isFloatingPoint() &&
- Ops[1].getValueType().isFloatingPoint() &&
- VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
- isa<ConstantSDNode>(Ops[2]) &&
- (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
- cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
- "Invalid STRICT_FP_ROUND!");
- break;
- #if 0
- // FIXME: figure out how to safely handle things like
- // int foo(int x) { return 1 << (x & 255); }
- // int bar() { return foo(256); }
- case ISD::SRA_PARTS:
- case ISD::SRL_PARTS:
- case ISD::SHL_PARTS:
- if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- else if (N3.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
- // If the and is only masking out bits that cannot effect the shift,
- // eliminate the and.
- unsigned NumBits = VT.getScalarSizeInBits()*2;
- if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- }
- break;
- #endif
- }
- // Memoize the node unless it returns a flag.
- SDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
- createOperands(N, Ops);
- }
- N->setFlags(Flags);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
- SDVTList VTList) {
- return getNode(Opcode, DL, VTList, None);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1) {
- SDValue Ops[] = { N1 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2) {
- SDValue Ops[] = { N1, N2 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3) {
- SDValue Ops[] = { N1, N2, N3 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4,
- SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDVTList SelectionDAG::getVTList(EVT VT) {
- return makeVTList(SDNode::getValueTypeList(VT), 1);
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
- FoldingSetNodeID ID;
- ID.AddInteger(2U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(2);
- Array[0] = VT1;
- Array[1] = VT2;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
- FoldingSetNodeID ID;
- ID.AddInteger(3U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- ID.AddInteger(VT3.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
- FoldingSetNodeID ID;
- ID.AddInteger(4U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- ID.AddInteger(VT3.getRawBits());
- ID.AddInteger(VT4.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(4);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Array[3] = VT4;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
- unsigned NumVTs = VTs.size();
- FoldingSetNodeID ID;
- ID.AddInteger(NumVTs);
- for (unsigned index = 0; index < NumVTs; index++) {
- ID.AddInteger(VTs[index].getRawBits());
- }
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(NumVTs);
- llvm::copy(VTs, Array);
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
- /// specified operands. If the resultant node already exists in the DAG,
- /// this does not modify the specified node, instead it returns the node that
- /// already exists. If the resultant node does not exist in the DAG, the
- /// input node is returned. As a degenerate case, if you specify the same
- /// input operands as the node already has, the input node is returned.
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
- assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op == N->getOperand(0)) return N;
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- N->OperandList[0].set(Op);
- updateDivergence(N);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
- assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
- return N; // No operands changed, just return the input node.
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- if (N->OperandList[0] != Op1)
- N->OperandList[0].set(Op1);
- if (N->OperandList[1] != Op2)
- N->OperandList[1].set(Op2);
- updateDivergence(N);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
- SDValue Ops[] = { Op1, Op2, Op3 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4, SDValue Op5) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
- unsigned NumOps = Ops.size();
- assert(N->getNumOperands() == NumOps &&
- "Update with wrong number of operands");
- // If no operands changed just return the input node.
- if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
- return N;
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- for (unsigned i = 0; i != NumOps; ++i)
- if (N->OperandList[i] != Ops[i])
- N->OperandList[i].set(Ops[i]);
- updateDivergence(N);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- /// DropOperands - Release the operands and set this node to have
- /// zero operands.
- void SDNode::DropOperands() {
- // Unlike the code in MorphNodeTo that does this, we don't need to
- // watch for dead nodes here.
- for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
- SDUse &Use = *I++;
- Use.set(SDValue());
- }
- }
- void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
- ArrayRef<MachineMemOperand *> NewMemRefs) {
- if (NewMemRefs.empty()) {
- N->clearMemRefs();
- return;
- }
- // Check if we can avoid allocating by storing a single reference directly.
- if (NewMemRefs.size() == 1) {
- N->MemRefs = NewMemRefs[0];
- N->NumMemRefs = 1;
- return;
- }
- MachineMemOperand **MemRefsBuffer =
- Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
- llvm::copy(NewMemRefs, MemRefsBuffer);
- N->MemRefs = MemRefsBuffer;
- N->NumMemRefs = static_cast<int>(NewMemRefs.size());
- }
- /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
- /// machine opcode.
- ///
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, None);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, None);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- SDVTList VTs,ArrayRef<SDValue> Ops) {
- SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
- // Reset the NodeID to -1.
- New->setNodeId(-1);
- if (New != N) {
- ReplaceAllUsesWith(N, New);
- RemoveDeadNode(N);
- }
- return New;
- }
- /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
- /// the line number information on the merged node since it is not possible to
- /// preserve the information that operation is associated with multiple lines.
- /// This will make the debugger working better at -O0, were there is a higher
- /// probability having other instructions associated with that line.
- ///
- /// For IROrder, we keep the smaller of the two
- SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
- DebugLoc NLoc = N->getDebugLoc();
- if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
- N->setDebugLoc(DebugLoc());
- }
- unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
- N->setIROrder(Order);
- return N;
- }
- /// MorphNodeTo - This *mutates* the specified node to have the specified
- /// return type, opcode, and operands.
- ///
- /// Note that MorphNodeTo returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one. Note that the SDLoc need not be the same.
- ///
- /// Using MorphNodeTo is faster than creating a new node and swapping it in
- /// with ReplaceAllUsesWith both because it often avoids allocating a new
- /// node, and because it doesn't require CSE recalculation for any of
- /// the node's users.
- ///
- /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
- /// As a consequence it isn't appropriate to use from within the DAG combiner or
- /// the legalizer which maintain worklists that would need to be updated when
- /// deleting things.
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- SDVTList VTs, ArrayRef<SDValue> Ops) {
- // If an identical node already exists, use it.
- void *IP = nullptr;
- if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, VTs, Ops);
- if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
- return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
- }
- if (!RemoveNodeFromCSEMaps(N))
- IP = nullptr;
- // Start the morphing.
- N->NodeType = Opc;
- N->ValueList = VTs.VTs;
- N->NumValues = VTs.NumVTs;
- // Clear the operands list, updating used nodes to remove this from their
- // use list. Keep track of any operands that become dead as a result.
- SmallPtrSet<SDNode*, 16> DeadNodeSet;
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Used = Use.getNode();
- Use.set(SDValue());
- if (Used->use_empty())
- DeadNodeSet.insert(Used);
- }
- // For MachineNode, initialize the memory references information.
- if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
- MN->clearMemRefs();
- // Swap for an appropriately sized array from the recycler.
- removeOperands(N);
- createOperands(N, Ops);
- // Delete any nodes that are still dead after adding the uses for the
- // new operands.
- if (!DeadNodeSet.empty()) {
- SmallVector<SDNode *, 16> DeadNodes;
- for (SDNode *N : DeadNodeSet)
- if (N->use_empty())
- DeadNodes.push_back(N);
- RemoveDeadNodes(DeadNodes);
- }
- if (IP)
- CSEMap.InsertNode(N, IP); // Memoize the new node.
- return N;
- }
- SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
- unsigned OrigOpc = Node->getOpcode();
- unsigned NewOpc;
- switch (OrigOpc) {
- default:
- llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
- #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
- #include "llvm/IR/ConstrainedOps.def"
- }
- assert(Node->getNumValues() == 2 && "Unexpected number of results!");
- // We're taking this node out of the chain, so we need to re-link things.
- SDValue InputChain = Node->getOperand(0);
- SDValue OutputChain = SDValue(Node, 1);
- ReplaceAllUsesOfValueWith(OutputChain, InputChain);
- SmallVector<SDValue, 3> Ops;
- for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
- Ops.push_back(Node->getOperand(i));
- SDVTList VTs = getVTList(Node->getValueType(0));
- SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
- // MorphNodeTo can operate in two ways: if an existing node with the
- // specified operands exists, it can just return it. Otherwise, it
- // updates the node in place to have the requested operands.
- if (Res == Node) {
- // If we updated the node in place, reset the node ID. To the isel,
- // this should be just like a newly allocated machine node.
- Res->setNodeId(-1);
- } else {
- ReplaceAllUsesWith(Node, Res);
- RemoveDeadNode(Node);
- }
- return Res;
- }
- /// getMachineNode - These are used for target selectors to create a new node
- /// with specified return type(s), MachineInstr opcode, and operands.
- ///
- /// Note that getMachineNode returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one.
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, None);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- ArrayRef<EVT> ResultTys,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(ResultTys);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
- SDVTList VTs,
- ArrayRef<SDValue> Ops) {
- bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
- MachineSDNode *N;
- void *IP = nullptr;
- if (DoCSE) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ~Opcode, VTs, Ops);
- IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
- }
- }
- // Allocate a new MachineSDNode.
- N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- if (DoCSE)
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
- return N;
- }
- /// getTargetExtractSubreg - A convenience function for creating
- /// TargetOpcode::EXTRACT_SUBREG nodes.
- SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
- SDValue Operand) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
- SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
- VT, Operand, SRIdxVal);
- return SDValue(Subreg, 0);
- }
- /// getTargetInsertSubreg - A convenience function for creating
- /// TargetOpcode::INSERT_SUBREG nodes.
- SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
- SDValue Operand, SDValue Subreg) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
- SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
- VT, Operand, Subreg, SRIdxVal);
- return SDValue(Result, 0);
- }
- /// getNodeIfExists - Get the specified node if it's already available, or
- /// else return NULL.
- SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
- ArrayRef<SDValue> Ops) {
- SDNodeFlags Flags;
- if (Inserter)
- Flags = Inserter->getFlags();
- return getNodeIfExists(Opcode, VTList, Ops, Flags);
- }
- SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
- ArrayRef<SDValue> Ops,
- const SDNodeFlags Flags) {
- if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
- E->intersectFlagsWith(Flags);
- return E;
- }
- }
- return nullptr;
- }
- /// doesNodeExist - Check if a node exists without modifying its flags.
- bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
- ArrayRef<SDValue> Ops) {
- if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- void *IP = nullptr;
- if (FindNodeOrInsertPos(ID, SDLoc(), IP))
- return true;
- }
- return false;
- }
- /// getDbgValue - Creates a SDDbgValue node.
- ///
- /// SDNode
- SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
- SDNode *N, unsigned R, bool IsIndirect,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
- {}, IsIndirect, DL, O,
- /*IsVariadic=*/false);
- }
- /// Constant
- SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
- DIExpression *Expr,
- const Value *C,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
- /*IsIndirect=*/false, DL, O,
- /*IsVariadic=*/false);
- }
- /// FrameIndex
- SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
- DIExpression *Expr, unsigned FI,
- bool IsIndirect,
- const DebugLoc &DL,
- unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
- }
- /// FrameIndex with dependencies
- SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
- DIExpression *Expr, unsigned FI,
- ArrayRef<SDNode *> Dependencies,
- bool IsIndirect,
- const DebugLoc &DL,
- unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
- Dependencies, IsIndirect, DL, O,
- /*IsVariadic=*/false);
- }
- /// VReg
- SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
- unsigned VReg, bool IsIndirect,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
- {}, IsIndirect, DL, O,
- /*IsVariadic=*/false);
- }
- SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
- ArrayRef<SDDbgOperand> Locs,
- ArrayRef<SDNode *> Dependencies,
- bool IsIndirect, const DebugLoc &DL,
- unsigned O, bool IsVariadic) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
- DL, O, IsVariadic);
- }
- void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
- unsigned OffsetInBits, unsigned SizeInBits,
- bool InvalidateDbg) {
- SDNode *FromNode = From.getNode();
- SDNode *ToNode = To.getNode();
- assert(FromNode && ToNode && "Can't modify dbg values");
- // PR35338
- // TODO: assert(From != To && "Redundant dbg value transfer");
- // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
- if (From == To || FromNode == ToNode)
- return;
- if (!FromNode->getHasDebugValue())
- return;
- SDDbgOperand FromLocOp =
- SDDbgOperand::fromNode(From.getNode(), From.getResNo());
- SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
- SmallVector<SDDbgValue *, 2> ClonedDVs;
- for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
- if (Dbg->isInvalidated())
- continue;
- // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
- // Create a new location ops vector that is equal to the old vector, but
- // with each instance of FromLocOp replaced with ToLocOp.
- bool Changed = false;
- auto NewLocOps = Dbg->copyLocationOps();
- std::replace_if(
- NewLocOps.begin(), NewLocOps.end(),
- [&Changed, FromLocOp](const SDDbgOperand &Op) {
- bool Match = Op == FromLocOp;
- Changed |= Match;
- return Match;
- },
- ToLocOp);
- // Ignore this SDDbgValue if we didn't find a matching location.
- if (!Changed)
- continue;
- DIVariable *Var = Dbg->getVariable();
- auto *Expr = Dbg->getExpression();
- // If a fragment is requested, update the expression.
- if (SizeInBits) {
- // When splitting a larger (e.g., sign-extended) value whose
- // lower bits are described with an SDDbgValue, do not attempt
- // to transfer the SDDbgValue to the upper bits.
- if (auto FI = Expr->getFragmentInfo())
- if (OffsetInBits + SizeInBits > FI->SizeInBits)
- continue;
- auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
- SizeInBits);
- if (!Fragment)
- continue;
- Expr = *Fragment;
- }
- auto AdditionalDependencies = Dbg->getAdditionalDependencies();
- // Clone the SDDbgValue and move it to To.
- SDDbgValue *Clone = getDbgValueList(
- Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
- Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
- Dbg->isVariadic());
- ClonedDVs.push_back(Clone);
- if (InvalidateDbg) {
- // Invalidate value and indicate the SDDbgValue should not be emitted.
- Dbg->setIsInvalidated();
- Dbg->setIsEmitted();
- }
- }
- for (SDDbgValue *Dbg : ClonedDVs) {
- assert(is_contained(Dbg->getSDNodes(), ToNode) &&
- "Transferred DbgValues should depend on the new SDNode");
- AddDbgValue(Dbg, false);
- }
- }
- void SelectionDAG::salvageDebugInfo(SDNode &N) {
- if (!N.getHasDebugValue())
- return;
- SmallVector<SDDbgValue *, 2> ClonedDVs;
- for (auto DV : GetDbgValues(&N)) {
- if (DV->isInvalidated())
- continue;
- switch (N.getOpcode()) {
- default:
- break;
- case ISD::ADD:
- SDValue N0 = N.getOperand(0);
- SDValue N1 = N.getOperand(1);
- if (!isConstantIntBuildVectorOrConstantInt(N0) &&
- isConstantIntBuildVectorOrConstantInt(N1)) {
- uint64_t Offset = N.getConstantOperandVal(1);
- // Rewrite an ADD constant node into a DIExpression. Since we are
- // performing arithmetic to compute the variable's *value* in the
- // DIExpression, we need to mark the expression with a
- // DW_OP_stack_value.
- auto *DIExpr = DV->getExpression();
- auto NewLocOps = DV->copyLocationOps();
- bool Changed = false;
- for (size_t i = 0; i < NewLocOps.size(); ++i) {
- // We're not given a ResNo to compare against because the whole
- // node is going away. We know that any ISD::ADD only has one
- // result, so we can assume any node match is using the result.
- if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
- NewLocOps[i].getSDNode() != &N)
- continue;
- NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
- SmallVector<uint64_t, 3> ExprOps;
- DIExpression::appendOffset(ExprOps, Offset);
- DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
- Changed = true;
- }
- (void)Changed;
- assert(Changed && "Salvage target doesn't use N");
- auto AdditionalDependencies = DV->getAdditionalDependencies();
- SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
- NewLocOps, AdditionalDependencies,
- DV->isIndirect(), DV->getDebugLoc(),
- DV->getOrder(), DV->isVariadic());
- ClonedDVs.push_back(Clone);
- DV->setIsInvalidated();
- DV->setIsEmitted();
- LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
- N0.getNode()->dumprFull(this);
- dbgs() << " into " << *DIExpr << '\n');
- }
- }
- }
- for (SDDbgValue *Dbg : ClonedDVs) {
- assert(!Dbg->getSDNodes().empty() &&
- "Salvaged DbgValue should depend on a new SDNode");
- AddDbgValue(Dbg, false);
- }
- }
- /// Creates a SDDbgLabel node.
- SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
- }
- namespace {
- /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
- /// pointed to by a use iterator is deleted, increment the use iterator
- /// so that it doesn't dangle.
- ///
- class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
- SDNode::use_iterator &UI;
- SDNode::use_iterator &UE;
- void NodeDeleted(SDNode *N, SDNode *E) override {
- // Increment the iterator as needed.
- while (UI != UE && N == *UI)
- ++UI;
- }
- public:
- RAUWUpdateListener(SelectionDAG &d,
- SDNode::use_iterator &ui,
- SDNode::use_iterator &ue)
- : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
- };
- } // end anonymous namespace
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes From has a single result value.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
- SDNode *From = FromN.getNode();
- assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
- "Cannot replace with this method!");
- assert(From != To.getNode() && "Cannot replace uses of with self");
- // Preserve Debug Values
- transferDbgValues(FromN, To);
- // Iterate over all the existing uses of From. New uses will be added
- // to the beginning of the use list, which we avoid visiting.
- // This specifically avoids visiting uses of From that arise while the
- // replacement is happening, because any such uses would be the result
- // of CSE: If an existing node looks like From after one of its operands
- // is replaced by To, we don't want to replace of all its users with To
- // too. See PR3018 for more info.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.set(To);
- if (To->isDivergent() != From->isDivergent())
- updateDivergence(User);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (FromN == getRoot())
- setRoot(To);
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes that for each value of From, there is a
- /// corresponding value in To in the same position with the same type.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
- #ifndef NDEBUG
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- assert((!From->hasAnyUseOfValue(i) ||
- From->getValueType(i) == To->getValueType(i)) &&
- "Cannot use this version of ReplaceAllUsesWith!");
- #endif
- // Handle the trivial case.
- if (From == To)
- return;
- // Preserve Debug Info. Only do this if there's a use.
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- if (From->hasAnyUseOfValue(i)) {
- assert((i < To->getNumValues()) && "Invalid To location");
- transferDbgValues(SDValue(From, i), SDValue(To, i));
- }
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.setNode(To);
- if (To->isDivergent() != From->isDivergent())
- updateDivergence(User);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To, getRoot().getResNo()));
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version can replace From with any result values. To must match the
- /// number and types of values returned by From.
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
- if (From->getNumValues() == 1) // Handle the simple case efficiently.
- return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
- // Preserve Debug Info.
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- transferDbgValues(SDValue(From, i), To[i]);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this happens the
- // uses are usually next to each other in the list. To help reduce the
- // number of CSE and divergence recomputations, process all the uses of this
- // user that we can find this way.
- bool To_IsDivergent = false;
- do {
- SDUse &Use = UI.getUse();
- const SDValue &ToOp = To[Use.getResNo()];
- ++UI;
- Use.set(ToOp);
- To_IsDivergent |= ToOp->isDivergent();
- } while (UI != UE && *UI == User);
- if (To_IsDivergent != From->isDivergent())
- updateDivergence(User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To[getRoot().getResNo()]));
- }
- /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The Deleted
- /// vector is handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
- // Handle the really simple, really trivial case efficiently.
- if (From == To) return;
- // Handle the simple, trivial, case efficiently.
- if (From.getNode()->getNumValues() == 1) {
- ReplaceAllUsesWith(From, To);
- return;
- }
- // Preserve Debug Info.
- transferDbgValues(From, To);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From.getNode()->use_begin(),
- UE = From.getNode()->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- bool UserRemovedFromCSEMaps = false;
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- // Skip uses of different values from the same node.
- if (Use.getResNo() != From.getResNo()) {
- ++UI;
- continue;
- }
- // If this node hasn't been modified yet, it's still in the CSE maps,
- // so remove its old self from the CSE maps.
- if (!UserRemovedFromCSEMaps) {
- RemoveNodeFromCSEMaps(User);
- UserRemovedFromCSEMaps = true;
- }
- ++UI;
- Use.set(To);
- if (To->isDivergent() != From->isDivergent())
- updateDivergence(User);
- } while (UI != UE && *UI == User);
- // We are iterating over all uses of the From node, so if a use
- // doesn't use the specific value, no changes are made.
- if (!UserRemovedFromCSEMaps)
- continue;
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot())
- setRoot(To);
- }
- namespace {
- /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
- /// to record information about a use.
- struct UseMemo {
- SDNode *User;
- unsigned Index;
- SDUse *Use;
- };
- /// operator< - Sort Memos by User.
- bool operator<(const UseMemo &L, const UseMemo &R) {
- return (intptr_t)L.User < (intptr_t)R.User;
- }
- } // end anonymous namespace
- bool SelectionDAG::calculateDivergence(SDNode *N) {
- if (TLI->isSDNodeAlwaysUniform(N)) {
- assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
- "Conflicting divergence information!");
- return false;
- }
- if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
- return true;
- for (auto &Op : N->ops()) {
- if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
- return true;
- }
- return false;
- }
- void SelectionDAG::updateDivergence(SDNode *N) {
- SmallVector<SDNode *, 16> Worklist(1, N);
- do {
- N = Worklist.pop_back_val();
- bool IsDivergent = calculateDivergence(N);
- if (N->SDNodeBits.IsDivergent != IsDivergent) {
- N->SDNodeBits.IsDivergent = IsDivergent;
- llvm::append_range(Worklist, N->uses());
- }
- } while (!Worklist.empty());
- }
- void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
- DenseMap<SDNode *, unsigned> Degree;
- Order.reserve(AllNodes.size());
- for (auto &N : allnodes()) {
- unsigned NOps = N.getNumOperands();
- Degree[&N] = NOps;
- if (0 == NOps)
- Order.push_back(&N);
- }
- for (size_t I = 0; I != Order.size(); ++I) {
- SDNode *N = Order[I];
- for (auto U : N->uses()) {
- unsigned &UnsortedOps = Degree[U];
- if (0 == --UnsortedOps)
- Order.push_back(U);
- }
- }
- }
- #ifndef NDEBUG
- void SelectionDAG::VerifyDAGDivergence() {
- std::vector<SDNode *> TopoOrder;
- CreateTopologicalOrder(TopoOrder);
- for (auto *N : TopoOrder) {
- assert(calculateDivergence(N) == N->isDivergent() &&
- "Divergence bit inconsistency detected");
- }
- }
- #endif
- /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The same value
- /// may appear in both the From and To list. The Deleted vector is
- /// handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
- const SDValue *To,
- unsigned Num){
- // Handle the simple, trivial case efficiently.
- if (Num == 1)
- return ReplaceAllUsesOfValueWith(*From, *To);
- transferDbgValues(*From, *To);
- // Read up all the uses and make records of them. This helps
- // processing new uses that are introduced during the
- // replacement process.
- SmallVector<UseMemo, 4> Uses;
- for (unsigned i = 0; i != Num; ++i) {
- unsigned FromResNo = From[i].getResNo();
- SDNode *FromNode = From[i].getNode();
- for (SDNode::use_iterator UI = FromNode->use_begin(),
- E = FromNode->use_end(); UI != E; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == FromResNo) {
- UseMemo Memo = { *UI, i, &Use };
- Uses.push_back(Memo);
- }
- }
- }
- // Sort the uses, so that all the uses from a given User are together.
- llvm::sort(Uses);
- for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
- UseIndex != UseIndexEnd; ) {
- // We know that this user uses some value of From. If it is the right
- // value, update it.
- SDNode *User = Uses[UseIndex].User;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // The Uses array is sorted, so all the uses for a given User
- // are next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- unsigned i = Uses[UseIndex].Index;
- SDUse &Use = *Uses[UseIndex].Use;
- ++UseIndex;
- Use.set(To[i]);
- } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- }
- /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
- /// based on their topological order. It returns the maximum id and a vector
- /// of the SDNodes* in assigned order by reference.
- unsigned SelectionDAG::AssignTopologicalOrder() {
- unsigned DAGSize = 0;
- // SortedPos tracks the progress of the algorithm. Nodes before it are
- // sorted, nodes after it are unsorted. When the algorithm completes
- // it is at the end of the list.
- allnodes_iterator SortedPos = allnodes_begin();
- // Visit all the nodes. Move nodes with no operands to the front of
- // the list immediately. Annotate nodes that do have operands with their
- // operand count. Before we do this, the Node Id fields of the nodes
- // may contain arbitrary values. After, the Node Id fields for nodes
- // before SortedPos will contain the topological sort index, and the
- // Node Id fields for nodes At SortedPos and after will contain the
- // count of outstanding operands.
- for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
- checkForCycles(&N, this);
- unsigned Degree = N.getNumOperands();
- if (Degree == 0) {
- // A node with no uses, add it to the result array immediately.
- N.setNodeId(DAGSize++);
- allnodes_iterator Q(&N);
- if (Q != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Temporarily use the Node Id as scratch space for the degree count.
- N.setNodeId(Degree);
- }
- }
- // Visit all the nodes. As we iterate, move nodes into sorted order,
- // such that by the time the end is reached all nodes will be sorted.
- for (SDNode &Node : allnodes()) {
- SDNode *N = &Node;
- checkForCycles(N, this);
- // N is in sorted position, so all its uses have one less operand
- // that needs to be sorted.
- for (SDNode *P : N->uses()) {
- unsigned Degree = P->getNodeId();
- assert(Degree != 0 && "Invalid node degree");
- --Degree;
- if (Degree == 0) {
- // All of P's operands are sorted, so P may sorted now.
- P->setNodeId(DAGSize++);
- if (P->getIterator() != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Update P's outstanding operand count.
- P->setNodeId(Degree);
- }
- }
- if (Node.getIterator() == SortedPos) {
- #ifndef NDEBUG
- allnodes_iterator I(N);
- SDNode *S = &*++I;
- dbgs() << "Overran sorted position:\n";
- S->dumprFull(this); dbgs() << "\n";
- dbgs() << "Checking if this is due to cycles\n";
- checkForCycles(this, true);
- #endif
- llvm_unreachable(nullptr);
- }
- }
- assert(SortedPos == AllNodes.end() &&
- "Topological sort incomplete!");
- assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
- "First node in topological sort is not the entry token!");
- assert(AllNodes.front().getNodeId() == 0 &&
- "First node in topological sort has non-zero id!");
- assert(AllNodes.front().getNumOperands() == 0 &&
- "First node in topological sort has operands!");
- assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
- "Last node in topologic sort has unexpected id!");
- assert(AllNodes.back().use_empty() &&
- "Last node in topologic sort has users!");
- assert(DAGSize == allnodes_size() && "Node count mismatch!");
- return DAGSize;
- }
- /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
- /// value is produced by SD.
- void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
- for (SDNode *SD : DB->getSDNodes()) {
- if (!SD)
- continue;
- assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
- SD->setHasDebugValue(true);
- }
- DbgInfo->add(DB, isParameter);
- }
- void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
- SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
- SDValue NewMemOpChain) {
- assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
- assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
- // The new memory operation must have the same position as the old load in
- // terms of memory dependency. Create a TokenFactor for the old load and new
- // memory operation and update uses of the old load's output chain to use that
- // TokenFactor.
- if (OldChain == NewMemOpChain || OldChain.use_empty())
- return NewMemOpChain;
- SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
- OldChain, NewMemOpChain);
- ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
- UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
- return TokenFactor;
- }
- SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
- SDValue NewMemOp) {
- assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
- SDValue OldChain = SDValue(OldLoad, 1);
- SDValue NewMemOpChain = NewMemOp.getValue(1);
- return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
- }
- SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
- Function **OutFunction) {
- assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
- auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
- auto *Module = MF->getFunction().getParent();
- auto *Function = Module->getFunction(Symbol);
- if (OutFunction != nullptr)
- *OutFunction = Function;
- if (Function != nullptr) {
- auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
- return getGlobalAddress(Function, SDLoc(Op), PtrTy);
- }
- std::string ErrorStr;
- raw_string_ostream ErrorFormatter(ErrorStr);
- ErrorFormatter << "Undefined external symbol ";
- ErrorFormatter << '"' << Symbol << '"';
- report_fatal_error(Twine(ErrorFormatter.str()));
- }
- //===----------------------------------------------------------------------===//
- // SDNode Class
- //===----------------------------------------------------------------------===//
- bool llvm::isNullConstant(SDValue V) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
- return Const != nullptr && Const->isZero();
- }
- bool llvm::isNullFPConstant(SDValue V) {
- ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
- return Const != nullptr && Const->isZero() && !Const->isNegative();
- }
- bool llvm::isAllOnesConstant(SDValue V) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
- return Const != nullptr && Const->isAllOnes();
- }
- bool llvm::isOneConstant(SDValue V) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
- return Const != nullptr && Const->isOne();
- }
- SDValue llvm::peekThroughBitcasts(SDValue V) {
- while (V.getOpcode() == ISD::BITCAST)
- V = V.getOperand(0);
- return V;
- }
- SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
- while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
- V = V.getOperand(0);
- return V;
- }
- SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
- while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
- V = V.getOperand(0);
- return V;
- }
- bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
- if (V.getOpcode() != ISD::XOR)
- return false;
- V = peekThroughBitcasts(V.getOperand(1));
- unsigned NumBits = V.getScalarValueSizeInBits();
- ConstantSDNode *C =
- isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
- return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
- }
- ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
- bool AllowTruncation) {
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
- return CN;
- // SplatVectors can truncate their operands. Ignore that case here unless
- // AllowTruncation is set.
- if (N->getOpcode() == ISD::SPLAT_VECTOR) {
- EVT VecEltVT = N->getValueType(0).getVectorElementType();
- if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
- EVT CVT = CN->getValueType(0);
- assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
- if (AllowTruncation || CVT == VecEltVT)
- return CN;
- }
- }
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
- // BuildVectors can truncate their operands. Ignore that case here unless
- // AllowTruncation is set.
- if (CN && (UndefElements.none() || AllowUndefs)) {
- EVT CVT = CN->getValueType(0);
- EVT NSVT = N.getValueType().getScalarType();
- assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
- if (AllowTruncation || (CVT == NSVT))
- return CN;
- }
- }
- return nullptr;
- }
- ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
- bool AllowUndefs,
- bool AllowTruncation) {
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
- // BuildVectors can truncate their operands. Ignore that case here unless
- // AllowTruncation is set.
- if (CN && (UndefElements.none() || AllowUndefs)) {
- EVT CVT = CN->getValueType(0);
- EVT NSVT = N.getValueType().getScalarType();
- assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
- if (AllowTruncation || (CVT == NSVT))
- return CN;
- }
- }
- return nullptr;
- }
- ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
- if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
- if (CN && (UndefElements.none() || AllowUndefs))
- return CN;
- }
- if (N.getOpcode() == ISD::SPLAT_VECTOR)
- if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
- return CN;
- return nullptr;
- }
- ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
- const APInt &DemandedElts,
- bool AllowUndefs) {
- if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantFPSDNode *CN =
- BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
- if (CN && (UndefElements.none() || AllowUndefs))
- return CN;
- }
- return nullptr;
- }
- bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
- // TODO: may want to use peekThroughBitcast() here.
- ConstantSDNode *C =
- isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
- return C && C->isZero();
- }
- bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
- // TODO: may want to use peekThroughBitcast() here.
- unsigned BitWidth = N.getScalarValueSizeInBits();
- ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
- return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
- }
- bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
- N = peekThroughBitcasts(N);
- unsigned BitWidth = N.getScalarValueSizeInBits();
- ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
- return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
- }
- HandleSDNode::~HandleSDNode() {
- DropOperands();
- }
- GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
- const DebugLoc &DL,
- const GlobalValue *GA, EVT VT,
- int64_t o, unsigned TF)
- : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
- TheGlobal = GA;
- }
- AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
- EVT VT, unsigned SrcAS,
- unsigned DestAS)
- : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
- SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
- MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
- SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
- : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
- MemSDNodeBits.IsVolatile = MMO->isVolatile();
- MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
- MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
- MemSDNodeBits.IsInvariant = MMO->isInvariant();
- // We check here that the size of the memory operand fits within the size of
- // the MMO. This is because the MMO might indicate only a possible address
- // range instead of specifying the affected memory addresses precisely.
- // TODO: Make MachineMemOperands aware of scalable vectors.
- assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
- "Size mismatch!");
- }
- /// Profile - Gather unique data for the node.
- ///
- void SDNode::Profile(FoldingSetNodeID &ID) const {
- AddNodeIDNode(ID, this);
- }
- namespace {
- struct EVTArray {
- std::vector<EVT> VTs;
- EVTArray() {
- VTs.reserve(MVT::VALUETYPE_SIZE);
- for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
- VTs.push_back(MVT((MVT::SimpleValueType)i));
- }
- };
- } // end anonymous namespace
- static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
- static ManagedStatic<EVTArray> SimpleVTArray;
- static ManagedStatic<sys::SmartMutex<true>> VTMutex;
- /// getValueTypeList - Return a pointer to the specified value type.
- ///
- const EVT *SDNode::getValueTypeList(EVT VT) {
- if (VT.isExtended()) {
- sys::SmartScopedLock<true> Lock(*VTMutex);
- return &(*EVTs->insert(VT).first);
- }
- assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
- return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
- }
- /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
- /// indicated value. This method ignores uses of other values defined by this
- /// operation.
- bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- // TODO: Only iterate over uses of a given value of the node
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
- if (UI.getUse().getResNo() == Value) {
- if (NUses == 0)
- return false;
- --NUses;
- }
- }
- // Found exactly the right number of uses?
- return NUses == 0;
- }
- /// hasAnyUseOfValue - Return true if there are any use of the indicated
- /// value. This method ignores uses of other values defined by this operation.
- bool SDNode::hasAnyUseOfValue(unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
- if (UI.getUse().getResNo() == Value)
- return true;
- return false;
- }
- /// isOnlyUserOf - Return true if this node is the only use of N.
- bool SDNode::isOnlyUserOf(const SDNode *N) const {
- bool Seen = false;
- for (const SDNode *User : N->uses()) {
- if (User == this)
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// Return true if the only users of N are contained in Nodes.
- bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
- bool Seen = false;
- for (const SDNode *User : N->uses()) {
- if (llvm::is_contained(Nodes, User))
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// isOperand - Return true if this node is an operand of N.
- bool SDValue::isOperandOf(const SDNode *N) const {
- return is_contained(N->op_values(), *this);
- }
- bool SDNode::isOperandOf(const SDNode *N) const {
- return any_of(N->op_values(),
- [this](SDValue Op) { return this == Op.getNode(); });
- }
- /// reachesChainWithoutSideEffects - Return true if this operand (which must
- /// be a chain) reaches the specified operand without crossing any
- /// side-effecting instructions on any chain path. In practice, this looks
- /// through token factors and non-volatile loads. In order to remain efficient,
- /// this only looks a couple of nodes in, it does not do an exhaustive search.
- ///
- /// Note that we only need to examine chains when we're searching for
- /// side-effects; SelectionDAG requires that all side-effects are represented
- /// by chains, even if another operand would force a specific ordering. This
- /// constraint is necessary to allow transformations like splitting loads.
- bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
- unsigned Depth) const {
- if (*this == Dest) return true;
- // Don't search too deeply, we just want to be able to see through
- // TokenFactor's etc.
- if (Depth == 0) return false;
- // If this is a token factor, all inputs to the TF happen in parallel.
- if (getOpcode() == ISD::TokenFactor) {
- // First, try a shallow search.
- if (is_contained((*this)->ops(), Dest)) {
- // We found the chain we want as an operand of this TokenFactor.
- // Essentially, we reach the chain without side-effects if we could
- // serialize the TokenFactor into a simple chain of operations with
- // Dest as the last operation. This is automatically true if the
- // chain has one use: there are no other ordering constraints.
- // If the chain has more than one use, we give up: some other
- // use of Dest might force a side-effect between Dest and the current
- // node.
- if (Dest.hasOneUse())
- return true;
- }
- // Next, try a deep search: check whether every operand of the TokenFactor
- // reaches Dest.
- return llvm::all_of((*this)->ops(), [=](SDValue Op) {
- return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
- });
- }
- // Loads don't have side effects, look through them.
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
- if (Ld->isUnordered())
- return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
- }
- return false;
- }
- bool SDNode::hasPredecessor(const SDNode *N) const {
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- Worklist.push_back(this);
- return hasPredecessorHelper(N, Visited, Worklist);
- }
- void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
- this->Flags.intersectWith(Flags);
- }
- SDValue
- SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
- ArrayRef<ISD::NodeType> CandidateBinOps,
- bool AllowPartials) {
- // The pattern must end in an extract from index 0.
- if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isNullConstant(Extract->getOperand(1)))
- return SDValue();
- // Match against one of the candidate binary ops.
- SDValue Op = Extract->getOperand(0);
- if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
- return Op.getOpcode() == unsigned(BinOp);
- }))
- return SDValue();
- // Floating-point reductions may require relaxed constraints on the final step
- // of the reduction because they may reorder intermediate operations.
- unsigned CandidateBinOp = Op.getOpcode();
- if (Op.getValueType().isFloatingPoint()) {
- SDNodeFlags Flags = Op->getFlags();
- switch (CandidateBinOp) {
- case ISD::FADD:
- if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
- return SDValue();
- break;
- default:
- llvm_unreachable("Unhandled FP opcode for binop reduction");
- }
- }
- // Matching failed - attempt to see if we did enough stages that a partial
- // reduction from a subvector is possible.
- auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
- if (!AllowPartials || !Op)
- return SDValue();
- EVT OpVT = Op.getValueType();
- EVT OpSVT = OpVT.getScalarType();
- EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
- if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
- return SDValue();
- BinOp = (ISD::NodeType)CandidateBinOp;
- return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
- getVectorIdxConstant(0, SDLoc(Op)));
- };
- // At each stage, we're looking for something that looks like:
- // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
- // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
- // i32 undef, i32 undef, i32 undef, i32 undef>
- // %a = binop <8 x i32> %op, %s
- // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
- // we expect something like:
- // <4,5,6,7,u,u,u,u>
- // <2,3,u,u,u,u,u,u>
- // <1,u,u,u,u,u,u,u>
- // While a partial reduction match would be:
- // <2,3,u,u,u,u,u,u>
- // <1,u,u,u,u,u,u,u>
- unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
- SDValue PrevOp;
- for (unsigned i = 0; i < Stages; ++i) {
- unsigned MaskEnd = (1 << i);
- if (Op.getOpcode() != CandidateBinOp)
- return PartialReduction(PrevOp, MaskEnd);
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
- if (Shuffle) {
- Op = Op1;
- } else {
- Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
- Op = Op0;
- }
- // The first operand of the shuffle should be the same as the other operand
- // of the binop.
- if (!Shuffle || Shuffle->getOperand(0) != Op)
- return PartialReduction(PrevOp, MaskEnd);
- // Verify the shuffle has the expected (at this stage of the pyramid) mask.
- for (int Index = 0; Index < (int)MaskEnd; ++Index)
- if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
- return PartialReduction(PrevOp, MaskEnd);
- PrevOp = Op;
- }
- // Handle subvector reductions, which tend to appear after the shuffle
- // reduction stages.
- while (Op.getOpcode() == CandidateBinOp) {
- unsigned NumElts = Op.getValueType().getVectorNumElements();
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
- Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
- Op0.getOperand(0) != Op1.getOperand(0))
- break;
- SDValue Src = Op0.getOperand(0);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- if (NumSrcElts != (2 * NumElts))
- break;
- if (!(Op0.getConstantOperandAPInt(1) == 0 &&
- Op1.getConstantOperandAPInt(1) == NumElts) &&
- !(Op1.getConstantOperandAPInt(1) == 0 &&
- Op0.getConstantOperandAPInt(1) == NumElts))
- break;
- Op = Src;
- }
- BinOp = (ISD::NodeType)CandidateBinOp;
- return Op;
- }
- SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
- assert(N->getNumValues() == 1 &&
- "Can't unroll a vector with multiple results!");
- EVT VT = N->getValueType(0);
- unsigned NE = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- SDLoc dl(N);
- SmallVector<SDValue, 8> Scalars;
- SmallVector<SDValue, 4> Operands(N->getNumOperands());
- // If ResNE is 0, fully unroll the vector op.
- if (ResNE == 0)
- ResNE = NE;
- else if (NE > ResNE)
- NE = ResNE;
- unsigned i;
- for (i= 0; i != NE; ++i) {
- for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
- SDValue Operand = N->getOperand(j);
- EVT OperandVT = Operand.getValueType();
- if (OperandVT.isVector()) {
- // A vector operand; extract a single element.
- EVT OperandEltVT = OperandVT.getVectorElementType();
- Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
- Operand, getVectorIdxConstant(i, dl));
- } else {
- // A scalar operand; just use it as is.
- Operands[j] = Operand;
- }
- }
- switch (N->getOpcode()) {
- default: {
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
- N->getFlags()));
- break;
- }
- case ISD::VSELECT:
- Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
- getShiftAmountOperand(Operands[0].getValueType(),
- Operands[1])));
- break;
- case ISD::SIGN_EXTEND_INREG: {
- EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
- Operands[0],
- getValueType(ExtVT)));
- }
- }
- }
- for (; i < ResNE; ++i)
- Scalars.push_back(getUNDEF(EltVT));
- EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
- return getBuildVector(VecVT, dl, Scalars);
- }
- std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
- SDNode *N, unsigned ResNE) {
- unsigned Opcode = N->getOpcode();
- assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
- Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
- Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
- "Expected an overflow opcode");
- EVT ResVT = N->getValueType(0);
- EVT OvVT = N->getValueType(1);
- EVT ResEltVT = ResVT.getVectorElementType();
- EVT OvEltVT = OvVT.getVectorElementType();
- SDLoc dl(N);
- // If ResNE is 0, fully unroll the vector op.
- unsigned NE = ResVT.getVectorNumElements();
- if (ResNE == 0)
- ResNE = NE;
- else if (NE > ResNE)
- NE = ResNE;
- SmallVector<SDValue, 8> LHSScalars;
- SmallVector<SDValue, 8> RHSScalars;
- ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
- ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
- EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
- SDVTList VTs = getVTList(ResEltVT, SVT);
- SmallVector<SDValue, 8> ResScalars;
- SmallVector<SDValue, 8> OvScalars;
- for (unsigned i = 0; i < NE; ++i) {
- SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
- SDValue Ov =
- getSelect(dl, OvEltVT, Res.getValue(1),
- getBoolConstant(true, dl, OvEltVT, ResVT),
- getConstant(0, dl, OvEltVT));
- ResScalars.push_back(Res);
- OvScalars.push_back(Ov);
- }
- ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
- OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
- EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
- EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
- return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
- getBuildVector(NewOvVT, dl, OvScalars));
- }
- bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
- LoadSDNode *Base,
- unsigned Bytes,
- int Dist) const {
- if (LD->isVolatile() || Base->isVolatile())
- return false;
- // TODO: probably too restrictive for atomics, revisit
- if (!LD->isSimple())
- return false;
- if (LD->isIndexed() || Base->isIndexed())
- return false;
- if (LD->getChain() != Base->getChain())
- return false;
- EVT VT = LD->getValueType(0);
- if (VT.getSizeInBits() / 8 != Bytes)
- return false;
- auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
- auto LocDecomp = BaseIndexOffset::match(LD, *this);
- int64_t Offset = 0;
- if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
- return (Dist * Bytes == Offset);
- return false;
- }
- /// InferPtrAlignment - Infer alignment of a load / store address. Return None
- /// if it cannot be inferred.
- MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
- // If this is a GlobalAddress + cst, return the alignment.
- const GlobalValue *GV = nullptr;
- int64_t GVOffset = 0;
- if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
- unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
- KnownBits Known(PtrWidth);
- llvm::computeKnownBits(GV, Known, getDataLayout());
- unsigned AlignBits = Known.countMinTrailingZeros();
- if (AlignBits)
- return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
- }
- // If this is a direct reference to a stack slot, use information about the
- // stack slot's alignment.
- int FrameIdx = INT_MIN;
- int64_t FrameOffset = 0;
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
- FrameIdx = FI->getIndex();
- } else if (isBaseWithConstantOffset(Ptr) &&
- isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
- // Handle FI+Cst
- FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- FrameOffset = Ptr.getConstantOperandVal(1);
- }
- if (FrameIdx != INT_MIN) {
- const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
- return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
- }
- return None;
- }
- /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
- /// which is split (or expanded) into two not necessarily identical pieces.
- std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
- // Currently all types are split in half.
- EVT LoVT, HiVT;
- if (!VT.isVector())
- LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
- else
- LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
- return std::make_pair(LoVT, HiVT);
- }
- /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
- /// type, dependent on an enveloping VT that has been split into two identical
- /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
- std::pair<EVT, EVT>
- SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
- bool *HiIsEmpty) const {
- EVT EltTp = VT.getVectorElementType();
- // Examples:
- // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
- // custom VL=9 with enveloping VL=8/8 yields 8/1
- // custom VL=10 with enveloping VL=8/8 yields 8/2
- // etc.
- ElementCount VTNumElts = VT.getVectorElementCount();
- ElementCount EnvNumElts = EnvVT.getVectorElementCount();
- assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
- "Mixing fixed width and scalable vectors when enveloping a type");
- EVT LoVT, HiVT;
- if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
- LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
- HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
- *HiIsEmpty = false;
- } else {
- // Flag that hi type has zero storage size, but return split envelop type
- // (this would be easier if vector types with zero elements were allowed).
- LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
- HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
- *HiIsEmpty = true;
- }
- return std::make_pair(LoVT, HiVT);
- }
- /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
- /// low/high part.
- std::pair<SDValue, SDValue>
- SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
- const EVT &HiVT) {
- assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
- LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
- "Splitting vector with an invalid mixture of fixed and scalable "
- "vector types");
- assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
- N.getValueType().getVectorMinNumElements() &&
- "More vector elements requested than available!");
- SDValue Lo, Hi;
- Lo =
- getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
- // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
- // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
- // IDX with the runtime scaling factor of the result vector type. For
- // fixed-width result vectors, that runtime scaling factor is 1.
- Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
- getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
- return std::make_pair(Lo, Hi);
- }
- std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
- const SDLoc &DL) {
- // Split the vector length parameter.
- // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
- EVT VT = N.getValueType();
- assert(VecVT.getVectorElementCount().isKnownEven() &&
- "Expecting the mask to be an evenly-sized vector");
- unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
- SDValue HalfNumElts =
- VecVT.isFixedLengthVector()
- ? getConstant(HalfMinNumElts, DL, VT)
- : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
- SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
- SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
- return std::make_pair(Lo, Hi);
- }
- /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
- SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
- EVT VT = N.getValueType();
- EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
- NextPowerOf2(VT.getVectorNumElements()));
- return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
- getVectorIdxConstant(0, DL));
- }
- void SelectionDAG::ExtractVectorElements(SDValue Op,
- SmallVectorImpl<SDValue> &Args,
- unsigned Start, unsigned Count,
- EVT EltVT) {
- EVT VT = Op.getValueType();
- if (Count == 0)
- Count = VT.getVectorNumElements();
- if (EltVT == EVT())
- EltVT = VT.getVectorElementType();
- SDLoc SL(Op);
- for (unsigned i = Start, e = Start + Count; i != e; ++i) {
- Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
- getVectorIdxConstant(i, SL)));
- }
- }
- // getAddressSpace - Return the address space this GlobalAddress belongs to.
- unsigned GlobalAddressSDNode::getAddressSpace() const {
- return getGlobal()->getType()->getAddressSpace();
- }
- Type *ConstantPoolSDNode::getType() const {
- if (isMachineConstantPoolEntry())
- return Val.MachineCPVal->getType();
- return Val.ConstVal->getType();
- }
- bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
- unsigned &SplatBitSize,
- bool &HasAnyUndefs,
- unsigned MinSplatBits,
- bool IsBigEndian) const {
- EVT VT = getValueType(0);
- assert(VT.isVector() && "Expected a vector type");
- unsigned VecWidth = VT.getSizeInBits();
- if (MinSplatBits > VecWidth)
- return false;
- // FIXME: The widths are based on this node's type, but build vectors can
- // truncate their operands.
- SplatValue = APInt(VecWidth, 0);
- SplatUndef = APInt(VecWidth, 0);
- // Get the bits. Bits with undefined values (when the corresponding element
- // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
- // in SplatValue. If any of the values are not constant, give up and return
- // false.
- unsigned int NumOps = getNumOperands();
- assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
- unsigned EltWidth = VT.getScalarSizeInBits();
- for (unsigned j = 0; j < NumOps; ++j) {
- unsigned i = IsBigEndian ? NumOps - 1 - j : j;
- SDValue OpVal = getOperand(i);
- unsigned BitPos = j * EltWidth;
- if (OpVal.isUndef())
- SplatUndef.setBits(BitPos, BitPos + EltWidth);
- else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
- SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
- else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
- SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
- else
- return false;
- }
- // The build_vector is all constants or undefs. Find the smallest element
- // size that splats the vector.
- HasAnyUndefs = (SplatUndef != 0);
- // FIXME: This does not work for vectors with elements less than 8 bits.
- while (VecWidth > 8) {
- unsigned HalfSize = VecWidth / 2;
- APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
- APInt LowValue = SplatValue.extractBits(HalfSize, 0);
- APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
- APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
- // If the two halves do not match (ignoring undef bits), stop here.
- if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
- MinSplatBits > HalfSize)
- break;
- SplatValue = HighValue | LowValue;
- SplatUndef = HighUndef & LowUndef;
- VecWidth = HalfSize;
- }
- SplatBitSize = VecWidth;
- return true;
- }
- SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
- BitVector *UndefElements) const {
- unsigned NumOps = getNumOperands();
- if (UndefElements) {
- UndefElements->clear();
- UndefElements->resize(NumOps);
- }
- assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
- if (!DemandedElts)
- return SDValue();
- SDValue Splatted;
- for (unsigned i = 0; i != NumOps; ++i) {
- if (!DemandedElts[i])
- continue;
- SDValue Op = getOperand(i);
- if (Op.isUndef()) {
- if (UndefElements)
- (*UndefElements)[i] = true;
- } else if (!Splatted) {
- Splatted = Op;
- } else if (Splatted != Op) {
- return SDValue();
- }
- }
- if (!Splatted) {
- unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
- assert(getOperand(FirstDemandedIdx).isUndef() &&
- "Can only have a splat without a constant for all undefs.");
- return getOperand(FirstDemandedIdx);
- }
- return Splatted;
- }
- SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
- APInt DemandedElts = APInt::getAllOnes(getNumOperands());
- return getSplatValue(DemandedElts, UndefElements);
- }
- bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
- SmallVectorImpl<SDValue> &Sequence,
- BitVector *UndefElements) const {
- unsigned NumOps = getNumOperands();
- Sequence.clear();
- if (UndefElements) {
- UndefElements->clear();
- UndefElements->resize(NumOps);
- }
- assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
- if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
- return false;
- // Set the undefs even if we don't find a sequence (like getSplatValue).
- if (UndefElements)
- for (unsigned I = 0; I != NumOps; ++I)
- if (DemandedElts[I] && getOperand(I).isUndef())
- (*UndefElements)[I] = true;
- // Iteratively widen the sequence length looking for repetitions.
- for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
- Sequence.append(SeqLen, SDValue());
- for (unsigned I = 0; I != NumOps; ++I) {
- if (!DemandedElts[I])
- continue;
- SDValue &SeqOp = Sequence[I % SeqLen];
- SDValue Op = getOperand(I);
- if (Op.isUndef()) {
- if (!SeqOp)
- SeqOp = Op;
- continue;
- }
- if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
- Sequence.clear();
- break;
- }
- SeqOp = Op;
- }
- if (!Sequence.empty())
- return true;
- }
- assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
- return false;
- }
- bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
- BitVector *UndefElements) const {
- APInt DemandedElts = APInt::getAllOnes(getNumOperands());
- return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
- }
- ConstantSDNode *
- BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
- BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantSDNode>(
- getSplatValue(DemandedElts, UndefElements));
- }
- ConstantSDNode *
- BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
- }
- ConstantFPSDNode *
- BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
- BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantFPSDNode>(
- getSplatValue(DemandedElts, UndefElements));
- }
- ConstantFPSDNode *
- BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
- }
- int32_t
- BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
- uint32_t BitWidth) const {
- if (ConstantFPSDNode *CN =
- dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
- bool IsExact;
- APSInt IntVal(BitWidth);
- const APFloat &APF = CN->getValueAPF();
- if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
- APFloat::opOK ||
- !IsExact)
- return -1;
- return IntVal.exactLogBase2();
- }
- return -1;
- }
- bool BuildVectorSDNode::getConstantRawBits(
- bool IsLittleEndian, unsigned DstEltSizeInBits,
- SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
- // Early-out if this contains anything but Undef/Constant/ConstantFP.
- if (!isConstant())
- return false;
- unsigned NumSrcOps = getNumOperands();
- unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
- assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
- "Invalid bitcast scale");
- // Extract raw src bits.
- SmallVector<APInt> SrcBitElements(NumSrcOps,
- APInt::getNullValue(SrcEltSizeInBits));
- BitVector SrcUndeElements(NumSrcOps, false);
- for (unsigned I = 0; I != NumSrcOps; ++I) {
- SDValue Op = getOperand(I);
- if (Op.isUndef()) {
- SrcUndeElements.set(I);
- continue;
- }
- auto *CInt = dyn_cast<ConstantSDNode>(Op);
- auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
- assert((CInt || CFP) && "Unknown constant");
- SrcBitElements[I] =
- CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
- : CFP->getValueAPF().bitcastToAPInt();
- }
- // Recast to dst width.
- recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
- SrcBitElements, UndefElements, SrcUndeElements);
- return true;
- }
- void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
- unsigned DstEltSizeInBits,
- SmallVectorImpl<APInt> &DstBitElements,
- ArrayRef<APInt> SrcBitElements,
- BitVector &DstUndefElements,
- const BitVector &SrcUndefElements) {
- unsigned NumSrcOps = SrcBitElements.size();
- unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
- assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
- "Invalid bitcast scale");
- assert(NumSrcOps == SrcUndefElements.size() &&
- "Vector size mismatch");
- unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
- DstUndefElements.clear();
- DstUndefElements.resize(NumDstOps, false);
- DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
- // Concatenate src elements constant bits together into dst element.
- if (SrcEltSizeInBits <= DstEltSizeInBits) {
- unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
- for (unsigned I = 0; I != NumDstOps; ++I) {
- DstUndefElements.set(I);
- APInt &DstBits = DstBitElements[I];
- for (unsigned J = 0; J != Scale; ++J) {
- unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
- if (SrcUndefElements[Idx])
- continue;
- DstUndefElements.reset(I);
- const APInt &SrcBits = SrcBitElements[Idx];
- assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
- "Illegal constant bitwidths");
- DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
- }
- }
- return;
- }
- // Split src element constant bits into dst elements.
- unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
- for (unsigned I = 0; I != NumSrcOps; ++I) {
- if (SrcUndefElements[I]) {
- DstUndefElements.set(I * Scale, (I + 1) * Scale);
- continue;
- }
- const APInt &SrcBits = SrcBitElements[I];
- for (unsigned J = 0; J != Scale; ++J) {
- unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
- APInt &DstBits = DstBitElements[Idx];
- DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
- }
- }
- }
- bool BuildVectorSDNode::isConstant() const {
- for (const SDValue &Op : op_values()) {
- unsigned Opc = Op.getOpcode();
- if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
- return false;
- }
- return true;
- }
- bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
- // Find the first non-undef value in the shuffle mask.
- unsigned i, e;
- for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
- /* search */;
- // If all elements are undefined, this shuffle can be considered a splat
- // (although it should eventually get simplified away completely).
- if (i == e)
- return true;
- // Make sure all remaining elements are either undef or the same as the first
- // non-undef value.
- for (int Idx = Mask[i]; i != e; ++i)
- if (Mask[i] >= 0 && Mask[i] != Idx)
- return false;
- return true;
- }
- // Returns the SDNode if it is a constant integer BuildVector
- // or constant integer.
- SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
- if (isa<ConstantSDNode>(N))
- return N.getNode();
- if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
- return N.getNode();
- // Treat a GlobalAddress supporting constant offset folding as a
- // constant integer.
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
- if (GA->getOpcode() == ISD::GlobalAddress &&
- TLI->isOffsetFoldingLegal(GA))
- return GA;
- if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
- isa<ConstantSDNode>(N.getOperand(0)))
- return N.getNode();
- return nullptr;
- }
- // Returns the SDNode if it is a constant float BuildVector
- // or constant float.
- SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
- if (isa<ConstantFPSDNode>(N))
- return N.getNode();
- if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
- return N.getNode();
- return nullptr;
- }
- void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
- assert(!Node->OperandList && "Node already has operands");
- assert(SDNode::getMaxNumOperands() >= Vals.size() &&
- "too many operands to fit into SDNode");
- SDUse *Ops = OperandRecycler.allocate(
- ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
- bool IsDivergent = false;
- for (unsigned I = 0; I != Vals.size(); ++I) {
- Ops[I].setUser(Node);
- Ops[I].setInitial(Vals[I]);
- if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
- IsDivergent |= Ops[I].getNode()->isDivergent();
- }
- Node->NumOperands = Vals.size();
- Node->OperandList = Ops;
- if (!TLI->isSDNodeAlwaysUniform(Node)) {
- IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
- Node->SDNodeBits.IsDivergent = IsDivergent;
- }
- checkForCycles(Node);
- }
- SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
- SmallVectorImpl<SDValue> &Vals) {
- size_t Limit = SDNode::getMaxNumOperands();
- while (Vals.size() > Limit) {
- unsigned SliceIdx = Vals.size() - Limit;
- auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
- SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
- Vals.erase(Vals.begin() + SliceIdx, Vals.end());
- Vals.emplace_back(NewTF);
- }
- return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
- }
- SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
- EVT VT, SDNodeFlags Flags) {
- switch (Opcode) {
- default:
- return SDValue();
- case ISD::ADD:
- case ISD::OR:
- case ISD::XOR:
- case ISD::UMAX:
- return getConstant(0, DL, VT);
- case ISD::MUL:
- return getConstant(1, DL, VT);
- case ISD::AND:
- case ISD::UMIN:
- return getAllOnesConstant(DL, VT);
- case ISD::SMAX:
- return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
- case ISD::SMIN:
- return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
- case ISD::FADD:
- return getConstantFP(-0.0, DL, VT);
- case ISD::FMUL:
- return getConstantFP(1.0, DL, VT);
- case ISD::FMINNUM:
- case ISD::FMAXNUM: {
- // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
- const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
- APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
- !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
- APFloat::getLargest(Semantics);
- if (Opcode == ISD::FMAXNUM)
- NeutralAF.changeSign();
- return getConstantFP(NeutralAF, DL, VT);
- }
- }
- }
- #ifndef NDEBUG
- static void checkForCyclesHelper(const SDNode *N,
- SmallPtrSetImpl<const SDNode*> &Visited,
- SmallPtrSetImpl<const SDNode*> &Checked,
- const llvm::SelectionDAG *DAG) {
- // If this node has already been checked, don't check it again.
- if (Checked.count(N))
- return;
- // If a node has already been visited on this depth-first walk, reject it as
- // a cycle.
- if (!Visited.insert(N).second) {
- errs() << "Detected cycle in SelectionDAG\n";
- dbgs() << "Offending node:\n";
- N->dumprFull(DAG); dbgs() << "\n";
- abort();
- }
- for (const SDValue &Op : N->op_values())
- checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
- Checked.insert(N);
- Visited.erase(N);
- }
- #endif
- void llvm::checkForCycles(const llvm::SDNode *N,
- const llvm::SelectionDAG *DAG,
- bool force) {
- #ifndef NDEBUG
- bool check = force;
- #ifdef EXPENSIVE_CHECKS
- check = true;
- #endif // EXPENSIVE_CHECKS
- if (check) {
- assert(N && "Checking nonexistent SDNode");
- SmallPtrSet<const SDNode*, 32> visited;
- SmallPtrSet<const SDNode*, 32> checked;
- checkForCyclesHelper(N, visited, checked, DAG);
- }
- #endif // !NDEBUG
- }
- void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
- checkForCycles(DAG->getRoot().getNode(), DAG, force);
- }
|