12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259 |
- /*
- * Copyright 2008-2009 Katholieke Universiteit Leuven
- * Copyright 2013 Ecole Normale Superieure
- * Copyright 2014 INRIA Rocquencourt
- * Copyright 2016 Sven Verdoolaege
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, K.U.Leuven, Departement
- * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
- * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
- * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
- * B.P. 105 - 78153 Le Chesnay, France
- */
- #include <isl_ctx_private.h>
- #include <isl_mat_private.h>
- #include <isl_vec_private.h>
- #include "isl_map_private.h"
- #include "isl_tab.h"
- #include <isl_seq.h>
- #include <isl_config.h>
- #include <bset_to_bmap.c>
- #include <bset_from_bmap.c>
- /*
- * The implementation of tableaus in this file was inspired by Section 8
- * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
- * prover for program checking".
- */
- struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
- unsigned n_row, unsigned n_var, unsigned M)
- {
- int i;
- struct isl_tab *tab;
- unsigned off = 2 + M;
- tab = isl_calloc_type(ctx, struct isl_tab);
- if (!tab)
- return NULL;
- tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
- if (!tab->mat)
- goto error;
- tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
- if (n_var && !tab->var)
- goto error;
- tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
- if (n_row && !tab->con)
- goto error;
- tab->col_var = isl_alloc_array(ctx, int, n_var);
- if (n_var && !tab->col_var)
- goto error;
- tab->row_var = isl_alloc_array(ctx, int, n_row);
- if (n_row && !tab->row_var)
- goto error;
- for (i = 0; i < n_var; ++i) {
- tab->var[i].index = i;
- tab->var[i].is_row = 0;
- tab->var[i].is_nonneg = 0;
- tab->var[i].is_zero = 0;
- tab->var[i].is_redundant = 0;
- tab->var[i].frozen = 0;
- tab->var[i].negated = 0;
- tab->col_var[i] = i;
- }
- tab->n_row = 0;
- tab->n_con = 0;
- tab->n_eq = 0;
- tab->max_con = n_row;
- tab->n_col = n_var;
- tab->n_var = n_var;
- tab->max_var = n_var;
- tab->n_param = 0;
- tab->n_div = 0;
- tab->n_dead = 0;
- tab->n_redundant = 0;
- tab->strict_redundant = 0;
- tab->need_undo = 0;
- tab->rational = 0;
- tab->empty = 0;
- tab->in_undo = 0;
- tab->M = M;
- tab->cone = 0;
- tab->bottom.type = isl_tab_undo_bottom;
- tab->bottom.next = NULL;
- tab->top = &tab->bottom;
- tab->n_zero = 0;
- tab->n_unbounded = 0;
- tab->basis = NULL;
- return tab;
- error:
- isl_tab_free(tab);
- return NULL;
- }
- isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
- {
- return tab ? isl_mat_get_ctx(tab->mat) : NULL;
- }
- int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
- {
- unsigned off;
- if (!tab)
- return -1;
- off = 2 + tab->M;
- if (tab->max_con < tab->n_con + n_new) {
- struct isl_tab_var *con;
- con = isl_realloc_array(tab->mat->ctx, tab->con,
- struct isl_tab_var, tab->max_con + n_new);
- if (!con)
- return -1;
- tab->con = con;
- tab->max_con += n_new;
- }
- if (tab->mat->n_row < tab->n_row + n_new) {
- int *row_var;
- tab->mat = isl_mat_extend(tab->mat,
- tab->n_row + n_new, off + tab->n_col);
- if (!tab->mat)
- return -1;
- row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
- int, tab->mat->n_row);
- if (!row_var)
- return -1;
- tab->row_var = row_var;
- if (tab->row_sign) {
- enum isl_tab_row_sign *s;
- s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
- enum isl_tab_row_sign, tab->mat->n_row);
- if (!s)
- return -1;
- tab->row_sign = s;
- }
- }
- return 0;
- }
- /* Make room for at least n_new extra variables.
- * Return -1 if anything went wrong.
- */
- int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
- {
- struct isl_tab_var *var;
- unsigned off = 2 + tab->M;
- if (tab->max_var < tab->n_var + n_new) {
- var = isl_realloc_array(tab->mat->ctx, tab->var,
- struct isl_tab_var, tab->n_var + n_new);
- if (!var)
- return -1;
- tab->var = var;
- tab->max_var = tab->n_var + n_new;
- }
- if (tab->mat->n_col < off + tab->n_col + n_new) {
- int *p;
- tab->mat = isl_mat_extend(tab->mat,
- tab->mat->n_row, off + tab->n_col + n_new);
- if (!tab->mat)
- return -1;
- p = isl_realloc_array(tab->mat->ctx, tab->col_var,
- int, tab->n_col + n_new);
- if (!p)
- return -1;
- tab->col_var = p;
- }
- return 0;
- }
- static void free_undo_record(struct isl_tab_undo *undo)
- {
- switch (undo->type) {
- case isl_tab_undo_saved_basis:
- free(undo->u.col_var);
- break;
- default:;
- }
- free(undo);
- }
- static void free_undo(struct isl_tab *tab)
- {
- struct isl_tab_undo *undo, *next;
- for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
- next = undo->next;
- free_undo_record(undo);
- }
- tab->top = undo;
- }
- void isl_tab_free(struct isl_tab *tab)
- {
- if (!tab)
- return;
- free_undo(tab);
- isl_mat_free(tab->mat);
- isl_vec_free(tab->dual);
- isl_basic_map_free(tab->bmap);
- free(tab->var);
- free(tab->con);
- free(tab->row_var);
- free(tab->col_var);
- free(tab->row_sign);
- isl_mat_free(tab->samples);
- free(tab->sample_index);
- isl_mat_free(tab->basis);
- free(tab);
- }
- struct isl_tab *isl_tab_dup(struct isl_tab *tab)
- {
- int i;
- struct isl_tab *dup;
- unsigned off;
- if (!tab)
- return NULL;
- off = 2 + tab->M;
- dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
- if (!dup)
- return NULL;
- dup->mat = isl_mat_dup(tab->mat);
- if (!dup->mat)
- goto error;
- dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
- if (tab->max_var && !dup->var)
- goto error;
- for (i = 0; i < tab->n_var; ++i)
- dup->var[i] = tab->var[i];
- dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
- if (tab->max_con && !dup->con)
- goto error;
- for (i = 0; i < tab->n_con; ++i)
- dup->con[i] = tab->con[i];
- dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
- if ((tab->mat->n_col - off) && !dup->col_var)
- goto error;
- for (i = 0; i < tab->n_col; ++i)
- dup->col_var[i] = tab->col_var[i];
- dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
- if (tab->mat->n_row && !dup->row_var)
- goto error;
- for (i = 0; i < tab->n_row; ++i)
- dup->row_var[i] = tab->row_var[i];
- if (tab->row_sign) {
- dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
- tab->mat->n_row);
- if (tab->mat->n_row && !dup->row_sign)
- goto error;
- for (i = 0; i < tab->n_row; ++i)
- dup->row_sign[i] = tab->row_sign[i];
- }
- if (tab->samples) {
- dup->samples = isl_mat_dup(tab->samples);
- if (!dup->samples)
- goto error;
- dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
- tab->samples->n_row);
- if (tab->samples->n_row && !dup->sample_index)
- goto error;
- dup->n_sample = tab->n_sample;
- dup->n_outside = tab->n_outside;
- }
- dup->n_row = tab->n_row;
- dup->n_con = tab->n_con;
- dup->n_eq = tab->n_eq;
- dup->max_con = tab->max_con;
- dup->n_col = tab->n_col;
- dup->n_var = tab->n_var;
- dup->max_var = tab->max_var;
- dup->n_param = tab->n_param;
- dup->n_div = tab->n_div;
- dup->n_dead = tab->n_dead;
- dup->n_redundant = tab->n_redundant;
- dup->rational = tab->rational;
- dup->empty = tab->empty;
- dup->strict_redundant = 0;
- dup->need_undo = 0;
- dup->in_undo = 0;
- dup->M = tab->M;
- dup->cone = tab->cone;
- dup->bottom.type = isl_tab_undo_bottom;
- dup->bottom.next = NULL;
- dup->top = &dup->bottom;
- dup->n_zero = tab->n_zero;
- dup->n_unbounded = tab->n_unbounded;
- dup->basis = isl_mat_dup(tab->basis);
- return dup;
- error:
- isl_tab_free(dup);
- return NULL;
- }
- /* Construct the coefficient matrix of the product tableau
- * of two tableaus.
- * mat{1,2} is the coefficient matrix of tableau {1,2}
- * row{1,2} is the number of rows in tableau {1,2}
- * col{1,2} is the number of columns in tableau {1,2}
- * off is the offset to the coefficient column (skipping the
- * denominator, the constant term and the big parameter if any)
- * r{1,2} is the number of redundant rows in tableau {1,2}
- * d{1,2} is the number of dead columns in tableau {1,2}
- *
- * The order of the rows and columns in the result is as explained
- * in isl_tab_product.
- */
- static __isl_give isl_mat *tab_mat_product(__isl_keep isl_mat *mat1,
- __isl_keep isl_mat *mat2, unsigned row1, unsigned row2,
- unsigned col1, unsigned col2,
- unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
- {
- int i;
- struct isl_mat *prod;
- unsigned n;
- prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
- off + col1 + col2);
- if (!prod)
- return NULL;
- n = 0;
- for (i = 0; i < r1; ++i) {
- isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
- isl_seq_clr(prod->row[n + i] + off + d1, d2);
- isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
- mat1->row[i] + off + d1, col1 - d1);
- isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
- }
- n += r1;
- for (i = 0; i < r2; ++i) {
- isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
- isl_seq_clr(prod->row[n + i] + off, d1);
- isl_seq_cpy(prod->row[n + i] + off + d1,
- mat2->row[i] + off, d2);
- isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
- isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
- mat2->row[i] + off + d2, col2 - d2);
- }
- n += r2;
- for (i = 0; i < row1 - r1; ++i) {
- isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
- isl_seq_clr(prod->row[n + i] + off + d1, d2);
- isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
- mat1->row[r1 + i] + off + d1, col1 - d1);
- isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
- }
- n += row1 - r1;
- for (i = 0; i < row2 - r2; ++i) {
- isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
- isl_seq_clr(prod->row[n + i] + off, d1);
- isl_seq_cpy(prod->row[n + i] + off + d1,
- mat2->row[r2 + i] + off, d2);
- isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
- isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
- mat2->row[r2 + i] + off + d2, col2 - d2);
- }
- return prod;
- }
- /* Update the row or column index of a variable that corresponds
- * to a variable in the first input tableau.
- */
- static void update_index1(struct isl_tab_var *var,
- unsigned r1, unsigned r2, unsigned d1, unsigned d2)
- {
- if (var->index == -1)
- return;
- if (var->is_row && var->index >= r1)
- var->index += r2;
- if (!var->is_row && var->index >= d1)
- var->index += d2;
- }
- /* Update the row or column index of a variable that corresponds
- * to a variable in the second input tableau.
- */
- static void update_index2(struct isl_tab_var *var,
- unsigned row1, unsigned col1,
- unsigned r1, unsigned r2, unsigned d1, unsigned d2)
- {
- if (var->index == -1)
- return;
- if (var->is_row) {
- if (var->index < r2)
- var->index += r1;
- else
- var->index += row1;
- } else {
- if (var->index < d2)
- var->index += d1;
- else
- var->index += col1;
- }
- }
- /* Create a tableau that represents the Cartesian product of the sets
- * represented by tableaus tab1 and tab2.
- * The order of the rows in the product is
- * - redundant rows of tab1
- * - redundant rows of tab2
- * - non-redundant rows of tab1
- * - non-redundant rows of tab2
- * The order of the columns is
- * - denominator
- * - constant term
- * - coefficient of big parameter, if any
- * - dead columns of tab1
- * - dead columns of tab2
- * - live columns of tab1
- * - live columns of tab2
- * The order of the variables and the constraints is a concatenation
- * of order in the two input tableaus.
- */
- struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
- {
- int i;
- struct isl_tab *prod;
- unsigned off;
- unsigned r1, r2, d1, d2;
- if (!tab1 || !tab2)
- return NULL;
- isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
- isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
- isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
- isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
- isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
- isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
- isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
- isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
- isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
- off = 2 + tab1->M;
- r1 = tab1->n_redundant;
- r2 = tab2->n_redundant;
- d1 = tab1->n_dead;
- d2 = tab2->n_dead;
- prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
- if (!prod)
- return NULL;
- prod->mat = tab_mat_product(tab1->mat, tab2->mat,
- tab1->n_row, tab2->n_row,
- tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
- if (!prod->mat)
- goto error;
- prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
- tab1->max_var + tab2->max_var);
- if ((tab1->max_var + tab2->max_var) && !prod->var)
- goto error;
- for (i = 0; i < tab1->n_var; ++i) {
- prod->var[i] = tab1->var[i];
- update_index1(&prod->var[i], r1, r2, d1, d2);
- }
- for (i = 0; i < tab2->n_var; ++i) {
- prod->var[tab1->n_var + i] = tab2->var[i];
- update_index2(&prod->var[tab1->n_var + i],
- tab1->n_row, tab1->n_col,
- r1, r2, d1, d2);
- }
- prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
- tab1->max_con + tab2->max_con);
- if ((tab1->max_con + tab2->max_con) && !prod->con)
- goto error;
- for (i = 0; i < tab1->n_con; ++i) {
- prod->con[i] = tab1->con[i];
- update_index1(&prod->con[i], r1, r2, d1, d2);
- }
- for (i = 0; i < tab2->n_con; ++i) {
- prod->con[tab1->n_con + i] = tab2->con[i];
- update_index2(&prod->con[tab1->n_con + i],
- tab1->n_row, tab1->n_col,
- r1, r2, d1, d2);
- }
- prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
- tab1->n_col + tab2->n_col);
- if ((tab1->n_col + tab2->n_col) && !prod->col_var)
- goto error;
- for (i = 0; i < tab1->n_col; ++i) {
- int pos = i < d1 ? i : i + d2;
- prod->col_var[pos] = tab1->col_var[i];
- }
- for (i = 0; i < tab2->n_col; ++i) {
- int pos = i < d2 ? d1 + i : tab1->n_col + i;
- int t = tab2->col_var[i];
- if (t >= 0)
- t += tab1->n_var;
- else
- t -= tab1->n_con;
- prod->col_var[pos] = t;
- }
- prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
- tab1->mat->n_row + tab2->mat->n_row);
- if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
- goto error;
- for (i = 0; i < tab1->n_row; ++i) {
- int pos = i < r1 ? i : i + r2;
- prod->row_var[pos] = tab1->row_var[i];
- }
- for (i = 0; i < tab2->n_row; ++i) {
- int pos = i < r2 ? r1 + i : tab1->n_row + i;
- int t = tab2->row_var[i];
- if (t >= 0)
- t += tab1->n_var;
- else
- t -= tab1->n_con;
- prod->row_var[pos] = t;
- }
- prod->samples = NULL;
- prod->sample_index = NULL;
- prod->n_row = tab1->n_row + tab2->n_row;
- prod->n_con = tab1->n_con + tab2->n_con;
- prod->n_eq = 0;
- prod->max_con = tab1->max_con + tab2->max_con;
- prod->n_col = tab1->n_col + tab2->n_col;
- prod->n_var = tab1->n_var + tab2->n_var;
- prod->max_var = tab1->max_var + tab2->max_var;
- prod->n_param = 0;
- prod->n_div = 0;
- prod->n_dead = tab1->n_dead + tab2->n_dead;
- prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
- prod->rational = tab1->rational;
- prod->empty = tab1->empty || tab2->empty;
- prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
- prod->need_undo = 0;
- prod->in_undo = 0;
- prod->M = tab1->M;
- prod->cone = tab1->cone;
- prod->bottom.type = isl_tab_undo_bottom;
- prod->bottom.next = NULL;
- prod->top = &prod->bottom;
- prod->n_zero = 0;
- prod->n_unbounded = 0;
- prod->basis = NULL;
- return prod;
- error:
- isl_tab_free(prod);
- return NULL;
- }
- static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
- {
- if (i >= 0)
- return &tab->var[i];
- else
- return &tab->con[~i];
- }
- struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
- {
- return var_from_index(tab, tab->row_var[i]);
- }
- static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
- {
- return var_from_index(tab, tab->col_var[i]);
- }
- /* Check if there are any upper bounds on column variable "var",
- * i.e., non-negative rows where var appears with a negative coefficient.
- * Return 1 if there are no such bounds.
- */
- static int max_is_manifestly_unbounded(struct isl_tab *tab,
- struct isl_tab_var *var)
- {
- int i;
- unsigned off = 2 + tab->M;
- if (var->is_row)
- return 0;
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
- continue;
- if (isl_tab_var_from_row(tab, i)->is_nonneg)
- return 0;
- }
- return 1;
- }
- /* Check if there are any lower bounds on column variable "var",
- * i.e., non-negative rows where var appears with a positive coefficient.
- * Return 1 if there are no such bounds.
- */
- static int min_is_manifestly_unbounded(struct isl_tab *tab,
- struct isl_tab_var *var)
- {
- int i;
- unsigned off = 2 + tab->M;
- if (var->is_row)
- return 0;
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
- continue;
- if (isl_tab_var_from_row(tab, i)->is_nonneg)
- return 0;
- }
- return 1;
- }
- static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t)
- {
- unsigned off = 2 + tab->M;
- if (tab->M) {
- int s;
- isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
- isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
- s = isl_int_sgn(*t);
- if (s)
- return s;
- }
- isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
- isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
- return isl_int_sgn(*t);
- }
- /* Given the index of a column "c", return the index of a row
- * that can be used to pivot the column in, with either an increase
- * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
- * If "var" is not NULL, then the row returned will be different from
- * the one associated with "var".
- *
- * Each row in the tableau is of the form
- *
- * x_r = a_r0 + \sum_i a_ri x_i
- *
- * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
- * impose any limit on the increase or decrease in the value of x_c
- * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
- * for the row with the smallest (most stringent) such bound.
- * Note that the common denominator of each row drops out of the fraction.
- * To check if row j has a smaller bound than row r, i.e.,
- * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
- * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
- * where -sign(a_jc) is equal to "sgn".
- */
- static int pivot_row(struct isl_tab *tab,
- struct isl_tab_var *var, int sgn, int c)
- {
- int j, r, tsgn;
- isl_int t;
- unsigned off = 2 + tab->M;
- isl_int_init(t);
- r = -1;
- for (j = tab->n_redundant; j < tab->n_row; ++j) {
- if (var && j == var->index)
- continue;
- if (!isl_tab_var_from_row(tab, j)->is_nonneg)
- continue;
- if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
- continue;
- if (r < 0) {
- r = j;
- continue;
- }
- tsgn = sgn * row_cmp(tab, r, j, c, &t);
- if (tsgn < 0 || (tsgn == 0 &&
- tab->row_var[j] < tab->row_var[r]))
- r = j;
- }
- isl_int_clear(t);
- return r;
- }
- /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
- * (sgn < 0) the value of row variable var.
- * If not NULL, then skip_var is a row variable that should be ignored
- * while looking for a pivot row. It is usually equal to var.
- *
- * As the given row in the tableau is of the form
- *
- * x_r = a_r0 + \sum_i a_ri x_i
- *
- * we need to find a column such that the sign of a_ri is equal to "sgn"
- * (such that an increase in x_i will have the desired effect) or a
- * column with a variable that may attain negative values.
- * If a_ri is positive, then we need to move x_i in the same direction
- * to obtain the desired effect. Otherwise, x_i has to move in the
- * opposite direction.
- */
- static void find_pivot(struct isl_tab *tab,
- struct isl_tab_var *var, struct isl_tab_var *skip_var,
- int sgn, int *row, int *col)
- {
- int j, r, c;
- isl_int *tr;
- *row = *col = -1;
- isl_assert(tab->mat->ctx, var->is_row, return);
- tr = tab->mat->row[var->index] + 2 + tab->M;
- c = -1;
- for (j = tab->n_dead; j < tab->n_col; ++j) {
- if (isl_int_is_zero(tr[j]))
- continue;
- if (isl_int_sgn(tr[j]) != sgn &&
- var_from_col(tab, j)->is_nonneg)
- continue;
- if (c < 0 || tab->col_var[j] < tab->col_var[c])
- c = j;
- }
- if (c < 0)
- return;
- sgn *= isl_int_sgn(tr[c]);
- r = pivot_row(tab, skip_var, sgn, c);
- *row = r < 0 ? var->index : r;
- *col = c;
- }
- /* Return 1 if row "row" represents an obviously redundant inequality.
- * This means
- * - it represents an inequality or a variable
- * - that is the sum of a non-negative sample value and a positive
- * combination of zero or more non-negative constraints.
- */
- int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
- {
- int i;
- unsigned off = 2 + tab->M;
- if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
- return 0;
- if (isl_int_is_neg(tab->mat->row[row][1]))
- return 0;
- if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
- return 0;
- if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
- return 0;
- for (i = tab->n_dead; i < tab->n_col; ++i) {
- if (isl_int_is_zero(tab->mat->row[row][off + i]))
- continue;
- if (tab->col_var[i] >= 0)
- return 0;
- if (isl_int_is_neg(tab->mat->row[row][off + i]))
- return 0;
- if (!var_from_col(tab, i)->is_nonneg)
- return 0;
- }
- return 1;
- }
- static void swap_rows(struct isl_tab *tab, int row1, int row2)
- {
- int t;
- enum isl_tab_row_sign s;
- t = tab->row_var[row1];
- tab->row_var[row1] = tab->row_var[row2];
- tab->row_var[row2] = t;
- isl_tab_var_from_row(tab, row1)->index = row1;
- isl_tab_var_from_row(tab, row2)->index = row2;
- tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
- if (!tab->row_sign)
- return;
- s = tab->row_sign[row1];
- tab->row_sign[row1] = tab->row_sign[row2];
- tab->row_sign[row2] = s;
- }
- static isl_stat push_union(struct isl_tab *tab,
- enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
- /* Push record "u" onto the undo stack of "tab", provided "tab"
- * keeps track of undo information.
- *
- * If the record cannot be pushed, then mark the undo stack as invalid
- * such that a later rollback attempt will not try to undo earlier
- * records without having been able to undo the current record.
- */
- static isl_stat push_union(struct isl_tab *tab,
- enum isl_tab_undo_type type, union isl_tab_undo_val u)
- {
- struct isl_tab_undo *undo;
- if (!tab)
- return isl_stat_error;
- if (!tab->need_undo)
- return isl_stat_ok;
- undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
- if (!undo)
- goto error;
- undo->type = type;
- undo->u = u;
- undo->next = tab->top;
- tab->top = undo;
- return isl_stat_ok;
- error:
- free_undo(tab);
- tab->top = NULL;
- return isl_stat_error;
- }
- isl_stat isl_tab_push_var(struct isl_tab *tab,
- enum isl_tab_undo_type type, struct isl_tab_var *var)
- {
- union isl_tab_undo_val u;
- if (var->is_row)
- u.var_index = tab->row_var[var->index];
- else
- u.var_index = tab->col_var[var->index];
- return push_union(tab, type, u);
- }
- isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
- {
- union isl_tab_undo_val u = { 0 };
- return push_union(tab, type, u);
- }
- /* Push a record on the undo stack describing the current basic
- * variables, so that the this state can be restored during rollback.
- */
- isl_stat isl_tab_push_basis(struct isl_tab *tab)
- {
- int i;
- union isl_tab_undo_val u;
- u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
- if (tab->n_col && !u.col_var)
- return isl_stat_error;
- for (i = 0; i < tab->n_col; ++i)
- u.col_var[i] = tab->col_var[i];
- return push_union(tab, isl_tab_undo_saved_basis, u);
- }
- isl_stat isl_tab_push_callback(struct isl_tab *tab,
- struct isl_tab_callback *callback)
- {
- union isl_tab_undo_val u;
- u.callback = callback;
- return push_union(tab, isl_tab_undo_callback, u);
- }
- struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
- {
- if (!tab)
- return NULL;
- tab->n_sample = 0;
- tab->n_outside = 0;
- tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
- if (!tab->samples)
- goto error;
- tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
- if (!tab->sample_index)
- goto error;
- return tab;
- error:
- isl_tab_free(tab);
- return NULL;
- }
- int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
- {
- if (!tab || !sample)
- goto error;
- if (tab->n_sample + 1 > tab->samples->n_row) {
- int *t = isl_realloc_array(tab->mat->ctx,
- tab->sample_index, int, tab->n_sample + 1);
- if (!t)
- goto error;
- tab->sample_index = t;
- }
- tab->samples = isl_mat_extend(tab->samples,
- tab->n_sample + 1, tab->samples->n_col);
- if (!tab->samples)
- goto error;
- isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
- isl_vec_free(sample);
- tab->sample_index[tab->n_sample] = tab->n_sample;
- tab->n_sample++;
- return 0;
- error:
- isl_vec_free(sample);
- return -1;
- }
- struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
- {
- if (s != tab->n_outside) {
- int t = tab->sample_index[tab->n_outside];
- tab->sample_index[tab->n_outside] = tab->sample_index[s];
- tab->sample_index[s] = t;
- isl_mat_swap_rows(tab->samples, tab->n_outside, s);
- }
- tab->n_outside++;
- if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
- isl_tab_free(tab);
- return NULL;
- }
- return tab;
- }
- /* Record the current number of samples so that we can remove newer
- * samples during a rollback.
- */
- isl_stat isl_tab_save_samples(struct isl_tab *tab)
- {
- union isl_tab_undo_val u;
- if (!tab)
- return isl_stat_error;
- u.n = tab->n_sample;
- return push_union(tab, isl_tab_undo_saved_samples, u);
- }
- /* Mark row with index "row" as being redundant.
- * If we may need to undo the operation or if the row represents
- * a variable of the original problem, the row is kept,
- * but no longer considered when looking for a pivot row.
- * Otherwise, the row is simply removed.
- *
- * The row may be interchanged with some other row. If it
- * is interchanged with a later row, return 1. Otherwise return 0.
- * If the rows are checked in order in the calling function,
- * then a return value of 1 means that the row with the given
- * row number may now contain a different row that hasn't been checked yet.
- */
- int isl_tab_mark_redundant(struct isl_tab *tab, int row)
- {
- struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
- var->is_redundant = 1;
- isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
- if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
- if (tab->row_var[row] >= 0 && !var->is_nonneg) {
- var->is_nonneg = 1;
- if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
- return -1;
- }
- if (row != tab->n_redundant)
- swap_rows(tab, row, tab->n_redundant);
- tab->n_redundant++;
- return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
- } else {
- if (row != tab->n_row - 1)
- swap_rows(tab, row, tab->n_row - 1);
- isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
- tab->n_row--;
- return 1;
- }
- }
- /* Mark "tab" as a rational tableau.
- * If it wasn't marked as a rational tableau already and if we may
- * need to undo changes, then arrange for the marking to be undone
- * during the undo.
- */
- int isl_tab_mark_rational(struct isl_tab *tab)
- {
- if (!tab)
- return -1;
- if (!tab->rational && tab->need_undo)
- if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
- return -1;
- tab->rational = 1;
- return 0;
- }
- isl_stat isl_tab_mark_empty(struct isl_tab *tab)
- {
- if (!tab)
- return isl_stat_error;
- if (!tab->empty && tab->need_undo)
- if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
- return isl_stat_error;
- tab->empty = 1;
- return isl_stat_ok;
- }
- int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
- {
- struct isl_tab_var *var;
- if (!tab)
- return -1;
- var = &tab->con[con];
- if (var->frozen)
- return 0;
- if (var->index < 0)
- return 0;
- var->frozen = 1;
- if (tab->need_undo)
- return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
- return 0;
- }
- /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
- * the original sign of the pivot element.
- * We only keep track of row signs during PILP solving and in this case
- * we only pivot a row with negative sign (meaning the value is always
- * non-positive) using a positive pivot element.
- *
- * For each row j, the new value of the parametric constant is equal to
- *
- * a_j0 - a_jc a_r0/a_rc
- *
- * where a_j0 is the original parametric constant, a_rc is the pivot element,
- * a_r0 is the parametric constant of the pivot row and a_jc is the
- * pivot column entry of the row j.
- * Since a_r0 is non-positive and a_rc is positive, the sign of row j
- * remains the same if a_jc has the same sign as the row j or if
- * a_jc is zero. In all other cases, we reset the sign to "unknown".
- */
- static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
- {
- int i;
- struct isl_mat *mat = tab->mat;
- unsigned off = 2 + tab->M;
- if (!tab->row_sign)
- return;
- if (tab->row_sign[row] == 0)
- return;
- isl_assert(mat->ctx, row_sgn > 0, return);
- isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
- tab->row_sign[row] = isl_tab_row_pos;
- for (i = 0; i < tab->n_row; ++i) {
- int s;
- if (i == row)
- continue;
- s = isl_int_sgn(mat->row[i][off + col]);
- if (!s)
- continue;
- if (!tab->row_sign[i])
- continue;
- if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
- continue;
- if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
- continue;
- tab->row_sign[i] = isl_tab_row_unknown;
- }
- }
- /* Given a row number "row" and a column number "col", pivot the tableau
- * such that the associated variables are interchanged.
- * The given row in the tableau expresses
- *
- * x_r = a_r0 + \sum_i a_ri x_i
- *
- * or
- *
- * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
- *
- * Substituting this equality into the other rows
- *
- * x_j = a_j0 + \sum_i a_ji x_i
- *
- * with a_jc \ne 0, we obtain
- *
- * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
- *
- * The tableau
- *
- * n_rc/d_r n_ri/d_r
- * n_jc/d_j n_ji/d_j
- *
- * where i is any other column and j is any other row,
- * is therefore transformed into
- *
- * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
- * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
- *
- * The transformation is performed along the following steps
- *
- * d_r/n_rc n_ri/n_rc
- * n_jc/d_j n_ji/d_j
- *
- * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
- * n_jc/d_j n_ji/d_j
- *
- * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
- * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
- *
- * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
- * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
- *
- * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
- * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
- *
- * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
- * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
- *
- */
- int isl_tab_pivot(struct isl_tab *tab, int row, int col)
- {
- int i, j;
- int sgn;
- int t;
- isl_ctx *ctx;
- struct isl_mat *mat = tab->mat;
- struct isl_tab_var *var;
- unsigned off = 2 + tab->M;
- ctx = isl_tab_get_ctx(tab);
- if (isl_ctx_next_operation(ctx) < 0)
- return -1;
- isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
- sgn = isl_int_sgn(mat->row[row][0]);
- if (sgn < 0) {
- isl_int_neg(mat->row[row][0], mat->row[row][0]);
- isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
- } else
- for (j = 0; j < off - 1 + tab->n_col; ++j) {
- if (j == off - 1 + col)
- continue;
- isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
- }
- if (!isl_int_is_one(mat->row[row][0]))
- isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
- for (i = 0; i < tab->n_row; ++i) {
- if (i == row)
- continue;
- if (isl_int_is_zero(mat->row[i][off + col]))
- continue;
- isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
- for (j = 0; j < off - 1 + tab->n_col; ++j) {
- if (j == off - 1 + col)
- continue;
- isl_int_mul(mat->row[i][1 + j],
- mat->row[i][1 + j], mat->row[row][0]);
- isl_int_addmul(mat->row[i][1 + j],
- mat->row[i][off + col], mat->row[row][1 + j]);
- }
- isl_int_mul(mat->row[i][off + col],
- mat->row[i][off + col], mat->row[row][off + col]);
- if (!isl_int_is_one(mat->row[i][0]))
- isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
- }
- t = tab->row_var[row];
- tab->row_var[row] = tab->col_var[col];
- tab->col_var[col] = t;
- var = isl_tab_var_from_row(tab, row);
- var->is_row = 1;
- var->index = row;
- var = var_from_col(tab, col);
- var->is_row = 0;
- var->index = col;
- update_row_sign(tab, row, col, sgn);
- if (tab->in_undo)
- return 0;
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- if (isl_int_is_zero(mat->row[i][off + col]))
- continue;
- if (!isl_tab_var_from_row(tab, i)->frozen &&
- isl_tab_row_is_redundant(tab, i)) {
- int redo = isl_tab_mark_redundant(tab, i);
- if (redo < 0)
- return -1;
- if (redo)
- --i;
- }
- }
- return 0;
- }
- /* If "var" represents a column variable, then pivot is up (sgn > 0)
- * or down (sgn < 0) to a row. The variable is assumed not to be
- * unbounded in the specified direction.
- * If sgn = 0, then the variable is unbounded in both directions,
- * and we pivot with any row we can find.
- */
- static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
- static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
- {
- int r;
- unsigned off = 2 + tab->M;
- if (var->is_row)
- return 0;
- if (sign == 0) {
- for (r = tab->n_redundant; r < tab->n_row; ++r)
- if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
- break;
- isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
- } else {
- r = pivot_row(tab, NULL, sign, var->index);
- isl_assert(tab->mat->ctx, r >= 0, return -1);
- }
- return isl_tab_pivot(tab, r, var->index);
- }
- /* Check whether all variables that are marked as non-negative
- * also have a non-negative sample value. This function is not
- * called from the current code but is useful during debugging.
- */
- static void check_table(struct isl_tab *tab) __attribute__ ((unused));
- static void check_table(struct isl_tab *tab)
- {
- int i;
- if (tab->empty)
- return;
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- struct isl_tab_var *var;
- var = isl_tab_var_from_row(tab, i);
- if (!var->is_nonneg)
- continue;
- if (tab->M) {
- isl_assert(tab->mat->ctx,
- !isl_int_is_neg(tab->mat->row[i][2]), abort());
- if (isl_int_is_pos(tab->mat->row[i][2]))
- continue;
- }
- isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
- abort());
- }
- }
- /* Return the sign of the maximal value of "var".
- * If the sign is not negative, then on return from this function,
- * the sample value will also be non-negative.
- *
- * If "var" is manifestly unbounded wrt positive values, we are done.
- * Otherwise, we pivot the variable up to a row if needed
- * Then we continue pivoting down until either
- * - no more down pivots can be performed
- * - the sample value is positive
- * - the variable is pivoted into a manifestly unbounded column
- */
- static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int row, col;
- if (max_is_manifestly_unbounded(tab, var))
- return 1;
- if (to_row(tab, var, 1) < 0)
- return -2;
- while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
- find_pivot(tab, var, var, 1, &row, &col);
- if (row == -1)
- return isl_int_sgn(tab->mat->row[var->index][1]);
- if (isl_tab_pivot(tab, row, col) < 0)
- return -2;
- if (!var->is_row) /* manifestly unbounded */
- return 1;
- }
- return 1;
- }
- int isl_tab_sign_of_max(struct isl_tab *tab, int con)
- {
- struct isl_tab_var *var;
- if (!tab)
- return -2;
- var = &tab->con[con];
- isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
- isl_assert(tab->mat->ctx, !var->is_zero, return -2);
- return sign_of_max(tab, var);
- }
- static int row_is_neg(struct isl_tab *tab, int row)
- {
- if (!tab->M)
- return isl_int_is_neg(tab->mat->row[row][1]);
- if (isl_int_is_pos(tab->mat->row[row][2]))
- return 0;
- if (isl_int_is_neg(tab->mat->row[row][2]))
- return 1;
- return isl_int_is_neg(tab->mat->row[row][1]);
- }
- static int row_sgn(struct isl_tab *tab, int row)
- {
- if (!tab->M)
- return isl_int_sgn(tab->mat->row[row][1]);
- if (!isl_int_is_zero(tab->mat->row[row][2]))
- return isl_int_sgn(tab->mat->row[row][2]);
- else
- return isl_int_sgn(tab->mat->row[row][1]);
- }
- /* Perform pivots until the row variable "var" has a non-negative
- * sample value or until no more upward pivots can be performed.
- * Return the sign of the sample value after the pivots have been
- * performed.
- */
- static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int row, col;
- while (row_is_neg(tab, var->index)) {
- find_pivot(tab, var, var, 1, &row, &col);
- if (row == -1)
- break;
- if (isl_tab_pivot(tab, row, col) < 0)
- return -2;
- if (!var->is_row) /* manifestly unbounded */
- return 1;
- }
- return row_sgn(tab, var->index);
- }
- /* Perform pivots until we are sure that the row variable "var"
- * can attain non-negative values. After return from this
- * function, "var" is still a row variable, but its sample
- * value may not be non-negative, even if the function returns 1.
- */
- static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int row, col;
- while (isl_int_is_neg(tab->mat->row[var->index][1])) {
- find_pivot(tab, var, var, 1, &row, &col);
- if (row == -1)
- break;
- if (row == var->index) /* manifestly unbounded */
- return 1;
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- }
- return !isl_int_is_neg(tab->mat->row[var->index][1]);
- }
- /* Return a negative value if "var" can attain negative values.
- * Return a non-negative value otherwise.
- *
- * If "var" is manifestly unbounded wrt negative values, we are done.
- * Otherwise, if var is in a column, we can pivot it down to a row.
- * Then we continue pivoting down until either
- * - the pivot would result in a manifestly unbounded column
- * => we don't perform the pivot, but simply return -1
- * - no more down pivots can be performed
- * - the sample value is negative
- * If the sample value becomes negative and the variable is supposed
- * to be nonnegative, then we undo the last pivot.
- * However, if the last pivot has made the pivoting variable
- * obviously redundant, then it may have moved to another row.
- * In that case we look for upward pivots until we reach a non-negative
- * value again.
- */
- static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int row, col;
- struct isl_tab_var *pivot_var = NULL;
- if (min_is_manifestly_unbounded(tab, var))
- return -1;
- if (!var->is_row) {
- col = var->index;
- row = pivot_row(tab, NULL, -1, col);
- pivot_var = var_from_col(tab, col);
- if (isl_tab_pivot(tab, row, col) < 0)
- return -2;
- if (var->is_redundant)
- return 0;
- if (isl_int_is_neg(tab->mat->row[var->index][1])) {
- if (var->is_nonneg) {
- if (!pivot_var->is_redundant &&
- pivot_var->index == row) {
- if (isl_tab_pivot(tab, row, col) < 0)
- return -2;
- } else
- if (restore_row(tab, var) < -1)
- return -2;
- }
- return -1;
- }
- }
- if (var->is_redundant)
- return 0;
- while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
- find_pivot(tab, var, var, -1, &row, &col);
- if (row == var->index)
- return -1;
- if (row == -1)
- return isl_int_sgn(tab->mat->row[var->index][1]);
- pivot_var = var_from_col(tab, col);
- if (isl_tab_pivot(tab, row, col) < 0)
- return -2;
- if (var->is_redundant)
- return 0;
- }
- if (pivot_var && var->is_nonneg) {
- /* pivot back to non-negative value */
- if (!pivot_var->is_redundant && pivot_var->index == row) {
- if (isl_tab_pivot(tab, row, col) < 0)
- return -2;
- } else
- if (restore_row(tab, var) < -1)
- return -2;
- }
- return -1;
- }
- static int row_at_most_neg_one(struct isl_tab *tab, int row)
- {
- if (tab->M) {
- if (isl_int_is_pos(tab->mat->row[row][2]))
- return 0;
- if (isl_int_is_neg(tab->mat->row[row][2]))
- return 1;
- }
- return isl_int_is_neg(tab->mat->row[row][1]) &&
- isl_int_abs_ge(tab->mat->row[row][1],
- tab->mat->row[row][0]);
- }
- /* Return 1 if "var" can attain values <= -1.
- * Return 0 otherwise.
- *
- * If the variable "var" is supposed to be non-negative (is_nonneg is set),
- * then the sample value of "var" is assumed to be non-negative when the
- * the function is called. If 1 is returned then the constraint
- * is not redundant and the sample value is made non-negative again before
- * the function returns.
- */
- int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int row, col;
- struct isl_tab_var *pivot_var;
- if (min_is_manifestly_unbounded(tab, var))
- return 1;
- if (!var->is_row) {
- col = var->index;
- row = pivot_row(tab, NULL, -1, col);
- pivot_var = var_from_col(tab, col);
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- if (var->is_redundant)
- return 0;
- if (row_at_most_neg_one(tab, var->index)) {
- if (var->is_nonneg) {
- if (!pivot_var->is_redundant &&
- pivot_var->index == row) {
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- } else
- if (restore_row(tab, var) < -1)
- return -1;
- }
- return 1;
- }
- }
- if (var->is_redundant)
- return 0;
- do {
- find_pivot(tab, var, var, -1, &row, &col);
- if (row == var->index) {
- if (var->is_nonneg && restore_row(tab, var) < -1)
- return -1;
- return 1;
- }
- if (row == -1)
- return 0;
- pivot_var = var_from_col(tab, col);
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- if (var->is_redundant)
- return 0;
- } while (!row_at_most_neg_one(tab, var->index));
- if (var->is_nonneg) {
- /* pivot back to non-negative value */
- if (!pivot_var->is_redundant && pivot_var->index == row)
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- if (restore_row(tab, var) < -1)
- return -1;
- }
- return 1;
- }
- /* Return 1 if "var" can attain values >= 1.
- * Return 0 otherwise.
- */
- static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int row, col;
- isl_int *r;
- if (max_is_manifestly_unbounded(tab, var))
- return 1;
- if (to_row(tab, var, 1) < 0)
- return -1;
- r = tab->mat->row[var->index];
- while (isl_int_lt(r[1], r[0])) {
- find_pivot(tab, var, var, 1, &row, &col);
- if (row == -1)
- return isl_int_ge(r[1], r[0]);
- if (row == var->index) /* manifestly unbounded */
- return 1;
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- }
- return 1;
- }
- static void swap_cols(struct isl_tab *tab, int col1, int col2)
- {
- int t;
- unsigned off = 2 + tab->M;
- t = tab->col_var[col1];
- tab->col_var[col1] = tab->col_var[col2];
- tab->col_var[col2] = t;
- var_from_col(tab, col1)->index = col1;
- var_from_col(tab, col2)->index = col2;
- tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
- }
- /* Mark column with index "col" as representing a zero variable.
- * If we may need to undo the operation the column is kept,
- * but no longer considered.
- * Otherwise, the column is simply removed.
- *
- * The column may be interchanged with some other column. If it
- * is interchanged with a later column, return 1. Otherwise return 0.
- * If the columns are checked in order in the calling function,
- * then a return value of 1 means that the column with the given
- * column number may now contain a different column that
- * hasn't been checked yet.
- */
- int isl_tab_kill_col(struct isl_tab *tab, int col)
- {
- var_from_col(tab, col)->is_zero = 1;
- if (tab->need_undo) {
- if (isl_tab_push_var(tab, isl_tab_undo_zero,
- var_from_col(tab, col)) < 0)
- return -1;
- if (col != tab->n_dead)
- swap_cols(tab, col, tab->n_dead);
- tab->n_dead++;
- return 0;
- } else {
- if (col != tab->n_col - 1)
- swap_cols(tab, col, tab->n_col - 1);
- var_from_col(tab, tab->n_col - 1)->index = -1;
- tab->n_col--;
- return 1;
- }
- }
- static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
- {
- unsigned off = 2 + tab->M;
- if (tab->M && !isl_int_eq(tab->mat->row[row][2],
- tab->mat->row[row][0]))
- return 0;
- if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
- tab->n_col - tab->n_dead) != -1)
- return 0;
- return !isl_int_is_divisible_by(tab->mat->row[row][1],
- tab->mat->row[row][0]);
- }
- /* For integer tableaus, check if any of the coordinates are stuck
- * at a non-integral value.
- */
- static int tab_is_manifestly_empty(struct isl_tab *tab)
- {
- int i;
- if (tab->empty)
- return 1;
- if (tab->rational)
- return 0;
- for (i = 0; i < tab->n_var; ++i) {
- if (!tab->var[i].is_row)
- continue;
- if (row_is_manifestly_non_integral(tab, tab->var[i].index))
- return 1;
- }
- return 0;
- }
- /* Row variable "var" is non-negative and cannot attain any values
- * larger than zero. This means that the coefficients of the unrestricted
- * column variables are zero and that the coefficients of the non-negative
- * column variables are zero or negative.
- * Each of the non-negative variables with a negative coefficient can
- * then also be written as the negative sum of non-negative variables
- * and must therefore also be zero.
- *
- * If "temp_var" is set, then "var" is a temporary variable that
- * will be removed after this function returns and for which
- * no information is recorded on the undo stack.
- * Do not add any undo records involving this variable in this case
- * since the variable will have been removed before any future undo
- * operations. Also avoid marking the variable as redundant,
- * since that either adds an undo record or needlessly removes the row
- * (the caller will take care of removing the row).
- */
- static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
- int temp_var) WARN_UNUSED;
- static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
- int temp_var)
- {
- int j;
- struct isl_mat *mat = tab->mat;
- unsigned off = 2 + tab->M;
- if (!var->is_nonneg)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "expecting non-negative variable",
- return isl_stat_error);
- var->is_zero = 1;
- if (!temp_var && tab->need_undo)
- if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
- return isl_stat_error;
- for (j = tab->n_dead; j < tab->n_col; ++j) {
- int recheck;
- if (isl_int_is_zero(mat->row[var->index][off + j]))
- continue;
- if (isl_int_is_pos(mat->row[var->index][off + j]))
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "row cannot have positive coefficients",
- return isl_stat_error);
- recheck = isl_tab_kill_col(tab, j);
- if (recheck < 0)
- return isl_stat_error;
- if (recheck)
- --j;
- }
- if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0)
- return isl_stat_error;
- if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Add a constraint to the tableau and allocate a row for it.
- * Return the index into the constraint array "con".
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- int isl_tab_allocate_con(struct isl_tab *tab)
- {
- int r;
- isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
- isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
- r = tab->n_con;
- tab->con[r].index = tab->n_row;
- tab->con[r].is_row = 1;
- tab->con[r].is_nonneg = 0;
- tab->con[r].is_zero = 0;
- tab->con[r].is_redundant = 0;
- tab->con[r].frozen = 0;
- tab->con[r].negated = 0;
- tab->row_var[tab->n_row] = ~r;
- tab->n_row++;
- tab->n_con++;
- if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
- return -1;
- return r;
- }
- /* Move the entries in tab->var up one position, starting at "first",
- * creating room for an extra entry at position "first".
- * Since some of the entries of tab->row_var and tab->col_var contain
- * indices into this array, they have to be updated accordingly.
- */
- static int var_insert_entry(struct isl_tab *tab, int first)
- {
- int i;
- if (tab->n_var >= tab->max_var)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "not enough room for new variable", return -1);
- if (first > tab->n_var)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "invalid initial position", return -1);
- for (i = tab->n_var - 1; i >= first; --i) {
- tab->var[i + 1] = tab->var[i];
- if (tab->var[i + 1].is_row)
- tab->row_var[tab->var[i + 1].index]++;
- else
- tab->col_var[tab->var[i + 1].index]++;
- }
- tab->n_var++;
- return 0;
- }
- /* Drop the entry at position "first" in tab->var, moving all
- * subsequent entries down.
- * Since some of the entries of tab->row_var and tab->col_var contain
- * indices into this array, they have to be updated accordingly.
- */
- static int var_drop_entry(struct isl_tab *tab, int first)
- {
- int i;
- if (first >= tab->n_var)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "invalid initial position", return -1);
- tab->n_var--;
- for (i = first; i < tab->n_var; ++i) {
- tab->var[i] = tab->var[i + 1];
- if (tab->var[i + 1].is_row)
- tab->row_var[tab->var[i].index]--;
- else
- tab->col_var[tab->var[i].index]--;
- }
- return 0;
- }
- /* Add a variable to the tableau at position "r" and allocate a column for it.
- * Return the index into the variable array "var", i.e., "r",
- * or -1 on error.
- */
- int isl_tab_insert_var(struct isl_tab *tab, int r)
- {
- int i;
- unsigned off = 2 + tab->M;
- isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
- if (var_insert_entry(tab, r) < 0)
- return -1;
- tab->var[r].index = tab->n_col;
- tab->var[r].is_row = 0;
- tab->var[r].is_nonneg = 0;
- tab->var[r].is_zero = 0;
- tab->var[r].is_redundant = 0;
- tab->var[r].frozen = 0;
- tab->var[r].negated = 0;
- tab->col_var[tab->n_col] = r;
- for (i = 0; i < tab->n_row; ++i)
- isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
- tab->n_col++;
- if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
- return -1;
- return r;
- }
- /* Add a row to the tableau. The row is given as an affine combination
- * of the original variables and needs to be expressed in terms of the
- * column variables.
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- *
- * We add each term in turn.
- * If r = n/d_r is the current sum and we need to add k x, then
- * if x is a column variable, we increase the numerator of
- * this column by k d_r
- * if x = f/d_x is a row variable, then the new representation of r is
- *
- * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
- * --- + --- = ------------------- = -------------------
- * d_r d_r d_r d_x/g m
- *
- * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
- *
- * If tab->M is set, then, internally, each variable x is represented
- * as x' - M. We then also need no subtract k d_r from the coefficient of M.
- */
- int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
- {
- int i;
- int r;
- isl_int *row;
- isl_int a, b;
- unsigned off = 2 + tab->M;
- r = isl_tab_allocate_con(tab);
- if (r < 0)
- return -1;
- isl_int_init(a);
- isl_int_init(b);
- row = tab->mat->row[tab->con[r].index];
- isl_int_set_si(row[0], 1);
- isl_int_set(row[1], line[0]);
- isl_seq_clr(row + 2, tab->M + tab->n_col);
- for (i = 0; i < tab->n_var; ++i) {
- if (tab->var[i].is_zero)
- continue;
- if (tab->var[i].is_row) {
- isl_int_lcm(a,
- row[0], tab->mat->row[tab->var[i].index][0]);
- isl_int_swap(a, row[0]);
- isl_int_divexact(a, row[0], a);
- isl_int_divexact(b,
- row[0], tab->mat->row[tab->var[i].index][0]);
- isl_int_mul(b, b, line[1 + i]);
- isl_seq_combine(row + 1, a, row + 1,
- b, tab->mat->row[tab->var[i].index] + 1,
- 1 + tab->M + tab->n_col);
- } else
- isl_int_addmul(row[off + tab->var[i].index],
- line[1 + i], row[0]);
- if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
- isl_int_submul(row[2], line[1 + i], row[0]);
- }
- isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
- isl_int_clear(a);
- isl_int_clear(b);
- if (tab->row_sign)
- tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
- return r;
- }
- static isl_stat drop_row(struct isl_tab *tab, int row)
- {
- isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1,
- return isl_stat_error);
- if (row != tab->n_row - 1)
- swap_rows(tab, row, tab->n_row - 1);
- tab->n_row--;
- tab->n_con--;
- return isl_stat_ok;
- }
- /* Drop the variable in column "col" along with the column.
- * The column is removed first because it may need to be moved
- * into the last position and this process requires
- * the contents of the col_var array in a state
- * before the removal of the variable.
- */
- static isl_stat drop_col(struct isl_tab *tab, int col)
- {
- int var;
- var = tab->col_var[col];
- if (col != tab->n_col - 1)
- swap_cols(tab, col, tab->n_col - 1);
- tab->n_col--;
- if (var_drop_entry(tab, var) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Add inequality "ineq" and check if it conflicts with the
- * previously added constraints or if it is obviously redundant.
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
- {
- int r;
- int sgn;
- isl_int cst;
- if (!tab)
- return isl_stat_error;
- if (tab->bmap) {
- struct isl_basic_map *bmap = tab->bmap;
- isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq,
- return isl_stat_error);
- isl_assert(tab->mat->ctx,
- tab->n_con == bmap->n_eq + bmap->n_ineq,
- return isl_stat_error);
- tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
- if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
- return isl_stat_error;
- if (!tab->bmap)
- return isl_stat_error;
- }
- if (tab->cone) {
- isl_int_init(cst);
- isl_int_set_si(cst, 0);
- isl_int_swap(ineq[0], cst);
- }
- r = isl_tab_add_row(tab, ineq);
- if (tab->cone) {
- isl_int_swap(ineq[0], cst);
- isl_int_clear(cst);
- }
- if (r < 0)
- return isl_stat_error;
- tab->con[r].is_nonneg = 1;
- if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
- return isl_stat_error;
- if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
- if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- sgn = restore_row(tab, &tab->con[r]);
- if (sgn < -1)
- return isl_stat_error;
- if (sgn < 0)
- return isl_tab_mark_empty(tab);
- if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
- if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Pivot a non-negative variable down until it reaches the value zero
- * and then pivot the variable into a column position.
- */
- static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
- static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
- {
- int i;
- int row, col;
- unsigned off = 2 + tab->M;
- if (!var->is_row)
- return 0;
- while (isl_int_is_pos(tab->mat->row[var->index][1])) {
- find_pivot(tab, var, NULL, -1, &row, &col);
- isl_assert(tab->mat->ctx, row != -1, return -1);
- if (isl_tab_pivot(tab, row, col) < 0)
- return -1;
- if (!var->is_row)
- return 0;
- }
- for (i = tab->n_dead; i < tab->n_col; ++i)
- if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
- break;
- isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
- if (isl_tab_pivot(tab, var->index, i) < 0)
- return -1;
- return 0;
- }
- /* We assume Gaussian elimination has been performed on the equalities.
- * The equalities can therefore never conflict.
- * Adding the equalities is currently only really useful for a later call
- * to isl_tab_ineq_type.
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
- {
- int i;
- int r;
- if (!tab)
- return NULL;
- r = isl_tab_add_row(tab, eq);
- if (r < 0)
- goto error;
- r = tab->con[r].index;
- i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
- tab->n_col - tab->n_dead);
- isl_assert(tab->mat->ctx, i >= 0, goto error);
- i += tab->n_dead;
- if (isl_tab_pivot(tab, r, i) < 0)
- goto error;
- if (isl_tab_kill_col(tab, i) < 0)
- goto error;
- tab->n_eq++;
- return tab;
- error:
- isl_tab_free(tab);
- return NULL;
- }
- /* Does the sample value of row "row" of "tab" involve the big parameter,
- * if any?
- */
- static int row_is_big(struct isl_tab *tab, int row)
- {
- return tab->M && !isl_int_is_zero(tab->mat->row[row][2]);
- }
- static int row_is_manifestly_zero(struct isl_tab *tab, int row)
- {
- unsigned off = 2 + tab->M;
- if (!isl_int_is_zero(tab->mat->row[row][1]))
- return 0;
- if (row_is_big(tab, row))
- return 0;
- return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
- tab->n_col - tab->n_dead) == -1;
- }
- /* Add an equality that is known to be valid for the given tableau.
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
- {
- struct isl_tab_var *var;
- int r;
- if (!tab)
- return -1;
- r = isl_tab_add_row(tab, eq);
- if (r < 0)
- return -1;
- var = &tab->con[r];
- r = var->index;
- if (row_is_manifestly_zero(tab, r)) {
- var->is_zero = 1;
- if (isl_tab_mark_redundant(tab, r) < 0)
- return -1;
- return 0;
- }
- if (isl_int_is_neg(tab->mat->row[r][1])) {
- isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
- 1 + tab->n_col);
- var->negated = 1;
- }
- var->is_nonneg = 1;
- if (to_col(tab, var) < 0)
- return -1;
- var->is_nonneg = 0;
- if (isl_tab_kill_col(tab, var->index) < 0)
- return -1;
- return 0;
- }
- /* Add a zero row to "tab" and return the corresponding index
- * in the constraint array.
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- static int add_zero_row(struct isl_tab *tab)
- {
- int r;
- isl_int *row;
- r = isl_tab_allocate_con(tab);
- if (r < 0)
- return -1;
- row = tab->mat->row[tab->con[r].index];
- isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
- isl_int_set_si(row[0], 1);
- return r;
- }
- /* Add equality "eq" and check if it conflicts with the
- * previously added constraints or if it is obviously redundant.
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- * If tab->bmap is set, then two rows are needed instead of one.
- */
- isl_stat isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
- {
- struct isl_tab_undo *snap = NULL;
- struct isl_tab_var *var;
- int r;
- int row;
- int sgn;
- isl_int cst;
- if (!tab)
- return isl_stat_error;
- isl_assert(tab->mat->ctx, !tab->M, return isl_stat_error);
- if (tab->need_undo)
- snap = isl_tab_snap(tab);
- if (tab->cone) {
- isl_int_init(cst);
- isl_int_set_si(cst, 0);
- isl_int_swap(eq[0], cst);
- }
- r = isl_tab_add_row(tab, eq);
- if (tab->cone) {
- isl_int_swap(eq[0], cst);
- isl_int_clear(cst);
- }
- if (r < 0)
- return isl_stat_error;
- var = &tab->con[r];
- row = var->index;
- if (row_is_manifestly_zero(tab, row)) {
- if (snap)
- return isl_tab_rollback(tab, snap);
- return drop_row(tab, row);
- }
- if (tab->bmap) {
- tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
- if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
- return isl_stat_error;
- isl_seq_neg(eq, eq, 1 + tab->n_var);
- tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
- isl_seq_neg(eq, eq, 1 + tab->n_var);
- if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
- return isl_stat_error;
- if (!tab->bmap)
- return isl_stat_error;
- if (add_zero_row(tab) < 0)
- return isl_stat_error;
- }
- sgn = isl_int_sgn(tab->mat->row[row][1]);
- if (sgn > 0) {
- isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
- 1 + tab->n_col);
- var->negated = 1;
- sgn = -1;
- }
- if (sgn < 0) {
- sgn = sign_of_max(tab, var);
- if (sgn < -1)
- return isl_stat_error;
- if (sgn < 0) {
- if (isl_tab_mark_empty(tab) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- }
- var->is_nonneg = 1;
- if (to_col(tab, var) < 0)
- return isl_stat_error;
- var->is_nonneg = 0;
- if (isl_tab_kill_col(tab, var->index) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Construct and return an inequality that expresses an upper bound
- * on the given div.
- * In particular, if the div is given by
- *
- * d = floor(e/m)
- *
- * then the inequality expresses
- *
- * m d <= e
- */
- static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_map *bmap,
- unsigned div)
- {
- isl_size total;
- unsigned div_pos;
- struct isl_vec *ineq;
- total = isl_basic_map_dim(bmap, isl_dim_all);
- if (total < 0)
- return NULL;
- div_pos = 1 + total - bmap->n_div + div;
- ineq = isl_vec_alloc(bmap->ctx, 1 + total);
- if (!ineq)
- return NULL;
- isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
- isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
- return ineq;
- }
- /* For a div d = floor(f/m), add the constraints
- *
- * f - m d >= 0
- * -(f-(m-1)) + m d >= 0
- *
- * Note that the second constraint is the negation of
- *
- * f - m d >= m
- *
- * If add_ineq is not NULL, then this function is used
- * instead of isl_tab_add_ineq to effectively add the inequalities.
- *
- * This function assumes that at least two more rows and at least
- * two more elements in the constraint array are available in the tableau.
- */
- static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div,
- isl_stat (*add_ineq)(void *user, isl_int *), void *user)
- {
- isl_size total;
- unsigned div_pos;
- struct isl_vec *ineq;
- total = isl_basic_map_dim(tab->bmap, isl_dim_all);
- if (total < 0)
- return isl_stat_error;
- div_pos = 1 + total - tab->bmap->n_div + div;
- ineq = ineq_for_div(tab->bmap, div);
- if (!ineq)
- goto error;
- if (add_ineq) {
- if (add_ineq(user, ineq->el) < 0)
- goto error;
- } else {
- if (isl_tab_add_ineq(tab, ineq->el) < 0)
- goto error;
- }
- isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
- isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
- isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
- isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
- if (add_ineq) {
- if (add_ineq(user, ineq->el) < 0)
- goto error;
- } else {
- if (isl_tab_add_ineq(tab, ineq->el) < 0)
- goto error;
- }
- isl_vec_free(ineq);
- return isl_stat_ok;
- error:
- isl_vec_free(ineq);
- return isl_stat_error;
- }
- /* Check whether the div described by "div" is obviously non-negative.
- * If we are using a big parameter, then we will encode the div
- * as div' = M + div, which is always non-negative.
- * Otherwise, we check whether div is a non-negative affine combination
- * of non-negative variables.
- */
- static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
- {
- int i;
- if (tab->M)
- return 1;
- if (isl_int_is_neg(div->el[1]))
- return 0;
- for (i = 0; i < tab->n_var; ++i) {
- if (isl_int_is_neg(div->el[2 + i]))
- return 0;
- if (isl_int_is_zero(div->el[2 + i]))
- continue;
- if (!tab->var[i].is_nonneg)
- return 0;
- }
- return 1;
- }
- /* Insert an extra div, prescribed by "div", to the tableau and
- * the associated bmap (which is assumed to be non-NULL).
- * The extra integer division is inserted at (tableau) position "pos".
- * Return "pos" or -1 if an error occurred.
- *
- * If add_ineq is not NULL, then this function is used instead
- * of isl_tab_add_ineq to add the div constraints.
- * This complication is needed because the code in isl_tab_pip
- * wants to perform some extra processing when an inequality
- * is added to the tableau.
- */
- int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div,
- isl_stat (*add_ineq)(void *user, isl_int *), void *user)
- {
- int r;
- int nonneg;
- isl_size n_div;
- int o_div;
- if (!tab || !div)
- return -1;
- if (div->size != 1 + 1 + tab->n_var)
- isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
- "unexpected size", return -1);
- n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
- if (n_div < 0)
- return -1;
- o_div = tab->n_var - n_div;
- if (pos < o_div || pos > tab->n_var)
- isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
- "invalid position", return -1);
- nonneg = div_is_nonneg(tab, div);
- if (isl_tab_extend_cons(tab, 3) < 0)
- return -1;
- if (isl_tab_extend_vars(tab, 1) < 0)
- return -1;
- r = isl_tab_insert_var(tab, pos);
- if (r < 0)
- return -1;
- if (nonneg)
- tab->var[r].is_nonneg = 1;
- tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div);
- if (!tab->bmap)
- return -1;
- if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0)
- return -1;
- if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0)
- return -1;
- return r;
- }
- /* Add an extra div, prescribed by "div", to the tableau and
- * the associated bmap (which is assumed to be non-NULL).
- */
- int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div)
- {
- if (!tab)
- return -1;
- return isl_tab_insert_div(tab, tab->n_var, div, NULL, NULL);
- }
- /* If "track" is set, then we want to keep track of all constraints in tab
- * in its bmap field. This field is initialized from a copy of "bmap",
- * so we need to make sure that all constraints in "bmap" also appear
- * in the constructed tab.
- */
- __isl_give struct isl_tab *isl_tab_from_basic_map(
- __isl_keep isl_basic_map *bmap, int track)
- {
- int i;
- struct isl_tab *tab;
- isl_size total;
- total = isl_basic_map_dim(bmap, isl_dim_all);
- if (total < 0)
- return NULL;
- tab = isl_tab_alloc(bmap->ctx, total + bmap->n_ineq + 1, total, 0);
- if (!tab)
- return NULL;
- tab->preserve = track;
- tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
- if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
- if (isl_tab_mark_empty(tab) < 0)
- goto error;
- goto done;
- }
- for (i = 0; i < bmap->n_eq; ++i) {
- tab = add_eq(tab, bmap->eq[i]);
- if (!tab)
- return tab;
- }
- for (i = 0; i < bmap->n_ineq; ++i) {
- if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
- goto error;
- if (tab->empty)
- goto done;
- }
- done:
- if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
- goto error;
- return tab;
- error:
- isl_tab_free(tab);
- return NULL;
- }
- __isl_give struct isl_tab *isl_tab_from_basic_set(
- __isl_keep isl_basic_set *bset, int track)
- {
- return isl_tab_from_basic_map(bset, track);
- }
- /* Construct a tableau corresponding to the recession cone of "bset".
- */
- struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
- int parametric)
- {
- isl_int cst;
- int i;
- struct isl_tab *tab;
- isl_size offset = 0;
- isl_size total;
- total = isl_basic_set_dim(bset, isl_dim_all);
- if (parametric)
- offset = isl_basic_set_dim(bset, isl_dim_param);
- if (total < 0 || offset < 0)
- return NULL;
- tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
- total - offset, 0);
- if (!tab)
- return NULL;
- tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
- tab->cone = 1;
- isl_int_init(cst);
- isl_int_set_si(cst, 0);
- for (i = 0; i < bset->n_eq; ++i) {
- isl_int_swap(bset->eq[i][offset], cst);
- if (offset > 0) {
- if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
- goto error;
- } else
- tab = add_eq(tab, bset->eq[i]);
- isl_int_swap(bset->eq[i][offset], cst);
- if (!tab)
- goto done;
- }
- for (i = 0; i < bset->n_ineq; ++i) {
- int r;
- isl_int_swap(bset->ineq[i][offset], cst);
- r = isl_tab_add_row(tab, bset->ineq[i] + offset);
- isl_int_swap(bset->ineq[i][offset], cst);
- if (r < 0)
- goto error;
- tab->con[r].is_nonneg = 1;
- if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
- goto error;
- }
- done:
- isl_int_clear(cst);
- return tab;
- error:
- isl_int_clear(cst);
- isl_tab_free(tab);
- return NULL;
- }
- /* Assuming "tab" is the tableau of a cone, check if the cone is
- * bounded, i.e., if it is empty or only contains the origin.
- */
- isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab)
- {
- int i;
- if (!tab)
- return isl_bool_error;
- if (tab->empty)
- return isl_bool_true;
- if (tab->n_dead == tab->n_col)
- return isl_bool_true;
- for (;;) {
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- struct isl_tab_var *var;
- int sgn;
- var = isl_tab_var_from_row(tab, i);
- if (!var->is_nonneg)
- continue;
- sgn = sign_of_max(tab, var);
- if (sgn < -1)
- return isl_bool_error;
- if (sgn != 0)
- return isl_bool_false;
- if (close_row(tab, var, 0) < 0)
- return isl_bool_error;
- break;
- }
- if (tab->n_dead == tab->n_col)
- return isl_bool_true;
- if (i == tab->n_row)
- return isl_bool_false;
- }
- }
- int isl_tab_sample_is_integer(struct isl_tab *tab)
- {
- int i;
- if (!tab)
- return -1;
- for (i = 0; i < tab->n_var; ++i) {
- int row;
- if (!tab->var[i].is_row)
- continue;
- row = tab->var[i].index;
- if (!isl_int_is_divisible_by(tab->mat->row[row][1],
- tab->mat->row[row][0]))
- return 0;
- }
- return 1;
- }
- static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
- {
- int i;
- struct isl_vec *vec;
- vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
- if (!vec)
- return NULL;
- isl_int_set_si(vec->block.data[0], 1);
- for (i = 0; i < tab->n_var; ++i) {
- if (!tab->var[i].is_row)
- isl_int_set_si(vec->block.data[1 + i], 0);
- else {
- int row = tab->var[i].index;
- isl_int_divexact(vec->block.data[1 + i],
- tab->mat->row[row][1], tab->mat->row[row][0]);
- }
- }
- return vec;
- }
- __isl_give isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
- {
- int i;
- struct isl_vec *vec;
- isl_int m;
- if (!tab)
- return NULL;
- vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
- if (!vec)
- return NULL;
- isl_int_init(m);
- isl_int_set_si(vec->block.data[0], 1);
- for (i = 0; i < tab->n_var; ++i) {
- int row;
- if (!tab->var[i].is_row) {
- isl_int_set_si(vec->block.data[1 + i], 0);
- continue;
- }
- row = tab->var[i].index;
- isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
- isl_int_divexact(m, tab->mat->row[row][0], m);
- isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
- isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
- isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
- }
- vec = isl_vec_normalize(vec);
- isl_int_clear(m);
- return vec;
- }
- /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
- * or down (if sgn < 0) to the nearest integer in *v.
- */
- static void get_rounded_sample_value(struct isl_tab *tab,
- struct isl_tab_var *var, int sgn, isl_int *v)
- {
- if (!var->is_row)
- isl_int_set_si(*v, 0);
- else if (sgn > 0)
- isl_int_cdiv_q(*v, tab->mat->row[var->index][1],
- tab->mat->row[var->index][0]);
- else
- isl_int_fdiv_q(*v, tab->mat->row[var->index][1],
- tab->mat->row[var->index][0]);
- }
- /* Update "bmap" based on the results of the tableau "tab".
- * In particular, implicit equalities are made explicit, redundant constraints
- * are removed and if the sample value happens to be integer, it is stored
- * in "bmap" (unless "bmap" already had an integer sample).
- *
- * The tableau is assumed to have been created from "bmap" using
- * isl_tab_from_basic_map.
- */
- __isl_give isl_basic_map *isl_basic_map_update_from_tab(
- __isl_take isl_basic_map *bmap, struct isl_tab *tab)
- {
- int i;
- unsigned n_eq;
- if (!bmap)
- return NULL;
- if (!tab)
- return bmap;
- n_eq = tab->n_eq;
- if (tab->empty)
- bmap = isl_basic_map_set_to_empty(bmap);
- else
- for (i = bmap->n_ineq - 1; i >= 0; --i) {
- if (isl_tab_is_equality(tab, n_eq + i))
- isl_basic_map_inequality_to_equality(bmap, i);
- else if (isl_tab_is_redundant(tab, n_eq + i))
- isl_basic_map_drop_inequality(bmap, i);
- }
- if (bmap->n_eq != n_eq)
- bmap = isl_basic_map_gauss(bmap, NULL);
- if (!tab->rational &&
- bmap && !bmap->sample && isl_tab_sample_is_integer(tab))
- bmap->sample = extract_integer_sample(tab);
- return bmap;
- }
- __isl_give isl_basic_set *isl_basic_set_update_from_tab(
- __isl_take isl_basic_set *bset, struct isl_tab *tab)
- {
- return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset),
- tab));
- }
- /* Drop the last constraint added to "tab" in position "r".
- * The constraint is expected to have remained in a row.
- */
- static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r)
- {
- if (!tab->con[r].is_row)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "row unexpectedly moved to column",
- return isl_stat_error);
- if (r + 1 != tab->n_con)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "additional constraints added", return isl_stat_error);
- if (drop_row(tab, tab->con[r].index) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Given a non-negative variable "var", temporarily add a new non-negative
- * variable that is the opposite of "var", ensuring that "var" can only attain
- * the value zero. The new variable is removed again before this function
- * returns. However, the effect of forcing "var" to be zero remains.
- * If var = n/d is a row variable, then the new variable = -n/d.
- * If var is a column variables, then the new variable = -var.
- * If the new variable cannot attain non-negative values, then
- * the resulting tableau is empty.
- * Otherwise, we know the value will be zero and we close the row.
- */
- static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
- {
- unsigned r;
- isl_int *row;
- int sgn;
- unsigned off = 2 + tab->M;
- if (var->is_zero)
- return isl_stat_ok;
- if (var->is_redundant || !var->is_nonneg)
- isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
- "expecting non-redundant non-negative variable",
- return isl_stat_error);
- if (isl_tab_extend_cons(tab, 1) < 0)
- return isl_stat_error;
- r = tab->n_con;
- tab->con[r].index = tab->n_row;
- tab->con[r].is_row = 1;
- tab->con[r].is_nonneg = 0;
- tab->con[r].is_zero = 0;
- tab->con[r].is_redundant = 0;
- tab->con[r].frozen = 0;
- tab->con[r].negated = 0;
- tab->row_var[tab->n_row] = ~r;
- row = tab->mat->row[tab->n_row];
- if (var->is_row) {
- isl_int_set(row[0], tab->mat->row[var->index][0]);
- isl_seq_neg(row + 1,
- tab->mat->row[var->index] + 1, 1 + tab->n_col);
- } else {
- isl_int_set_si(row[0], 1);
- isl_seq_clr(row + 1, 1 + tab->n_col);
- isl_int_set_si(row[off + var->index], -1);
- }
- tab->n_row++;
- tab->n_con++;
- sgn = sign_of_max(tab, &tab->con[r]);
- if (sgn < -1)
- return isl_stat_error;
- if (sgn < 0) {
- if (drop_last_con_in_row(tab, r) < 0)
- return isl_stat_error;
- if (isl_tab_mark_empty(tab) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- tab->con[r].is_nonneg = 1;
- /* sgn == 0 */
- if (close_row(tab, &tab->con[r], 1) < 0)
- return isl_stat_error;
- if (drop_last_con_in_row(tab, r) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Check that "con" is a valid constraint position for "tab".
- */
- static isl_stat isl_tab_check_con(struct isl_tab *tab, int con)
- {
- if (!tab)
- return isl_stat_error;
- if (con < 0 || con >= tab->n_con)
- isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
- "position out of bounds", return isl_stat_error);
- return isl_stat_ok;
- }
- /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
- * relax the inequality by one. That is, the inequality r >= 0 is replaced
- * by r' = r + 1 >= 0.
- * If r is a row variable, we simply increase the constant term by one
- * (taking into account the denominator).
- * If r is a column variable, then we need to modify each row that
- * refers to r = r' - 1 by substituting this equality, effectively
- * subtracting the coefficient of the column from the constant.
- * We should only do this if the minimum is manifestly unbounded,
- * however. Otherwise, we may end up with negative sample values
- * for non-negative variables.
- * So, if r is a column variable with a minimum that is not
- * manifestly unbounded, then we need to move it to a row.
- * However, the sample value of this row may be negative,
- * even after the relaxation, so we need to restore it.
- * We therefore prefer to pivot a column up to a row, if possible.
- */
- int isl_tab_relax(struct isl_tab *tab, int con)
- {
- struct isl_tab_var *var;
- if (!tab)
- return -1;
- var = &tab->con[con];
- if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
- isl_die(tab->mat->ctx, isl_error_invalid,
- "cannot relax redundant constraint", return -1);
- if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
- isl_die(tab->mat->ctx, isl_error_invalid,
- "cannot relax dead constraint", return -1);
- if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
- if (to_row(tab, var, 1) < 0)
- return -1;
- if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
- if (to_row(tab, var, -1) < 0)
- return -1;
- if (var->is_row) {
- isl_int_add(tab->mat->row[var->index][1],
- tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
- if (restore_row(tab, var) < 0)
- return -1;
- } else {
- int i;
- unsigned off = 2 + tab->M;
- for (i = 0; i < tab->n_row; ++i) {
- if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
- continue;
- isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
- tab->mat->row[i][off + var->index]);
- }
- }
- if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
- return -1;
- return 0;
- }
- /* Replace the variable v at position "pos" in the tableau "tab"
- * by v' = v + shift.
- *
- * If the variable is in a column, then we first check if we can
- * simply plug in v = v' - shift. The effect on a row with
- * coefficient f/d for variable v is that the constant term c/d
- * is replaced by (c - f * shift)/d. If shift is positive and
- * f is negative for each row that needs to remain non-negative,
- * then this is clearly safe. In other words, if the minimum of v
- * is manifestly unbounded, then we can keep v in a column position.
- * Otherwise, we can pivot it down to a row.
- * Similarly, if shift is negative, we need to check if the maximum
- * of is manifestly unbounded.
- *
- * If the variable is in a row (from the start or after pivoting),
- * then the constant term c/d is replaced by (c + d * shift)/d.
- */
- int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
- {
- struct isl_tab_var *var;
- if (!tab)
- return -1;
- if (isl_int_is_zero(shift))
- return 0;
- var = &tab->var[pos];
- if (!var->is_row) {
- if (isl_int_is_neg(shift)) {
- if (!max_is_manifestly_unbounded(tab, var))
- if (to_row(tab, var, 1) < 0)
- return -1;
- } else {
- if (!min_is_manifestly_unbounded(tab, var))
- if (to_row(tab, var, -1) < 0)
- return -1;
- }
- }
- if (var->is_row) {
- isl_int_addmul(tab->mat->row[var->index][1],
- shift, tab->mat->row[var->index][0]);
- } else {
- int i;
- unsigned off = 2 + tab->M;
- for (i = 0; i < tab->n_row; ++i) {
- if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
- continue;
- isl_int_submul(tab->mat->row[i][1],
- shift, tab->mat->row[i][off + var->index]);
- }
- }
- return 0;
- }
- /* Remove the sign constraint from constraint "con".
- *
- * If the constraint variable was originally marked non-negative,
- * then we make sure we mark it non-negative again during rollback.
- */
- int isl_tab_unrestrict(struct isl_tab *tab, int con)
- {
- struct isl_tab_var *var;
- if (!tab)
- return -1;
- var = &tab->con[con];
- if (!var->is_nonneg)
- return 0;
- var->is_nonneg = 0;
- if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
- return -1;
- return 0;
- }
- int isl_tab_select_facet(struct isl_tab *tab, int con)
- {
- if (!tab)
- return -1;
- return cut_to_hyperplane(tab, &tab->con[con]);
- }
- static int may_be_equality(struct isl_tab *tab, int row)
- {
- return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
- : isl_int_lt(tab->mat->row[row][1],
- tab->mat->row[row][0]);
- }
- /* Return an isl_tab_var that has been marked or NULL if no such
- * variable can be found.
- * The marked field has only been set for variables that
- * appear in non-redundant rows or non-dead columns.
- *
- * Pick the last constraint variable that is marked and
- * that appears in either a non-redundant row or a non-dead columns.
- * Since the returned variable is tested for being a redundant constraint or
- * an implicit equality, there is no need to return any tab variable that
- * corresponds to a variable.
- */
- static struct isl_tab_var *select_marked(struct isl_tab *tab)
- {
- int i;
- struct isl_tab_var *var;
- for (i = tab->n_con - 1; i >= 0; --i) {
- var = &tab->con[i];
- if (var->index < 0)
- continue;
- if (var->is_row && var->index < tab->n_redundant)
- continue;
- if (!var->is_row && var->index < tab->n_dead)
- continue;
- if (var->marked)
- return var;
- }
- return NULL;
- }
- /* Check for (near) equalities among the constraints.
- * A constraint is an equality if it is non-negative and if
- * its maximal value is either
- * - zero (in case of rational tableaus), or
- * - strictly less than 1 (in case of integer tableaus)
- *
- * We first mark all non-redundant and non-dead variables that
- * are not frozen and not obviously not an equality.
- * Then we iterate over all marked variables if they can attain
- * any values larger than zero or at least one.
- * If the maximal value is zero, we mark any column variables
- * that appear in the row as being zero and mark the row as being redundant.
- * Otherwise, if the maximal value is strictly less than one (and the
- * tableau is integer), then we restrict the value to being zero
- * by adding an opposite non-negative variable.
- * The order in which the variables are considered is not important.
- */
- int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
- {
- int i;
- unsigned n_marked;
- if (!tab)
- return -1;
- if (tab->empty)
- return 0;
- if (tab->n_dead == tab->n_col)
- return 0;
- n_marked = 0;
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
- var->marked = !var->frozen && var->is_nonneg &&
- may_be_equality(tab, i);
- if (var->marked)
- n_marked++;
- }
- for (i = tab->n_dead; i < tab->n_col; ++i) {
- struct isl_tab_var *var = var_from_col(tab, i);
- var->marked = !var->frozen && var->is_nonneg;
- if (var->marked)
- n_marked++;
- }
- while (n_marked) {
- struct isl_tab_var *var;
- int sgn;
- var = select_marked(tab);
- if (!var)
- break;
- var->marked = 0;
- n_marked--;
- sgn = sign_of_max(tab, var);
- if (sgn < 0)
- return -1;
- if (sgn == 0) {
- if (close_row(tab, var, 0) < 0)
- return -1;
- } else if (!tab->rational && !at_least_one(tab, var)) {
- if (cut_to_hyperplane(tab, var) < 0)
- return -1;
- return isl_tab_detect_implicit_equalities(tab);
- }
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- var = isl_tab_var_from_row(tab, i);
- if (!var->marked)
- continue;
- if (may_be_equality(tab, i))
- continue;
- var->marked = 0;
- n_marked--;
- }
- }
- return 0;
- }
- /* Update the element of row_var or col_var that corresponds to
- * constraint tab->con[i] to a move from position "old" to position "i".
- */
- static int update_con_after_move(struct isl_tab *tab, int i, int old)
- {
- int *p;
- int index;
- index = tab->con[i].index;
- if (index == -1)
- return 0;
- p = tab->con[i].is_row ? tab->row_var : tab->col_var;
- if (p[index] != ~old)
- isl_die(tab->mat->ctx, isl_error_internal,
- "broken internal state", return -1);
- p[index] = ~i;
- return 0;
- }
- /* Interchange constraints "con1" and "con2" in "tab".
- * In particular, interchange the contents of these entries in tab->con.
- * Since tab->col_var and tab->row_var point back into this array,
- * they need to be updated accordingly.
- */
- isl_stat isl_tab_swap_constraints(struct isl_tab *tab, int con1, int con2)
- {
- struct isl_tab_var var;
- if (isl_tab_check_con(tab, con1) < 0 ||
- isl_tab_check_con(tab, con2) < 0)
- return isl_stat_error;
- var = tab->con[con1];
- tab->con[con1] = tab->con[con2];
- if (update_con_after_move(tab, con1, con2) < 0)
- return isl_stat_error;
- tab->con[con2] = var;
- if (update_con_after_move(tab, con2, con1) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Rotate the "n" constraints starting at "first" to the right,
- * putting the last constraint in the position of the first constraint.
- */
- static int rotate_constraints(struct isl_tab *tab, int first, int n)
- {
- int i, last;
- struct isl_tab_var var;
- if (n <= 1)
- return 0;
- last = first + n - 1;
- var = tab->con[last];
- for (i = last; i > first; --i) {
- tab->con[i] = tab->con[i - 1];
- if (update_con_after_move(tab, i, i - 1) < 0)
- return -1;
- }
- tab->con[first] = var;
- if (update_con_after_move(tab, first, last) < 0)
- return -1;
- return 0;
- }
- /* Drop the "n" entries starting at position "first" in tab->con, moving all
- * subsequent entries down.
- * Since some of the entries of tab->row_var and tab->col_var contain
- * indices into this array, they have to be updated accordingly.
- */
- static isl_stat con_drop_entries(struct isl_tab *tab,
- unsigned first, unsigned n)
- {
- int i;
- if (first + n > tab->n_con || first + n < first)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "invalid range", return isl_stat_error);
- tab->n_con -= n;
- for (i = first; i < tab->n_con; ++i) {
- tab->con[i] = tab->con[i + n];
- if (update_con_after_move(tab, i, i + n) < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* isl_basic_map_gauss5 callback that gets called when
- * two (equality) constraints "a" and "b" get interchanged
- * in the basic map. Perform the same interchange in "tab".
- */
- static isl_stat swap_eq(unsigned a, unsigned b, void *user)
- {
- struct isl_tab *tab = user;
- return isl_tab_swap_constraints(tab, a, b);
- }
- /* isl_basic_map_gauss5 callback that gets called when
- * the final "n" equality constraints get removed.
- * As a special case, if "n" is equal to the total number
- * of equality constraints, then this means the basic map
- * turned out to be empty.
- * Drop the same number of equality constraints from "tab" or
- * mark it empty in the special case.
- */
- static isl_stat drop_eq(unsigned n, void *user)
- {
- struct isl_tab *tab = user;
- if (tab->n_eq == n)
- return isl_tab_mark_empty(tab);
- tab->n_eq -= n;
- return con_drop_entries(tab, tab->n_eq, n);
- }
- /* If "bmap" has more than a single reference, then call
- * isl_basic_map_gauss on it, updating "tab" accordingly.
- */
- static __isl_give isl_basic_map *gauss_if_shared(__isl_take isl_basic_map *bmap,
- struct isl_tab *tab)
- {
- isl_bool single;
- single = isl_basic_map_has_single_reference(bmap);
- if (single < 0)
- return isl_basic_map_free(bmap);
- if (single)
- return bmap;
- return isl_basic_map_gauss5(bmap, NULL, &swap_eq, &drop_eq, tab);
- }
- /* Make the equalities that are implicit in "bmap" but that have been
- * detected in the corresponding "tab" explicit in "bmap" and update
- * "tab" to reflect the new order of the constraints.
- *
- * In particular, if inequality i is an implicit equality then
- * isl_basic_map_inequality_to_equality will move the inequality
- * in front of the other equality and it will move the last inequality
- * in the position of inequality i.
- * In the tableau, the inequalities of "bmap" are stored after the equalities
- * and so the original order
- *
- * E E E E E A A A I B B B B L
- *
- * is changed into
- *
- * I E E E E E A A A L B B B B
- *
- * where I is the implicit equality, the E are equalities,
- * the A inequalities before I, the B inequalities after I and
- * L the last inequality.
- * We therefore need to rotate to the right two sets of constraints,
- * those up to and including I and those after I.
- *
- * If "tab" contains any constraints that are not in "bmap" then they
- * appear after those in "bmap" and they should be left untouched.
- *
- * Note that this function only calls isl_basic_map_gauss
- * (in case some equality constraints got detected)
- * if "bmap" has more than one reference.
- * If it only has a single reference, then it is left in a temporary state,
- * because the caller may require this state.
- * Calling isl_basic_map_gauss is then the responsibility of the caller.
- */
- __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
- __isl_take isl_basic_map *bmap)
- {
- int i;
- unsigned n_eq;
- if (!tab || !bmap)
- return isl_basic_map_free(bmap);
- if (tab->empty)
- return bmap;
- n_eq = tab->n_eq;
- for (i = bmap->n_ineq - 1; i >= 0; --i) {
- if (!isl_tab_is_equality(tab, bmap->n_eq + i))
- continue;
- isl_basic_map_inequality_to_equality(bmap, i);
- if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
- return isl_basic_map_free(bmap);
- if (rotate_constraints(tab, tab->n_eq + i + 1,
- bmap->n_ineq - i) < 0)
- return isl_basic_map_free(bmap);
- tab->n_eq++;
- }
- if (n_eq != tab->n_eq)
- bmap = gauss_if_shared(bmap, tab);
- return bmap;
- }
- static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
- {
- if (!tab)
- return -1;
- if (tab->rational) {
- int sgn = sign_of_min(tab, var);
- if (sgn < -1)
- return -1;
- return sgn >= 0;
- } else {
- int irred = isl_tab_min_at_most_neg_one(tab, var);
- if (irred < 0)
- return -1;
- return !irred;
- }
- }
- /* Check for (near) redundant constraints.
- * A constraint is redundant if it is non-negative and if
- * its minimal value (temporarily ignoring the non-negativity) is either
- * - zero (in case of rational tableaus), or
- * - strictly larger than -1 (in case of integer tableaus)
- *
- * We first mark all non-redundant and non-dead variables that
- * are not frozen and not obviously negatively unbounded.
- * Then we iterate over all marked variables if they can attain
- * any values smaller than zero or at most negative one.
- * If not, we mark the row as being redundant (assuming it hasn't
- * been detected as being obviously redundant in the mean time).
- */
- int isl_tab_detect_redundant(struct isl_tab *tab)
- {
- int i;
- unsigned n_marked;
- if (!tab)
- return -1;
- if (tab->empty)
- return 0;
- if (tab->n_redundant == tab->n_row)
- return 0;
- n_marked = 0;
- for (i = tab->n_redundant; i < tab->n_row; ++i) {
- struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
- var->marked = !var->frozen && var->is_nonneg;
- if (var->marked)
- n_marked++;
- }
- for (i = tab->n_dead; i < tab->n_col; ++i) {
- struct isl_tab_var *var = var_from_col(tab, i);
- var->marked = !var->frozen && var->is_nonneg &&
- !min_is_manifestly_unbounded(tab, var);
- if (var->marked)
- n_marked++;
- }
- while (n_marked) {
- struct isl_tab_var *var;
- int red;
- var = select_marked(tab);
- if (!var)
- break;
- var->marked = 0;
- n_marked--;
- red = con_is_redundant(tab, var);
- if (red < 0)
- return -1;
- if (red && !var->is_redundant)
- if (isl_tab_mark_redundant(tab, var->index) < 0)
- return -1;
- for (i = tab->n_dead; i < tab->n_col; ++i) {
- var = var_from_col(tab, i);
- if (!var->marked)
- continue;
- if (!min_is_manifestly_unbounded(tab, var))
- continue;
- var->marked = 0;
- n_marked--;
- }
- }
- return 0;
- }
- int isl_tab_is_equality(struct isl_tab *tab, int con)
- {
- int row;
- unsigned off;
- if (!tab)
- return -1;
- if (tab->con[con].is_zero)
- return 1;
- if (tab->con[con].is_redundant)
- return 0;
- if (!tab->con[con].is_row)
- return tab->con[con].index < tab->n_dead;
- row = tab->con[con].index;
- off = 2 + tab->M;
- return isl_int_is_zero(tab->mat->row[row][1]) &&
- !row_is_big(tab, row) &&
- isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
- tab->n_col - tab->n_dead) == -1;
- }
- /* Return the minimal value of the affine expression "f" with denominator
- * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
- * the expression cannot attain arbitrarily small values.
- * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
- * The return value reflects the nature of the result (empty, unbounded,
- * minimal value returned in *opt).
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- enum isl_lp_result isl_tab_min(struct isl_tab *tab,
- isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
- unsigned flags)
- {
- int r;
- enum isl_lp_result res = isl_lp_ok;
- struct isl_tab_var *var;
- struct isl_tab_undo *snap;
- if (!tab)
- return isl_lp_error;
- if (tab->empty)
- return isl_lp_empty;
- snap = isl_tab_snap(tab);
- r = isl_tab_add_row(tab, f);
- if (r < 0)
- return isl_lp_error;
- var = &tab->con[r];
- for (;;) {
- int row, col;
- find_pivot(tab, var, var, -1, &row, &col);
- if (row == var->index) {
- res = isl_lp_unbounded;
- break;
- }
- if (row == -1)
- break;
- if (isl_tab_pivot(tab, row, col) < 0)
- return isl_lp_error;
- }
- isl_int_mul(tab->mat->row[var->index][0],
- tab->mat->row[var->index][0], denom);
- if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
- int i;
- isl_vec_free(tab->dual);
- tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
- if (!tab->dual)
- return isl_lp_error;
- isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
- for (i = 0; i < tab->n_con; ++i) {
- int pos;
- if (tab->con[i].is_row) {
- isl_int_set_si(tab->dual->el[1 + i], 0);
- continue;
- }
- pos = 2 + tab->M + tab->con[i].index;
- if (tab->con[i].negated)
- isl_int_neg(tab->dual->el[1 + i],
- tab->mat->row[var->index][pos]);
- else
- isl_int_set(tab->dual->el[1 + i],
- tab->mat->row[var->index][pos]);
- }
- }
- if (opt && res == isl_lp_ok) {
- if (opt_denom) {
- isl_int_set(*opt, tab->mat->row[var->index][1]);
- isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
- } else
- get_rounded_sample_value(tab, var, 1, opt);
- }
- if (isl_tab_rollback(tab, snap) < 0)
- return isl_lp_error;
- return res;
- }
- /* Is the constraint at position "con" marked as being redundant?
- * If it is marked as representing an equality, then it is not
- * considered to be redundant.
- * Note that isl_tab_mark_redundant marks both the isl_tab_var as
- * redundant and moves the corresponding row into the first
- * tab->n_redundant positions (or removes the row, assigning it index -1),
- * so the final test is actually redundant itself.
- */
- int isl_tab_is_redundant(struct isl_tab *tab, int con)
- {
- if (isl_tab_check_con(tab, con) < 0)
- return -1;
- if (tab->con[con].is_zero)
- return 0;
- if (tab->con[con].is_redundant)
- return 1;
- return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
- }
- /* Is variable "var" of "tab" fixed to a constant value by its row
- * in the tableau?
- * If so and if "value" is not NULL, then store this constant value
- * in "value".
- *
- * That is, is it a row variable that only has non-zero coefficients
- * for dead columns?
- */
- static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var,
- isl_int *value)
- {
- unsigned off = 2 + tab->M;
- isl_mat *mat = tab->mat;
- int n;
- int row;
- int pos;
- if (!var->is_row)
- return isl_bool_false;
- row = var->index;
- if (row_is_big(tab, row))
- return isl_bool_false;
- n = tab->n_col - tab->n_dead;
- pos = isl_seq_first_non_zero(mat->row[row] + off + tab->n_dead, n);
- if (pos != -1)
- return isl_bool_false;
- if (value)
- isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]);
- return isl_bool_true;
- }
- /* Has the variable "var' of "tab" reached a value that is greater than
- * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
- * "tmp" has been initialized by the caller and can be used
- * to perform local computations.
- *
- * If the sample value involves the big parameter, then any value
- * is reached.
- * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
- * or n/d <= t, i.e., n <= d * t (if sgn < 0).
- */
- static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn,
- isl_int target, isl_int *tmp)
- {
- if (row_is_big(tab, var->index))
- return 1;
- isl_int_mul(*tmp, tab->mat->row[var->index][0], target);
- if (sgn > 0)
- return isl_int_ge(tab->mat->row[var->index][1], *tmp);
- else
- return isl_int_le(tab->mat->row[var->index][1], *tmp);
- }
- /* Can variable "var" of "tab" attain the value "target" by
- * pivoting up (if sgn > 0) or down (if sgn < 0)?
- * If not, then pivot up [down] to the greatest [smallest]
- * rational value.
- * "tmp" has been initialized by the caller and can be used
- * to perform local computations.
- *
- * If the variable is manifestly unbounded in the desired direction,
- * then it can attain any value.
- * Otherwise, it can be moved to a row.
- * Continue pivoting until the target is reached.
- * If no more pivoting can be performed, the maximal [minimal]
- * rational value has been reached and the target cannot be reached.
- * If the variable would be pivoted into a manifestly unbounded column,
- * then the target can be reached.
- */
- static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var,
- int sgn, isl_int target, isl_int *tmp)
- {
- int row, col;
- if (sgn < 0 && min_is_manifestly_unbounded(tab, var))
- return isl_bool_true;
- if (sgn > 0 && max_is_manifestly_unbounded(tab, var))
- return isl_bool_true;
- if (to_row(tab, var, sgn) < 0)
- return isl_bool_error;
- while (!reached(tab, var, sgn, target, tmp)) {
- find_pivot(tab, var, var, sgn, &row, &col);
- if (row == -1)
- return isl_bool_false;
- if (row == var->index)
- return isl_bool_true;
- if (isl_tab_pivot(tab, row, col) < 0)
- return isl_bool_error;
- }
- return isl_bool_true;
- }
- /* Check if variable "var" of "tab" can only attain a single (integer)
- * value, and, if so, add an equality constraint to fix the variable
- * to this single value and store the result in "target".
- * "target" and "tmp" have been initialized by the caller.
- *
- * Given the current sample value, round it down and check
- * whether it is possible to attain a strictly smaller integer value.
- * If so, the variable is not restricted to a single integer value.
- * Otherwise, the search stops at the smallest rational value.
- * Round up this value and check whether it is possible to attain
- * a strictly greater integer value.
- * If so, the variable is not restricted to a single integer value.
- * Otherwise, the search stops at the greatest rational value.
- * If rounding down this value yields a value that is different
- * from rounding up the smallest rational value, then the variable
- * cannot attain any integer value. Mark the tableau empty.
- * Otherwise, add an equality constraint that fixes the variable
- * to the single integer value found.
- */
- static isl_bool detect_constant_with_tmp(struct isl_tab *tab,
- struct isl_tab_var *var, isl_int *target, isl_int *tmp)
- {
- isl_bool reached;
- isl_vec *eq;
- int pos;
- isl_stat r;
- get_rounded_sample_value(tab, var, -1, target);
- isl_int_sub_ui(*target, *target, 1);
- reached = var_reaches(tab, var, -1, *target, tmp);
- if (reached < 0 || reached)
- return isl_bool_not(reached);
- get_rounded_sample_value(tab, var, 1, target);
- isl_int_add_ui(*target, *target, 1);
- reached = var_reaches(tab, var, 1, *target, tmp);
- if (reached < 0 || reached)
- return isl_bool_not(reached);
- get_rounded_sample_value(tab, var, -1, tmp);
- isl_int_sub_ui(*target, *target, 1);
- if (isl_int_ne(*target, *tmp)) {
- if (isl_tab_mark_empty(tab) < 0)
- return isl_bool_error;
- return isl_bool_false;
- }
- if (isl_tab_extend_cons(tab, 1) < 0)
- return isl_bool_error;
- eq = isl_vec_alloc(isl_tab_get_ctx(tab), 1 + tab->n_var);
- if (!eq)
- return isl_bool_error;
- pos = var - tab->var;
- isl_seq_clr(eq->el + 1, tab->n_var);
- isl_int_set_si(eq->el[1 + pos], -1);
- isl_int_set(eq->el[0], *target);
- r = isl_tab_add_eq(tab, eq->el);
- isl_vec_free(eq);
- return r < 0 ? isl_bool_error : isl_bool_true;
- }
- /* Check if variable "var" of "tab" can only attain a single (integer)
- * value, and, if so, add an equality constraint to fix the variable
- * to this single value and store the result in "value" (if "value"
- * is not NULL).
- *
- * If the current sample value involves the big parameter,
- * then the variable cannot have a fixed integer value.
- * If the variable is already fixed to a single value by its row, then
- * there is no need to add another equality constraint.
- *
- * Otherwise, allocate some temporary variables and continue
- * with detect_constant_with_tmp.
- */
- static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var,
- isl_int *value)
- {
- isl_int target, tmp;
- isl_bool is_cst;
- if (var->is_row && row_is_big(tab, var->index))
- return isl_bool_false;
- is_cst = is_constant(tab, var, value);
- if (is_cst < 0 || is_cst)
- return is_cst;
- if (!value)
- isl_int_init(target);
- isl_int_init(tmp);
- is_cst = detect_constant_with_tmp(tab, var,
- value ? value : &target, &tmp);
- isl_int_clear(tmp);
- if (!value)
- isl_int_clear(target);
- return is_cst;
- }
- /* Check if variable "var" of "tab" can only attain a single (integer)
- * value, and, if so, add an equality constraint to fix the variable
- * to this single value and store the result in "value" (if "value"
- * is not NULL).
- *
- * For rational tableaus, nothing needs to be done.
- */
- isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value)
- {
- if (!tab)
- return isl_bool_error;
- if (var < 0 || var >= tab->n_var)
- isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
- "position out of bounds", return isl_bool_error);
- if (tab->rational)
- return isl_bool_false;
- return get_constant(tab, &tab->var[var], value);
- }
- /* Check if any of the variables of "tab" can only attain a single (integer)
- * value, and, if so, add equality constraints to fix those variables
- * to these single values.
- *
- * For rational tableaus, nothing needs to be done.
- */
- isl_stat isl_tab_detect_constants(struct isl_tab *tab)
- {
- int i;
- if (!tab)
- return isl_stat_error;
- if (tab->rational)
- return isl_stat_ok;
- for (i = 0; i < tab->n_var; ++i) {
- if (get_constant(tab, &tab->var[i], NULL) < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Take a snapshot of the tableau that can be restored by a call to
- * isl_tab_rollback.
- */
- struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
- {
- if (!tab)
- return NULL;
- tab->need_undo = 1;
- return tab->top;
- }
- /* Does "tab" need to keep track of undo information?
- * That is, was a snapshot taken that may need to be restored?
- */
- isl_bool isl_tab_need_undo(struct isl_tab *tab)
- {
- if (!tab)
- return isl_bool_error;
- return isl_bool_ok(tab->need_undo);
- }
- /* Remove all tracking of undo information from "tab", invalidating
- * any snapshots that may have been taken of the tableau.
- * Since all snapshots have been invalidated, there is also
- * no need to start keeping track of undo information again.
- */
- void isl_tab_clear_undo(struct isl_tab *tab)
- {
- if (!tab)
- return;
- free_undo(tab);
- tab->need_undo = 0;
- }
- /* Undo the operation performed by isl_tab_relax.
- */
- static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
- WARN_UNUSED;
- static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
- {
- unsigned off = 2 + tab->M;
- if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
- if (to_row(tab, var, 1) < 0)
- return isl_stat_error;
- if (var->is_row) {
- isl_int_sub(tab->mat->row[var->index][1],
- tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
- if (var->is_nonneg) {
- int sgn = restore_row(tab, var);
- isl_assert(tab->mat->ctx, sgn >= 0,
- return isl_stat_error);
- }
- } else {
- int i;
- for (i = 0; i < tab->n_row; ++i) {
- if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
- continue;
- isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
- tab->mat->row[i][off + var->index]);
- }
- }
- return isl_stat_ok;
- }
- /* Undo the operation performed by isl_tab_unrestrict.
- *
- * In particular, mark the variable as being non-negative and make
- * sure the sample value respects this constraint.
- */
- static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
- {
- var->is_nonneg = 1;
- if (var->is_row && restore_row(tab, var) < -1)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Unmark the last redundant row in "tab" as being redundant.
- * This undoes part of the modifications performed by isl_tab_mark_redundant.
- * In particular, remove the redundant mark and make
- * sure the sample value respects the constraint again.
- * A variable that is marked non-negative by isl_tab_mark_redundant
- * is covered by a separate undo record.
- */
- static isl_stat restore_last_redundant(struct isl_tab *tab)
- {
- struct isl_tab_var *var;
- if (tab->n_redundant < 1)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "no redundant rows", return isl_stat_error);
- var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
- var->is_redundant = 0;
- tab->n_redundant--;
- restore_row(tab, var);
- return isl_stat_ok;
- }
- static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
- WARN_UNUSED;
- static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
- {
- struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
- switch (undo->type) {
- case isl_tab_undo_nonneg:
- var->is_nonneg = 0;
- break;
- case isl_tab_undo_redundant:
- if (!var->is_row || var->index != tab->n_redundant - 1)
- isl_die(isl_tab_get_ctx(tab), isl_error_internal,
- "not undoing last redundant row",
- return isl_stat_error);
- return restore_last_redundant(tab);
- case isl_tab_undo_freeze:
- var->frozen = 0;
- break;
- case isl_tab_undo_zero:
- var->is_zero = 0;
- if (!var->is_row)
- tab->n_dead--;
- break;
- case isl_tab_undo_allocate:
- if (undo->u.var_index >= 0) {
- isl_assert(tab->mat->ctx, !var->is_row,
- return isl_stat_error);
- return drop_col(tab, var->index);
- }
- if (!var->is_row) {
- if (!max_is_manifestly_unbounded(tab, var)) {
- if (to_row(tab, var, 1) < 0)
- return isl_stat_error;
- } else if (!min_is_manifestly_unbounded(tab, var)) {
- if (to_row(tab, var, -1) < 0)
- return isl_stat_error;
- } else
- if (to_row(tab, var, 0) < 0)
- return isl_stat_error;
- }
- return drop_row(tab, var->index);
- case isl_tab_undo_relax:
- return unrelax(tab, var);
- case isl_tab_undo_unrestrict:
- return ununrestrict(tab, var);
- default:
- isl_die(tab->mat->ctx, isl_error_internal,
- "perform_undo_var called on invalid undo record",
- return isl_stat_error);
- }
- return isl_stat_ok;
- }
- /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
- * and that have been preserved in the tableau.
- * Note that isl_tab_mark_redundant may also have marked some variables
- * as being non-negative before marking them redundant. These need
- * to be removed as well as otherwise some constraints could end up
- * getting marked redundant with respect to the variable.
- */
- isl_stat isl_tab_restore_redundant(struct isl_tab *tab)
- {
- if (!tab)
- return isl_stat_error;
- if (tab->need_undo)
- isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
- "manually restoring redundant constraints "
- "interferes with undo history",
- return isl_stat_error);
- while (tab->n_redundant > 0) {
- if (tab->row_var[tab->n_redundant - 1] >= 0) {
- struct isl_tab_var *var;
- var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
- var->is_nonneg = 0;
- }
- restore_last_redundant(tab);
- }
- return isl_stat_ok;
- }
- /* Undo the addition of an integer division to the basic map representation
- * of "tab" in position "pos".
- */
- static isl_stat drop_bmap_div(struct isl_tab *tab, int pos)
- {
- int off;
- isl_size n_div;
- n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
- if (n_div < 0)
- return isl_stat_error;
- off = tab->n_var - n_div;
- tab->bmap = isl_basic_map_drop_div(tab->bmap, pos - off);
- if (!tab->bmap)
- return isl_stat_error;
- if (tab->samples) {
- tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1);
- if (!tab->samples)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Restore the tableau to the state where the basic variables
- * are those in "col_var".
- * We first construct a list of variables that are currently in
- * the basis, but shouldn't. Then we iterate over all variables
- * that should be in the basis and for each one that is currently
- * not in the basis, we exchange it with one of the elements of the
- * list constructed before.
- * We can always find an appropriate variable to pivot with because
- * the current basis is mapped to the old basis by a non-singular
- * matrix and so we can never end up with a zero row.
- */
- static int restore_basis(struct isl_tab *tab, int *col_var)
- {
- int i, j;
- int n_extra = 0;
- int *extra = NULL; /* current columns that contain bad stuff */
- unsigned off = 2 + tab->M;
- extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
- if (tab->n_col && !extra)
- goto error;
- for (i = 0; i < tab->n_col; ++i) {
- for (j = 0; j < tab->n_col; ++j)
- if (tab->col_var[i] == col_var[j])
- break;
- if (j < tab->n_col)
- continue;
- extra[n_extra++] = i;
- }
- for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
- struct isl_tab_var *var;
- int row;
- for (j = 0; j < tab->n_col; ++j)
- if (col_var[i] == tab->col_var[j])
- break;
- if (j < tab->n_col)
- continue;
- var = var_from_index(tab, col_var[i]);
- row = var->index;
- for (j = 0; j < n_extra; ++j)
- if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
- break;
- isl_assert(tab->mat->ctx, j < n_extra, goto error);
- if (isl_tab_pivot(tab, row, extra[j]) < 0)
- goto error;
- extra[j] = extra[--n_extra];
- }
- free(extra);
- return 0;
- error:
- free(extra);
- return -1;
- }
- /* Remove all samples with index n or greater, i.e., those samples
- * that were added since we saved this number of samples in
- * isl_tab_save_samples.
- */
- static void drop_samples_since(struct isl_tab *tab, int n)
- {
- int i;
- for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
- if (tab->sample_index[i] < n)
- continue;
- if (i != tab->n_sample - 1) {
- int t = tab->sample_index[tab->n_sample-1];
- tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
- tab->sample_index[i] = t;
- isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
- }
- tab->n_sample--;
- }
- }
- static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
- WARN_UNUSED;
- static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
- {
- switch (undo->type) {
- case isl_tab_undo_rational:
- tab->rational = 0;
- break;
- case isl_tab_undo_empty:
- tab->empty = 0;
- break;
- case isl_tab_undo_nonneg:
- case isl_tab_undo_redundant:
- case isl_tab_undo_freeze:
- case isl_tab_undo_zero:
- case isl_tab_undo_allocate:
- case isl_tab_undo_relax:
- case isl_tab_undo_unrestrict:
- return perform_undo_var(tab, undo);
- case isl_tab_undo_bmap_eq:
- tab->bmap = isl_basic_map_free_equality(tab->bmap, 1);
- return tab->bmap ? isl_stat_ok : isl_stat_error;
- case isl_tab_undo_bmap_ineq:
- tab->bmap = isl_basic_map_free_inequality(tab->bmap, 1);
- return tab->bmap ? isl_stat_ok : isl_stat_error;
- case isl_tab_undo_bmap_div:
- return drop_bmap_div(tab, undo->u.var_index);
- case isl_tab_undo_saved_basis:
- if (restore_basis(tab, undo->u.col_var) < 0)
- return isl_stat_error;
- break;
- case isl_tab_undo_drop_sample:
- tab->n_outside--;
- break;
- case isl_tab_undo_saved_samples:
- drop_samples_since(tab, undo->u.n);
- break;
- case isl_tab_undo_callback:
- return undo->u.callback->run(undo->u.callback);
- default:
- isl_assert(tab->mat->ctx, 0, return isl_stat_error);
- }
- return isl_stat_ok;
- }
- /* Return the tableau to the state it was in when the snapshot "snap"
- * was taken.
- */
- isl_stat isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
- {
- struct isl_tab_undo *undo, *next;
- if (!tab)
- return isl_stat_error;
- tab->in_undo = 1;
- for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
- next = undo->next;
- if (undo == snap)
- break;
- if (perform_undo(tab, undo) < 0) {
- tab->top = undo;
- free_undo(tab);
- tab->in_undo = 0;
- return isl_stat_error;
- }
- free_undo_record(undo);
- }
- tab->in_undo = 0;
- tab->top = undo;
- if (!undo)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* The given row "row" represents an inequality violated by all
- * points in the tableau. Check for some special cases of such
- * separating constraints.
- * In particular, if the row has been reduced to the constant -1,
- * then we know the inequality is adjacent (but opposite) to
- * an equality in the tableau.
- * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
- * of the tableau and c a positive constant, then the inequality
- * is adjacent (but opposite) to the inequality r'.
- */
- static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
- {
- int pos;
- unsigned off = 2 + tab->M;
- if (tab->rational)
- return isl_ineq_separate;
- if (!isl_int_is_one(tab->mat->row[row][0]))
- return isl_ineq_separate;
- pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
- tab->n_col - tab->n_dead);
- if (pos == -1) {
- if (isl_int_is_negone(tab->mat->row[row][1]))
- return isl_ineq_adj_eq;
- else
- return isl_ineq_separate;
- }
- if (!isl_int_eq(tab->mat->row[row][1],
- tab->mat->row[row][off + tab->n_dead + pos]))
- return isl_ineq_separate;
- pos = isl_seq_first_non_zero(
- tab->mat->row[row] + off + tab->n_dead + pos + 1,
- tab->n_col - tab->n_dead - pos - 1);
- return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
- }
- /* Check the effect of inequality "ineq" on the tableau "tab".
- * The result may be
- * isl_ineq_redundant: satisfied by all points in the tableau
- * isl_ineq_separate: satisfied by no point in the tableau
- * isl_ineq_cut: satisfied by some by not all points
- * isl_ineq_adj_eq: adjacent to an equality
- * isl_ineq_adj_ineq: adjacent to an inequality.
- */
- enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
- {
- enum isl_ineq_type type = isl_ineq_error;
- struct isl_tab_undo *snap = NULL;
- int con;
- int row;
- if (!tab)
- return isl_ineq_error;
- if (isl_tab_extend_cons(tab, 1) < 0)
- return isl_ineq_error;
- snap = isl_tab_snap(tab);
- con = isl_tab_add_row(tab, ineq);
- if (con < 0)
- goto error;
- row = tab->con[con].index;
- if (isl_tab_row_is_redundant(tab, row))
- type = isl_ineq_redundant;
- else if (isl_int_is_neg(tab->mat->row[row][1]) &&
- (tab->rational ||
- isl_int_abs_ge(tab->mat->row[row][1],
- tab->mat->row[row][0]))) {
- int nonneg = at_least_zero(tab, &tab->con[con]);
- if (nonneg < 0)
- goto error;
- if (nonneg)
- type = isl_ineq_cut;
- else
- type = separation_type(tab, row);
- } else {
- int red = con_is_redundant(tab, &tab->con[con]);
- if (red < 0)
- goto error;
- if (!red)
- type = isl_ineq_cut;
- else
- type = isl_ineq_redundant;
- }
- if (isl_tab_rollback(tab, snap))
- return isl_ineq_error;
- return type;
- error:
- return isl_ineq_error;
- }
- isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
- {
- bmap = isl_basic_map_cow(bmap);
- if (!tab || !bmap)
- goto error;
- if (tab->empty) {
- bmap = isl_basic_map_set_to_empty(bmap);
- if (!bmap)
- goto error;
- tab->bmap = bmap;
- return isl_stat_ok;
- }
- isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
- isl_assert(tab->mat->ctx,
- tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
- tab->bmap = bmap;
- return isl_stat_ok;
- error:
- isl_basic_map_free(bmap);
- return isl_stat_error;
- }
- isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
- {
- return isl_tab_track_bmap(tab, bset_to_bmap(bset));
- }
- __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
- {
- if (!tab)
- return NULL;
- return bset_from_bmap(tab->bmap);
- }
- static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
- FILE *out, int indent)
- {
- unsigned r, c;
- int i;
- if (!tab) {
- fprintf(out, "%*snull tab\n", indent, "");
- return;
- }
- fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
- tab->n_redundant, tab->n_dead);
- if (tab->rational)
- fprintf(out, ", rational");
- if (tab->empty)
- fprintf(out, ", empty");
- fprintf(out, "\n");
- fprintf(out, "%*s[", indent, "");
- for (i = 0; i < tab->n_var; ++i) {
- if (i)
- fprintf(out, (i == tab->n_param ||
- i == tab->n_var - tab->n_div) ? "; "
- : ", ");
- fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
- tab->var[i].index,
- tab->var[i].is_zero ? " [=0]" :
- tab->var[i].is_redundant ? " [R]" : "");
- }
- fprintf(out, "]\n");
- fprintf(out, "%*s[", indent, "");
- for (i = 0; i < tab->n_con; ++i) {
- if (i)
- fprintf(out, ", ");
- fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
- tab->con[i].index,
- tab->con[i].is_zero ? " [=0]" :
- tab->con[i].is_redundant ? " [R]" : "");
- }
- fprintf(out, "]\n");
- fprintf(out, "%*s[", indent, "");
- for (i = 0; i < tab->n_row; ++i) {
- const char *sign = "";
- if (i)
- fprintf(out, ", ");
- if (tab->row_sign) {
- if (tab->row_sign[i] == isl_tab_row_unknown)
- sign = "?";
- else if (tab->row_sign[i] == isl_tab_row_neg)
- sign = "-";
- else if (tab->row_sign[i] == isl_tab_row_pos)
- sign = "+";
- else
- sign = "+-";
- }
- fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
- isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
- }
- fprintf(out, "]\n");
- fprintf(out, "%*s[", indent, "");
- for (i = 0; i < tab->n_col; ++i) {
- if (i)
- fprintf(out, ", ");
- fprintf(out, "c%d: %d%s", i, tab->col_var[i],
- var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
- }
- fprintf(out, "]\n");
- r = tab->mat->n_row;
- tab->mat->n_row = tab->n_row;
- c = tab->mat->n_col;
- tab->mat->n_col = 2 + tab->M + tab->n_col;
- isl_mat_print_internal(tab->mat, out, indent);
- tab->mat->n_row = r;
- tab->mat->n_col = c;
- if (tab->bmap)
- isl_basic_map_print_internal(tab->bmap, out, indent);
- }
- void isl_tab_dump(__isl_keep struct isl_tab *tab)
- {
- isl_tab_print_internal(tab, stderr, 0);
- }
|