12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613 |
- //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the SelectionDAG::LegalizeVectors method.
- //
- // The vector legalizer looks for vector operations which might need to be
- // scalarized and legalizes them. This is a separate step from Legalize because
- // scalarizing can introduce illegal types. For example, suppose we have an
- // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
- // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
- // operation, which introduces nodes with the illegal type i64 which must be
- // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
- // the operation must be unrolled, which introduces nodes with the illegal
- // type i8 which must be promoted.
- //
- // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
- // or operations that happen to take a vector which are custom-lowered;
- // the legalization for such operations never produces nodes
- // with illegal types, so it's okay to put off legalizing them until
- // SelectionDAG::Legalize runs.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "legalizevectorops"
- namespace {
- class VectorLegalizer {
- SelectionDAG& DAG;
- const TargetLowering &TLI;
- bool Changed = false; // Keep track of whether anything changed
- /// For nodes that are of legal width, and that have more than one use, this
- /// map indicates what regularized operand to use. This allows us to avoid
- /// legalizing the same thing more than once.
- SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
- /// Adds a node to the translation cache.
- void AddLegalizedOperand(SDValue From, SDValue To) {
- LegalizedNodes.insert(std::make_pair(From, To));
- // If someone requests legalization of the new node, return itself.
- if (From != To)
- LegalizedNodes.insert(std::make_pair(To, To));
- }
- /// Legalizes the given node.
- SDValue LegalizeOp(SDValue Op);
- /// Assuming the node is legal, "legalize" the results.
- SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
- /// Make sure Results are legal and update the translation cache.
- SDValue RecursivelyLegalizeResults(SDValue Op,
- MutableArrayRef<SDValue> Results);
- /// Wrapper to interface LowerOperation with a vector of Results.
- /// Returns false if the target wants to use default expansion. Otherwise
- /// returns true. If return is true and the Results are empty, then the
- /// target wants to keep the input node as is.
- bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
- /// Implements unrolling a VSETCC.
- SDValue UnrollVSETCC(SDNode *Node);
- /// Implement expand-based legalization of vector operations.
- ///
- /// This is just a high-level routine to dispatch to specific code paths for
- /// operations to legalize them.
- void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
- /// FP_TO_SINT isn't legal.
- void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
- /// SINT_TO_FLOAT and SHR on vectors isn't legal.
- void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
- SDValue ExpandSEXTINREG(SDNode *Node);
- /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place and bitcasts to the proper
- /// type. The contents of the bits in the extended part of each element are
- /// undef.
- SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
- /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place, bitcasts to the proper
- /// type, then shifts left and arithmetic shifts right to introduce a sign
- /// extension.
- SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
- /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place and blends zeros into
- /// the remaining lanes, finally bitcasting to the proper type.
- SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
- /// Expand bswap of vectors into a shuffle if legal.
- SDValue ExpandBSWAP(SDNode *Node);
- /// Implement vselect in terms of XOR, AND, OR when blend is not
- /// supported by the target.
- SDValue ExpandVSELECT(SDNode *Node);
- SDValue ExpandVP_SELECT(SDNode *Node);
- SDValue ExpandVP_MERGE(SDNode *Node);
- SDValue ExpandSELECT(SDNode *Node);
- std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
- SDValue ExpandStore(SDNode *N);
- SDValue ExpandFNEG(SDNode *Node);
- void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements vector promotion.
- ///
- /// This is essentially just bitcasting the operands to a different type and
- /// bitcasting the result back to the original type.
- void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements [SU]INT_TO_FP vector promotion.
- ///
- /// This is a [zs]ext of the input operand to a larger integer type.
- void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements FP_TO_[SU]INT vector promotion of the result type.
- ///
- /// It is promoted to a larger integer type. The result is then
- /// truncated back to the original type.
- void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- public:
- VectorLegalizer(SelectionDAG& dag) :
- DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
- /// Begin legalizer the vector operations in the DAG.
- bool Run();
- };
- } // end anonymous namespace
- bool VectorLegalizer::Run() {
- // Before we start legalizing vector nodes, check if there are any vectors.
- bool HasVectors = false;
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
- // Check if the values of the nodes contain vectors. We don't need to check
- // the operands because we are going to check their values at some point.
- HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
- // If we found a vector node we can start the legalization.
- if (HasVectors)
- break;
- }
- // If this basic block has no vectors then no need to legalize vectors.
- if (!HasVectors)
- return false;
- // The legalize process is inherently a bottom-up recursive process (users
- // legalize their uses before themselves). Given infinite stack space, we
- // could just start legalizing on the root and traverse the whole graph. In
- // practice however, this causes us to run out of stack space on large basic
- // blocks. To avoid this problem, compute an ordering of the nodes where each
- // node is only legalized after all of its operands are legalized.
- DAG.AssignTopologicalOrder();
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
- LegalizeOp(SDValue(&*I, 0));
- // Finally, it's possible the root changed. Get the new root.
- SDValue OldRoot = DAG.getRoot();
- assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
- DAG.setRoot(LegalizedNodes[OldRoot]);
- LegalizedNodes.clear();
- // Remove dead nodes now.
- DAG.RemoveDeadNodes();
- return Changed;
- }
- SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
- assert(Op->getNumValues() == Result->getNumValues() &&
- "Unexpected number of results");
- // Generic legalization: just pass the operand through.
- for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
- AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
- return SDValue(Result, Op.getResNo());
- }
- SDValue
- VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
- MutableArrayRef<SDValue> Results) {
- assert(Results.size() == Op->getNumValues() &&
- "Unexpected number of results");
- // Make sure that the generated code is itself legal.
- for (unsigned i = 0, e = Results.size(); i != e; ++i) {
- Results[i] = LegalizeOp(Results[i]);
- AddLegalizedOperand(Op.getValue(i), Results[i]);
- }
- return Results[Op.getResNo()];
- }
- SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
- // Note that LegalizeOp may be reentered even from single-use nodes, which
- // means that we always must cache transformed nodes.
- DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
- if (I != LegalizedNodes.end()) return I->second;
- // Legalize the operands
- SmallVector<SDValue, 8> Ops;
- for (const SDValue &Oper : Op->op_values())
- Ops.push_back(LegalizeOp(Oper));
- SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
- bool HasVectorValueOrOp =
- llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
- llvm::any_of(Node->op_values(),
- [](SDValue O) { return O.getValueType().isVector(); });
- if (!HasVectorValueOrOp)
- return TranslateLegalizeResults(Op, Node);
- TargetLowering::LegalizeAction Action = TargetLowering::Legal;
- EVT ValVT;
- switch (Op.getOpcode()) {
- default:
- return TranslateLegalizeResults(Op, Node);
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Node);
- ISD::LoadExtType ExtType = LD->getExtensionType();
- EVT LoadedVT = LD->getMemoryVT();
- if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
- Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
- break;
- }
- case ISD::STORE: {
- StoreSDNode *ST = cast<StoreSDNode>(Node);
- EVT StVT = ST->getMemoryVT();
- MVT ValVT = ST->getValue().getSimpleValueType();
- if (StVT.isVector() && ST->isTruncatingStore())
- Action = TLI.getTruncStoreAction(ValVT, StVT);
- break;
- }
- case ISD::MERGE_VALUES:
- Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
- // This operation lies about being legal: when it claims to be legal,
- // it should actually be expanded.
- if (Action == TargetLowering::Legal)
- Action = TargetLowering::Expand;
- break;
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN:
- #include "llvm/IR/ConstrainedOps.def"
- ValVT = Node->getValueType(0);
- if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
- Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
- ValVT = Node->getOperand(1).getValueType();
- Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
- // If we're asked to expand a strict vector floating-point operation,
- // by default we're going to simply unroll it. That is usually the
- // best approach, except in the case where the resulting strict (scalar)
- // operations would themselves use the fallback mutation to non-strict.
- // In that specific case, just do the fallback on the vector op.
- if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
- TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
- TargetLowering::Legal) {
- EVT EltVT = ValVT.getVectorElementType();
- if (TLI.getOperationAction(Node->getOpcode(), EltVT)
- == TargetLowering::Expand &&
- TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
- == TargetLowering::Legal)
- Action = TargetLowering::Legal;
- }
- break;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::MULHS:
- case ISD::MULHU:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- case ISD::SDIVREM:
- case ISD::UDIVREM:
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::FSHL:
- case ISD::FSHR:
- case ISD::ROTL:
- case ISD::ROTR:
- case ISD::ABS:
- case ISD::BSWAP:
- case ISD::BITREVERSE:
- case ISD::CTLZ:
- case ISD::CTTZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTPOP:
- case ISD::SELECT:
- case ISD::VSELECT:
- case ISD::SELECT_CC:
- case ISD::ZERO_EXTEND:
- case ISD::ANY_EXTEND:
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- case ISD::FNEG:
- case ISD::FABS:
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- case ISD::FMINNUM_IEEE:
- case ISD::FMAXNUM_IEEE:
- case ISD::FMINIMUM:
- case ISD::FMAXIMUM:
- case ISD::FCOPYSIGN:
- case ISD::FSQRT:
- case ISD::FSIN:
- case ISD::FCOS:
- case ISD::FPOWI:
- case ISD::FPOW:
- case ISD::FLOG:
- case ISD::FLOG2:
- case ISD::FLOG10:
- case ISD::FEXP:
- case ISD::FEXP2:
- case ISD::FCEIL:
- case ISD::FTRUNC:
- case ISD::FRINT:
- case ISD::FNEARBYINT:
- case ISD::FROUND:
- case ISD::FROUNDEVEN:
- case ISD::FFLOOR:
- case ISD::FP_ROUND:
- case ISD::FP_EXTEND:
- case ISD::FMA:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- case ISD::SMUL_LOHI:
- case ISD::UMUL_LOHI:
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- case ISD::FCANONICALIZE:
- case ISD::SADDSAT:
- case ISD::UADDSAT:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- case ISD::SSHLSAT:
- case ISD::USHLSAT:
- case ISD::FP_TO_SINT_SAT:
- case ISD::FP_TO_UINT_SAT:
- case ISD::MGATHER:
- Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
- break;
- case ISD::SMULFIX:
- case ISD::SMULFIXSAT:
- case ISD::UMULFIX:
- case ISD::UMULFIXSAT:
- case ISD::SDIVFIX:
- case ISD::SDIVFIXSAT:
- case ISD::UDIVFIX:
- case ISD::UDIVFIXSAT: {
- unsigned Scale = Node->getConstantOperandVal(2);
- Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
- Node->getValueType(0), Scale);
- break;
- }
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- case ISD::VECREDUCE_ADD:
- case ISD::VECREDUCE_MUL:
- case ISD::VECREDUCE_AND:
- case ISD::VECREDUCE_OR:
- case ISD::VECREDUCE_XOR:
- case ISD::VECREDUCE_SMAX:
- case ISD::VECREDUCE_SMIN:
- case ISD::VECREDUCE_UMAX:
- case ISD::VECREDUCE_UMIN:
- case ISD::VECREDUCE_FADD:
- case ISD::VECREDUCE_FMUL:
- case ISD::VECREDUCE_FMAX:
- case ISD::VECREDUCE_FMIN:
- Action = TLI.getOperationAction(Node->getOpcode(),
- Node->getOperand(0).getValueType());
- break;
- case ISD::VECREDUCE_SEQ_FADD:
- case ISD::VECREDUCE_SEQ_FMUL:
- Action = TLI.getOperationAction(Node->getOpcode(),
- Node->getOperand(1).getValueType());
- break;
- case ISD::SETCC: {
- MVT OpVT = Node->getOperand(0).getSimpleValueType();
- ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
- Action = TLI.getCondCodeAction(CCCode, OpVT);
- if (Action == TargetLowering::Legal)
- Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
- break;
- }
- #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \
- case ISD::VPID: { \
- EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \
- : Node->getOperand(LEGALPOS).getValueType(); \
- Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \
- } break;
- #include "llvm/IR/VPIntrinsics.def"
- }
- LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
- SmallVector<SDValue, 8> ResultVals;
- switch (Action) {
- default: llvm_unreachable("This action is not supported yet!");
- case TargetLowering::Promote:
- assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
- "This action is not supported yet!");
- LLVM_DEBUG(dbgs() << "Promoting\n");
- Promote(Node, ResultVals);
- assert(!ResultVals.empty() && "No results for promotion?");
- break;
- case TargetLowering::Legal:
- LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
- break;
- case TargetLowering::Custom:
- LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
- if (LowerOperationWrapper(Node, ResultVals))
- break;
- LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
- LLVM_FALLTHROUGH;
- case TargetLowering::Expand:
- LLVM_DEBUG(dbgs() << "Expanding\n");
- Expand(Node, ResultVals);
- break;
- }
- if (ResultVals.empty())
- return TranslateLegalizeResults(Op, Node);
- Changed = true;
- return RecursivelyLegalizeResults(Op, ResultVals);
- }
- // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
- // merge them somehow?
- bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
- if (!Res.getNode())
- return false;
- if (Res == SDValue(Node, 0))
- return true;
- // If the original node has one result, take the return value from
- // LowerOperation as is. It might not be result number 0.
- if (Node->getNumValues() == 1) {
- Results.push_back(Res);
- return true;
- }
- // If the original node has multiple results, then the return node should
- // have the same number of results.
- assert((Node->getNumValues() == Res->getNumValues()) &&
- "Lowering returned the wrong number of results!");
- // Places new result values base on N result number.
- for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
- Results.push_back(Res.getValue(I));
- return true;
- }
- void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
- // For a few operations there is a specific concept for promotion based on
- // the operand's type.
- switch (Node->getOpcode()) {
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- case ISD::STRICT_SINT_TO_FP:
- case ISD::STRICT_UINT_TO_FP:
- // "Promote" the operation by extending the operand.
- PromoteINT_TO_FP(Node, Results);
- return;
- case ISD::FP_TO_UINT:
- case ISD::FP_TO_SINT:
- case ISD::STRICT_FP_TO_UINT:
- case ISD::STRICT_FP_TO_SINT:
- // Promote the operation by extending the operand.
- PromoteFP_TO_INT(Node, Results);
- return;
- case ISD::FP_ROUND:
- case ISD::FP_EXTEND:
- // These operations are used to do promotion so they can't be promoted
- // themselves.
- llvm_unreachable("Don't know how to promote this operation!");
- }
- // There are currently two cases of vector promotion:
- // 1) Bitcasting a vector of integers to a different type to a vector of the
- // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
- // 2) Extending a vector of floats to a vector of the same number of larger
- // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
- assert(Node->getNumValues() == 1 &&
- "Can't promote a vector with multiple results!");
- MVT VT = Node->getSimpleValueType(0);
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
- SDLoc dl(Node);
- SmallVector<SDValue, 4> Operands(Node->getNumOperands());
- for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
- if (Node->getOperand(j).getValueType().isVector())
- if (Node->getOperand(j)
- .getValueType()
- .getVectorElementType()
- .isFloatingPoint() &&
- NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
- Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
- else
- Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
- else
- Operands[j] = Node->getOperand(j);
- }
- SDValue Res =
- DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
- if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
- (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
- NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
- Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
- else
- Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
- Results.push_back(Res);
- }
- void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- // INT_TO_FP operations may require the input operand be promoted even
- // when the type is otherwise legal.
- bool IsStrict = Node->isStrictFPOpcode();
- MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
- assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
- "Vectors have different number of elements!");
- SDLoc dl(Node);
- SmallVector<SDValue, 4> Operands(Node->getNumOperands());
- unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
- Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
- ? ISD::ZERO_EXTEND
- : ISD::SIGN_EXTEND;
- for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
- if (Node->getOperand(j).getValueType().isVector())
- Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
- else
- Operands[j] = Node->getOperand(j);
- }
- if (IsStrict) {
- SDValue Res = DAG.getNode(Node->getOpcode(), dl,
- {Node->getValueType(0), MVT::Other}, Operands);
- Results.push_back(Res);
- Results.push_back(Res.getValue(1));
- return;
- }
- SDValue Res =
- DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
- Results.push_back(Res);
- }
- // For FP_TO_INT we promote the result type to a vector type with wider
- // elements and then truncate the result. This is different from the default
- // PromoteVector which uses bitcast to promote thus assumning that the
- // promoted vector type has the same overall size.
- void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- MVT VT = Node->getSimpleValueType(0);
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
- bool IsStrict = Node->isStrictFPOpcode();
- assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
- "Vectors have different number of elements!");
- unsigned NewOpc = Node->getOpcode();
- // Change FP_TO_UINT to FP_TO_SINT if possible.
- // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
- if (NewOpc == ISD::FP_TO_UINT &&
- TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
- NewOpc = ISD::FP_TO_SINT;
- if (NewOpc == ISD::STRICT_FP_TO_UINT &&
- TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
- NewOpc = ISD::STRICT_FP_TO_SINT;
- SDLoc dl(Node);
- SDValue Promoted, Chain;
- if (IsStrict) {
- Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
- {Node->getOperand(0), Node->getOperand(1)});
- Chain = Promoted.getValue(1);
- } else
- Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
- // Assert that the converted value fits in the original type. If it doesn't
- // (eg: because the value being converted is too big), then the result of the
- // original operation was undefined anyway, so the assert is still correct.
- if (Node->getOpcode() == ISD::FP_TO_UINT ||
- Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
- NewOpc = ISD::AssertZext;
- else
- NewOpc = ISD::AssertSext;
- Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
- DAG.getValueType(VT.getScalarType()));
- Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
- Results.push_back(Promoted);
- if (IsStrict)
- Results.push_back(Chain);
- }
- std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- return TLI.scalarizeVectorLoad(LD, DAG);
- }
- SDValue VectorLegalizer::ExpandStore(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
- return TF;
- }
- void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
- switch (Node->getOpcode()) {
- case ISD::LOAD: {
- std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
- Results.push_back(Tmp.first);
- Results.push_back(Tmp.second);
- return;
- }
- case ISD::STORE:
- Results.push_back(ExpandStore(Node));
- return;
- case ISD::MERGE_VALUES:
- for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
- Results.push_back(Node->getOperand(i));
- return;
- case ISD::SIGN_EXTEND_INREG:
- Results.push_back(ExpandSEXTINREG(Node));
- return;
- case ISD::ANY_EXTEND_VECTOR_INREG:
- Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
- return;
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
- return;
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
- return;
- case ISD::BSWAP:
- Results.push_back(ExpandBSWAP(Node));
- return;
- case ISD::VSELECT:
- Results.push_back(ExpandVSELECT(Node));
- return;
- case ISD::VP_SELECT:
- Results.push_back(ExpandVP_SELECT(Node));
- return;
- case ISD::SELECT:
- Results.push_back(ExpandSELECT(Node));
- return;
- case ISD::FP_TO_UINT:
- ExpandFP_TO_UINT(Node, Results);
- return;
- case ISD::UINT_TO_FP:
- ExpandUINT_TO_FLOAT(Node, Results);
- return;
- case ISD::FNEG:
- Results.push_back(ExpandFNEG(Node));
- return;
- case ISD::FSUB:
- ExpandFSUB(Node, Results);
- return;
- case ISD::SETCC:
- ExpandSETCC(Node, Results);
- return;
- case ISD::ABS:
- if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::BITREVERSE:
- ExpandBITREVERSE(Node, Results);
- return;
- case ISD::CTPOP:
- if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::FSHL:
- case ISD::FSHR:
- if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::ROTL:
- case ISD::ROTR:
- if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::UADDO:
- case ISD::USUBO:
- ExpandUADDSUBO(Node, Results);
- return;
- case ISD::SADDO:
- case ISD::SSUBO:
- ExpandSADDSUBO(Node, Results);
- return;
- case ISD::UMULO:
- case ISD::SMULO:
- ExpandMULO(Node, Results);
- return;
- case ISD::USUBSAT:
- case ISD::SSUBSAT:
- case ISD::UADDSAT:
- case ISD::SADDSAT:
- if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::SMULFIX:
- case ISD::UMULFIX:
- if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::SMULFIXSAT:
- case ISD::UMULFIXSAT:
- // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
- // why. Maybe it results in worse codegen compared to the unroll for some
- // targets? This should probably be investigated. And if we still prefer to
- // unroll an explanation could be helpful.
- break;
- case ISD::SDIVFIX:
- case ISD::UDIVFIX:
- ExpandFixedPointDiv(Node, Results);
- return;
- case ISD::SDIVFIXSAT:
- case ISD::UDIVFIXSAT:
- break;
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN:
- #include "llvm/IR/ConstrainedOps.def"
- ExpandStrictFPOp(Node, Results);
- return;
- case ISD::VECREDUCE_ADD:
- case ISD::VECREDUCE_MUL:
- case ISD::VECREDUCE_AND:
- case ISD::VECREDUCE_OR:
- case ISD::VECREDUCE_XOR:
- case ISD::VECREDUCE_SMAX:
- case ISD::VECREDUCE_SMIN:
- case ISD::VECREDUCE_UMAX:
- case ISD::VECREDUCE_UMIN:
- case ISD::VECREDUCE_FADD:
- case ISD::VECREDUCE_FMUL:
- case ISD::VECREDUCE_FMAX:
- case ISD::VECREDUCE_FMIN:
- Results.push_back(TLI.expandVecReduce(Node, DAG));
- return;
- case ISD::VECREDUCE_SEQ_FADD:
- case ISD::VECREDUCE_SEQ_FMUL:
- Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
- return;
- case ISD::SREM:
- case ISD::UREM:
- ExpandREM(Node, Results);
- return;
- case ISD::VP_MERGE:
- Results.push_back(ExpandVP_MERGE(Node));
- return;
- }
- Results.push_back(DAG.UnrollVectorOp(Node));
- }
- SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
- // Lower a select instruction where the condition is a scalar and the
- // operands are vectors. Lower this select to VSELECT and implement it
- // using XOR AND OR. The selector bit is broadcasted.
- EVT VT = Node->getValueType(0);
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- assert(VT.isVector() && !Mask.getValueType().isVector()
- && Op1.getValueType() == Op2.getValueType() && "Invalid type");
- // If we can't even use the basic vector operations of
- // AND,OR,XOR, we will have to scalarize the op.
- // Notice that the operation may be 'promoted' which means that it is
- // 'bitcasted' to another type which is handled.
- // Also, we need to be able to construct a splat vector using either
- // BUILD_VECTOR or SPLAT_VECTOR.
- // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
- // BUILD_VECTOR?
- if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
- : ISD::SPLAT_VECTOR,
- VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- // Generate a mask operand.
- EVT MaskTy = VT.changeVectorElementTypeToInteger();
- // What is the size of each element in the vector mask.
- EVT BitTy = MaskTy.getScalarType();
- Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
- DAG.getConstant(0, DL, BitTy));
- // Broadcast the mask so that the entire vector is all one or all zero.
- if (VT.isFixedLengthVector())
- Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
- else
- Mask = DAG.getSplatVector(MaskTy, DL, Mask);
- // Bitcast the operands to be the same type as the mask.
- // This is needed when we select between FP types because
- // the mask is a vector of integers.
- Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
- Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
- SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
- Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
- Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
- SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
- return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
- }
- SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
- EVT VT = Node->getValueType(0);
- // Make sure that the SRA and SHL instructions are available.
- if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- SDLoc DL(Node);
- EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
- unsigned BW = VT.getScalarSizeInBits();
- unsigned OrigBW = OrigTy.getScalarSizeInBits();
- SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
- SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
- return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
- }
- // Generically expand a vector anyext in register to a shuffle of the relevant
- // lanes into the appropriate locations, with other lanes left undef.
- SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
- SDLoc DL(Node);
- EVT VT = Node->getValueType(0);
- int NumElements = VT.getVectorNumElements();
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- int NumSrcElements = SrcVT.getVectorNumElements();
- // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
- // into a larger vector type.
- if (SrcVT.bitsLE(VT)) {
- assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
- "ANY_EXTEND_VECTOR_INREG vector size mismatch");
- NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
- SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
- NumSrcElements);
- Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
- Src, DAG.getVectorIdxConstant(0, DL));
- }
- // Build a base mask of undef shuffles.
- SmallVector<int, 16> ShuffleMask;
- ShuffleMask.resize(NumSrcElements, -1);
- // Place the extended lanes into the correct locations.
- int ExtLaneScale = NumSrcElements / NumElements;
- int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
- for (int i = 0; i < NumElements; ++i)
- ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
- return DAG.getNode(
- ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
- }
- SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
- SDLoc DL(Node);
- EVT VT = Node->getValueType(0);
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- // First build an any-extend node which can be legalized above when we
- // recurse through it.
- SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
- // Now we need sign extend. Do this by shifting the elements. Even if these
- // aren't legal operations, they have a better chance of being legalized
- // without full scalarization than the sign extension does.
- unsigned EltWidth = VT.getScalarSizeInBits();
- unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
- SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
- return DAG.getNode(ISD::SRA, DL, VT,
- DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
- ShiftAmount);
- }
- // Generically expand a vector zext in register to a shuffle of the relevant
- // lanes into the appropriate locations, a blend of zero into the high bits,
- // and a bitcast to the wider element type.
- SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
- SDLoc DL(Node);
- EVT VT = Node->getValueType(0);
- int NumElements = VT.getVectorNumElements();
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- int NumSrcElements = SrcVT.getVectorNumElements();
- // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
- // into a larger vector type.
- if (SrcVT.bitsLE(VT)) {
- assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
- "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
- NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
- SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
- NumSrcElements);
- Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
- Src, DAG.getVectorIdxConstant(0, DL));
- }
- // Build up a zero vector to blend into this one.
- SDValue Zero = DAG.getConstant(0, DL, SrcVT);
- // Shuffle the incoming lanes into the correct position, and pull all other
- // lanes from the zero vector.
- SmallVector<int, 16> ShuffleMask;
- ShuffleMask.reserve(NumSrcElements);
- for (int i = 0; i < NumSrcElements; ++i)
- ShuffleMask.push_back(i);
- int ExtLaneScale = NumSrcElements / NumElements;
- int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
- for (int i = 0; i < NumElements; ++i)
- ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
- }
- static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
- int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
- for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
- for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
- ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
- }
- SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
- EVT VT = Node->getValueType(0);
- // Scalable vectors can't use shuffle expansion.
- if (VT.isScalableVector())
- return TLI.expandBSWAP(Node, DAG);
- // Generate a byte wise shuffle mask for the BSWAP.
- SmallVector<int, 16> ShuffleMask;
- createBSWAPShuffleMask(VT, ShuffleMask);
- EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
- // Only emit a shuffle if the mask is legal.
- if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
- SDLoc DL(Node);
- SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
- Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
- return DAG.getNode(ISD::BITCAST, DL, VT, Op);
- }
- // If we have the appropriate vector bit operations, it is better to use them
- // than unrolling and expanding each component.
- if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
- return TLI.expandBSWAP(Node, DAG);
- // Otherwise unroll.
- return DAG.UnrollVectorOp(Node);
- }
- void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- EVT VT = Node->getValueType(0);
- // We can't unroll or use shuffles for scalable vectors.
- if (VT.isScalableVector()) {
- Results.push_back(TLI.expandBITREVERSE(Node, DAG));
- return;
- }
- // If we have the scalar operation, it's probably cheaper to unroll it.
- if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
- SDValue Tmp = DAG.UnrollVectorOp(Node);
- Results.push_back(Tmp);
- return;
- }
- // If the vector element width is a whole number of bytes, test if its legal
- // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
- // vector. This greatly reduces the number of bit shifts necessary.
- unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
- if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
- SmallVector<int, 16> BSWAPMask;
- createBSWAPShuffleMask(VT, BSWAPMask);
- EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
- if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
- (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
- (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
- SDLoc DL(Node);
- SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
- Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
- BSWAPMask);
- Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
- Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
- Results.push_back(Op);
- return;
- }
- }
- // If we have the appropriate vector bit operations, it is better to use them
- // than unrolling and expanding each component.
- if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
- Results.push_back(TLI.expandBITREVERSE(Node, DAG));
- return;
- }
- // Otherwise unroll.
- SDValue Tmp = DAG.UnrollVectorOp(Node);
- Results.push_back(Tmp);
- }
- SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
- // Implement VSELECT in terms of XOR, AND, OR
- // on platforms which do not support blend natively.
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- EVT VT = Mask.getValueType();
- // If we can't even use the basic vector operations of
- // AND,OR,XOR, we will have to scalarize the op.
- // Notice that the operation may be 'promoted' which means that it is
- // 'bitcasted' to another type which is handled.
- if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- // This operation also isn't safe with AND, OR, XOR when the boolean type is
- // 0/1 and the select operands aren't also booleans, as we need an all-ones
- // vector constant to mask with.
- // FIXME: Sign extend 1 to all ones if that's legal on the target.
- auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
- if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
- !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
- Op1.getValueType().getVectorElementType() == MVT::i1))
- return DAG.UnrollVectorOp(Node);
- // If the mask and the type are different sizes, unroll the vector op. This
- // can occur when getSetCCResultType returns something that is different in
- // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
- if (VT.getSizeInBits() != Op1.getValueSizeInBits())
- return DAG.UnrollVectorOp(Node);
- // Bitcast the operands to be the same type as the mask.
- // This is needed when we select between FP types because
- // the mask is a vector of integers.
- Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
- Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
- SDValue NotMask = DAG.getNOT(DL, Mask, VT);
- Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
- Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
- SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
- return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
- }
- SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
- // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
- // do not support it natively.
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- SDValue EVL = Node->getOperand(3);
- EVT VT = Mask.getValueType();
- // If we can't even use the basic vector operations of
- // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
- if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- // This operation also isn't safe when the operands aren't also booleans.
- if (Op1.getValueType().getVectorElementType() != MVT::i1)
- return DAG.UnrollVectorOp(Node);
- SDValue Ones = DAG.getAllOnesConstant(DL, VT);
- SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
- Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
- Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
- return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
- }
- SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
- // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
- // indices less than the EVL/pivot are true. Combine that with the original
- // mask for a full-length mask. Use a full-length VSELECT to select between
- // the true and false values.
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- SDValue EVL = Node->getOperand(3);
- EVT MaskVT = Mask.getValueType();
- bool IsFixedLen = MaskVT.isFixedLengthVector();
- EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
- MaskVT.getVectorElementCount());
- // If we can't construct the EVL mask efficiently, it's better to unroll.
- if ((IsFixedLen &&
- !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
- (!IsFixedLen &&
- (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
- !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
- return DAG.UnrollVectorOp(Node);
- // If using a SETCC would result in a different type than the mask type,
- // unroll.
- if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- EVLVecVT) != MaskVT)
- return DAG.UnrollVectorOp(Node);
- SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
- SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL)
- : DAG.getSplatVector(EVLVecVT, DL, EVL);
- SDValue EVLMask =
- DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
- SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
- return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
- }
- void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- // Attempt to expand using TargetLowering.
- SDValue Result, Chain;
- if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
- Results.push_back(Result);
- if (Node->isStrictFPOpcode())
- Results.push_back(Chain);
- return;
- }
- // Otherwise go ahead and unroll.
- if (Node->isStrictFPOpcode()) {
- UnrollStrictFPOp(Node, Results);
- return;
- }
- Results.push_back(DAG.UnrollVectorOp(Node));
- }
- void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- bool IsStrict = Node->isStrictFPOpcode();
- unsigned OpNo = IsStrict ? 1 : 0;
- SDValue Src = Node->getOperand(OpNo);
- EVT VT = Src.getValueType();
- SDLoc DL(Node);
- // Attempt to expand using TargetLowering.
- SDValue Result;
- SDValue Chain;
- if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
- Results.push_back(Result);
- if (IsStrict)
- Results.push_back(Chain);
- return;
- }
- // Make sure that the SINT_TO_FP and SRL instructions are available.
- if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
- TargetLowering::Expand) ||
- (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
- TargetLowering::Expand)) ||
- TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
- if (IsStrict) {
- UnrollStrictFPOp(Node, Results);
- return;
- }
- Results.push_back(DAG.UnrollVectorOp(Node));
- return;
- }
- unsigned BW = VT.getScalarSizeInBits();
- assert((BW == 64 || BW == 32) &&
- "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
- SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
- // Constants to clear the upper part of the word.
- // Notice that we can also use SHL+SHR, but using a constant is slightly
- // faster on x86.
- uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
- SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
- // Two to the power of half-word-size.
- SDValue TWOHW =
- DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
- // Clear upper part of LO, lower HI
- SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
- SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
- if (IsStrict) {
- // Convert hi and lo to floats
- // Convert the hi part back to the upper values
- // TODO: Can any fast-math-flags be set on these nodes?
- SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
- {Node->getValueType(0), MVT::Other},
- {Node->getOperand(0), HI});
- fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
- {fHI.getValue(1), fHI, TWOHW});
- SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
- {Node->getValueType(0), MVT::Other},
- {Node->getOperand(0), LO});
- SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
- fLO.getValue(1));
- // Add the two halves
- SDValue Result =
- DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
- {TF, fHI, fLO});
- Results.push_back(Result);
- Results.push_back(Result.getValue(1));
- return;
- }
- // Convert hi and lo to floats
- // Convert the hi part back to the upper values
- // TODO: Can any fast-math-flags be set on these nodes?
- SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
- fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
- SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
- // Add the two halves
- Results.push_back(
- DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
- }
- SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
- if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
- SDLoc DL(Node);
- SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
- // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
- return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
- Node->getOperand(0));
- }
- return DAG.UnrollVectorOp(Node);
- }
- void VectorLegalizer::ExpandFSUB(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
- // we can defer this to operation legalization where it will be lowered as
- // a+(-b).
- EVT VT = Node->getValueType(0);
- if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
- TLI.isOperationLegalOrCustom(ISD::FADD, VT))
- return; // Defer to LegalizeDAG
- SDValue Tmp = DAG.UnrollVectorOp(Node);
- Results.push_back(Tmp);
- }
- void VectorLegalizer::ExpandSETCC(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- bool NeedInvert = false;
- SDLoc dl(Node);
- MVT OpVT = Node->getOperand(0).getSimpleValueType();
- ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
- if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
- Results.push_back(UnrollVSETCC(Node));
- return;
- }
- SDValue Chain;
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- SDValue CC = Node->getOperand(2);
- bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS,
- RHS, CC, NeedInvert, dl, Chain);
- if (Legalized) {
- // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
- // condition code, create a new SETCC node.
- if (CC.getNode())
- LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
- Node->getFlags());
- // If we expanded the SETCC by inverting the condition code, then wrap
- // the existing SETCC in a NOT to restore the intended condition.
- if (NeedInvert)
- LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
- } else {
- // Otherwise, SETCC for the given comparison type must be completely
- // illegal; expand it into a SELECT_CC.
- EVT VT = Node->getValueType(0);
- LHS =
- DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
- DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
- DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
- LHS->setFlags(Node->getFlags());
- }
- Results.push_back(LHS);
- }
- void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Result, Overflow;
- TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
- Results.push_back(Result);
- Results.push_back(Overflow);
- }
- void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Result, Overflow;
- TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
- Results.push_back(Result);
- Results.push_back(Overflow);
- }
- void VectorLegalizer::ExpandMULO(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Result, Overflow;
- if (!TLI.expandMULO(Node, Result, Overflow, DAG))
- std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
- Results.push_back(Result);
- Results.push_back(Overflow);
- }
- void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDNode *N = Node;
- if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
- N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
- Results.push_back(Expanded);
- }
- void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
- ExpandUINT_TO_FLOAT(Node, Results);
- return;
- }
- if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
- ExpandFP_TO_UINT(Node, Results);
- return;
- }
- UnrollStrictFPOp(Node, Results);
- }
- void VectorLegalizer::ExpandREM(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
- "Expected REM node");
- SDValue Result;
- if (!TLI.expandREM(Node, Result, DAG))
- Result = DAG.UnrollVectorOp(Node);
- Results.push_back(Result);
- }
- void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- EVT VT = Node->getValueType(0);
- EVT EltVT = VT.getVectorElementType();
- unsigned NumElems = VT.getVectorNumElements();
- unsigned NumOpers = Node->getNumOperands();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT TmpEltVT = EltVT;
- if (Node->getOpcode() == ISD::STRICT_FSETCC ||
- Node->getOpcode() == ISD::STRICT_FSETCCS)
- TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(), TmpEltVT);
- EVT ValueVTs[] = {TmpEltVT, MVT::Other};
- SDValue Chain = Node->getOperand(0);
- SDLoc dl(Node);
- SmallVector<SDValue, 32> OpValues;
- SmallVector<SDValue, 32> OpChains;
- for (unsigned i = 0; i < NumElems; ++i) {
- SmallVector<SDValue, 4> Opers;
- SDValue Idx = DAG.getVectorIdxConstant(i, dl);
- // The Chain is the first operand.
- Opers.push_back(Chain);
- // Now process the remaining operands.
- for (unsigned j = 1; j < NumOpers; ++j) {
- SDValue Oper = Node->getOperand(j);
- EVT OperVT = Oper.getValueType();
- if (OperVT.isVector())
- Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- OperVT.getVectorElementType(), Oper, Idx);
- Opers.push_back(Oper);
- }
- SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
- SDValue ScalarResult = ScalarOp.getValue(0);
- SDValue ScalarChain = ScalarOp.getValue(1);
- if (Node->getOpcode() == ISD::STRICT_FSETCC ||
- Node->getOpcode() == ISD::STRICT_FSETCCS)
- ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
- DAG.getAllOnesConstant(dl, EltVT),
- DAG.getConstant(0, dl, EltVT));
- OpValues.push_back(ScalarResult);
- OpChains.push_back(ScalarChain);
- }
- SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
- Results.push_back(Result);
- Results.push_back(NewChain);
- }
- SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
- EVT VT = Node->getValueType(0);
- unsigned NumElems = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- SDValue CC = Node->getOperand(2);
- EVT TmpEltVT = LHS.getValueType().getVectorElementType();
- SDLoc dl(Node);
- SmallVector<SDValue, 8> Ops(NumElems);
- for (unsigned i = 0; i < NumElems; ++i) {
- SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
- DAG.getVectorIdxConstant(i, dl));
- SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
- DAG.getVectorIdxConstant(i, dl));
- Ops[i] = DAG.getNode(ISD::SETCC, dl,
- TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(), TmpEltVT),
- LHSElem, RHSElem, CC);
- Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
- DAG.getConstant(0, dl, EltVT));
- }
- return DAG.getBuildVector(VT, dl, Ops);
- }
- bool SelectionDAG::LegalizeVectors() {
- return VectorLegalizer(*this).Run();
- }
|