12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661 |
- /*
- * Copyright 2011 INRIA Saclay
- * Copyright 2012-2014 Ecole Normale Superieure
- * Copyright 2015-2016 Sven Verdoolaege
- * Copyright 2016 INRIA Paris
- * Copyright 2017 Sven Verdoolaege
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
- * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
- * 91893 Orsay, France
- * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
- * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
- * CS 42112, 75589 Paris Cedex 12, France
- */
- #include <isl_ctx_private.h>
- #include <isl_map_private.h>
- #include <isl_space_private.h>
- #include <isl_aff_private.h>
- #include <isl/hash.h>
- #include <isl/id.h>
- #include <isl/constraint.h>
- #include <isl/schedule.h>
- #include <isl_schedule_constraints.h>
- #include <isl/schedule_node.h>
- #include <isl_mat_private.h>
- #include <isl_vec_private.h>
- #include <isl/set.h>
- #include <isl_union_set_private.h>
- #include <isl_seq.h>
- #include <isl_tab.h>
- #include <isl_dim_map.h>
- #include <isl/map_to_basic_set.h>
- #include <isl_sort.h>
- #include <isl_options_private.h>
- #include <isl_tarjan.h>
- #include <isl_morph.h>
- #include <isl/ilp.h>
- #include <isl_val_private.h>
- /*
- * The scheduling algorithm implemented in this file was inspired by
- * Bondhugula et al., "Automatic Transformations for Communication-Minimized
- * Parallelization and Locality Optimization in the Polyhedral Model".
- *
- * For a detailed description of the variant implemented in isl,
- * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
- */
- /* Internal information about a node that is used during the construction
- * of a schedule.
- * space represents the original space in which the domain lives;
- * that is, the space is not affected by compression
- * sched is a matrix representation of the schedule being constructed
- * for this node; if compressed is set, then this schedule is
- * defined over the compressed domain space
- * sched_map is an isl_map representation of the same (partial) schedule
- * sched_map may be NULL; if compressed is set, then this map
- * is defined over the uncompressed domain space
- * rank is the number of linearly independent rows in the linear part
- * of sched
- * the rows of "vmap" represent a change of basis for the node
- * variables; the first rank rows span the linear part of
- * the schedule rows; the remaining rows are linearly independent
- * the rows of "indep" represent linear combinations of the schedule
- * coefficients that are non-zero when the schedule coefficients are
- * linearly independent of previously computed schedule rows.
- * start is the first variable in the LP problem in the sequences that
- * represents the schedule coefficients of this node
- * nvar is the dimension of the (compressed) domain
- * nparam is the number of parameters or 0 if we are not constructing
- * a parametric schedule
- *
- * If compressed is set, then hull represents the constraints
- * that were used to derive the compression, while compress and
- * decompress map the original space to the compressed space and
- * vice versa.
- *
- * scc is the index of SCC (or WCC) this node belongs to
- *
- * "cluster" is only used inside extract_clusters and identifies
- * the cluster of SCCs that the node belongs to.
- *
- * coincident contains a boolean for each of the rows of the schedule,
- * indicating whether the corresponding scheduling dimension satisfies
- * the coincidence constraints in the sense that the corresponding
- * dependence distances are zero.
- *
- * If the schedule_treat_coalescing option is set, then
- * "sizes" contains the sizes of the (compressed) instance set
- * in each direction. If there is no fixed size in a given direction,
- * then the corresponding size value is set to infinity.
- * If the schedule_treat_coalescing option or the schedule_max_coefficient
- * option is set, then "max" contains the maximal values for
- * schedule coefficients of the (compressed) variables. If no bound
- * needs to be imposed on a particular variable, then the corresponding
- * value is negative.
- * If not NULL, then "bounds" contains a non-parametric set
- * in the compressed space that is bounded by the size in each direction.
- */
- struct isl_sched_node {
- isl_space *space;
- int compressed;
- isl_set *hull;
- isl_multi_aff *compress;
- isl_pw_multi_aff *decompress;
- isl_mat *sched;
- isl_map *sched_map;
- int rank;
- isl_mat *indep;
- isl_mat *vmap;
- int start;
- int nvar;
- int nparam;
- int scc;
- int cluster;
- int *coincident;
- isl_multi_val *sizes;
- isl_basic_set *bounds;
- isl_vec *max;
- };
- static isl_bool node_has_tuples(const void *entry, const void *val)
- {
- struct isl_sched_node *node = (struct isl_sched_node *)entry;
- isl_space *space = (isl_space *) val;
- return isl_space_has_equal_tuples(node->space, space);
- }
- static int node_scc_exactly(struct isl_sched_node *node, int scc)
- {
- return node->scc == scc;
- }
- static int node_scc_at_most(struct isl_sched_node *node, int scc)
- {
- return node->scc <= scc;
- }
- static int node_scc_at_least(struct isl_sched_node *node, int scc)
- {
- return node->scc >= scc;
- }
- /* An edge in the dependence graph. An edge may be used to
- * ensure validity of the generated schedule, to minimize the dependence
- * distance or both
- *
- * map is the dependence relation, with i -> j in the map if j depends on i
- * tagged_condition and tagged_validity contain the union of all tagged
- * condition or conditional validity dependence relations that
- * specialize the dependence relation "map"; that is,
- * if (i -> a) -> (j -> b) is an element of "tagged_condition"
- * or "tagged_validity", then i -> j is an element of "map".
- * If these fields are NULL, then they represent the empty relation.
- * src is the source node
- * dst is the sink node
- *
- * types is a bit vector containing the types of this edge.
- * validity is set if the edge is used to ensure correctness
- * coincidence is used to enforce zero dependence distances
- * proximity is set if the edge is used to minimize dependence distances
- * condition is set if the edge represents a condition
- * for a conditional validity schedule constraint
- * local can only be set for condition edges and indicates that
- * the dependence distance over the edge should be zero
- * conditional_validity is set if the edge is used to conditionally
- * ensure correctness
- *
- * For validity edges, start and end mark the sequence of inequality
- * constraints in the LP problem that encode the validity constraint
- * corresponding to this edge.
- *
- * During clustering, an edge may be marked "no_merge" if it should
- * not be used to merge clusters.
- * The weight is also only used during clustering and it is
- * an indication of how many schedule dimensions on either side
- * of the schedule constraints can be aligned.
- * If the weight is negative, then this means that this edge was postponed
- * by has_bounded_distances or any_no_merge. The original weight can
- * be retrieved by adding 1 + graph->max_weight, with "graph"
- * the graph containing this edge.
- */
- struct isl_sched_edge {
- isl_map *map;
- isl_union_map *tagged_condition;
- isl_union_map *tagged_validity;
- struct isl_sched_node *src;
- struct isl_sched_node *dst;
- unsigned types;
- int start;
- int end;
- int no_merge;
- int weight;
- };
- /* Is "edge" marked as being of type "type"?
- */
- static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
- {
- return ISL_FL_ISSET(edge->types, 1 << type);
- }
- /* Mark "edge" as being of type "type".
- */
- static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
- {
- ISL_FL_SET(edge->types, 1 << type);
- }
- /* No longer mark "edge" as being of type "type"?
- */
- static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
- {
- ISL_FL_CLR(edge->types, 1 << type);
- }
- /* Is "edge" marked as a validity edge?
- */
- static int is_validity(struct isl_sched_edge *edge)
- {
- return is_type(edge, isl_edge_validity);
- }
- /* Mark "edge" as a validity edge.
- */
- static void set_validity(struct isl_sched_edge *edge)
- {
- set_type(edge, isl_edge_validity);
- }
- /* Is "edge" marked as a proximity edge?
- */
- static int is_proximity(struct isl_sched_edge *edge)
- {
- return is_type(edge, isl_edge_proximity);
- }
- /* Is "edge" marked as a local edge?
- */
- static int is_local(struct isl_sched_edge *edge)
- {
- return is_type(edge, isl_edge_local);
- }
- /* Mark "edge" as a local edge.
- */
- static void set_local(struct isl_sched_edge *edge)
- {
- set_type(edge, isl_edge_local);
- }
- /* No longer mark "edge" as a local edge.
- */
- static void clear_local(struct isl_sched_edge *edge)
- {
- clear_type(edge, isl_edge_local);
- }
- /* Is "edge" marked as a coincidence edge?
- */
- static int is_coincidence(struct isl_sched_edge *edge)
- {
- return is_type(edge, isl_edge_coincidence);
- }
- /* Is "edge" marked as a condition edge?
- */
- static int is_condition(struct isl_sched_edge *edge)
- {
- return is_type(edge, isl_edge_condition);
- }
- /* Is "edge" marked as a conditional validity edge?
- */
- static int is_conditional_validity(struct isl_sched_edge *edge)
- {
- return is_type(edge, isl_edge_conditional_validity);
- }
- /* Is "edge" of a type that can appear multiple times between
- * the same pair of nodes?
- *
- * Condition edges and conditional validity edges may have tagged
- * dependence relations, in which case an edge is added for each
- * pair of tags.
- */
- static int is_multi_edge_type(struct isl_sched_edge *edge)
- {
- return is_condition(edge) || is_conditional_validity(edge);
- }
- /* Internal information about the dependence graph used during
- * the construction of the schedule.
- *
- * intra_hmap is a cache, mapping dependence relations to their dual,
- * for dependences from a node to itself, possibly without
- * coefficients for the parameters
- * intra_hmap_param is a cache, mapping dependence relations to their dual,
- * for dependences from a node to itself, including coefficients
- * for the parameters
- * inter_hmap is a cache, mapping dependence relations to their dual,
- * for dependences between distinct nodes
- * if compression is involved then the key for these maps
- * is the original, uncompressed dependence relation, while
- * the value is the dual of the compressed dependence relation.
- *
- * n is the number of nodes
- * node is the list of nodes
- * maxvar is the maximal number of variables over all nodes
- * max_row is the allocated number of rows in the schedule
- * n_row is the current (maximal) number of linearly independent
- * rows in the node schedules
- * n_total_row is the current number of rows in the node schedules
- * band_start is the starting row in the node schedules of the current band
- * root is set to the original dependence graph from which this graph
- * is derived through splitting. If this graph is not the result of
- * splitting, then the root field points to the graph itself.
- *
- * sorted contains a list of node indices sorted according to the
- * SCC to which a node belongs
- *
- * n_edge is the number of edges
- * edge is the list of edges
- * max_edge contains the maximal number of edges of each type;
- * in particular, it contains the number of edges in the inital graph.
- * edge_table contains pointers into the edge array, hashed on the source
- * and sink spaces; there is one such table for each type;
- * a given edge may be referenced from more than one table
- * if the corresponding relation appears in more than one of the
- * sets of dependences; however, for each type there is only
- * a single edge between a given pair of source and sink space
- * in the entire graph
- *
- * node_table contains pointers into the node array, hashed on the space tuples
- *
- * region contains a list of variable sequences that should be non-trivial
- *
- * lp contains the (I)LP problem used to obtain new schedule rows
- *
- * src_scc and dst_scc are the source and sink SCCs of an edge with
- * conflicting constraints
- *
- * scc represents the number of components
- * weak is set if the components are weakly connected
- *
- * max_weight is used during clustering and represents the maximal
- * weight of the relevant proximity edges.
- */
- struct isl_sched_graph {
- isl_map_to_basic_set *intra_hmap;
- isl_map_to_basic_set *intra_hmap_param;
- isl_map_to_basic_set *inter_hmap;
- struct isl_sched_node *node;
- int n;
- int maxvar;
- int max_row;
- int n_row;
- int *sorted;
- int n_total_row;
- int band_start;
- struct isl_sched_graph *root;
- struct isl_sched_edge *edge;
- int n_edge;
- int max_edge[isl_edge_last + 1];
- struct isl_hash_table *edge_table[isl_edge_last + 1];
- struct isl_hash_table *node_table;
- struct isl_trivial_region *region;
- isl_basic_set *lp;
- int src_scc;
- int dst_scc;
- int scc;
- int weak;
- int max_weight;
- };
- /* Initialize node_table based on the list of nodes.
- */
- static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- int i;
- graph->node_table = isl_hash_table_alloc(ctx, graph->n);
- if (!graph->node_table)
- return -1;
- for (i = 0; i < graph->n; ++i) {
- struct isl_hash_table_entry *entry;
- uint32_t hash;
- hash = isl_space_get_tuple_hash(graph->node[i].space);
- entry = isl_hash_table_find(ctx, graph->node_table, hash,
- &node_has_tuples,
- graph->node[i].space, 1);
- if (!entry)
- return -1;
- entry->data = &graph->node[i];
- }
- return 0;
- }
- /* Return a pointer to the node that lives within the given space,
- * an invalid node if there is no such node, or NULL in case of error.
- */
- static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
- struct isl_sched_graph *graph, __isl_keep isl_space *space)
- {
- struct isl_hash_table_entry *entry;
- uint32_t hash;
- if (!space)
- return NULL;
- hash = isl_space_get_tuple_hash(space);
- entry = isl_hash_table_find(ctx, graph->node_table, hash,
- &node_has_tuples, space, 0);
- if (!entry)
- return NULL;
- if (entry == isl_hash_table_entry_none)
- return graph->node + graph->n;
- return entry->data;
- }
- /* Is "node" a node in "graph"?
- */
- static int is_node(struct isl_sched_graph *graph,
- struct isl_sched_node *node)
- {
- return node && node >= &graph->node[0] && node < &graph->node[graph->n];
- }
- static isl_bool edge_has_src_and_dst(const void *entry, const void *val)
- {
- const struct isl_sched_edge *edge = entry;
- const struct isl_sched_edge *temp = val;
- return isl_bool_ok(edge->src == temp->src && edge->dst == temp->dst);
- }
- /* Add the given edge to graph->edge_table[type].
- */
- static isl_stat graph_edge_table_add(isl_ctx *ctx,
- struct isl_sched_graph *graph, enum isl_edge_type type,
- struct isl_sched_edge *edge)
- {
- struct isl_hash_table_entry *entry;
- uint32_t hash;
- hash = isl_hash_init();
- hash = isl_hash_builtin(hash, edge->src);
- hash = isl_hash_builtin(hash, edge->dst);
- entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
- &edge_has_src_and_dst, edge, 1);
- if (!entry)
- return isl_stat_error;
- entry->data = edge;
- return isl_stat_ok;
- }
- /* Add "edge" to all relevant edge tables.
- * That is, for every type of the edge, add it to the corresponding table.
- */
- static isl_stat graph_edge_tables_add(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_sched_edge *edge)
- {
- enum isl_edge_type t;
- for (t = isl_edge_first; t <= isl_edge_last; ++t) {
- if (!is_type(edge, t))
- continue;
- if (graph_edge_table_add(ctx, graph, t, edge) < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Allocate the edge_tables based on the maximal number of edges of
- * each type.
- */
- static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- int i;
- for (i = 0; i <= isl_edge_last; ++i) {
- graph->edge_table[i] = isl_hash_table_alloc(ctx,
- graph->max_edge[i]);
- if (!graph->edge_table[i])
- return -1;
- }
- return 0;
- }
- /* If graph->edge_table[type] contains an edge from the given source
- * to the given destination, then return the hash table entry of this edge.
- * Otherwise, return NULL.
- */
- static struct isl_hash_table_entry *graph_find_edge_entry(
- struct isl_sched_graph *graph,
- enum isl_edge_type type,
- struct isl_sched_node *src, struct isl_sched_node *dst)
- {
- isl_ctx *ctx = isl_space_get_ctx(src->space);
- uint32_t hash;
- struct isl_sched_edge temp = { .src = src, .dst = dst };
- hash = isl_hash_init();
- hash = isl_hash_builtin(hash, temp.src);
- hash = isl_hash_builtin(hash, temp.dst);
- return isl_hash_table_find(ctx, graph->edge_table[type], hash,
- &edge_has_src_and_dst, &temp, 0);
- }
- /* If graph->edge_table[type] contains an edge from the given source
- * to the given destination, then return this edge.
- * Return "none" if no such edge can be found.
- * Return NULL on error.
- */
- static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
- enum isl_edge_type type,
- struct isl_sched_node *src, struct isl_sched_node *dst,
- struct isl_sched_edge *none)
- {
- struct isl_hash_table_entry *entry;
- entry = graph_find_edge_entry(graph, type, src, dst);
- if (!entry)
- return NULL;
- if (entry == isl_hash_table_entry_none)
- return none;
- return entry->data;
- }
- /* Check whether the dependence graph has an edge of the given type
- * between the given two nodes.
- */
- static isl_bool graph_has_edge(struct isl_sched_graph *graph,
- enum isl_edge_type type,
- struct isl_sched_node *src, struct isl_sched_node *dst)
- {
- struct isl_sched_edge dummy;
- struct isl_sched_edge *edge;
- isl_bool empty;
- edge = graph_find_edge(graph, type, src, dst, &dummy);
- if (!edge)
- return isl_bool_error;
- if (edge == &dummy)
- return isl_bool_false;
- empty = isl_map_plain_is_empty(edge->map);
- return isl_bool_not(empty);
- }
- /* Look for any edge with the same src, dst and map fields as "model".
- *
- * Return the matching edge if one can be found.
- * Return "model" if no matching edge is found.
- * Return NULL on error.
- */
- static struct isl_sched_edge *graph_find_matching_edge(
- struct isl_sched_graph *graph, struct isl_sched_edge *model)
- {
- enum isl_edge_type i;
- struct isl_sched_edge *edge;
- for (i = isl_edge_first; i <= isl_edge_last; ++i) {
- int is_equal;
- edge = graph_find_edge(graph, i, model->src, model->dst, model);
- if (!edge)
- return NULL;
- if (edge == model)
- continue;
- is_equal = isl_map_plain_is_equal(model->map, edge->map);
- if (is_equal < 0)
- return NULL;
- if (is_equal)
- return edge;
- }
- return model;
- }
- /* Remove the given edge from all the edge_tables that refer to it.
- */
- static isl_stat graph_remove_edge(struct isl_sched_graph *graph,
- struct isl_sched_edge *edge)
- {
- isl_ctx *ctx = isl_map_get_ctx(edge->map);
- enum isl_edge_type i;
- for (i = isl_edge_first; i <= isl_edge_last; ++i) {
- struct isl_hash_table_entry *entry;
- entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
- if (!entry)
- return isl_stat_error;
- if (entry == isl_hash_table_entry_none)
- continue;
- if (entry->data != edge)
- continue;
- isl_hash_table_remove(ctx, graph->edge_table[i], entry);
- }
- return isl_stat_ok;
- }
- /* Check whether the dependence graph has any edge
- * between the given two nodes.
- */
- static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
- struct isl_sched_node *src, struct isl_sched_node *dst)
- {
- enum isl_edge_type i;
- isl_bool r;
- for (i = isl_edge_first; i <= isl_edge_last; ++i) {
- r = graph_has_edge(graph, i, src, dst);
- if (r < 0 || r)
- return r;
- }
- return r;
- }
- /* Check whether the dependence graph has a validity edge
- * between the given two nodes.
- *
- * Conditional validity edges are essentially validity edges that
- * can be ignored if the corresponding condition edges are iteration private.
- * Here, we are only checking for the presence of validity
- * edges, so we need to consider the conditional validity edges too.
- * In particular, this function is used during the detection
- * of strongly connected components and we cannot ignore
- * conditional validity edges during this detection.
- */
- static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
- struct isl_sched_node *src, struct isl_sched_node *dst)
- {
- isl_bool r;
- r = graph_has_edge(graph, isl_edge_validity, src, dst);
- if (r < 0 || r)
- return r;
- return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
- }
- /* Perform all the required memory allocations for a schedule graph "graph"
- * with "n_node" nodes and "n_edge" edge and initialize the corresponding
- * fields.
- */
- static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
- int n_node, int n_edge)
- {
- int i;
- graph->n = n_node;
- graph->n_edge = n_edge;
- graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
- graph->sorted = isl_calloc_array(ctx, int, graph->n);
- graph->region = isl_alloc_array(ctx,
- struct isl_trivial_region, graph->n);
- graph->edge = isl_calloc_array(ctx,
- struct isl_sched_edge, graph->n_edge);
- graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
- graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
- graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
- if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
- !graph->sorted)
- return isl_stat_error;
- for(i = 0; i < graph->n; ++i)
- graph->sorted[i] = i;
- return isl_stat_ok;
- }
- /* Free the memory associated to node "node" in "graph".
- * The "coincident" field is shared by nodes in a graph and its subgraph.
- * It therefore only needs to be freed for the original dependence graph,
- * i.e., one that is not the result of splitting.
- */
- static void clear_node(struct isl_sched_graph *graph,
- struct isl_sched_node *node)
- {
- isl_space_free(node->space);
- isl_set_free(node->hull);
- isl_multi_aff_free(node->compress);
- isl_pw_multi_aff_free(node->decompress);
- isl_mat_free(node->sched);
- isl_map_free(node->sched_map);
- isl_mat_free(node->indep);
- isl_mat_free(node->vmap);
- if (graph->root == graph)
- free(node->coincident);
- isl_multi_val_free(node->sizes);
- isl_basic_set_free(node->bounds);
- isl_vec_free(node->max);
- }
- static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- int i;
- isl_map_to_basic_set_free(graph->intra_hmap);
- isl_map_to_basic_set_free(graph->intra_hmap_param);
- isl_map_to_basic_set_free(graph->inter_hmap);
- if (graph->node)
- for (i = 0; i < graph->n; ++i)
- clear_node(graph, &graph->node[i]);
- free(graph->node);
- free(graph->sorted);
- if (graph->edge)
- for (i = 0; i < graph->n_edge; ++i) {
- isl_map_free(graph->edge[i].map);
- isl_union_map_free(graph->edge[i].tagged_condition);
- isl_union_map_free(graph->edge[i].tagged_validity);
- }
- free(graph->edge);
- free(graph->region);
- for (i = 0; i <= isl_edge_last; ++i)
- isl_hash_table_free(ctx, graph->edge_table[i]);
- isl_hash_table_free(ctx, graph->node_table);
- isl_basic_set_free(graph->lp);
- }
- /* For each "set" on which this function is called, increment
- * graph->n by one and update graph->maxvar.
- */
- static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
- {
- struct isl_sched_graph *graph = user;
- isl_size nvar = isl_set_dim(set, isl_dim_set);
- graph->n++;
- if (nvar > graph->maxvar)
- graph->maxvar = nvar;
- isl_set_free(set);
- if (nvar < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Compute the number of rows that should be allocated for the schedule.
- * In particular, we need one row for each variable or one row
- * for each basic map in the dependences.
- * Note that it is practically impossible to exhaust both
- * the number of dependences and the number of variables.
- */
- static isl_stat compute_max_row(struct isl_sched_graph *graph,
- __isl_keep isl_schedule_constraints *sc)
- {
- int n_edge;
- isl_stat r;
- isl_union_set *domain;
- graph->n = 0;
- graph->maxvar = 0;
- domain = isl_schedule_constraints_get_domain(sc);
- r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
- isl_union_set_free(domain);
- if (r < 0)
- return isl_stat_error;
- n_edge = isl_schedule_constraints_n_basic_map(sc);
- if (n_edge < 0)
- return isl_stat_error;
- graph->max_row = n_edge + graph->maxvar;
- return isl_stat_ok;
- }
- /* Does "bset" have any defining equalities for its set variables?
- */
- static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
- {
- int i;
- isl_size n;
- n = isl_basic_set_dim(bset, isl_dim_set);
- if (n < 0)
- return isl_bool_error;
- for (i = 0; i < n; ++i) {
- isl_bool has;
- has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
- NULL);
- if (has < 0 || has)
- return has;
- }
- return isl_bool_false;
- }
- /* Set the entries of node->max to the value of the schedule_max_coefficient
- * option, if set.
- */
- static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
- {
- int max;
- max = isl_options_get_schedule_max_coefficient(ctx);
- if (max == -1)
- return isl_stat_ok;
- node->max = isl_vec_alloc(ctx, node->nvar);
- node->max = isl_vec_set_si(node->max, max);
- if (!node->max)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Set the entries of node->max to the minimum of the schedule_max_coefficient
- * option (if set) and half of the minimum of the sizes in the other
- * dimensions. Round up when computing the half such that
- * if the minimum of the sizes is one, half of the size is taken to be one
- * rather than zero.
- * If the global minimum is unbounded (i.e., if both
- * the schedule_max_coefficient is not set and the sizes in the other
- * dimensions are unbounded), then store a negative value.
- * If the schedule coefficient is close to the size of the instance set
- * in another dimension, then the schedule may represent a loop
- * coalescing transformation (especially if the coefficient
- * in that other dimension is one). Forcing the coefficient to be
- * smaller than or equal to half the minimal size should avoid this
- * situation.
- */
- static isl_stat compute_max_coefficient(isl_ctx *ctx,
- struct isl_sched_node *node)
- {
- int max;
- int i, j;
- isl_vec *v;
- max = isl_options_get_schedule_max_coefficient(ctx);
- v = isl_vec_alloc(ctx, node->nvar);
- if (!v)
- return isl_stat_error;
- for (i = 0; i < node->nvar; ++i) {
- isl_int_set_si(v->el[i], max);
- isl_int_mul_si(v->el[i], v->el[i], 2);
- }
- for (i = 0; i < node->nvar; ++i) {
- isl_val *size;
- size = isl_multi_val_get_val(node->sizes, i);
- if (!size)
- goto error;
- if (!isl_val_is_int(size)) {
- isl_val_free(size);
- continue;
- }
- for (j = 0; j < node->nvar; ++j) {
- if (j == i)
- continue;
- if (isl_int_is_neg(v->el[j]) ||
- isl_int_gt(v->el[j], size->n))
- isl_int_set(v->el[j], size->n);
- }
- isl_val_free(size);
- }
- for (i = 0; i < node->nvar; ++i)
- isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
- node->max = v;
- return isl_stat_ok;
- error:
- isl_vec_free(v);
- return isl_stat_error;
- }
- /* Construct an identifier for node "node", which will represent "set".
- * The name of the identifier is either "compressed" or
- * "compressed_<name>", with <name> the name of the space of "set".
- * The user pointer of the identifier points to "node".
- */
- static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
- struct isl_sched_node *node)
- {
- isl_bool has_name;
- isl_ctx *ctx;
- isl_id *id;
- isl_printer *p;
- const char *name;
- char *id_name;
- has_name = isl_set_has_tuple_name(set);
- if (has_name < 0)
- return NULL;
- ctx = isl_set_get_ctx(set);
- if (!has_name)
- return isl_id_alloc(ctx, "compressed", node);
- p = isl_printer_to_str(ctx);
- name = isl_set_get_tuple_name(set);
- p = isl_printer_print_str(p, "compressed_");
- p = isl_printer_print_str(p, name);
- id_name = isl_printer_get_str(p);
- isl_printer_free(p);
- id = isl_id_alloc(ctx, id_name, node);
- free(id_name);
- return id;
- }
- /* Construct a map that isolates the variable in position "pos" in "set".
- *
- * That is, construct
- *
- * [i_0, ..., i_pos-1, i_pos+1, ...] -> [i_pos]
- */
- static __isl_give isl_map *isolate(__isl_take isl_set *set, int pos)
- {
- isl_map *map;
- map = isl_set_project_onto_map(set, isl_dim_set, pos, 1);
- map = isl_map_project_out(map, isl_dim_in, pos, 1);
- return map;
- }
- /* Compute and return the size of "set" in dimension "dim".
- * The size is taken to be the difference in values for that variable
- * for fixed values of the other variables.
- * This assumes that "set" is convex.
- * In particular, the variable is first isolated from the other variables
- * in the range of a map
- *
- * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
- *
- * and then duplicated
- *
- * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
- *
- * The shared variables are then projected out and the maximal value
- * of i_dim' - i_dim is computed.
- */
- static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
- {
- isl_map *map;
- isl_local_space *ls;
- isl_aff *obj;
- isl_val *v;
- map = isolate(set, dim);
- map = isl_map_range_product(map, isl_map_copy(map));
- map = isl_set_unwrap(isl_map_range(map));
- set = isl_map_deltas(map);
- ls = isl_local_space_from_space(isl_set_get_space(set));
- obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
- v = isl_set_max_val(set, obj);
- isl_aff_free(obj);
- isl_set_free(set);
- return v;
- }
- /* Perform a compression on "node" where "hull" represents the constraints
- * that were used to derive the compression, while "compress" and
- * "decompress" map the original space to the compressed space and
- * vice versa.
- *
- * If "node" was not compressed already, then simply store
- * the compression information.
- * Otherwise the "original" space is actually the result
- * of a previous compression, which is then combined
- * with the present compression.
- *
- * The dimensionality of the compressed domain is also adjusted.
- * Other information, such as the sizes and the maximal coefficient values,
- * has not been computed yet and therefore does not need to be adjusted.
- */
- static isl_stat compress_node(struct isl_sched_node *node,
- __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
- __isl_take isl_pw_multi_aff *decompress)
- {
- node->nvar = isl_multi_aff_dim(compress, isl_dim_out);
- if (!node->compressed) {
- node->compressed = 1;
- node->hull = hull;
- node->compress = compress;
- node->decompress = decompress;
- } else {
- hull = isl_set_preimage_multi_aff(hull,
- isl_multi_aff_copy(node->compress));
- node->hull = isl_set_intersect(node->hull, hull);
- node->compress = isl_multi_aff_pullback_multi_aff(
- compress, node->compress);
- node->decompress = isl_pw_multi_aff_pullback_pw_multi_aff(
- node->decompress, decompress);
- }
- if (!node->hull || !node->compress || !node->decompress)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Given that dimension "pos" in "set" has a fixed value
- * in terms of the other dimensions, (further) compress "node"
- * by projecting out this dimension.
- * "set" may be the result of a previous compression.
- * "uncompressed" is the original domain (without compression).
- *
- * The compression function simply projects out the dimension.
- * The decompression function adds back the dimension
- * in the right position as an expression of the other dimensions
- * derived from "set".
- * As in extract_node, the compressed space has an identifier
- * that references "node" such that each compressed space is unique and
- * such that the node can be recovered from the compressed space.
- *
- * The constraint removed through the compression is added to the "hull"
- * such that only edges that relate to the original domains
- * are taken into account.
- * In particular, it is obtained by composing compression and decompression and
- * taking the relation among the variables in the range.
- */
- static isl_stat project_out_fixed(struct isl_sched_node *node,
- __isl_keep isl_set *uncompressed, __isl_take isl_set *set, int pos)
- {
- isl_id *id;
- isl_space *space;
- isl_set *domain;
- isl_map *map;
- isl_multi_aff *compress;
- isl_pw_multi_aff *decompress, *pma;
- isl_multi_pw_aff *mpa;
- isl_set *hull;
- map = isolate(isl_set_copy(set), pos);
- pma = isl_pw_multi_aff_from_map(map);
- domain = isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma));
- pma = isl_pw_multi_aff_gist(pma, domain);
- space = isl_pw_multi_aff_get_domain_space(pma);
- mpa = isl_multi_pw_aff_identity(isl_space_map_from_set(space));
- mpa = isl_multi_pw_aff_range_splice(mpa, pos,
- isl_multi_pw_aff_from_pw_multi_aff(pma));
- decompress = isl_pw_multi_aff_from_multi_pw_aff(mpa);
- space = isl_set_get_space(set);
- compress = isl_multi_aff_project_out_map(space, isl_dim_set, pos, 1);
- id = construct_compressed_id(uncompressed, node);
- compress = isl_multi_aff_set_tuple_id(compress, isl_dim_out, id);
- space = isl_space_reverse(isl_multi_aff_get_space(compress));
- decompress = isl_pw_multi_aff_reset_space(decompress, space);
- pma = isl_pw_multi_aff_pullback_multi_aff(
- isl_pw_multi_aff_copy(decompress), isl_multi_aff_copy(compress));
- hull = isl_map_range(isl_map_from_pw_multi_aff(pma));
- isl_set_free(set);
- return compress_node(node, hull, compress, decompress);
- }
- /* Compute the size of the compressed domain in each dimension and
- * store the results in node->sizes.
- * "uncompressed" is the original domain (without compression).
- *
- * First compress the domain if needed and then compute the size
- * in each direction.
- * If the domain is not convex, then the sizes are computed
- * on a convex superset in order to avoid picking up sizes
- * that are valid for the individual disjuncts, but not for
- * the domain as a whole.
- *
- * If any of the sizes turns out to be zero, then this means
- * that this dimension has a fixed value in terms of
- * the other dimensions. Perform an (extra) compression
- * to remove this dimension.
- */
- static isl_stat compute_sizes(struct isl_sched_node *node,
- __isl_keep isl_set *uncompressed)
- {
- int j;
- isl_size n;
- isl_multi_val *mv;
- isl_set *set = isl_set_copy(uncompressed);
- if (node->compressed)
- set = isl_set_preimage_pw_multi_aff(set,
- isl_pw_multi_aff_copy(node->decompress));
- set = isl_set_from_basic_set(isl_set_simple_hull(set));
- mv = isl_multi_val_zero(isl_set_get_space(set));
- n = isl_set_dim(set, isl_dim_set);
- if (n < 0)
- mv = isl_multi_val_free(mv);
- for (j = 0; j < n; ++j) {
- isl_bool is_zero;
- isl_val *v;
- v = compute_size(isl_set_copy(set), j);
- is_zero = isl_val_is_zero(v);
- mv = isl_multi_val_set_val(mv, j, v);
- if (is_zero >= 0 && is_zero) {
- isl_multi_val_free(mv);
- if (project_out_fixed(node, uncompressed, set, j) < 0)
- return isl_stat_error;
- return compute_sizes(node, uncompressed);
- }
- }
- node->sizes = mv;
- isl_set_free(set);
- if (!node->sizes)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Compute the size of the instance set "set" of "node", after compression,
- * as well as bounds on the corresponding coefficients, if needed.
- *
- * The sizes are needed when the schedule_treat_coalescing option is set.
- * The bounds are needed when the schedule_treat_coalescing option or
- * the schedule_max_coefficient option is set.
- *
- * If the schedule_treat_coalescing option is not set, then at most
- * the bounds need to be set and this is done in set_max_coefficient.
- * Otherwise, compute the size of the compressed domain
- * in each direction and store the results in node->size.
- * Finally, set the bounds on the coefficients based on the sizes
- * and the schedule_max_coefficient option in compute_max_coefficient.
- */
- static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
- __isl_take isl_set *set)
- {
- isl_stat r;
- if (!isl_options_get_schedule_treat_coalescing(ctx)) {
- isl_set_free(set);
- return set_max_coefficient(ctx, node);
- }
- r = compute_sizes(node, set);
- isl_set_free(set);
- if (r < 0)
- return isl_stat_error;
- return compute_max_coefficient(ctx, node);
- }
- /* Add a new node to the graph representing the given instance set.
- * "nvar" is the (possibly compressed) number of variables and
- * may be smaller than then number of set variables in "set"
- * if "compressed" is set.
- * If "compressed" is set, then "hull" represents the constraints
- * that were used to derive the compression, while "compress" and
- * "decompress" map the original space to the compressed space and
- * vice versa.
- * If "compressed" is not set, then "hull", "compress" and "decompress"
- * should be NULL.
- *
- * Compute the size of the instance set and bounds on the coefficients,
- * if needed.
- */
- static isl_stat add_node(struct isl_sched_graph *graph,
- __isl_take isl_set *set, int nvar, int compressed,
- __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
- __isl_take isl_pw_multi_aff *decompress)
- {
- isl_size nparam;
- isl_ctx *ctx;
- isl_mat *sched;
- isl_space *space;
- int *coincident;
- struct isl_sched_node *node;
- nparam = isl_set_dim(set, isl_dim_param);
- if (nparam < 0)
- goto error;
- ctx = isl_set_get_ctx(set);
- if (!ctx->opt->schedule_parametric)
- nparam = 0;
- sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
- node = &graph->node[graph->n];
- graph->n++;
- space = isl_set_get_space(set);
- node->space = space;
- node->nvar = nvar;
- node->nparam = nparam;
- node->sched = sched;
- node->sched_map = NULL;
- coincident = isl_calloc_array(ctx, int, graph->max_row);
- node->coincident = coincident;
- node->compressed = compressed;
- node->hull = hull;
- node->compress = compress;
- node->decompress = decompress;
- if (compute_sizes_and_max(ctx, node, set) < 0)
- return isl_stat_error;
- if (!space || !sched || (graph->max_row && !coincident))
- return isl_stat_error;
- if (compressed && (!hull || !compress || !decompress))
- return isl_stat_error;
- return isl_stat_ok;
- error:
- isl_set_free(set);
- isl_set_free(hull);
- isl_multi_aff_free(compress);
- isl_pw_multi_aff_free(decompress);
- return isl_stat_error;
- }
- /* Add a new node to the graph representing the given set.
- *
- * If any of the set variables is defined by an equality, then
- * we perform variable compression such that we can perform
- * the scheduling on the compressed domain.
- * In this case, an identifier is used that references the new node
- * such that each compressed space is unique and
- * such that the node can be recovered from the compressed space.
- */
- static isl_stat extract_node(__isl_take isl_set *set, void *user)
- {
- isl_size nvar;
- isl_bool has_equality;
- isl_id *id;
- isl_basic_set *hull;
- isl_set *hull_set;
- isl_morph *morph;
- isl_multi_aff *compress, *decompress_ma;
- isl_pw_multi_aff *decompress;
- struct isl_sched_graph *graph = user;
- hull = isl_set_affine_hull(isl_set_copy(set));
- hull = isl_basic_set_remove_divs(hull);
- nvar = isl_set_dim(set, isl_dim_set);
- has_equality = has_any_defining_equality(hull);
- if (nvar < 0 || has_equality < 0)
- goto error;
- if (!has_equality) {
- isl_basic_set_free(hull);
- return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
- }
- id = construct_compressed_id(set, &graph->node[graph->n]);
- morph = isl_basic_set_variable_compression_with_id(hull, id);
- isl_id_free(id);
- nvar = isl_morph_ran_dim(morph, isl_dim_set);
- if (nvar < 0)
- set = isl_set_free(set);
- compress = isl_morph_get_var_multi_aff(morph);
- morph = isl_morph_inverse(morph);
- decompress_ma = isl_morph_get_var_multi_aff(morph);
- decompress = isl_pw_multi_aff_from_multi_aff(decompress_ma);
- isl_morph_free(morph);
- hull_set = isl_set_from_basic_set(hull);
- return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
- error:
- isl_basic_set_free(hull);
- isl_set_free(set);
- return isl_stat_error;
- }
- struct isl_extract_edge_data {
- enum isl_edge_type type;
- struct isl_sched_graph *graph;
- };
- /* Merge edge2 into edge1, freeing the contents of edge2.
- * Return 0 on success and -1 on failure.
- *
- * edge1 and edge2 are assumed to have the same value for the map field.
- */
- static int merge_edge(struct isl_sched_edge *edge1,
- struct isl_sched_edge *edge2)
- {
- edge1->types |= edge2->types;
- isl_map_free(edge2->map);
- if (is_condition(edge2)) {
- if (!edge1->tagged_condition)
- edge1->tagged_condition = edge2->tagged_condition;
- else
- edge1->tagged_condition =
- isl_union_map_union(edge1->tagged_condition,
- edge2->tagged_condition);
- }
- if (is_conditional_validity(edge2)) {
- if (!edge1->tagged_validity)
- edge1->tagged_validity = edge2->tagged_validity;
- else
- edge1->tagged_validity =
- isl_union_map_union(edge1->tagged_validity,
- edge2->tagged_validity);
- }
- if (is_condition(edge2) && !edge1->tagged_condition)
- return -1;
- if (is_conditional_validity(edge2) && !edge1->tagged_validity)
- return -1;
- return 0;
- }
- /* Insert dummy tags in domain and range of "map".
- *
- * In particular, if "map" is of the form
- *
- * A -> B
- *
- * then return
- *
- * [A -> dummy_tag] -> [B -> dummy_tag]
- *
- * where the dummy_tags are identical and equal to any dummy tags
- * introduced by any other call to this function.
- */
- static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
- {
- static char dummy;
- isl_ctx *ctx;
- isl_id *id;
- isl_space *space;
- isl_set *domain, *range;
- ctx = isl_map_get_ctx(map);
- id = isl_id_alloc(ctx, NULL, &dummy);
- space = isl_space_params(isl_map_get_space(map));
- space = isl_space_set_from_params(space);
- space = isl_space_set_tuple_id(space, isl_dim_set, id);
- space = isl_space_map_from_set(space);
- domain = isl_map_wrap(map);
- range = isl_map_wrap(isl_map_universe(space));
- map = isl_map_from_domain_and_range(domain, range);
- map = isl_map_zip(map);
- return map;
- }
- /* Given that at least one of "src" or "dst" is compressed, return
- * a map between the spaces of these nodes restricted to the affine
- * hull that was used in the compression.
- */
- static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
- struct isl_sched_node *dst)
- {
- isl_set *dom, *ran;
- if (src->compressed)
- dom = isl_set_copy(src->hull);
- else
- dom = isl_set_universe(isl_space_copy(src->space));
- if (dst->compressed)
- ran = isl_set_copy(dst->hull);
- else
- ran = isl_set_universe(isl_space_copy(dst->space));
- return isl_map_from_domain_and_range(dom, ran);
- }
- /* Intersect the domains of the nested relations in domain and range
- * of "tagged" with "map".
- */
- static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
- __isl_keep isl_map *map)
- {
- isl_set *set;
- tagged = isl_map_zip(tagged);
- set = isl_map_wrap(isl_map_copy(map));
- tagged = isl_map_intersect_domain(tagged, set);
- tagged = isl_map_zip(tagged);
- return tagged;
- }
- /* Return a pointer to the node that lives in the domain space of "map",
- * an invalid node if there is no such node, or NULL in case of error.
- */
- static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
- struct isl_sched_graph *graph, __isl_keep isl_map *map)
- {
- struct isl_sched_node *node;
- isl_space *space;
- space = isl_space_domain(isl_map_get_space(map));
- node = graph_find_node(ctx, graph, space);
- isl_space_free(space);
- return node;
- }
- /* Return a pointer to the node that lives in the range space of "map",
- * an invalid node if there is no such node, or NULL in case of error.
- */
- static struct isl_sched_node *find_range_node(isl_ctx *ctx,
- struct isl_sched_graph *graph, __isl_keep isl_map *map)
- {
- struct isl_sched_node *node;
- isl_space *space;
- space = isl_space_range(isl_map_get_space(map));
- node = graph_find_node(ctx, graph, space);
- isl_space_free(space);
- return node;
- }
- /* Refrain from adding a new edge based on "map".
- * Instead, just free the map.
- * "tagged" is either a copy of "map" with additional tags or NULL.
- */
- static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
- {
- isl_map_free(map);
- isl_map_free(tagged);
- return isl_stat_ok;
- }
- /* Add a new edge to the graph based on the given map
- * and add it to data->graph->edge_table[data->type].
- * If a dependence relation of a given type happens to be identical
- * to one of the dependence relations of a type that was added before,
- * then we don't create a new edge, but instead mark the original edge
- * as also representing a dependence of the current type.
- *
- * Edges of type isl_edge_condition or isl_edge_conditional_validity
- * may be specified as "tagged" dependence relations. That is, "map"
- * may contain elements (i -> a) -> (j -> b), where i -> j denotes
- * the dependence on iterations and a and b are tags.
- * edge->map is set to the relation containing the elements i -> j,
- * while edge->tagged_condition and edge->tagged_validity contain
- * the union of all the "map" relations
- * for which extract_edge is called that result in the same edge->map.
- *
- * If the source or the destination node is compressed, then
- * intersect both "map" and "tagged" with the constraints that
- * were used to construct the compression.
- * This ensures that there are no schedule constraints defined
- * outside of these domains, while the scheduler no longer has
- * any control over those outside parts.
- */
- static isl_stat extract_edge(__isl_take isl_map *map, void *user)
- {
- isl_bool empty;
- isl_ctx *ctx = isl_map_get_ctx(map);
- struct isl_extract_edge_data *data = user;
- struct isl_sched_graph *graph = data->graph;
- struct isl_sched_node *src, *dst;
- struct isl_sched_edge *edge;
- isl_map *tagged = NULL;
- if (data->type == isl_edge_condition ||
- data->type == isl_edge_conditional_validity) {
- if (isl_map_can_zip(map)) {
- tagged = isl_map_copy(map);
- map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
- } else {
- tagged = insert_dummy_tags(isl_map_copy(map));
- }
- }
- src = find_domain_node(ctx, graph, map);
- dst = find_range_node(ctx, graph, map);
- if (!src || !dst)
- goto error;
- if (!is_node(graph, src) || !is_node(graph, dst))
- return skip_edge(map, tagged);
- if (src->compressed || dst->compressed) {
- isl_map *hull;
- hull = extract_hull(src, dst);
- if (tagged)
- tagged = map_intersect_domains(tagged, hull);
- map = isl_map_intersect(map, hull);
- }
- empty = isl_map_plain_is_empty(map);
- if (empty < 0)
- goto error;
- if (empty)
- return skip_edge(map, tagged);
- graph->edge[graph->n_edge].src = src;
- graph->edge[graph->n_edge].dst = dst;
- graph->edge[graph->n_edge].map = map;
- graph->edge[graph->n_edge].types = 0;
- graph->edge[graph->n_edge].tagged_condition = NULL;
- graph->edge[graph->n_edge].tagged_validity = NULL;
- set_type(&graph->edge[graph->n_edge], data->type);
- if (data->type == isl_edge_condition)
- graph->edge[graph->n_edge].tagged_condition =
- isl_union_map_from_map(tagged);
- if (data->type == isl_edge_conditional_validity)
- graph->edge[graph->n_edge].tagged_validity =
- isl_union_map_from_map(tagged);
- edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
- if (!edge) {
- graph->n_edge++;
- return isl_stat_error;
- }
- if (edge == &graph->edge[graph->n_edge])
- return graph_edge_table_add(ctx, graph, data->type,
- &graph->edge[graph->n_edge++]);
- if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
- return isl_stat_error;
- return graph_edge_table_add(ctx, graph, data->type, edge);
- error:
- isl_map_free(map);
- isl_map_free(tagged);
- return isl_stat_error;
- }
- /* Initialize the schedule graph "graph" from the schedule constraints "sc".
- *
- * The context is included in the domain before the nodes of
- * the graphs are extracted in order to be able to exploit
- * any possible additional equalities.
- * Note that this intersection is only performed locally here.
- */
- static isl_stat graph_init(struct isl_sched_graph *graph,
- __isl_keep isl_schedule_constraints *sc)
- {
- isl_ctx *ctx;
- isl_union_set *domain;
- isl_union_map *c;
- struct isl_extract_edge_data data;
- enum isl_edge_type i;
- isl_stat r;
- isl_size n;
- if (!sc)
- return isl_stat_error;
- ctx = isl_schedule_constraints_get_ctx(sc);
- domain = isl_schedule_constraints_get_domain(sc);
- n = isl_union_set_n_set(domain);
- graph->n = n;
- isl_union_set_free(domain);
- if (n < 0)
- return isl_stat_error;
- n = isl_schedule_constraints_n_map(sc);
- if (n < 0 || graph_alloc(ctx, graph, graph->n, n) < 0)
- return isl_stat_error;
- if (compute_max_row(graph, sc) < 0)
- return isl_stat_error;
- graph->root = graph;
- graph->n = 0;
- domain = isl_schedule_constraints_get_domain(sc);
- domain = isl_union_set_intersect_params(domain,
- isl_schedule_constraints_get_context(sc));
- r = isl_union_set_foreach_set(domain, &extract_node, graph);
- isl_union_set_free(domain);
- if (r < 0)
- return isl_stat_error;
- if (graph_init_table(ctx, graph) < 0)
- return isl_stat_error;
- for (i = isl_edge_first; i <= isl_edge_last; ++i) {
- isl_size n;
- c = isl_schedule_constraints_get(sc, i);
- n = isl_union_map_n_map(c);
- graph->max_edge[i] = n;
- isl_union_map_free(c);
- if (n < 0)
- return isl_stat_error;
- }
- if (graph_init_edge_tables(ctx, graph) < 0)
- return isl_stat_error;
- graph->n_edge = 0;
- data.graph = graph;
- for (i = isl_edge_first; i <= isl_edge_last; ++i) {
- isl_stat r;
- data.type = i;
- c = isl_schedule_constraints_get(sc, i);
- r = isl_union_map_foreach_map(c, &extract_edge, &data);
- isl_union_map_free(c);
- if (r < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Check whether there is any dependence from node[j] to node[i]
- * or from node[i] to node[j].
- */
- static isl_bool node_follows_weak(int i, int j, void *user)
- {
- isl_bool f;
- struct isl_sched_graph *graph = user;
- f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
- if (f < 0 || f)
- return f;
- return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
- }
- /* Check whether there is a (conditional) validity dependence from node[j]
- * to node[i], forcing node[i] to follow node[j].
- */
- static isl_bool node_follows_strong(int i, int j, void *user)
- {
- struct isl_sched_graph *graph = user;
- return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
- }
- /* Use Tarjan's algorithm for computing the strongly connected components
- * in the dependence graph only considering those edges defined by "follows".
- */
- static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
- isl_bool (*follows)(int i, int j, void *user))
- {
- int i, n;
- struct isl_tarjan_graph *g = NULL;
- g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
- if (!g)
- return isl_stat_error;
- graph->scc = 0;
- i = 0;
- n = graph->n;
- while (n) {
- while (g->order[i] != -1) {
- graph->node[g->order[i]].scc = graph->scc;
- --n;
- ++i;
- }
- ++i;
- graph->scc++;
- }
- isl_tarjan_graph_free(g);
- return isl_stat_ok;
- }
- /* Apply Tarjan's algorithm to detect the strongly connected components
- * in the dependence graph.
- * Only consider the (conditional) validity dependences and clear "weak".
- */
- static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- graph->weak = 0;
- return detect_ccs(ctx, graph, &node_follows_strong);
- }
- /* Apply Tarjan's algorithm to detect the (weakly) connected components
- * in the dependence graph.
- * Consider all dependences and set "weak".
- */
- static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- graph->weak = 1;
- return detect_ccs(ctx, graph, &node_follows_weak);
- }
- static int cmp_scc(const void *a, const void *b, void *data)
- {
- struct isl_sched_graph *graph = data;
- const int *i1 = a;
- const int *i2 = b;
- return graph->node[*i1].scc - graph->node[*i2].scc;
- }
- /* Sort the elements of graph->sorted according to the corresponding SCCs.
- */
- static int sort_sccs(struct isl_sched_graph *graph)
- {
- return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
- }
- /* Return a non-parametric set in the compressed space of "node" that is
- * bounded by the size in each direction
- *
- * { [x] : -S_i <= x_i <= S_i }
- *
- * If S_i is infinity in direction i, then there are no constraints
- * in that direction.
- *
- * Cache the result in node->bounds.
- */
- static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
- {
- isl_space *space;
- isl_basic_set *bounds;
- int i;
- if (node->bounds)
- return isl_basic_set_copy(node->bounds);
- if (node->compressed)
- space = isl_pw_multi_aff_get_domain_space(node->decompress);
- else
- space = isl_space_copy(node->space);
- space = isl_space_drop_all_params(space);
- bounds = isl_basic_set_universe(space);
- for (i = 0; i < node->nvar; ++i) {
- isl_val *size;
- size = isl_multi_val_get_val(node->sizes, i);
- if (!size)
- return isl_basic_set_free(bounds);
- if (!isl_val_is_int(size)) {
- isl_val_free(size);
- continue;
- }
- bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
- isl_val_copy(size));
- bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
- isl_val_neg(size));
- }
- node->bounds = isl_basic_set_copy(bounds);
- return bounds;
- }
- /* Compress the dependence relation "map", if needed, i.e.,
- * when the source node "src" and/or the destination node "dst"
- * has been compressed.
- */
- static __isl_give isl_map *compress(__isl_take isl_map *map,
- struct isl_sched_node *src, struct isl_sched_node *dst)
- {
- if (src->compressed)
- map = isl_map_preimage_domain_pw_multi_aff(map,
- isl_pw_multi_aff_copy(src->decompress));
- if (dst->compressed)
- map = isl_map_preimage_range_pw_multi_aff(map,
- isl_pw_multi_aff_copy(dst->decompress));
- return map;
- }
- /* Drop some constraints from "delta" that could be exploited
- * to construct loop coalescing schedules.
- * In particular, drop those constraint that bound the difference
- * to the size of the domain.
- * First project out the parameters to improve the effectiveness.
- */
- static __isl_give isl_set *drop_coalescing_constraints(
- __isl_take isl_set *delta, struct isl_sched_node *node)
- {
- isl_size nparam;
- isl_basic_set *bounds;
- nparam = isl_set_dim(delta, isl_dim_param);
- if (nparam < 0)
- return isl_set_free(delta);
- bounds = get_size_bounds(node);
- delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
- delta = isl_set_remove_divs(delta);
- delta = isl_set_plain_gist_basic_set(delta, bounds);
- return delta;
- }
- /* Given a dependence relation R from "node" to itself,
- * construct the set of coefficients of valid constraints for elements
- * in that dependence relation.
- * In particular, the result contains tuples of coefficients
- * c_0, c_n, c_x such that
- *
- * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
- *
- * or, equivalently,
- *
- * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
- *
- * We choose here to compute the dual of delta R.
- * Alternatively, we could have computed the dual of R, resulting
- * in a set of tuples c_0, c_n, c_x, c_y, and then
- * plugged in (c_0, c_n, c_x, -c_x).
- *
- * If "need_param" is set, then the resulting coefficients effectively
- * include coefficients for the parameters c_n. Otherwise, they may
- * have been projected out already.
- * Since the constraints may be different for these two cases,
- * they are stored in separate caches.
- * In particular, if no parameter coefficients are required and
- * the schedule_treat_coalescing option is set, then the parameters
- * are projected out and some constraints that could be exploited
- * to construct coalescing schedules are removed before the dual
- * is computed.
- *
- * If "node" has been compressed, then the dependence relation
- * is also compressed before the set of coefficients is computed.
- */
- static __isl_give isl_basic_set *intra_coefficients(
- struct isl_sched_graph *graph, struct isl_sched_node *node,
- __isl_take isl_map *map, int need_param)
- {
- isl_ctx *ctx;
- isl_set *delta;
- isl_map *key;
- isl_basic_set *coef;
- isl_maybe_isl_basic_set m;
- isl_map_to_basic_set **hmap = &graph->intra_hmap;
- int treat;
- if (!map)
- return NULL;
- ctx = isl_map_get_ctx(map);
- treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
- if (!treat)
- hmap = &graph->intra_hmap_param;
- m = isl_map_to_basic_set_try_get(*hmap, map);
- if (m.valid < 0 || m.valid) {
- isl_map_free(map);
- return m.value;
- }
- key = isl_map_copy(map);
- map = compress(map, node, node);
- delta = isl_map_deltas(map);
- if (treat)
- delta = drop_coalescing_constraints(delta, node);
- delta = isl_set_remove_divs(delta);
- coef = isl_set_coefficients(delta);
- *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
- return coef;
- }
- /* Given a dependence relation R, construct the set of coefficients
- * of valid constraints for elements in that dependence relation.
- * In particular, the result contains tuples of coefficients
- * c_0, c_n, c_x, c_y such that
- *
- * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
- *
- * If the source or destination nodes of "edge" have been compressed,
- * then the dependence relation is also compressed before
- * the set of coefficients is computed.
- */
- static __isl_give isl_basic_set *inter_coefficients(
- struct isl_sched_graph *graph, struct isl_sched_edge *edge,
- __isl_take isl_map *map)
- {
- isl_set *set;
- isl_map *key;
- isl_basic_set *coef;
- isl_maybe_isl_basic_set m;
- m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
- if (m.valid < 0 || m.valid) {
- isl_map_free(map);
- return m.value;
- }
- key = isl_map_copy(map);
- map = compress(map, edge->src, edge->dst);
- set = isl_map_wrap(isl_map_remove_divs(map));
- coef = isl_set_coefficients(set);
- graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
- isl_basic_set_copy(coef));
- return coef;
- }
- /* Return the position of the coefficients of the variables in
- * the coefficients constraints "coef".
- *
- * The space of "coef" is of the form
- *
- * { coefficients[[cst, params] -> S] }
- *
- * Return the position of S.
- */
- static isl_size coef_var_offset(__isl_keep isl_basic_set *coef)
- {
- isl_size offset;
- isl_space *space;
- space = isl_space_unwrap(isl_basic_set_get_space(coef));
- offset = isl_space_dim(space, isl_dim_in);
- isl_space_free(space);
- return offset;
- }
- /* Return the offset of the coefficient of the constant term of "node"
- * within the (I)LP.
- *
- * Within each node, the coefficients have the following order:
- * - positive and negative parts of c_i_x
- * - c_i_n (if parametric)
- * - c_i_0
- */
- static int node_cst_coef_offset(struct isl_sched_node *node)
- {
- return node->start + 2 * node->nvar + node->nparam;
- }
- /* Return the offset of the coefficients of the parameters of "node"
- * within the (I)LP.
- *
- * Within each node, the coefficients have the following order:
- * - positive and negative parts of c_i_x
- * - c_i_n (if parametric)
- * - c_i_0
- */
- static int node_par_coef_offset(struct isl_sched_node *node)
- {
- return node->start + 2 * node->nvar;
- }
- /* Return the offset of the coefficients of the variables of "node"
- * within the (I)LP.
- *
- * Within each node, the coefficients have the following order:
- * - positive and negative parts of c_i_x
- * - c_i_n (if parametric)
- * - c_i_0
- */
- static int node_var_coef_offset(struct isl_sched_node *node)
- {
- return node->start;
- }
- /* Return the position of the pair of variables encoding
- * coefficient "i" of "node".
- *
- * The order of these variable pairs is the opposite of
- * that of the coefficients, with 2 variables per coefficient.
- */
- static int node_var_coef_pos(struct isl_sched_node *node, int i)
- {
- return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
- }
- /* Construct an isl_dim_map for mapping constraints on coefficients
- * for "node" to the corresponding positions in graph->lp.
- * "offset" is the offset of the coefficients for the variables
- * in the input constraints.
- * "s" is the sign of the mapping.
- *
- * The input constraints are given in terms of the coefficients
- * (c_0, c_x) or (c_0, c_n, c_x).
- * The mapping produced by this function essentially plugs in
- * (0, c_i_x^+ - c_i_x^-) if s = 1 and
- * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
- * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
- * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
- * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
- * Furthermore, the order of these pairs is the opposite of that
- * of the corresponding coefficients.
- *
- * The caller can extend the mapping to also map the other coefficients
- * (and therefore not plug in 0).
- */
- static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_sched_node *node,
- int offset, int s)
- {
- int pos;
- isl_size total;
- isl_dim_map *dim_map;
- total = isl_basic_set_dim(graph->lp, isl_dim_all);
- if (!node || total < 0)
- return NULL;
- pos = node_var_coef_pos(node, 0);
- dim_map = isl_dim_map_alloc(ctx, total);
- isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
- isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
- return dim_map;
- }
- /* Construct an isl_dim_map for mapping constraints on coefficients
- * for "src" (node i) and "dst" (node j) to the corresponding positions
- * in graph->lp.
- * "offset" is the offset of the coefficients for the variables of "src"
- * in the input constraints.
- * "s" is the sign of the mapping.
- *
- * The input constraints are given in terms of the coefficients
- * (c_0, c_n, c_x, c_y).
- * The mapping produced by this function essentially plugs in
- * (c_j_0 - c_i_0, c_j_n - c_i_n,
- * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
- * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
- * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
- * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
- * Furthermore, the order of these pairs is the opposite of that
- * of the corresponding coefficients.
- *
- * The caller can further extend the mapping.
- */
- static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_sched_node *src,
- struct isl_sched_node *dst, int offset, int s)
- {
- int pos;
- isl_size total;
- isl_dim_map *dim_map;
- total = isl_basic_set_dim(graph->lp, isl_dim_all);
- if (!src || !dst || total < 0)
- return NULL;
- dim_map = isl_dim_map_alloc(ctx, total);
- pos = node_cst_coef_offset(dst);
- isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
- pos = node_par_coef_offset(dst);
- isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
- pos = node_var_coef_pos(dst, 0);
- isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
- dst->nvar, -s);
- isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
- dst->nvar, s);
- pos = node_cst_coef_offset(src);
- isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
- pos = node_par_coef_offset(src);
- isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
- pos = node_var_coef_pos(src, 0);
- isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
- isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
- return dim_map;
- }
- /* Add the constraints from "src" to "dst" using "dim_map",
- * after making sure there is enough room in "dst" for the extra constraints.
- */
- static __isl_give isl_basic_set *add_constraints_dim_map(
- __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
- __isl_take isl_dim_map *dim_map)
- {
- isl_size n_eq, n_ineq;
- n_eq = isl_basic_set_n_equality(src);
- n_ineq = isl_basic_set_n_inequality(src);
- if (n_eq < 0 || n_ineq < 0)
- dst = isl_basic_set_free(dst);
- dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
- dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
- return dst;
- }
- /* Add constraints to graph->lp that force validity for the given
- * dependence from a node i to itself.
- * That is, add constraints that enforce
- *
- * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
- * = c_i_x (y - x) >= 0
- *
- * for each (x,y) in R.
- * We obtain general constraints on coefficients (c_0, c_x)
- * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
- * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
- * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
- * Note that the result of intra_coefficients may also contain
- * parameter coefficients c_n, in which case 0 is plugged in for them as well.
- */
- static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
- struct isl_sched_edge *edge)
- {
- isl_size offset;
- isl_map *map = isl_map_copy(edge->map);
- isl_ctx *ctx = isl_map_get_ctx(map);
- isl_dim_map *dim_map;
- isl_basic_set *coef;
- struct isl_sched_node *node = edge->src;
- coef = intra_coefficients(graph, node, map, 0);
- offset = coef_var_offset(coef);
- if (offset < 0)
- coef = isl_basic_set_free(coef);
- if (!coef)
- return isl_stat_error;
- dim_map = intra_dim_map(ctx, graph, node, offset, 1);
- graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
- return isl_stat_ok;
- }
- /* Add constraints to graph->lp that force validity for the given
- * dependence from node i to node j.
- * That is, add constraints that enforce
- *
- * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
- *
- * for each (x,y) in R.
- * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
- * of valid constraints for R and then plug in
- * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
- * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
- * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
- */
- static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
- struct isl_sched_edge *edge)
- {
- isl_size offset;
- isl_map *map;
- isl_ctx *ctx;
- isl_dim_map *dim_map;
- isl_basic_set *coef;
- struct isl_sched_node *src = edge->src;
- struct isl_sched_node *dst = edge->dst;
- if (!graph->lp)
- return isl_stat_error;
- map = isl_map_copy(edge->map);
- ctx = isl_map_get_ctx(map);
- coef = inter_coefficients(graph, edge, map);
- offset = coef_var_offset(coef);
- if (offset < 0)
- coef = isl_basic_set_free(coef);
- if (!coef)
- return isl_stat_error;
- dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
- edge->start = graph->lp->n_ineq;
- graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
- if (!graph->lp)
- return isl_stat_error;
- edge->end = graph->lp->n_ineq;
- return isl_stat_ok;
- }
- /* Add constraints to graph->lp that bound the dependence distance for the given
- * dependence from a node i to itself.
- * If s = 1, we add the constraint
- *
- * c_i_x (y - x) <= m_0 + m_n n
- *
- * or
- *
- * -c_i_x (y - x) + m_0 + m_n n >= 0
- *
- * for each (x,y) in R.
- * If s = -1, we add the constraint
- *
- * -c_i_x (y - x) <= m_0 + m_n n
- *
- * or
- *
- * c_i_x (y - x) + m_0 + m_n n >= 0
- *
- * for each (x,y) in R.
- * We obtain general constraints on coefficients (c_0, c_n, c_x)
- * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
- * with each coefficient (except m_0) represented as a pair of non-negative
- * coefficients.
- *
- *
- * If "local" is set, then we add constraints
- *
- * c_i_x (y - x) <= 0
- *
- * or
- *
- * -c_i_x (y - x) <= 0
- *
- * instead, forcing the dependence distance to be (less than or) equal to 0.
- * That is, we plug in (0, 0, -s * c_i_x),
- * intra_coefficients is not required to have c_n in its result when
- * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
- * Note that dependences marked local are treated as validity constraints
- * by add_all_validity_constraints and therefore also have
- * their distances bounded by 0 from below.
- */
- static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
- struct isl_sched_edge *edge, int s, int local)
- {
- isl_size offset;
- isl_size nparam;
- isl_map *map = isl_map_copy(edge->map);
- isl_ctx *ctx = isl_map_get_ctx(map);
- isl_dim_map *dim_map;
- isl_basic_set *coef;
- struct isl_sched_node *node = edge->src;
- coef = intra_coefficients(graph, node, map, !local);
- nparam = isl_space_dim(node->space, isl_dim_param);
- offset = coef_var_offset(coef);
- if (nparam < 0 || offset < 0)
- coef = isl_basic_set_free(coef);
- if (!coef)
- return isl_stat_error;
- dim_map = intra_dim_map(ctx, graph, node, offset, -s);
- if (!local) {
- isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
- isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
- isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
- }
- graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
- return isl_stat_ok;
- }
- /* Add constraints to graph->lp that bound the dependence distance for the given
- * dependence from node i to node j.
- * If s = 1, we add the constraint
- *
- * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
- * <= m_0 + m_n n
- *
- * or
- *
- * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
- * m_0 + m_n n >= 0
- *
- * for each (x,y) in R.
- * If s = -1, we add the constraint
- *
- * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
- * <= m_0 + m_n n
- *
- * or
- *
- * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
- * m_0 + m_n n >= 0
- *
- * for each (x,y) in R.
- * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
- * of valid constraints for R and then plug in
- * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
- * s*c_i_x, -s*c_j_x)
- * with each coefficient (except m_0, c_*_0 and c_*_n)
- * represented as a pair of non-negative coefficients.
- *
- *
- * If "local" is set (and s = 1), then we add constraints
- *
- * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
- *
- * or
- *
- * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
- *
- * instead, forcing the dependence distance to be (less than or) equal to 0.
- * That is, we plug in
- * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
- * Note that dependences marked local are treated as validity constraints
- * by add_all_validity_constraints and therefore also have
- * their distances bounded by 0 from below.
- */
- static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
- struct isl_sched_edge *edge, int s, int local)
- {
- isl_size offset;
- isl_size nparam;
- isl_map *map = isl_map_copy(edge->map);
- isl_ctx *ctx = isl_map_get_ctx(map);
- isl_dim_map *dim_map;
- isl_basic_set *coef;
- struct isl_sched_node *src = edge->src;
- struct isl_sched_node *dst = edge->dst;
- coef = inter_coefficients(graph, edge, map);
- nparam = isl_space_dim(src->space, isl_dim_param);
- offset = coef_var_offset(coef);
- if (nparam < 0 || offset < 0)
- coef = isl_basic_set_free(coef);
- if (!coef)
- return isl_stat_error;
- dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
- if (!local) {
- isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
- isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
- isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
- }
- graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
- return isl_stat_ok;
- }
- /* Should the distance over "edge" be forced to zero?
- * That is, is it marked as a local edge?
- * If "use_coincidence" is set, then coincidence edges are treated
- * as local edges.
- */
- static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
- {
- return is_local(edge) || (use_coincidence && is_coincidence(edge));
- }
- /* Add all validity constraints to graph->lp.
- *
- * An edge that is forced to be local needs to have its dependence
- * distances equal to zero. We take care of bounding them by 0 from below
- * here. add_all_proximity_constraints takes care of bounding them by 0
- * from above.
- *
- * If "use_coincidence" is set, then we treat coincidence edges as local edges.
- * Otherwise, we ignore them.
- */
- static int add_all_validity_constraints(struct isl_sched_graph *graph,
- int use_coincidence)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- int zero;
- zero = force_zero(edge, use_coincidence);
- if (!is_validity(edge) && !zero)
- continue;
- if (edge->src != edge->dst)
- continue;
- if (add_intra_validity_constraints(graph, edge) < 0)
- return -1;
- }
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- int zero;
- zero = force_zero(edge, use_coincidence);
- if (!is_validity(edge) && !zero)
- continue;
- if (edge->src == edge->dst)
- continue;
- if (add_inter_validity_constraints(graph, edge) < 0)
- return -1;
- }
- return 0;
- }
- /* Add constraints to graph->lp that bound the dependence distance
- * for all dependence relations.
- * If a given proximity dependence is identical to a validity
- * dependence, then the dependence distance is already bounded
- * from below (by zero), so we only need to bound the distance
- * from above. (This includes the case of "local" dependences
- * which are treated as validity dependence by add_all_validity_constraints.)
- * Otherwise, we need to bound the distance both from above and from below.
- *
- * If "use_coincidence" is set, then we treat coincidence edges as local edges.
- * Otherwise, we ignore them.
- */
- static int add_all_proximity_constraints(struct isl_sched_graph *graph,
- int use_coincidence)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- int zero;
- zero = force_zero(edge, use_coincidence);
- if (!is_proximity(edge) && !zero)
- continue;
- if (edge->src == edge->dst &&
- add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
- return -1;
- if (edge->src != edge->dst &&
- add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
- return -1;
- if (is_validity(edge) || zero)
- continue;
- if (edge->src == edge->dst &&
- add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
- return -1;
- if (edge->src != edge->dst &&
- add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
- return -1;
- }
- return 0;
- }
- /* Normalize the rows of "indep" such that all rows are lexicographically
- * positive and such that each row contains as many final zeros as possible,
- * given the choice for the previous rows.
- * Do this by performing elementary row operations.
- */
- static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
- {
- indep = isl_mat_reverse_gauss(indep);
- indep = isl_mat_lexnonneg_rows(indep);
- return indep;
- }
- /* Extract the linear part of the current schedule for node "node".
- */
- static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
- {
- isl_size n_row = isl_mat_rows(node->sched);
- if (n_row < 0)
- return NULL;
- return isl_mat_sub_alloc(node->sched, 0, n_row,
- 1 + node->nparam, node->nvar);
- }
- /* Compute a basis for the rows in the linear part of the schedule
- * and extend this basis to a full basis. The remaining rows
- * can then be used to force linear independence from the rows
- * in the schedule.
- *
- * In particular, given the schedule rows S, we compute
- *
- * S = H Q
- * S U = H
- *
- * with H the Hermite normal form of S. That is, all but the
- * first rank columns of H are zero and so each row in S is
- * a linear combination of the first rank rows of Q.
- * The matrix Q can be used as a variable transformation
- * that isolates the directions of S in the first rank rows.
- * Transposing S U = H yields
- *
- * U^T S^T = H^T
- *
- * with all but the first rank rows of H^T zero.
- * The last rows of U^T are therefore linear combinations
- * of schedule coefficients that are all zero on schedule
- * coefficients that are linearly dependent on the rows of S.
- * At least one of these combinations is non-zero on
- * linearly independent schedule coefficients.
- * The rows are normalized to involve as few of the last
- * coefficients as possible and to have a positive initial value.
- */
- static int node_update_vmap(struct isl_sched_node *node)
- {
- isl_mat *H, *U, *Q;
- H = extract_linear_schedule(node);
- H = isl_mat_left_hermite(H, 0, &U, &Q);
- isl_mat_free(node->indep);
- isl_mat_free(node->vmap);
- node->vmap = Q;
- node->indep = isl_mat_transpose(U);
- node->rank = isl_mat_initial_non_zero_cols(H);
- node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
- node->indep = normalize_independent(node->indep);
- isl_mat_free(H);
- if (!node->indep || !node->vmap || node->rank < 0)
- return -1;
- return 0;
- }
- /* Is "edge" marked as a validity or a conditional validity edge?
- */
- static int is_any_validity(struct isl_sched_edge *edge)
- {
- return is_validity(edge) || is_conditional_validity(edge);
- }
- /* How many times should we count the constraints in "edge"?
- *
- * We count as follows
- * validity -> 1 (>= 0)
- * validity+proximity -> 2 (>= 0 and upper bound)
- * proximity -> 2 (lower and upper bound)
- * local(+any) -> 2 (>= 0 and <= 0)
- *
- * If an edge is only marked conditional_validity then it counts
- * as zero since it is only checked afterwards.
- *
- * If "use_coincidence" is set, then we treat coincidence edges as local edges.
- * Otherwise, we ignore them.
- */
- static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
- {
- if (is_proximity(edge) || force_zero(edge, use_coincidence))
- return 2;
- if (is_validity(edge))
- return 1;
- return 0;
- }
- /* How many times should the constraints in "edge" be counted
- * as a parametric intra-node constraint?
- *
- * Only proximity edges that are not forced zero need
- * coefficient constraints that include coefficients for parameters.
- * If the edge is also a validity edge, then only
- * an upper bound is introduced. Otherwise, both lower and upper bounds
- * are introduced.
- */
- static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
- int use_coincidence)
- {
- if (edge->src != edge->dst)
- return 0;
- if (!is_proximity(edge))
- return 0;
- if (force_zero(edge, use_coincidence))
- return 0;
- if (is_validity(edge))
- return 1;
- else
- return 2;
- }
- /* Add "f" times the number of equality and inequality constraints of "bset"
- * to "n_eq" and "n_ineq" and free "bset".
- */
- static isl_stat update_count(__isl_take isl_basic_set *bset,
- int f, int *n_eq, int *n_ineq)
- {
- isl_size eq, ineq;
- eq = isl_basic_set_n_equality(bset);
- ineq = isl_basic_set_n_inequality(bset);
- isl_basic_set_free(bset);
- if (eq < 0 || ineq < 0)
- return isl_stat_error;
- *n_eq += eq;
- *n_ineq += ineq;
- return isl_stat_ok;
- }
- /* Count the number of equality and inequality constraints
- * that will be added for the given map.
- *
- * The edges that require parameter coefficients are counted separately.
- *
- * "use_coincidence" is set if we should take into account coincidence edges.
- */
- static isl_stat count_map_constraints(struct isl_sched_graph *graph,
- struct isl_sched_edge *edge, __isl_take isl_map *map,
- int *n_eq, int *n_ineq, int use_coincidence)
- {
- isl_map *copy;
- isl_basic_set *coef;
- int f = edge_multiplicity(edge, use_coincidence);
- int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
- if (f == 0) {
- isl_map_free(map);
- return isl_stat_ok;
- }
- if (edge->src != edge->dst) {
- coef = inter_coefficients(graph, edge, map);
- return update_count(coef, f, n_eq, n_ineq);
- }
- if (fp > 0) {
- copy = isl_map_copy(map);
- coef = intra_coefficients(graph, edge->src, copy, 1);
- if (update_count(coef, fp, n_eq, n_ineq) < 0)
- goto error;
- }
- if (f > fp) {
- copy = isl_map_copy(map);
- coef = intra_coefficients(graph, edge->src, copy, 0);
- if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
- goto error;
- }
- isl_map_free(map);
- return isl_stat_ok;
- error:
- isl_map_free(map);
- return isl_stat_error;
- }
- /* Count the number of equality and inequality constraints
- * that will be added to the main lp problem.
- * We count as follows
- * validity -> 1 (>= 0)
- * validity+proximity -> 2 (>= 0 and upper bound)
- * proximity -> 2 (lower and upper bound)
- * local(+any) -> 2 (>= 0 and <= 0)
- *
- * If "use_coincidence" is set, then we treat coincidence edges as local edges.
- * Otherwise, we ignore them.
- */
- static int count_constraints(struct isl_sched_graph *graph,
- int *n_eq, int *n_ineq, int use_coincidence)
- {
- int i;
- *n_eq = *n_ineq = 0;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- isl_map *map = isl_map_copy(edge->map);
- if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
- use_coincidence) < 0)
- return -1;
- }
- return 0;
- }
- /* Count the number of constraints that will be added by
- * add_bound_constant_constraints to bound the values of the constant terms
- * and increment *n_eq and *n_ineq accordingly.
- *
- * In practice, add_bound_constant_constraints only adds inequalities.
- */
- static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
- struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
- {
- if (isl_options_get_schedule_max_constant_term(ctx) == -1)
- return isl_stat_ok;
- *n_ineq += graph->n;
- return isl_stat_ok;
- }
- /* Add constraints to bound the values of the constant terms in the schedule,
- * if requested by the user.
- *
- * The maximal value of the constant terms is defined by the option
- * "schedule_max_constant_term".
- */
- static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
- struct isl_sched_graph *graph)
- {
- int i, k;
- int max;
- isl_size total;
- max = isl_options_get_schedule_max_constant_term(ctx);
- if (max == -1)
- return isl_stat_ok;
- total = isl_basic_set_dim(graph->lp, isl_dim_set);
- if (total < 0)
- return isl_stat_error;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- int pos;
- k = isl_basic_set_alloc_inequality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- isl_seq_clr(graph->lp->ineq[k], 1 + total);
- pos = node_cst_coef_offset(node);
- isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
- isl_int_set_si(graph->lp->ineq[k][0], max);
- }
- return isl_stat_ok;
- }
- /* Count the number of constraints that will be added by
- * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
- * accordingly.
- *
- * In practice, add_bound_coefficient_constraints only adds inequalities.
- */
- static int count_bound_coefficient_constraints(isl_ctx *ctx,
- struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
- {
- int i;
- if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
- !isl_options_get_schedule_treat_coalescing(ctx))
- return 0;
- for (i = 0; i < graph->n; ++i)
- *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
- return 0;
- }
- /* Add constraints to graph->lp that bound the values of
- * the parameter schedule coefficients of "node" to "max" and
- * the variable schedule coefficients to the corresponding entry
- * in node->max.
- * In either case, a negative value means that no bound needs to be imposed.
- *
- * For parameter coefficients, this amounts to adding a constraint
- *
- * c_n <= max
- *
- * i.e.,
- *
- * -c_n + max >= 0
- *
- * The variables coefficients are, however, not represented directly.
- * Instead, the variable coefficients c_x are written as differences
- * c_x = c_x^+ - c_x^-.
- * That is,
- *
- * -max_i <= c_x_i <= max_i
- *
- * is encoded as
- *
- * -max_i <= c_x_i^+ - c_x_i^- <= max_i
- *
- * or
- *
- * -(c_x_i^+ - c_x_i^-) + max_i >= 0
- * c_x_i^+ - c_x_i^- + max_i >= 0
- */
- static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
- {
- int i, j, k;
- isl_size total;
- isl_vec *ineq;
- total = isl_basic_set_dim(graph->lp, isl_dim_set);
- if (total < 0)
- return isl_stat_error;
- for (j = 0; j < node->nparam; ++j) {
- int dim;
- if (max < 0)
- continue;
- k = isl_basic_set_alloc_inequality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- dim = 1 + node_par_coef_offset(node) + j;
- isl_seq_clr(graph->lp->ineq[k], 1 + total);
- isl_int_set_si(graph->lp->ineq[k][dim], -1);
- isl_int_set_si(graph->lp->ineq[k][0], max);
- }
- ineq = isl_vec_alloc(ctx, 1 + total);
- ineq = isl_vec_clr(ineq);
- if (!ineq)
- return isl_stat_error;
- for (i = 0; i < node->nvar; ++i) {
- int pos = 1 + node_var_coef_pos(node, i);
- if (isl_int_is_neg(node->max->el[i]))
- continue;
- isl_int_set_si(ineq->el[pos], 1);
- isl_int_set_si(ineq->el[pos + 1], -1);
- isl_int_set(ineq->el[0], node->max->el[i]);
- k = isl_basic_set_alloc_inequality(graph->lp);
- if (k < 0)
- goto error;
- isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
- isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
- k = isl_basic_set_alloc_inequality(graph->lp);
- if (k < 0)
- goto error;
- isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
- isl_seq_clr(ineq->el + pos, 2);
- }
- isl_vec_free(ineq);
- return isl_stat_ok;
- error:
- isl_vec_free(ineq);
- return isl_stat_error;
- }
- /* Add constraints that bound the values of the variable and parameter
- * coefficients of the schedule.
- *
- * The maximal value of the coefficients is defined by the option
- * 'schedule_max_coefficient' and the entries in node->max.
- * These latter entries are only set if either the schedule_max_coefficient
- * option or the schedule_treat_coalescing option is set.
- */
- static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
- struct isl_sched_graph *graph)
- {
- int i;
- int max;
- max = isl_options_get_schedule_max_coefficient(ctx);
- if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
- return isl_stat_ok;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Add a constraint to graph->lp that equates the value at position
- * "sum_pos" to the sum of the "n" values starting at "first".
- */
- static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
- int sum_pos, int first, int n)
- {
- int i, k;
- isl_size total;
- total = isl_basic_set_dim(graph->lp, isl_dim_set);
- if (total < 0)
- return isl_stat_error;
- k = isl_basic_set_alloc_equality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- isl_seq_clr(graph->lp->eq[k], 1 + total);
- isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
- for (i = 0; i < n; ++i)
- isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
- return isl_stat_ok;
- }
- /* Add a constraint to graph->lp that equates the value at position
- * "sum_pos" to the sum of the parameter coefficients of all nodes.
- */
- static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
- int sum_pos)
- {
- int i, j, k;
- isl_size total;
- total = isl_basic_set_dim(graph->lp, isl_dim_set);
- if (total < 0)
- return isl_stat_error;
- k = isl_basic_set_alloc_equality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- isl_seq_clr(graph->lp->eq[k], 1 + total);
- isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
- for (i = 0; i < graph->n; ++i) {
- int pos = 1 + node_par_coef_offset(&graph->node[i]);
- for (j = 0; j < graph->node[i].nparam; ++j)
- isl_int_set_si(graph->lp->eq[k][pos + j], 1);
- }
- return isl_stat_ok;
- }
- /* Add a constraint to graph->lp that equates the value at position
- * "sum_pos" to the sum of the variable coefficients of all nodes.
- */
- static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
- int sum_pos)
- {
- int i, j, k;
- isl_size total;
- total = isl_basic_set_dim(graph->lp, isl_dim_set);
- if (total < 0)
- return isl_stat_error;
- k = isl_basic_set_alloc_equality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- isl_seq_clr(graph->lp->eq[k], 1 + total);
- isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- int pos = 1 + node_var_coef_offset(node);
- for (j = 0; j < 2 * node->nvar; ++j)
- isl_int_set_si(graph->lp->eq[k][pos + j], 1);
- }
- return isl_stat_ok;
- }
- /* Construct an ILP problem for finding schedule coefficients
- * that result in non-negative, but small dependence distances
- * over all dependences.
- * In particular, the dependence distances over proximity edges
- * are bounded by m_0 + m_n n and we compute schedule coefficients
- * with small values (preferably zero) of m_n and m_0.
- *
- * All variables of the ILP are non-negative. The actual coefficients
- * may be negative, so each coefficient is represented as the difference
- * of two non-negative variables. The negative part always appears
- * immediately before the positive part.
- * Other than that, the variables have the following order
- *
- * - sum of positive and negative parts of m_n coefficients
- * - m_0
- * - sum of all c_n coefficients
- * (unconstrained when computing non-parametric schedules)
- * - sum of positive and negative parts of all c_x coefficients
- * - positive and negative parts of m_n coefficients
- * - for each node
- * - positive and negative parts of c_i_x, in opposite order
- * - c_i_n (if parametric)
- * - c_i_0
- *
- * The constraints are those from the edges plus two or three equalities
- * to express the sums.
- *
- * If "use_coincidence" is set, then we treat coincidence edges as local edges.
- * Otherwise, we ignore them.
- */
- static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
- int use_coincidence)
- {
- int i;
- isl_size nparam;
- unsigned total;
- isl_space *space;
- int parametric;
- int param_pos;
- int n_eq, n_ineq;
- parametric = ctx->opt->schedule_parametric;
- nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
- if (nparam < 0)
- return isl_stat_error;
- param_pos = 4;
- total = param_pos + 2 * nparam;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[graph->sorted[i]];
- if (node_update_vmap(node) < 0)
- return isl_stat_error;
- node->start = total;
- total += 1 + node->nparam + 2 * node->nvar;
- }
- if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
- return isl_stat_error;
- if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
- return isl_stat_error;
- if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
- return isl_stat_error;
- space = isl_space_set_alloc(ctx, 0, total);
- isl_basic_set_free(graph->lp);
- n_eq += 2 + parametric;
- graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
- if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
- return isl_stat_error;
- if (parametric && add_param_sum_constraint(graph, 2) < 0)
- return isl_stat_error;
- if (add_var_sum_constraint(graph, 3) < 0)
- return isl_stat_error;
- if (add_bound_constant_constraints(ctx, graph) < 0)
- return isl_stat_error;
- if (add_bound_coefficient_constraints(ctx, graph) < 0)
- return isl_stat_error;
- if (add_all_validity_constraints(graph, use_coincidence) < 0)
- return isl_stat_error;
- if (add_all_proximity_constraints(graph, use_coincidence) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Analyze the conflicting constraint found by
- * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
- * constraint of one of the edges between distinct nodes, living, moreover
- * in distinct SCCs, then record the source and sink SCC as this may
- * be a good place to cut between SCCs.
- */
- static int check_conflict(int con, void *user)
- {
- int i;
- struct isl_sched_graph *graph = user;
- if (graph->src_scc >= 0)
- return 0;
- con -= graph->lp->n_eq;
- if (con >= graph->lp->n_ineq)
- return 0;
- for (i = 0; i < graph->n_edge; ++i) {
- if (!is_validity(&graph->edge[i]))
- continue;
- if (graph->edge[i].src == graph->edge[i].dst)
- continue;
- if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
- continue;
- if (graph->edge[i].start > con)
- continue;
- if (graph->edge[i].end <= con)
- continue;
- graph->src_scc = graph->edge[i].src->scc;
- graph->dst_scc = graph->edge[i].dst->scc;
- }
- return 0;
- }
- /* Check whether the next schedule row of the given node needs to be
- * non-trivial. Lower-dimensional domains may have some trivial rows,
- * but as soon as the number of remaining required non-trivial rows
- * is as large as the number or remaining rows to be computed,
- * all remaining rows need to be non-trivial.
- */
- static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
- {
- return node->nvar - node->rank >= graph->maxvar - graph->n_row;
- }
- /* Construct a non-triviality region with triviality directions
- * corresponding to the rows of "indep".
- * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
- * while the triviality directions are expressed in terms of
- * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
- * before c^+_i. Furthermore,
- * the pairs of non-negative variables representing the coefficients
- * are stored in the opposite order.
- */
- static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
- {
- isl_ctx *ctx;
- isl_mat *mat;
- int i, j;
- isl_size n, n_var;
- n = isl_mat_rows(indep);
- n_var = isl_mat_cols(indep);
- if (n < 0 || n_var < 0)
- return NULL;
- ctx = isl_mat_get_ctx(indep);
- mat = isl_mat_alloc(ctx, n, 2 * n_var);
- if (!mat)
- return NULL;
- for (i = 0; i < n; ++i) {
- for (j = 0; j < n_var; ++j) {
- int nj = n_var - 1 - j;
- isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
- isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
- }
- }
- return mat;
- }
- /* Solve the ILP problem constructed in setup_lp.
- * For each node such that all the remaining rows of its schedule
- * need to be non-trivial, we construct a non-triviality region.
- * This region imposes that the next row is independent of previous rows.
- * In particular, the non-triviality region enforces that at least
- * one of the linear combinations in the rows of node->indep is non-zero.
- */
- static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- int i;
- isl_vec *sol;
- isl_basic_set *lp;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- isl_mat *trivial;
- graph->region[i].pos = node_var_coef_offset(node);
- if (needs_row(graph, node))
- trivial = construct_trivial(node->indep);
- else
- trivial = isl_mat_zero(ctx, 0, 0);
- graph->region[i].trivial = trivial;
- }
- lp = isl_basic_set_copy(graph->lp);
- sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
- graph->region, &check_conflict, graph);
- for (i = 0; i < graph->n; ++i)
- isl_mat_free(graph->region[i].trivial);
- return sol;
- }
- /* Extract the coefficients for the variables of "node" from "sol".
- *
- * Each schedule coefficient c_i_x is represented as the difference
- * between two non-negative variables c_i_x^+ - c_i_x^-.
- * The c_i_x^- appear before their c_i_x^+ counterpart.
- * Furthermore, the order of these pairs is the opposite of that
- * of the corresponding coefficients.
- *
- * Return c_i_x = c_i_x^+ - c_i_x^-
- */
- static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
- __isl_keep isl_vec *sol)
- {
- int i;
- int pos;
- isl_vec *csol;
- if (!sol)
- return NULL;
- csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
- if (!csol)
- return NULL;
- pos = 1 + node_var_coef_offset(node);
- for (i = 0; i < node->nvar; ++i)
- isl_int_sub(csol->el[node->nvar - 1 - i],
- sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
- return csol;
- }
- /* Update the schedules of all nodes based on the given solution
- * of the LP problem.
- * The new row is added to the current band.
- * All possibly negative coefficients are encoded as a difference
- * of two non-negative variables, so we need to perform the subtraction
- * here.
- *
- * If coincident is set, then the caller guarantees that the new
- * row satisfies the coincidence constraints.
- */
- static int update_schedule(struct isl_sched_graph *graph,
- __isl_take isl_vec *sol, int coincident)
- {
- int i, j;
- isl_vec *csol = NULL;
- if (!sol)
- goto error;
- if (sol->size == 0)
- isl_die(sol->ctx, isl_error_internal,
- "no solution found", goto error);
- if (graph->n_total_row >= graph->max_row)
- isl_die(sol->ctx, isl_error_internal,
- "too many schedule rows", goto error);
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- int pos;
- isl_size row = isl_mat_rows(node->sched);
- isl_vec_free(csol);
- csol = extract_var_coef(node, sol);
- if (row < 0 || !csol)
- goto error;
- isl_map_free(node->sched_map);
- node->sched_map = NULL;
- node->sched = isl_mat_add_rows(node->sched, 1);
- if (!node->sched)
- goto error;
- pos = node_cst_coef_offset(node);
- node->sched = isl_mat_set_element(node->sched,
- row, 0, sol->el[1 + pos]);
- pos = node_par_coef_offset(node);
- for (j = 0; j < node->nparam; ++j)
- node->sched = isl_mat_set_element(node->sched,
- row, 1 + j, sol->el[1 + pos + j]);
- for (j = 0; j < node->nvar; ++j)
- node->sched = isl_mat_set_element(node->sched,
- row, 1 + node->nparam + j, csol->el[j]);
- node->coincident[graph->n_total_row] = coincident;
- }
- isl_vec_free(sol);
- isl_vec_free(csol);
- graph->n_row++;
- graph->n_total_row++;
- return 0;
- error:
- isl_vec_free(sol);
- isl_vec_free(csol);
- return -1;
- }
- /* Convert row "row" of node->sched into an isl_aff living in "ls"
- * and return this isl_aff.
- */
- static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
- struct isl_sched_node *node, int row)
- {
- int j;
- isl_int v;
- isl_aff *aff;
- isl_int_init(v);
- aff = isl_aff_zero_on_domain(ls);
- if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
- goto error;
- aff = isl_aff_set_constant(aff, v);
- for (j = 0; j < node->nparam; ++j) {
- if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
- goto error;
- aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
- }
- for (j = 0; j < node->nvar; ++j) {
- if (isl_mat_get_element(node->sched, row,
- 1 + node->nparam + j, &v) < 0)
- goto error;
- aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
- }
- isl_int_clear(v);
- return aff;
- error:
- isl_int_clear(v);
- isl_aff_free(aff);
- return NULL;
- }
- /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
- * and return this multi_aff.
- *
- * The result is defined over the uncompressed node domain.
- */
- static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
- struct isl_sched_node *node, int first, int n)
- {
- int i;
- isl_space *space;
- isl_local_space *ls;
- isl_aff *aff;
- isl_multi_aff *ma;
- isl_size nrow;
- if (!node)
- return NULL;
- nrow = isl_mat_rows(node->sched);
- if (nrow < 0)
- return NULL;
- if (node->compressed)
- space = isl_pw_multi_aff_get_domain_space(node->decompress);
- else
- space = isl_space_copy(node->space);
- ls = isl_local_space_from_space(isl_space_copy(space));
- space = isl_space_from_domain(space);
- space = isl_space_add_dims(space, isl_dim_out, n);
- ma = isl_multi_aff_zero(space);
- for (i = first; i < first + n; ++i) {
- aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
- ma = isl_multi_aff_set_aff(ma, i - first, aff);
- }
- isl_local_space_free(ls);
- if (node->compressed)
- ma = isl_multi_aff_pullback_multi_aff(ma,
- isl_multi_aff_copy(node->compress));
- return ma;
- }
- /* Convert node->sched into a multi_aff and return this multi_aff.
- *
- * The result is defined over the uncompressed node domain.
- */
- static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
- struct isl_sched_node *node)
- {
- isl_size nrow;
- nrow = isl_mat_rows(node->sched);
- if (nrow < 0)
- return NULL;
- return node_extract_partial_schedule_multi_aff(node, 0, nrow);
- }
- /* Convert node->sched into a map and return this map.
- *
- * The result is cached in node->sched_map, which needs to be released
- * whenever node->sched is updated.
- * It is defined over the uncompressed node domain.
- */
- static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
- {
- if (!node->sched_map) {
- isl_multi_aff *ma;
- ma = node_extract_schedule_multi_aff(node);
- node->sched_map = isl_map_from_multi_aff(ma);
- }
- return isl_map_copy(node->sched_map);
- }
- /* Construct a map that can be used to update a dependence relation
- * based on the current schedule.
- * That is, construct a map expressing that source and sink
- * are executed within the same iteration of the current schedule.
- * This map can then be intersected with the dependence relation.
- * This is not the most efficient way, but this shouldn't be a critical
- * operation.
- */
- static __isl_give isl_map *specializer(struct isl_sched_node *src,
- struct isl_sched_node *dst)
- {
- isl_map *src_sched, *dst_sched;
- src_sched = node_extract_schedule(src);
- dst_sched = node_extract_schedule(dst);
- return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
- }
- /* Intersect the domains of the nested relations in domain and range
- * of "umap" with "map".
- */
- static __isl_give isl_union_map *intersect_domains(
- __isl_take isl_union_map *umap, __isl_keep isl_map *map)
- {
- isl_union_set *uset;
- umap = isl_union_map_zip(umap);
- uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
- umap = isl_union_map_intersect_domain(umap, uset);
- umap = isl_union_map_zip(umap);
- return umap;
- }
- /* Update the dependence relation of the given edge based
- * on the current schedule.
- * If the dependence is carried completely by the current schedule, then
- * it is removed from the edge_tables. It is kept in the list of edges
- * as otherwise all edge_tables would have to be recomputed.
- *
- * If the edge is of a type that can appear multiple times
- * between the same pair of nodes, then it is added to
- * the edge table (again). This prevents the situation
- * where none of these edges is referenced from the edge table
- * because the one that was referenced turned out to be empty and
- * was therefore removed from the table.
- */
- static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
- struct isl_sched_edge *edge)
- {
- int empty;
- isl_map *id;
- id = specializer(edge->src, edge->dst);
- edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
- if (!edge->map)
- goto error;
- if (edge->tagged_condition) {
- edge->tagged_condition =
- intersect_domains(edge->tagged_condition, id);
- if (!edge->tagged_condition)
- goto error;
- }
- if (edge->tagged_validity) {
- edge->tagged_validity =
- intersect_domains(edge->tagged_validity, id);
- if (!edge->tagged_validity)
- goto error;
- }
- empty = isl_map_plain_is_empty(edge->map);
- if (empty < 0)
- goto error;
- if (empty) {
- if (graph_remove_edge(graph, edge) < 0)
- goto error;
- } else if (is_multi_edge_type(edge)) {
- if (graph_edge_tables_add(ctx, graph, edge) < 0)
- goto error;
- }
- isl_map_free(id);
- return isl_stat_ok;
- error:
- isl_map_free(id);
- return isl_stat_error;
- }
- /* Does the domain of "umap" intersect "uset"?
- */
- static int domain_intersects(__isl_keep isl_union_map *umap,
- __isl_keep isl_union_set *uset)
- {
- int empty;
- umap = isl_union_map_copy(umap);
- umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
- empty = isl_union_map_is_empty(umap);
- isl_union_map_free(umap);
- return empty < 0 ? -1 : !empty;
- }
- /* Does the range of "umap" intersect "uset"?
- */
- static int range_intersects(__isl_keep isl_union_map *umap,
- __isl_keep isl_union_set *uset)
- {
- int empty;
- umap = isl_union_map_copy(umap);
- umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
- empty = isl_union_map_is_empty(umap);
- isl_union_map_free(umap);
- return empty < 0 ? -1 : !empty;
- }
- /* Are the condition dependences of "edge" local with respect to
- * the current schedule?
- *
- * That is, are domain and range of the condition dependences mapped
- * to the same point?
- *
- * In other words, is the condition false?
- */
- static int is_condition_false(struct isl_sched_edge *edge)
- {
- isl_union_map *umap;
- isl_map *map, *sched, *test;
- int empty, local;
- empty = isl_union_map_is_empty(edge->tagged_condition);
- if (empty < 0 || empty)
- return empty;
- umap = isl_union_map_copy(edge->tagged_condition);
- umap = isl_union_map_zip(umap);
- umap = isl_union_set_unwrap(isl_union_map_domain(umap));
- map = isl_map_from_union_map(umap);
- sched = node_extract_schedule(edge->src);
- map = isl_map_apply_domain(map, sched);
- sched = node_extract_schedule(edge->dst);
- map = isl_map_apply_range(map, sched);
- test = isl_map_identity(isl_map_get_space(map));
- local = isl_map_is_subset(map, test);
- isl_map_free(map);
- isl_map_free(test);
- return local;
- }
- /* For each conditional validity constraint that is adjacent
- * to a condition with domain in condition_source or range in condition_sink,
- * turn it into an unconditional validity constraint.
- */
- static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
- __isl_take isl_union_set *condition_source,
- __isl_take isl_union_set *condition_sink)
- {
- int i;
- condition_source = isl_union_set_coalesce(condition_source);
- condition_sink = isl_union_set_coalesce(condition_sink);
- for (i = 0; i < graph->n_edge; ++i) {
- int adjacent;
- isl_union_map *validity;
- if (!is_conditional_validity(&graph->edge[i]))
- continue;
- if (is_validity(&graph->edge[i]))
- continue;
- validity = graph->edge[i].tagged_validity;
- adjacent = domain_intersects(validity, condition_sink);
- if (adjacent >= 0 && !adjacent)
- adjacent = range_intersects(validity, condition_source);
- if (adjacent < 0)
- goto error;
- if (!adjacent)
- continue;
- set_validity(&graph->edge[i]);
- }
- isl_union_set_free(condition_source);
- isl_union_set_free(condition_sink);
- return 0;
- error:
- isl_union_set_free(condition_source);
- isl_union_set_free(condition_sink);
- return -1;
- }
- /* Update the dependence relations of all edges based on the current schedule
- * and enforce conditional validity constraints that are adjacent
- * to satisfied condition constraints.
- *
- * First check if any of the condition constraints are satisfied
- * (i.e., not local to the outer schedule) and keep track of
- * their domain and range.
- * Then update all dependence relations (which removes the non-local
- * constraints).
- * Finally, if any condition constraints turned out to be satisfied,
- * then turn all adjacent conditional validity constraints into
- * unconditional validity constraints.
- */
- static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- int i;
- int any = 0;
- isl_union_set *source, *sink;
- source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
- sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
- for (i = 0; i < graph->n_edge; ++i) {
- int local;
- isl_union_set *uset;
- isl_union_map *umap;
- if (!is_condition(&graph->edge[i]))
- continue;
- if (is_local(&graph->edge[i]))
- continue;
- local = is_condition_false(&graph->edge[i]);
- if (local < 0)
- goto error;
- if (local)
- continue;
- any = 1;
- umap = isl_union_map_copy(graph->edge[i].tagged_condition);
- uset = isl_union_map_domain(umap);
- source = isl_union_set_union(source, uset);
- umap = isl_union_map_copy(graph->edge[i].tagged_condition);
- uset = isl_union_map_range(umap);
- sink = isl_union_set_union(sink, uset);
- }
- for (i = 0; i < graph->n_edge; ++i) {
- if (update_edge(ctx, graph, &graph->edge[i]) < 0)
- goto error;
- }
- if (any)
- return unconditionalize_adjacent_validity(graph, source, sink);
- isl_union_set_free(source);
- isl_union_set_free(sink);
- return 0;
- error:
- isl_union_set_free(source);
- isl_union_set_free(sink);
- return -1;
- }
- static void next_band(struct isl_sched_graph *graph)
- {
- graph->band_start = graph->n_total_row;
- }
- /* Return the union of the universe domains of the nodes in "graph"
- * that satisfy "pred".
- */
- static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
- struct isl_sched_graph *graph,
- int (*pred)(struct isl_sched_node *node, int data), int data)
- {
- int i;
- isl_set *set;
- isl_union_set *dom;
- for (i = 0; i < graph->n; ++i)
- if (pred(&graph->node[i], data))
- break;
- if (i >= graph->n)
- isl_die(ctx, isl_error_internal,
- "empty component", return NULL);
- set = isl_set_universe(isl_space_copy(graph->node[i].space));
- dom = isl_union_set_from_set(set);
- for (i = i + 1; i < graph->n; ++i) {
- if (!pred(&graph->node[i], data))
- continue;
- set = isl_set_universe(isl_space_copy(graph->node[i].space));
- dom = isl_union_set_union(dom, isl_union_set_from_set(set));
- }
- return dom;
- }
- /* Return a list of unions of universe domains, where each element
- * in the list corresponds to an SCC (or WCC) indexed by node->scc.
- */
- static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
- struct isl_sched_graph *graph)
- {
- int i;
- isl_union_set_list *filters;
- filters = isl_union_set_list_alloc(ctx, graph->scc);
- for (i = 0; i < graph->scc; ++i) {
- isl_union_set *dom;
- dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
- filters = isl_union_set_list_add(filters, dom);
- }
- return filters;
- }
- /* Return a list of two unions of universe domains, one for the SCCs up
- * to and including graph->src_scc and another for the other SCCs.
- */
- static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
- struct isl_sched_graph *graph)
- {
- isl_union_set *dom;
- isl_union_set_list *filters;
- filters = isl_union_set_list_alloc(ctx, 2);
- dom = isl_sched_graph_domain(ctx, graph,
- &node_scc_at_most, graph->src_scc);
- filters = isl_union_set_list_add(filters, dom);
- dom = isl_sched_graph_domain(ctx, graph,
- &node_scc_at_least, graph->src_scc + 1);
- filters = isl_union_set_list_add(filters, dom);
- return filters;
- }
- /* Copy nodes that satisfy node_pred from the src dependence graph
- * to the dst dependence graph.
- */
- static isl_stat copy_nodes(struct isl_sched_graph *dst,
- struct isl_sched_graph *src,
- int (*node_pred)(struct isl_sched_node *node, int data), int data)
- {
- int i;
- dst->n = 0;
- for (i = 0; i < src->n; ++i) {
- int j;
- if (!node_pred(&src->node[i], data))
- continue;
- j = dst->n;
- dst->node[j].space = isl_space_copy(src->node[i].space);
- dst->node[j].compressed = src->node[i].compressed;
- dst->node[j].hull = isl_set_copy(src->node[i].hull);
- dst->node[j].compress =
- isl_multi_aff_copy(src->node[i].compress);
- dst->node[j].decompress =
- isl_pw_multi_aff_copy(src->node[i].decompress);
- dst->node[j].nvar = src->node[i].nvar;
- dst->node[j].nparam = src->node[i].nparam;
- dst->node[j].sched = isl_mat_copy(src->node[i].sched);
- dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
- dst->node[j].coincident = src->node[i].coincident;
- dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
- dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
- dst->node[j].max = isl_vec_copy(src->node[i].max);
- dst->n++;
- if (!dst->node[j].space || !dst->node[j].sched)
- return isl_stat_error;
- if (dst->node[j].compressed &&
- (!dst->node[j].hull || !dst->node[j].compress ||
- !dst->node[j].decompress))
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
- * to the dst dependence graph.
- * If the source or destination node of the edge is not in the destination
- * graph, then it must be a backward proximity edge and it should simply
- * be ignored.
- */
- static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
- struct isl_sched_graph *src,
- int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
- {
- int i;
- dst->n_edge = 0;
- for (i = 0; i < src->n_edge; ++i) {
- struct isl_sched_edge *edge = &src->edge[i];
- isl_map *map;
- isl_union_map *tagged_condition;
- isl_union_map *tagged_validity;
- struct isl_sched_node *dst_src, *dst_dst;
- if (!edge_pred(edge, data))
- continue;
- if (isl_map_plain_is_empty(edge->map))
- continue;
- dst_src = graph_find_node(ctx, dst, edge->src->space);
- dst_dst = graph_find_node(ctx, dst, edge->dst->space);
- if (!dst_src || !dst_dst)
- return isl_stat_error;
- if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
- if (is_validity(edge) || is_conditional_validity(edge))
- isl_die(ctx, isl_error_internal,
- "backward (conditional) validity edge",
- return isl_stat_error);
- continue;
- }
- map = isl_map_copy(edge->map);
- tagged_condition = isl_union_map_copy(edge->tagged_condition);
- tagged_validity = isl_union_map_copy(edge->tagged_validity);
- dst->edge[dst->n_edge].src = dst_src;
- dst->edge[dst->n_edge].dst = dst_dst;
- dst->edge[dst->n_edge].map = map;
- dst->edge[dst->n_edge].tagged_condition = tagged_condition;
- dst->edge[dst->n_edge].tagged_validity = tagged_validity;
- dst->edge[dst->n_edge].types = edge->types;
- dst->n_edge++;
- if (edge->tagged_condition && !tagged_condition)
- return isl_stat_error;
- if (edge->tagged_validity && !tagged_validity)
- return isl_stat_error;
- if (graph_edge_tables_add(ctx, dst,
- &dst->edge[dst->n_edge - 1]) < 0)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Compute the maximal number of variables over all nodes.
- * This is the maximal number of linearly independent schedule
- * rows that we need to compute.
- * Just in case we end up in a part of the dependence graph
- * with only lower-dimensional domains, we make sure we will
- * compute the required amount of extra linearly independent rows.
- */
- static int compute_maxvar(struct isl_sched_graph *graph)
- {
- int i;
- graph->maxvar = 0;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- int nvar;
- if (node_update_vmap(node) < 0)
- return -1;
- nvar = node->nvar + graph->n_row - node->rank;
- if (nvar > graph->maxvar)
- graph->maxvar = nvar;
- }
- return 0;
- }
- /* Extract the subgraph of "graph" that consists of the nodes satisfying
- * "node_pred" and the edges satisfying "edge_pred" and store
- * the result in "sub".
- */
- static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
- int (*node_pred)(struct isl_sched_node *node, int data),
- int (*edge_pred)(struct isl_sched_edge *edge, int data),
- int data, struct isl_sched_graph *sub)
- {
- int i, n = 0, n_edge = 0;
- int t;
- for (i = 0; i < graph->n; ++i)
- if (node_pred(&graph->node[i], data))
- ++n;
- for (i = 0; i < graph->n_edge; ++i)
- if (edge_pred(&graph->edge[i], data))
- ++n_edge;
- if (graph_alloc(ctx, sub, n, n_edge) < 0)
- return isl_stat_error;
- sub->root = graph->root;
- if (copy_nodes(sub, graph, node_pred, data) < 0)
- return isl_stat_error;
- if (graph_init_table(ctx, sub) < 0)
- return isl_stat_error;
- for (t = 0; t <= isl_edge_last; ++t)
- sub->max_edge[t] = graph->max_edge[t];
- if (graph_init_edge_tables(ctx, sub) < 0)
- return isl_stat_error;
- if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
- return isl_stat_error;
- sub->n_row = graph->n_row;
- sub->max_row = graph->max_row;
- sub->n_total_row = graph->n_total_row;
- sub->band_start = graph->band_start;
- return isl_stat_ok;
- }
- static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
- struct isl_sched_graph *graph);
- static __isl_give isl_schedule_node *compute_schedule_wcc(
- isl_schedule_node *node, struct isl_sched_graph *graph);
- /* Compute a schedule for a subgraph of "graph". In particular, for
- * the graph composed of nodes that satisfy node_pred and edges that
- * that satisfy edge_pred.
- * If the subgraph is known to consist of a single component, then wcc should
- * be set and then we call compute_schedule_wcc on the constructed subgraph.
- * Otherwise, we call compute_schedule, which will check whether the subgraph
- * is connected.
- *
- * The schedule is inserted at "node" and the updated schedule node
- * is returned.
- */
- static __isl_give isl_schedule_node *compute_sub_schedule(
- __isl_take isl_schedule_node *node, isl_ctx *ctx,
- struct isl_sched_graph *graph,
- int (*node_pred)(struct isl_sched_node *node, int data),
- int (*edge_pred)(struct isl_sched_edge *edge, int data),
- int data, int wcc)
- {
- struct isl_sched_graph split = { 0 };
- if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
- &split) < 0)
- goto error;
- if (wcc)
- node = compute_schedule_wcc(node, &split);
- else
- node = compute_schedule(node, &split);
- graph_free(ctx, &split);
- return node;
- error:
- graph_free(ctx, &split);
- return isl_schedule_node_free(node);
- }
- static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
- {
- return edge->src->scc == scc && edge->dst->scc == scc;
- }
- static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
- {
- return edge->dst->scc <= scc;
- }
- static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
- {
- return edge->src->scc >= scc;
- }
- /* Reset the current band by dropping all its schedule rows.
- */
- static isl_stat reset_band(struct isl_sched_graph *graph)
- {
- int i;
- int drop;
- drop = graph->n_total_row - graph->band_start;
- graph->n_total_row -= drop;
- graph->n_row -= drop;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- isl_map_free(node->sched_map);
- node->sched_map = NULL;
- node->sched = isl_mat_drop_rows(node->sched,
- graph->band_start, drop);
- if (!node->sched)
- return isl_stat_error;
- }
- return isl_stat_ok;
- }
- /* Split the current graph into two parts and compute a schedule for each
- * part individually. In particular, one part consists of all SCCs up
- * to and including graph->src_scc, while the other part contains the other
- * SCCs. The split is enforced by a sequence node inserted at position "node"
- * in the schedule tree. Return the updated schedule node.
- * If either of these two parts consists of a sequence, then it is spliced
- * into the sequence containing the two parts.
- *
- * The current band is reset. It would be possible to reuse
- * the previously computed rows as the first rows in the next
- * band, but recomputing them may result in better rows as we are looking
- * at a smaller part of the dependence graph.
- */
- static __isl_give isl_schedule_node *compute_split_schedule(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- int is_seq;
- isl_ctx *ctx;
- isl_union_set_list *filters;
- if (!node)
- return NULL;
- if (reset_band(graph) < 0)
- return isl_schedule_node_free(node);
- next_band(graph);
- ctx = isl_schedule_node_get_ctx(node);
- filters = extract_split(ctx, graph);
- node = isl_schedule_node_insert_sequence(node, filters);
- node = isl_schedule_node_child(node, 1);
- node = isl_schedule_node_child(node, 0);
- node = compute_sub_schedule(node, ctx, graph,
- &node_scc_at_least, &edge_src_scc_at_least,
- graph->src_scc + 1, 0);
- is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_parent(node);
- if (is_seq)
- node = isl_schedule_node_sequence_splice_child(node, 1);
- node = isl_schedule_node_child(node, 0);
- node = isl_schedule_node_child(node, 0);
- node = compute_sub_schedule(node, ctx, graph,
- &node_scc_at_most, &edge_dst_scc_at_most,
- graph->src_scc, 0);
- is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_parent(node);
- if (is_seq)
- node = isl_schedule_node_sequence_splice_child(node, 0);
- return node;
- }
- /* Insert a band node at position "node" in the schedule tree corresponding
- * to the current band in "graph". Mark the band node permutable
- * if "permutable" is set.
- * The partial schedules and the coincidence property are extracted
- * from the graph nodes.
- * Return the updated schedule node.
- */
- static __isl_give isl_schedule_node *insert_current_band(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- int permutable)
- {
- int i;
- int start, end, n;
- isl_multi_aff *ma;
- isl_multi_pw_aff *mpa;
- isl_multi_union_pw_aff *mupa;
- if (!node)
- return NULL;
- if (graph->n < 1)
- isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
- "graph should have at least one node",
- return isl_schedule_node_free(node));
- start = graph->band_start;
- end = graph->n_total_row;
- n = end - start;
- ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
- mpa = isl_multi_pw_aff_from_multi_aff(ma);
- mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
- for (i = 1; i < graph->n; ++i) {
- isl_multi_union_pw_aff *mupa_i;
- ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
- start, n);
- mpa = isl_multi_pw_aff_from_multi_aff(ma);
- mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
- mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
- }
- node = isl_schedule_node_insert_partial_schedule(node, mupa);
- for (i = 0; i < n; ++i)
- node = isl_schedule_node_band_member_set_coincident(node, i,
- graph->node[0].coincident[start + i]);
- node = isl_schedule_node_band_set_permutable(node, permutable);
- return node;
- }
- /* Update the dependence relations based on the current schedule,
- * add the current band to "node" and then continue with the computation
- * of the next band.
- * Return the updated schedule node.
- */
- static __isl_give isl_schedule_node *compute_next_band(
- __isl_take isl_schedule_node *node,
- struct isl_sched_graph *graph, int permutable)
- {
- isl_ctx *ctx;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- if (update_edges(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- node = insert_current_band(node, graph, permutable);
- next_band(graph);
- node = isl_schedule_node_child(node, 0);
- node = compute_schedule(node, graph);
- node = isl_schedule_node_parent(node);
- return node;
- }
- /* Add the constraints "coef" derived from an edge from "node" to itself
- * to graph->lp in order to respect the dependences and to try and carry them.
- * "pos" is the sequence number of the edge that needs to be carried.
- * "coef" represents general constraints on coefficients (c_0, c_x)
- * of valid constraints for (y - x) with x and y instances of the node.
- *
- * The constraints added to graph->lp need to enforce
- *
- * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
- * = c_j_x (y - x) >= e_i
- *
- * for each (x,y) in the dependence relation of the edge.
- * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
- * taking into account that each coefficient in c_j_x is represented
- * as a pair of non-negative coefficients.
- */
- static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
- struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
- {
- isl_size offset;
- isl_ctx *ctx;
- isl_dim_map *dim_map;
- offset = coef_var_offset(coef);
- if (offset < 0)
- coef = isl_basic_set_free(coef);
- if (!coef)
- return isl_stat_error;
- ctx = isl_basic_set_get_ctx(coef);
- dim_map = intra_dim_map(ctx, graph, node, offset, 1);
- isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
- graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
- return isl_stat_ok;
- }
- /* Add the constraints "coef" derived from an edge from "src" to "dst"
- * to graph->lp in order to respect the dependences and to try and carry them.
- * "pos" is the sequence number of the edge that needs to be carried or
- * -1 if no attempt should be made to carry the dependences.
- * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
- * of valid constraints for (x, y) with x and y instances of "src" and "dst".
- *
- * The constraints added to graph->lp need to enforce
- *
- * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
- *
- * for each (x,y) in the dependence relation of the edge or
- *
- * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
- *
- * if pos is -1.
- * That is,
- * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
- * or
- * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
- * needs to be plugged in for (c_0, c_n, c_x, c_y),
- * taking into account that each coefficient in c_j_x and c_k_x is represented
- * as a pair of non-negative coefficients.
- */
- static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
- struct isl_sched_node *src, struct isl_sched_node *dst,
- __isl_take isl_basic_set *coef, int pos)
- {
- isl_size offset;
- isl_ctx *ctx;
- isl_dim_map *dim_map;
- offset = coef_var_offset(coef);
- if (offset < 0)
- coef = isl_basic_set_free(coef);
- if (!coef)
- return isl_stat_error;
- ctx = isl_basic_set_get_ctx(coef);
- dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
- if (pos >= 0)
- isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
- graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
- return isl_stat_ok;
- }
- /* Data structure for keeping track of the data needed
- * to exploit non-trivial lineality spaces.
- *
- * "any_non_trivial" is true if there are any non-trivial lineality spaces.
- * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
- * "equivalent" connects instances to other instances on the same line(s).
- * "mask" contains the domain spaces of "equivalent".
- * Any instance set not in "mask" does not have a non-trivial lineality space.
- */
- struct isl_exploit_lineality_data {
- isl_bool any_non_trivial;
- isl_union_map *equivalent;
- isl_union_set *mask;
- };
- /* Data structure collecting information used during the construction
- * of an LP for carrying dependences.
- *
- * "intra" is a sequence of coefficient constraints for intra-node edges.
- * "inter" is a sequence of coefficient constraints for inter-node edges.
- * "lineality" contains data used to exploit non-trivial lineality spaces.
- */
- struct isl_carry {
- isl_basic_set_list *intra;
- isl_basic_set_list *inter;
- struct isl_exploit_lineality_data lineality;
- };
- /* Free all the data stored in "carry".
- */
- static void isl_carry_clear(struct isl_carry *carry)
- {
- isl_basic_set_list_free(carry->intra);
- isl_basic_set_list_free(carry->inter);
- isl_union_map_free(carry->lineality.equivalent);
- isl_union_set_free(carry->lineality.mask);
- }
- /* Return a pointer to the node in "graph" that lives in "space".
- * If the requested node has been compressed, then "space"
- * corresponds to the compressed space.
- * The graph is assumed to have such a node.
- * Return NULL in case of error.
- *
- * First try and see if "space" is the space of an uncompressed node.
- * If so, return that node.
- * Otherwise, "space" was constructed by construct_compressed_id and
- * contains a user pointer pointing to the node in the tuple id.
- * However, this node belongs to the original dependence graph.
- * If "graph" is a subgraph of this original dependence graph,
- * then the node with the same space still needs to be looked up
- * in the current graph.
- */
- static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
- struct isl_sched_graph *graph, __isl_keep isl_space *space)
- {
- isl_id *id;
- struct isl_sched_node *node;
- if (!space)
- return NULL;
- node = graph_find_node(ctx, graph, space);
- if (!node)
- return NULL;
- if (is_node(graph, node))
- return node;
- id = isl_space_get_tuple_id(space, isl_dim_set);
- node = isl_id_get_user(id);
- isl_id_free(id);
- if (!node)
- return NULL;
- if (!is_node(graph->root, node))
- isl_die(ctx, isl_error_internal,
- "space points to invalid node", return NULL);
- if (graph != graph->root)
- node = graph_find_node(ctx, graph, node->space);
- if (!is_node(graph, node))
- isl_die(ctx, isl_error_internal,
- "unable to find node", return NULL);
- return node;
- }
- /* Internal data structure for add_all_constraints.
- *
- * "graph" is the schedule constraint graph for which an LP problem
- * is being constructed.
- * "carry_inter" indicates whether inter-node edges should be carried.
- * "pos" is the position of the next edge that needs to be carried.
- */
- struct isl_add_all_constraints_data {
- isl_ctx *ctx;
- struct isl_sched_graph *graph;
- int carry_inter;
- int pos;
- };
- /* Add the constraints "coef" derived from an edge from a node to itself
- * to data->graph->lp in order to respect the dependences and
- * to try and carry them.
- *
- * The space of "coef" is of the form
- *
- * coefficients[[c_cst] -> S[c_x]]
- *
- * with S[c_x] the (compressed) space of the node.
- * Extract the node from the space and call add_intra_constraints.
- */
- static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
- {
- struct isl_add_all_constraints_data *data = user;
- isl_space *space;
- struct isl_sched_node *node;
- space = isl_basic_set_get_space(coef);
- space = isl_space_range(isl_space_unwrap(space));
- node = graph_find_compressed_node(data->ctx, data->graph, space);
- isl_space_free(space);
- return add_intra_constraints(data->graph, node, coef, data->pos++);
- }
- /* Add the constraints "coef" derived from an edge from a node j
- * to a node k to data->graph->lp in order to respect the dependences and
- * to try and carry them (provided data->carry_inter is set).
- *
- * The space of "coef" is of the form
- *
- * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
- *
- * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
- * Extract the nodes from the space and call add_inter_constraints.
- */
- static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
- {
- struct isl_add_all_constraints_data *data = user;
- isl_space *space, *dom;
- struct isl_sched_node *src, *dst;
- int pos;
- space = isl_basic_set_get_space(coef);
- space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
- dom = isl_space_domain(isl_space_copy(space));
- src = graph_find_compressed_node(data->ctx, data->graph, dom);
- isl_space_free(dom);
- space = isl_space_range(space);
- dst = graph_find_compressed_node(data->ctx, data->graph, space);
- isl_space_free(space);
- pos = data->carry_inter ? data->pos++ : -1;
- return add_inter_constraints(data->graph, src, dst, coef, pos);
- }
- /* Add constraints to graph->lp that force all (conditional) validity
- * dependences to be respected and attempt to carry them.
- * "intra" is the sequence of coefficient constraints for intra-node edges.
- * "inter" is the sequence of coefficient constraints for inter-node edges.
- * "carry_inter" indicates whether inter-node edges should be carried or
- * only respected.
- */
- static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
- __isl_keep isl_basic_set_list *intra,
- __isl_keep isl_basic_set_list *inter, int carry_inter)
- {
- struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
- data.pos = 0;
- if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
- return isl_stat_error;
- if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Internal data structure for count_all_constraints
- * for keeping track of the number of equality and inequality constraints.
- */
- struct isl_sched_count {
- int n_eq;
- int n_ineq;
- };
- /* Add the number of equality and inequality constraints of "bset"
- * to data->n_eq and data->n_ineq.
- */
- static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
- {
- struct isl_sched_count *data = user;
- return update_count(bset, 1, &data->n_eq, &data->n_ineq);
- }
- /* Count the number of equality and inequality constraints
- * that will be added to the carry_lp problem.
- * We count each edge exactly once.
- * "intra" is the sequence of coefficient constraints for intra-node edges.
- * "inter" is the sequence of coefficient constraints for inter-node edges.
- */
- static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
- __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
- {
- struct isl_sched_count data;
- data.n_eq = data.n_ineq = 0;
- if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
- return isl_stat_error;
- if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
- return isl_stat_error;
- *n_eq = data.n_eq;
- *n_ineq = data.n_ineq;
- return isl_stat_ok;
- }
- /* Construct an LP problem for finding schedule coefficients
- * such that the schedule carries as many validity dependences as possible.
- * In particular, for each dependence i, we bound the dependence distance
- * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
- * of all e_i's. Dependences with e_i = 0 in the solution are simply
- * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
- * "intra" is the sequence of coefficient constraints for intra-node edges.
- * "inter" is the sequence of coefficient constraints for inter-node edges.
- * "n_edge" is the total number of edges.
- * "carry_inter" indicates whether inter-node edges should be carried or
- * only respected. That is, if "carry_inter" is not set, then
- * no e_i variables are introduced for the inter-node edges.
- *
- * All variables of the LP are non-negative. The actual coefficients
- * may be negative, so each coefficient is represented as the difference
- * of two non-negative variables. The negative part always appears
- * immediately before the positive part.
- * Other than that, the variables have the following order
- *
- * - sum of (1 - e_i) over all edges
- * - sum of all c_n coefficients
- * (unconstrained when computing non-parametric schedules)
- * - sum of positive and negative parts of all c_x coefficients
- * - for each edge
- * - e_i
- * - for each node
- * - positive and negative parts of c_i_x, in opposite order
- * - c_i_n (if parametric)
- * - c_i_0
- *
- * The constraints are those from the (validity) edges plus three equalities
- * to express the sums and n_edge inequalities to express e_i <= 1.
- */
- static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
- int n_edge, __isl_keep isl_basic_set_list *intra,
- __isl_keep isl_basic_set_list *inter, int carry_inter)
- {
- int i;
- int k;
- isl_space *space;
- unsigned total;
- int n_eq, n_ineq;
- total = 3 + n_edge;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[graph->sorted[i]];
- node->start = total;
- total += 1 + node->nparam + 2 * node->nvar;
- }
- if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
- return isl_stat_error;
- space = isl_space_set_alloc(ctx, 0, total);
- isl_basic_set_free(graph->lp);
- n_eq += 3;
- n_ineq += n_edge;
- graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
- graph->lp = isl_basic_set_set_rational(graph->lp);
- k = isl_basic_set_alloc_equality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- isl_seq_clr(graph->lp->eq[k], 1 + total);
- isl_int_set_si(graph->lp->eq[k][0], -n_edge);
- isl_int_set_si(graph->lp->eq[k][1], 1);
- for (i = 0; i < n_edge; ++i)
- isl_int_set_si(graph->lp->eq[k][4 + i], 1);
- if (add_param_sum_constraint(graph, 1) < 0)
- return isl_stat_error;
- if (add_var_sum_constraint(graph, 2) < 0)
- return isl_stat_error;
- for (i = 0; i < n_edge; ++i) {
- k = isl_basic_set_alloc_inequality(graph->lp);
- if (k < 0)
- return isl_stat_error;
- isl_seq_clr(graph->lp->ineq[k], 1 + total);
- isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
- isl_int_set_si(graph->lp->ineq[k][0], 1);
- }
- if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
- return isl_stat_error;
- return isl_stat_ok;
- }
- static __isl_give isl_schedule_node *compute_component_schedule(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- int wcc);
- /* If the schedule_split_scaled option is set and if the linear
- * parts of the scheduling rows for all nodes in the graphs have
- * a non-trivial common divisor, then remove this
- * common divisor from the linear part.
- * Otherwise, insert a band node directly and continue with
- * the construction of the schedule.
- *
- * If a non-trivial common divisor is found, then
- * the linear part is reduced and the remainder is ignored.
- * The pieces of the graph that are assigned different remainders
- * form (groups of) strongly connected components within
- * the scaled down band. If needed, they can therefore
- * be ordered along this remainder in a sequence node.
- * However, this ordering is not enforced here in order to allow
- * the scheduler to combine some of the strongly connected components.
- */
- static __isl_give isl_schedule_node *split_scaled(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- int i;
- int row;
- isl_ctx *ctx;
- isl_int gcd, gcd_i;
- isl_size n_row;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- if (!ctx->opt->schedule_split_scaled)
- return compute_next_band(node, graph, 0);
- if (graph->n <= 1)
- return compute_next_band(node, graph, 0);
- n_row = isl_mat_rows(graph->node[0].sched);
- if (n_row < 0)
- return isl_schedule_node_free(node);
- isl_int_init(gcd);
- isl_int_init(gcd_i);
- isl_int_set_si(gcd, 0);
- row = n_row - 1;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- isl_size cols = isl_mat_cols(node->sched);
- if (cols < 0)
- break;
- isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
- isl_int_gcd(gcd, gcd, gcd_i);
- }
- isl_int_clear(gcd_i);
- if (i < graph->n)
- goto error;
- if (isl_int_cmp_si(gcd, 1) <= 0) {
- isl_int_clear(gcd);
- return compute_next_band(node, graph, 0);
- }
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- isl_int_fdiv_q(node->sched->row[row][0],
- node->sched->row[row][0], gcd);
- isl_int_mul(node->sched->row[row][0],
- node->sched->row[row][0], gcd);
- node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
- if (!node->sched)
- goto error;
- }
- isl_int_clear(gcd);
- return compute_next_band(node, graph, 0);
- error:
- isl_int_clear(gcd);
- return isl_schedule_node_free(node);
- }
- /* Is the schedule row "sol" trivial on node "node"?
- * That is, is the solution zero on the dimensions linearly independent of
- * the previously found solutions?
- * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
- *
- * Each coefficient is represented as the difference between
- * two non-negative values in "sol".
- * We construct the schedule row s and check if it is linearly
- * independent of previously computed schedule rows
- * by computing T s, with T the linear combinations that are zero
- * on linearly dependent schedule rows.
- * If the result consists of all zeros, then the solution is trivial.
- */
- static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
- {
- int trivial;
- isl_vec *node_sol;
- if (!sol)
- return -1;
- if (node->nvar == node->rank)
- return 0;
- node_sol = extract_var_coef(node, sol);
- node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
- if (!node_sol)
- return -1;
- trivial = isl_seq_first_non_zero(node_sol->el,
- node->nvar - node->rank) == -1;
- isl_vec_free(node_sol);
- return trivial;
- }
- /* Is the schedule row "sol" trivial on any node where it should
- * not be trivial?
- * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
- */
- static int is_any_trivial(struct isl_sched_graph *graph,
- __isl_keep isl_vec *sol)
- {
- int i;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- int trivial;
- if (!needs_row(graph, node))
- continue;
- trivial = is_trivial(node, sol);
- if (trivial < 0 || trivial)
- return trivial;
- }
- return 0;
- }
- /* Does the schedule represented by "sol" perform loop coalescing on "node"?
- * If so, return the position of the coalesced dimension.
- * Otherwise, return node->nvar or -1 on error.
- *
- * In particular, look for pairs of coefficients c_i and c_j such that
- * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
- * If any such pair is found, then return i.
- * If size_i is infinity, then no check on c_i needs to be performed.
- */
- static int find_node_coalescing(struct isl_sched_node *node,
- __isl_keep isl_vec *sol)
- {
- int i, j;
- isl_int max;
- isl_vec *csol;
- if (node->nvar <= 1)
- return node->nvar;
- csol = extract_var_coef(node, sol);
- if (!csol)
- return -1;
- isl_int_init(max);
- for (i = 0; i < node->nvar; ++i) {
- isl_val *v;
- if (isl_int_is_zero(csol->el[i]))
- continue;
- v = isl_multi_val_get_val(node->sizes, i);
- if (!v)
- goto error;
- if (!isl_val_is_int(v)) {
- isl_val_free(v);
- continue;
- }
- v = isl_val_div_ui(v, 2);
- v = isl_val_ceil(v);
- if (!v)
- goto error;
- isl_int_mul(max, v->n, csol->el[i]);
- isl_val_free(v);
- for (j = 0; j < node->nvar; ++j) {
- if (j == i)
- continue;
- if (isl_int_abs_gt(csol->el[j], max))
- break;
- }
- if (j < node->nvar)
- break;
- }
- isl_int_clear(max);
- isl_vec_free(csol);
- return i;
- error:
- isl_int_clear(max);
- isl_vec_free(csol);
- return -1;
- }
- /* Force the schedule coefficient at position "pos" of "node" to be zero
- * in "tl".
- * The coefficient is encoded as the difference between two non-negative
- * variables. Force these two variables to have the same value.
- */
- static __isl_give isl_tab_lexmin *zero_out_node_coef(
- __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
- {
- int dim;
- isl_ctx *ctx;
- isl_vec *eq;
- ctx = isl_space_get_ctx(node->space);
- dim = isl_tab_lexmin_dim(tl);
- if (dim < 0)
- return isl_tab_lexmin_free(tl);
- eq = isl_vec_alloc(ctx, 1 + dim);
- eq = isl_vec_clr(eq);
- if (!eq)
- return isl_tab_lexmin_free(tl);
- pos = 1 + node_var_coef_pos(node, pos);
- isl_int_set_si(eq->el[pos], 1);
- isl_int_set_si(eq->el[pos + 1], -1);
- tl = isl_tab_lexmin_add_eq(tl, eq->el);
- isl_vec_free(eq);
- return tl;
- }
- /* Return the lexicographically smallest rational point in the basic set
- * from which "tl" was constructed, double checking that this input set
- * was not empty.
- */
- static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
- {
- isl_vec *sol;
- sol = isl_tab_lexmin_get_solution(tl);
- if (!sol)
- return NULL;
- if (sol->size == 0)
- isl_die(isl_vec_get_ctx(sol), isl_error_internal,
- "error in schedule construction",
- return isl_vec_free(sol));
- return sol;
- }
- /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
- * carry any of the "n_edge" groups of dependences?
- * The value in the first position is the sum of (1 - e_i) over all "n_edge"
- * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
- * by the edge are carried by the solution.
- * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
- * one of those is carried.
- *
- * Note that despite the fact that the problem is solved using a rational
- * solver, the solution is guaranteed to be integral.
- * Specifically, the dependence distance lower bounds e_i (and therefore
- * also their sum) are integers. See Lemma 5 of [1].
- *
- * Any potential denominator of the sum is cleared by this function.
- * The denominator is not relevant for any of the other elements
- * in the solution.
- *
- * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
- * Problem, Part II: Multi-Dimensional Time.
- * In Intl. Journal of Parallel Programming, 1992.
- */
- static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
- {
- isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
- isl_int_set_si(sol->el[0], 1);
- return isl_int_cmp_si(sol->el[1], n_edge) < 0;
- }
- /* Return the lexicographically smallest rational point in "lp",
- * assuming that all variables are non-negative and performing some
- * additional sanity checks.
- * If "want_integral" is set, then compute the lexicographically smallest
- * integer point instead.
- * In particular, "lp" should not be empty by construction.
- * Double check that this is the case.
- * If dependences are not carried for any of the "n_edge" edges,
- * then return an empty vector.
- *
- * If the schedule_treat_coalescing option is set and
- * if the computed schedule performs loop coalescing on a given node,
- * i.e., if it is of the form
- *
- * c_i i + c_j j + ...
- *
- * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
- * to cut out this solution. Repeat this process until no more loop
- * coalescing occurs or until no more dependences can be carried.
- * In the latter case, revert to the previously computed solution.
- *
- * If the caller requests an integral solution and if coalescing should
- * be treated, then perform the coalescing treatment first as
- * an integral solution computed before coalescing treatment
- * would carry the same number of edges and would therefore probably
- * also be coalescing.
- *
- * To allow the coalescing treatment to be performed first,
- * the initial solution is allowed to be rational and it is only
- * cut out (if needed) in the next iteration, if no coalescing measures
- * were taken.
- */
- static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
- __isl_take isl_basic_set *lp, int n_edge, int want_integral)
- {
- int i, pos, cut;
- isl_ctx *ctx;
- isl_tab_lexmin *tl;
- isl_vec *sol = NULL, *prev;
- int treat_coalescing;
- int try_again;
- if (!lp)
- return NULL;
- ctx = isl_basic_set_get_ctx(lp);
- treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
- tl = isl_tab_lexmin_from_basic_set(lp);
- cut = 0;
- do {
- int integral;
- try_again = 0;
- if (cut)
- tl = isl_tab_lexmin_cut_to_integer(tl);
- prev = sol;
- sol = non_empty_solution(tl);
- if (!sol)
- goto error;
- integral = isl_int_is_one(sol->el[0]);
- if (!carries_dependences(sol, n_edge)) {
- if (!prev)
- prev = isl_vec_alloc(ctx, 0);
- isl_vec_free(sol);
- sol = prev;
- break;
- }
- prev = isl_vec_free(prev);
- cut = want_integral && !integral;
- if (cut)
- try_again = 1;
- if (!treat_coalescing)
- continue;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- pos = find_node_coalescing(node, sol);
- if (pos < 0)
- goto error;
- if (pos < node->nvar)
- break;
- }
- if (i < graph->n) {
- try_again = 1;
- tl = zero_out_node_coef(tl, &graph->node[i], pos);
- cut = 0;
- }
- } while (try_again);
- isl_tab_lexmin_free(tl);
- return sol;
- error:
- isl_tab_lexmin_free(tl);
- isl_vec_free(prev);
- isl_vec_free(sol);
- return NULL;
- }
- /* If "edge" is an edge from a node to itself, then add the corresponding
- * dependence relation to "umap".
- * If "node" has been compressed, then the dependence relation
- * is also compressed first.
- */
- static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
- struct isl_sched_edge *edge)
- {
- isl_map *map;
- struct isl_sched_node *node = edge->src;
- if (edge->src != edge->dst)
- return umap;
- map = isl_map_copy(edge->map);
- map = compress(map, node, node);
- umap = isl_union_map_add_map(umap, map);
- return umap;
- }
- /* If "edge" is an edge from a node to another node, then add the corresponding
- * dependence relation to "umap".
- * If the source or destination nodes of "edge" have been compressed,
- * then the dependence relation is also compressed first.
- */
- static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
- struct isl_sched_edge *edge)
- {
- isl_map *map;
- if (edge->src == edge->dst)
- return umap;
- map = isl_map_copy(edge->map);
- map = compress(map, edge->src, edge->dst);
- umap = isl_union_map_add_map(umap, map);
- return umap;
- }
- /* Internal data structure used by union_drop_coalescing_constraints
- * to collect bounds on all relevant statements.
- *
- * "graph" is the schedule constraint graph for which an LP problem
- * is being constructed.
- * "bounds" collects the bounds.
- */
- struct isl_collect_bounds_data {
- isl_ctx *ctx;
- struct isl_sched_graph *graph;
- isl_union_set *bounds;
- };
- /* Add the size bounds for the node with instance deltas in "set"
- * to data->bounds.
- */
- static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
- {
- struct isl_collect_bounds_data *data = user;
- struct isl_sched_node *node;
- isl_space *space;
- isl_set *bounds;
- space = isl_set_get_space(set);
- isl_set_free(set);
- node = graph_find_compressed_node(data->ctx, data->graph, space);
- isl_space_free(space);
- bounds = isl_set_from_basic_set(get_size_bounds(node));
- data->bounds = isl_union_set_add_set(data->bounds, bounds);
- return isl_stat_ok;
- }
- /* Drop some constraints from "delta" that could be exploited
- * to construct loop coalescing schedules.
- * In particular, drop those constraint that bound the difference
- * to the size of the domain.
- * Do this for each set/node in "delta" separately.
- * The parameters are assumed to have been projected out by the caller.
- */
- static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
- struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
- {
- struct isl_collect_bounds_data data = { ctx, graph };
- data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
- if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
- data.bounds = isl_union_set_free(data.bounds);
- delta = isl_union_set_plain_gist(delta, data.bounds);
- return delta;
- }
- /* Given a non-trivial lineality space "lineality", add the corresponding
- * universe set to data->mask and add a map from elements to
- * other elements along the lines in "lineality" to data->equivalent.
- * If this is the first time this function gets called
- * (data->any_non_trivial is still false), then set data->any_non_trivial and
- * initialize data->mask and data->equivalent.
- *
- * In particular, if the lineality space is defined by equality constraints
- *
- * E x = 0
- *
- * then construct an affine mapping
- *
- * f : x -> E x
- *
- * and compute the equivalence relation of having the same image under f:
- *
- * { x -> x' : E x = E x' }
- */
- static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
- struct isl_exploit_lineality_data *data)
- {
- isl_mat *eq;
- isl_space *space;
- isl_set *univ;
- isl_multi_aff *ma;
- isl_multi_pw_aff *mpa;
- isl_map *map;
- isl_size n;
- if (isl_basic_set_check_no_locals(lineality) < 0)
- goto error;
- space = isl_basic_set_get_space(lineality);
- if (!data->any_non_trivial) {
- data->equivalent = isl_union_map_empty(isl_space_copy(space));
- data->mask = isl_union_set_empty(isl_space_copy(space));
- }
- data->any_non_trivial = isl_bool_true;
- univ = isl_set_universe(isl_space_copy(space));
- data->mask = isl_union_set_add_set(data->mask, univ);
- eq = isl_basic_set_extract_equalities(lineality);
- n = isl_mat_rows(eq);
- if (n < 0)
- space = isl_space_free(space);
- eq = isl_mat_insert_zero_rows(eq, 0, 1);
- eq = isl_mat_set_element_si(eq, 0, 0, 1);
- space = isl_space_from_domain(space);
- space = isl_space_add_dims(space, isl_dim_out, n);
- ma = isl_multi_aff_from_aff_mat(space, eq);
- mpa = isl_multi_pw_aff_from_multi_aff(ma);
- map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
- data->equivalent = isl_union_map_add_map(data->equivalent, map);
- isl_basic_set_free(lineality);
- return isl_stat_ok;
- error:
- isl_basic_set_free(lineality);
- return isl_stat_error;
- }
- /* Check if the lineality space "set" is non-trivial (i.e., is not just
- * the origin or, in other words, satisfies a number of equality constraints
- * that is smaller than the dimension of the set).
- * If so, extend data->mask and data->equivalent accordingly.
- *
- * The input should not have any local variables already, but
- * isl_set_remove_divs is called to make sure it does not.
- */
- static isl_stat add_lineality(__isl_take isl_set *set, void *user)
- {
- struct isl_exploit_lineality_data *data = user;
- isl_basic_set *hull;
- isl_size dim;
- isl_size n_eq;
- set = isl_set_remove_divs(set);
- hull = isl_set_unshifted_simple_hull(set);
- dim = isl_basic_set_dim(hull, isl_dim_set);
- n_eq = isl_basic_set_n_equality(hull);
- if (dim < 0 || n_eq < 0)
- goto error;
- if (dim != n_eq)
- return add_non_trivial_lineality(hull, data);
- isl_basic_set_free(hull);
- return isl_stat_ok;
- error:
- isl_basic_set_free(hull);
- return isl_stat_error;
- }
- /* Check if the difference set on intra-node schedule constraints "intra"
- * has any non-trivial lineality space.
- * If so, then extend the difference set to a difference set
- * on equivalent elements. That is, if "intra" is
- *
- * { y - x : (x,y) \in V }
- *
- * and elements are equivalent if they have the same image under f,
- * then return
- *
- * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
- *
- * or, since f is linear,
- *
- * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
- *
- * The results of the search for non-trivial lineality spaces is stored
- * in "data".
- */
- static __isl_give isl_union_set *exploit_intra_lineality(
- __isl_take isl_union_set *intra,
- struct isl_exploit_lineality_data *data)
- {
- isl_union_set *lineality;
- isl_union_set *uset;
- data->any_non_trivial = isl_bool_false;
- lineality = isl_union_set_copy(intra);
- lineality = isl_union_set_combined_lineality_space(lineality);
- if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
- data->any_non_trivial = isl_bool_error;
- isl_union_set_free(lineality);
- if (data->any_non_trivial < 0)
- return isl_union_set_free(intra);
- if (!data->any_non_trivial)
- return intra;
- uset = isl_union_set_copy(intra);
- intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
- uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
- intra = isl_union_set_union(intra, uset);
- intra = isl_union_set_remove_divs(intra);
- return intra;
- }
- /* If the difference set on intra-node schedule constraints was found to have
- * any non-trivial lineality space by exploit_intra_lineality,
- * as recorded in "data", then extend the inter-node
- * schedule constraints "inter" to schedule constraints on equivalent elements.
- * That is, if "inter" is V and
- * elements are equivalent if they have the same image under f, then return
- *
- * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
- */
- static __isl_give isl_union_map *exploit_inter_lineality(
- __isl_take isl_union_map *inter,
- struct isl_exploit_lineality_data *data)
- {
- isl_union_map *umap;
- if (data->any_non_trivial < 0)
- return isl_union_map_free(inter);
- if (!data->any_non_trivial)
- return inter;
- umap = isl_union_map_copy(inter);
- inter = isl_union_map_subtract_range(inter,
- isl_union_set_copy(data->mask));
- umap = isl_union_map_apply_range(umap,
- isl_union_map_copy(data->equivalent));
- inter = isl_union_map_union(inter, umap);
- umap = isl_union_map_copy(inter);
- inter = isl_union_map_subtract_domain(inter,
- isl_union_set_copy(data->mask));
- umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
- umap);
- inter = isl_union_map_union(inter, umap);
- inter = isl_union_map_remove_divs(inter);
- return inter;
- }
- /* For each (conditional) validity edge in "graph",
- * add the corresponding dependence relation using "add"
- * to a collection of dependence relations and return the result.
- * If "coincidence" is set, then coincidence edges are considered as well.
- */
- static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
- __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
- struct isl_sched_edge *edge), int coincidence)
- {
- int i;
- isl_space *space;
- isl_union_map *umap;
- space = isl_space_copy(graph->node[0].space);
- umap = isl_union_map_empty(space);
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- if (!is_any_validity(edge) &&
- (!coincidence || !is_coincidence(edge)))
- continue;
- umap = add(umap, edge);
- }
- return umap;
- }
- /* For each dependence relation on a (conditional) validity edge
- * from a node to itself,
- * construct the set of coefficients of valid constraints for elements
- * in that dependence relation and collect the results.
- * If "coincidence" is set, then coincidence edges are considered as well.
- *
- * In particular, for each dependence relation R, constraints
- * on coefficients (c_0, c_x) are constructed such that
- *
- * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
- *
- * If the schedule_treat_coalescing option is set, then some constraints
- * that could be exploited to construct coalescing schedules
- * are removed before the dual is computed, but after the parameters
- * have been projected out.
- * The entire computation is essentially the same as that performed
- * by intra_coefficients, except that it operates on multiple
- * edges together and that the parameters are always projected out.
- *
- * Additionally, exploit any non-trivial lineality space
- * in the difference set after removing coalescing constraints and
- * store the results of the non-trivial lineality space detection in "data".
- * The procedure is currently run unconditionally, but it is unlikely
- * to find any non-trivial lineality spaces if no coalescing constraints
- * have been removed.
- *
- * Note that if a dependence relation is a union of basic maps,
- * then each basic map needs to be treated individually as it may only
- * be possible to carry the dependences expressed by some of those
- * basic maps and not all of them.
- * The collected validity constraints are therefore not coalesced and
- * it is assumed that they are not coalesced automatically.
- * Duplicate basic maps can be removed, however.
- * In particular, if the same basic map appears as a disjunct
- * in multiple edges, then it only needs to be carried once.
- */
- static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
- struct isl_sched_graph *graph, int coincidence,
- struct isl_exploit_lineality_data *data)
- {
- isl_union_map *intra;
- isl_union_set *delta;
- isl_basic_set_list *list;
- intra = collect_validity(graph, &add_intra, coincidence);
- delta = isl_union_map_deltas(intra);
- delta = isl_union_set_project_out_all_params(delta);
- delta = isl_union_set_remove_divs(delta);
- if (isl_options_get_schedule_treat_coalescing(ctx))
- delta = union_drop_coalescing_constraints(ctx, graph, delta);
- delta = exploit_intra_lineality(delta, data);
- list = isl_union_set_get_basic_set_list(delta);
- isl_union_set_free(delta);
- return isl_basic_set_list_coefficients(list);
- }
- /* For each dependence relation on a (conditional) validity edge
- * from a node to some other node,
- * construct the set of coefficients of valid constraints for elements
- * in that dependence relation and collect the results.
- * If "coincidence" is set, then coincidence edges are considered as well.
- *
- * In particular, for each dependence relation R, constraints
- * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
- *
- * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
- *
- * This computation is essentially the same as that performed
- * by inter_coefficients, except that it operates on multiple
- * edges together.
- *
- * Additionally, exploit any non-trivial lineality space
- * that may have been discovered by collect_intra_validity
- * (as stored in "data").
- *
- * Note that if a dependence relation is a union of basic maps,
- * then each basic map needs to be treated individually as it may only
- * be possible to carry the dependences expressed by some of those
- * basic maps and not all of them.
- * The collected validity constraints are therefore not coalesced and
- * it is assumed that they are not coalesced automatically.
- * Duplicate basic maps can be removed, however.
- * In particular, if the same basic map appears as a disjunct
- * in multiple edges, then it only needs to be carried once.
- */
- static __isl_give isl_basic_set_list *collect_inter_validity(
- struct isl_sched_graph *graph, int coincidence,
- struct isl_exploit_lineality_data *data)
- {
- isl_union_map *inter;
- isl_union_set *wrap;
- isl_basic_set_list *list;
- inter = collect_validity(graph, &add_inter, coincidence);
- inter = exploit_inter_lineality(inter, data);
- inter = isl_union_map_remove_divs(inter);
- wrap = isl_union_map_wrap(inter);
- list = isl_union_set_get_basic_set_list(wrap);
- isl_union_set_free(wrap);
- return isl_basic_set_list_coefficients(list);
- }
- /* Construct an LP problem for finding schedule coefficients
- * such that the schedule carries as many of the "n_edge" groups of
- * dependences as possible based on the corresponding coefficient
- * constraints and return the lexicographically smallest non-trivial solution.
- * "intra" is the sequence of coefficient constraints for intra-node edges.
- * "inter" is the sequence of coefficient constraints for inter-node edges.
- * If "want_integral" is set, then compute an integral solution
- * for the coefficients rather than using the numerators
- * of a rational solution.
- * "carry_inter" indicates whether inter-node edges should be carried or
- * only respected.
- *
- * If none of the "n_edge" groups can be carried
- * then return an empty vector.
- */
- static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
- struct isl_sched_graph *graph, int n_edge,
- __isl_keep isl_basic_set_list *intra,
- __isl_keep isl_basic_set_list *inter, int want_integral,
- int carry_inter)
- {
- isl_basic_set *lp;
- if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
- return NULL;
- lp = isl_basic_set_copy(graph->lp);
- return non_neg_lexmin(graph, lp, n_edge, want_integral);
- }
- /* Construct an LP problem for finding schedule coefficients
- * such that the schedule carries as many of the validity dependences
- * as possible and
- * return the lexicographically smallest non-trivial solution.
- * If "fallback" is set, then the carrying is performed as a fallback
- * for the Pluto-like scheduler.
- * If "coincidence" is set, then try and carry coincidence edges as well.
- *
- * The variable "n_edge" stores the number of groups that should be carried.
- * If none of the "n_edge" groups can be carried
- * then return an empty vector.
- * If, moreover, "n_edge" is zero, then the LP problem does not even
- * need to be constructed.
- *
- * If a fallback solution is being computed, then compute an integral solution
- * for the coefficients rather than using the numerators
- * of a rational solution.
- *
- * If a fallback solution is being computed, if there are any intra-node
- * dependences, and if requested by the user, then first try
- * to only carry those intra-node dependences.
- * If this fails to carry any dependences, then try again
- * with the inter-node dependences included.
- */
- static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
- struct isl_sched_graph *graph, int fallback, int coincidence)
- {
- isl_size n_intra, n_inter;
- int n_edge;
- struct isl_carry carry = { 0 };
- isl_vec *sol;
- carry.intra = collect_intra_validity(ctx, graph, coincidence,
- &carry.lineality);
- carry.inter = collect_inter_validity(graph, coincidence,
- &carry.lineality);
- n_intra = isl_basic_set_list_n_basic_set(carry.intra);
- n_inter = isl_basic_set_list_n_basic_set(carry.inter);
- if (n_intra < 0 || n_inter < 0)
- goto error;
- if (fallback && n_intra > 0 &&
- isl_options_get_schedule_carry_self_first(ctx)) {
- sol = compute_carrying_sol_coef(ctx, graph, n_intra,
- carry.intra, carry.inter, fallback, 0);
- if (!sol || sol->size != 0 || n_inter == 0) {
- isl_carry_clear(&carry);
- return sol;
- }
- isl_vec_free(sol);
- }
- n_edge = n_intra + n_inter;
- if (n_edge == 0) {
- isl_carry_clear(&carry);
- return isl_vec_alloc(ctx, 0);
- }
- sol = compute_carrying_sol_coef(ctx, graph, n_edge,
- carry.intra, carry.inter, fallback, 1);
- isl_carry_clear(&carry);
- return sol;
- error:
- isl_carry_clear(&carry);
- return NULL;
- }
- /* Construct a schedule row for each node such that as many validity dependences
- * as possible are carried and then continue with the next band.
- * If "fallback" is set, then the carrying is performed as a fallback
- * for the Pluto-like scheduler.
- * If "coincidence" is set, then try and carry coincidence edges as well.
- *
- * If there are no validity dependences, then no dependence can be carried and
- * the procedure is guaranteed to fail. If there is more than one component,
- * then try computing a schedule on each component separately
- * to prevent or at least postpone this failure.
- *
- * If a schedule row is computed, then check that dependences are carried
- * for at least one of the edges.
- *
- * If the computed schedule row turns out to be trivial on one or
- * more nodes where it should not be trivial, then we throw it away
- * and try again on each component separately.
- *
- * If there is only one component, then we accept the schedule row anyway,
- * but we do not consider it as a complete row and therefore do not
- * increment graph->n_row. Note that the ranks of the nodes that
- * do get a non-trivial schedule part will get updated regardless and
- * graph->maxvar is computed based on these ranks. The test for
- * whether more schedule rows are required in compute_schedule_wcc
- * is therefore not affected.
- *
- * Insert a band corresponding to the schedule row at position "node"
- * of the schedule tree and continue with the construction of the schedule.
- * This insertion and the continued construction is performed by split_scaled
- * after optionally checking for non-trivial common divisors.
- */
- static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
- struct isl_sched_graph *graph, int fallback, int coincidence)
- {
- int trivial;
- isl_ctx *ctx;
- isl_vec *sol;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
- if (!sol)
- return isl_schedule_node_free(node);
- if (sol->size == 0) {
- isl_vec_free(sol);
- if (graph->scc > 1)
- return compute_component_schedule(node, graph, 1);
- isl_die(ctx, isl_error_unknown, "unable to carry dependences",
- return isl_schedule_node_free(node));
- }
- trivial = is_any_trivial(graph, sol);
- if (trivial < 0) {
- sol = isl_vec_free(sol);
- } else if (trivial && graph->scc > 1) {
- isl_vec_free(sol);
- return compute_component_schedule(node, graph, 1);
- }
- if (update_schedule(graph, sol, 0) < 0)
- return isl_schedule_node_free(node);
- if (trivial)
- graph->n_row--;
- return split_scaled(node, graph);
- }
- /* Construct a schedule row for each node such that as many validity dependences
- * as possible are carried and then continue with the next band.
- * Do so as a fallback for the Pluto-like scheduler.
- * If "coincidence" is set, then try and carry coincidence edges as well.
- */
- static __isl_give isl_schedule_node *carry_fallback(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- int coincidence)
- {
- return carry(node, graph, 1, coincidence);
- }
- /* Construct a schedule row for each node such that as many validity dependences
- * as possible are carried and then continue with the next band.
- * Do so for the case where the Feautrier scheduler was selected
- * by the user.
- */
- static __isl_give isl_schedule_node *carry_feautrier(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- return carry(node, graph, 0, 0);
- }
- /* Construct a schedule row for each node such that as many validity dependences
- * as possible are carried and then continue with the next band.
- * Do so as a fallback for the Pluto-like scheduler.
- */
- static __isl_give isl_schedule_node *carry_dependences(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- return carry_fallback(node, graph, 0);
- }
- /* Construct a schedule row for each node such that as many validity or
- * coincidence dependences as possible are carried and
- * then continue with the next band.
- * Do so as a fallback for the Pluto-like scheduler.
- */
- static __isl_give isl_schedule_node *carry_coincidence(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- return carry_fallback(node, graph, 1);
- }
- /* Topologically sort statements mapped to the same schedule iteration
- * and add insert a sequence node in front of "node"
- * corresponding to this order.
- * If "initialized" is set, then it may be assumed that compute_maxvar
- * has been called on the current band. Otherwise, call
- * compute_maxvar if and before carry_dependences gets called.
- *
- * If it turns out to be impossible to sort the statements apart,
- * because different dependences impose different orderings
- * on the statements, then we extend the schedule such that
- * it carries at least one more dependence.
- */
- static __isl_give isl_schedule_node *sort_statements(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- int initialized)
- {
- isl_ctx *ctx;
- isl_union_set_list *filters;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- if (graph->n < 1)
- isl_die(ctx, isl_error_internal,
- "graph should have at least one node",
- return isl_schedule_node_free(node));
- if (graph->n == 1)
- return node;
- if (update_edges(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- if (graph->n_edge == 0)
- return node;
- if (detect_sccs(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- next_band(graph);
- if (graph->scc < graph->n) {
- if (!initialized && compute_maxvar(graph) < 0)
- return isl_schedule_node_free(node);
- return carry_dependences(node, graph);
- }
- filters = extract_sccs(ctx, graph);
- node = isl_schedule_node_insert_sequence(node, filters);
- return node;
- }
- /* Are there any (non-empty) (conditional) validity edges in the graph?
- */
- static int has_validity_edges(struct isl_sched_graph *graph)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i) {
- int empty;
- empty = isl_map_plain_is_empty(graph->edge[i].map);
- if (empty < 0)
- return -1;
- if (empty)
- continue;
- if (is_any_validity(&graph->edge[i]))
- return 1;
- }
- return 0;
- }
- /* Should we apply a Feautrier step?
- * That is, did the user request the Feautrier algorithm and are
- * there any validity dependences (left)?
- */
- static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
- {
- if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
- return 0;
- return has_validity_edges(graph);
- }
- /* Compute a schedule for a connected dependence graph using Feautrier's
- * multi-dimensional scheduling algorithm and return the updated schedule node.
- *
- * The original algorithm is described in [1].
- * The main idea is to minimize the number of scheduling dimensions, by
- * trying to satisfy as many dependences as possible per scheduling dimension.
- *
- * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
- * Problem, Part II: Multi-Dimensional Time.
- * In Intl. Journal of Parallel Programming, 1992.
- */
- static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
- isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- return carry_feautrier(node, graph);
- }
- /* Turn off the "local" bit on all (condition) edges.
- */
- static void clear_local_edges(struct isl_sched_graph *graph)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i)
- if (is_condition(&graph->edge[i]))
- clear_local(&graph->edge[i]);
- }
- /* Does "graph" have both condition and conditional validity edges?
- */
- static int need_condition_check(struct isl_sched_graph *graph)
- {
- int i;
- int any_condition = 0;
- int any_conditional_validity = 0;
- for (i = 0; i < graph->n_edge; ++i) {
- if (is_condition(&graph->edge[i]))
- any_condition = 1;
- if (is_conditional_validity(&graph->edge[i]))
- any_conditional_validity = 1;
- }
- return any_condition && any_conditional_validity;
- }
- /* Does "graph" contain any coincidence edge?
- */
- static int has_any_coincidence(struct isl_sched_graph *graph)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i)
- if (is_coincidence(&graph->edge[i]))
- return 1;
- return 0;
- }
- /* Extract the final schedule row as a map with the iteration domain
- * of "node" as domain.
- */
- static __isl_give isl_map *final_row(struct isl_sched_node *node)
- {
- isl_multi_aff *ma;
- isl_size n_row;
- n_row = isl_mat_rows(node->sched);
- if (n_row < 0)
- return NULL;
- ma = node_extract_partial_schedule_multi_aff(node, n_row - 1, 1);
- return isl_map_from_multi_aff(ma);
- }
- /* Is the conditional validity dependence in the edge with index "edge_index"
- * violated by the latest (i.e., final) row of the schedule?
- * That is, is i scheduled after j
- * for any conditional validity dependence i -> j?
- */
- static int is_violated(struct isl_sched_graph *graph, int edge_index)
- {
- isl_map *src_sched, *dst_sched, *map;
- struct isl_sched_edge *edge = &graph->edge[edge_index];
- int empty;
- src_sched = final_row(edge->src);
- dst_sched = final_row(edge->dst);
- map = isl_map_copy(edge->map);
- map = isl_map_apply_domain(map, src_sched);
- map = isl_map_apply_range(map, dst_sched);
- map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
- empty = isl_map_is_empty(map);
- isl_map_free(map);
- if (empty < 0)
- return -1;
- return !empty;
- }
- /* Does "graph" have any satisfied condition edges that
- * are adjacent to the conditional validity constraint with
- * domain "conditional_source" and range "conditional_sink"?
- *
- * A satisfied condition is one that is not local.
- * If a condition was forced to be local already (i.e., marked as local)
- * then there is no need to check if it is in fact local.
- *
- * Additionally, mark all adjacent condition edges found as local.
- */
- static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
- __isl_keep isl_union_set *conditional_source,
- __isl_keep isl_union_set *conditional_sink)
- {
- int i;
- int any = 0;
- for (i = 0; i < graph->n_edge; ++i) {
- int adjacent, local;
- isl_union_map *condition;
- if (!is_condition(&graph->edge[i]))
- continue;
- if (is_local(&graph->edge[i]))
- continue;
- condition = graph->edge[i].tagged_condition;
- adjacent = domain_intersects(condition, conditional_sink);
- if (adjacent >= 0 && !adjacent)
- adjacent = range_intersects(condition,
- conditional_source);
- if (adjacent < 0)
- return -1;
- if (!adjacent)
- continue;
- set_local(&graph->edge[i]);
- local = is_condition_false(&graph->edge[i]);
- if (local < 0)
- return -1;
- if (!local)
- any = 1;
- }
- return any;
- }
- /* Are there any violated conditional validity dependences with
- * adjacent condition dependences that are not local with respect
- * to the current schedule?
- * That is, is the conditional validity constraint violated?
- *
- * Additionally, mark all those adjacent condition dependences as local.
- * We also mark those adjacent condition dependences that were not marked
- * as local before, but just happened to be local already. This ensures
- * that they remain local if the schedule is recomputed.
- *
- * We first collect domain and range of all violated conditional validity
- * dependences and then check if there are any adjacent non-local
- * condition dependences.
- */
- static int has_violated_conditional_constraint(isl_ctx *ctx,
- struct isl_sched_graph *graph)
- {
- int i;
- int any = 0;
- isl_union_set *source, *sink;
- source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
- sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
- for (i = 0; i < graph->n_edge; ++i) {
- isl_union_set *uset;
- isl_union_map *umap;
- int violated;
- if (!is_conditional_validity(&graph->edge[i]))
- continue;
- violated = is_violated(graph, i);
- if (violated < 0)
- goto error;
- if (!violated)
- continue;
- any = 1;
- umap = isl_union_map_copy(graph->edge[i].tagged_validity);
- uset = isl_union_map_domain(umap);
- source = isl_union_set_union(source, uset);
- source = isl_union_set_coalesce(source);
- umap = isl_union_map_copy(graph->edge[i].tagged_validity);
- uset = isl_union_map_range(umap);
- sink = isl_union_set_union(sink, uset);
- sink = isl_union_set_coalesce(sink);
- }
- if (any)
- any = has_adjacent_true_conditions(graph, source, sink);
- isl_union_set_free(source);
- isl_union_set_free(sink);
- return any;
- error:
- isl_union_set_free(source);
- isl_union_set_free(sink);
- return -1;
- }
- /* Examine the current band (the rows between graph->band_start and
- * graph->n_total_row), deciding whether to drop it or add it to "node"
- * and then continue with the computation of the next band, if any.
- * If "initialized" is set, then it may be assumed that compute_maxvar
- * has been called on the current band. Otherwise, call
- * compute_maxvar if and before carry_dependences gets called.
- *
- * The caller keeps looking for a new row as long as
- * graph->n_row < graph->maxvar. If the latest attempt to find
- * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
- * then we either
- * - split between SCCs and start over (assuming we found an interesting
- * pair of SCCs between which to split)
- * - continue with the next band (assuming the current band has at least
- * one row)
- * - if there is more than one SCC left, then split along all SCCs
- * - if outer coincidence needs to be enforced, then try to carry as many
- * validity or coincidence dependences as possible and
- * continue with the next band
- * - try to carry as many validity dependences as possible and
- * continue with the next band
- * In each case, we first insert a band node in the schedule tree
- * if any rows have been computed.
- *
- * If the caller managed to complete the schedule and the current band
- * is empty, then finish off by topologically
- * sorting the statements based on the remaining dependences.
- * If, on the other hand, the current band has at least one row,
- * then continue with the next band. Note that this next band
- * will necessarily be empty, but the graph may still be split up
- * into weakly connected components before arriving back here.
- */
- static __isl_give isl_schedule_node *compute_schedule_finish_band(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- int initialized)
- {
- int empty;
- if (!node)
- return NULL;
- empty = graph->n_total_row == graph->band_start;
- if (graph->n_row < graph->maxvar) {
- isl_ctx *ctx;
- ctx = isl_schedule_node_get_ctx(node);
- if (!ctx->opt->schedule_maximize_band_depth && !empty)
- return compute_next_band(node, graph, 1);
- if (graph->src_scc >= 0)
- return compute_split_schedule(node, graph);
- if (!empty)
- return compute_next_band(node, graph, 1);
- if (graph->scc > 1)
- return compute_component_schedule(node, graph, 1);
- if (!initialized && compute_maxvar(graph) < 0)
- return isl_schedule_node_free(node);
- if (isl_options_get_schedule_outer_coincidence(ctx))
- return carry_coincidence(node, graph);
- return carry_dependences(node, graph);
- }
- if (!empty)
- return compute_next_band(node, graph, 1);
- return sort_statements(node, graph, initialized);
- }
- /* Construct a band of schedule rows for a connected dependence graph.
- * The caller is responsible for determining the strongly connected
- * components and calling compute_maxvar first.
- *
- * We try to find a sequence of as many schedule rows as possible that result
- * in non-negative dependence distances (independent of the previous rows
- * in the sequence, i.e., such that the sequence is tilable), with as
- * many of the initial rows as possible satisfying the coincidence constraints.
- * The computation stops if we can't find any more rows or if we have found
- * all the rows we wanted to find.
- *
- * If ctx->opt->schedule_outer_coincidence is set, then we force the
- * outermost dimension to satisfy the coincidence constraints. If this
- * turns out to be impossible, we fall back on the general scheme above
- * and try to carry as many dependences as possible.
- *
- * If "graph" contains both condition and conditional validity dependences,
- * then we need to check that that the conditional schedule constraint
- * is satisfied, i.e., there are no violated conditional validity dependences
- * that are adjacent to any non-local condition dependences.
- * If there are, then we mark all those adjacent condition dependences
- * as local and recompute the current band. Those dependences that
- * are marked local will then be forced to be local.
- * The initial computation is performed with no dependences marked as local.
- * If we are lucky, then there will be no violated conditional validity
- * dependences adjacent to any non-local condition dependences.
- * Otherwise, we mark some additional condition dependences as local and
- * recompute. We continue this process until there are no violations left or
- * until we are no longer able to compute a schedule.
- * Since there are only a finite number of dependences,
- * there will only be a finite number of iterations.
- */
- static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
- struct isl_sched_graph *graph)
- {
- int has_coincidence;
- int use_coincidence;
- int force_coincidence = 0;
- int check_conditional;
- if (sort_sccs(graph) < 0)
- return isl_stat_error;
- clear_local_edges(graph);
- check_conditional = need_condition_check(graph);
- has_coincidence = has_any_coincidence(graph);
- if (ctx->opt->schedule_outer_coincidence)
- force_coincidence = 1;
- use_coincidence = has_coincidence;
- while (graph->n_row < graph->maxvar) {
- isl_vec *sol;
- int violated;
- int coincident;
- graph->src_scc = -1;
- graph->dst_scc = -1;
- if (setup_lp(ctx, graph, use_coincidence) < 0)
- return isl_stat_error;
- sol = solve_lp(ctx, graph);
- if (!sol)
- return isl_stat_error;
- if (sol->size == 0) {
- int empty = graph->n_total_row == graph->band_start;
- isl_vec_free(sol);
- if (use_coincidence && (!force_coincidence || !empty)) {
- use_coincidence = 0;
- continue;
- }
- return isl_stat_ok;
- }
- coincident = !has_coincidence || use_coincidence;
- if (update_schedule(graph, sol, coincident) < 0)
- return isl_stat_error;
- if (!check_conditional)
- continue;
- violated = has_violated_conditional_constraint(ctx, graph);
- if (violated < 0)
- return isl_stat_error;
- if (!violated)
- continue;
- if (reset_band(graph) < 0)
- return isl_stat_error;
- use_coincidence = has_coincidence;
- }
- return isl_stat_ok;
- }
- /* Compute a schedule for a connected dependence graph by considering
- * the graph as a whole and return the updated schedule node.
- *
- * The actual schedule rows of the current band are computed by
- * compute_schedule_wcc_band. compute_schedule_finish_band takes
- * care of integrating the band into "node" and continuing
- * the computation.
- */
- static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- isl_ctx *ctx;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- if (compute_schedule_wcc_band(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- return compute_schedule_finish_band(node, graph, 1);
- }
- /* Clustering information used by compute_schedule_wcc_clustering.
- *
- * "n" is the number of SCCs in the original dependence graph
- * "scc" is an array of "n" elements, each representing an SCC
- * of the original dependence graph. All entries in the same cluster
- * have the same number of schedule rows.
- * "scc_cluster" maps each SCC index to the cluster to which it belongs,
- * where each cluster is represented by the index of the first SCC
- * in the cluster. Initially, each SCC belongs to a cluster containing
- * only that SCC.
- *
- * "scc_in_merge" is used by merge_clusters_along_edge to keep
- * track of which SCCs need to be merged.
- *
- * "cluster" contains the merged clusters of SCCs after the clustering
- * has completed.
- *
- * "scc_node" is a temporary data structure used inside copy_partial.
- * For each SCC, it keeps track of the number of nodes in the SCC
- * that have already been copied.
- */
- struct isl_clustering {
- int n;
- struct isl_sched_graph *scc;
- struct isl_sched_graph *cluster;
- int *scc_cluster;
- int *scc_node;
- int *scc_in_merge;
- };
- /* Initialize the clustering data structure "c" from "graph".
- *
- * In particular, allocate memory, extract the SCCs from "graph"
- * into c->scc, initialize scc_cluster and construct
- * a band of schedule rows for each SCC.
- * Within each SCC, there is only one SCC by definition.
- * Each SCC initially belongs to a cluster containing only that SCC.
- */
- static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
- struct isl_sched_graph *graph)
- {
- int i;
- c->n = graph->scc;
- c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
- c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
- c->scc_cluster = isl_calloc_array(ctx, int, c->n);
- c->scc_node = isl_calloc_array(ctx, int, c->n);
- c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
- if (!c->scc || !c->cluster ||
- !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
- return isl_stat_error;
- for (i = 0; i < c->n; ++i) {
- if (extract_sub_graph(ctx, graph, &node_scc_exactly,
- &edge_scc_exactly, i, &c->scc[i]) < 0)
- return isl_stat_error;
- c->scc[i].scc = 1;
- if (compute_maxvar(&c->scc[i]) < 0)
- return isl_stat_error;
- if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
- return isl_stat_error;
- c->scc_cluster[i] = i;
- }
- return isl_stat_ok;
- }
- /* Free all memory allocated for "c".
- */
- static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
- {
- int i;
- if (c->scc)
- for (i = 0; i < c->n; ++i)
- graph_free(ctx, &c->scc[i]);
- free(c->scc);
- if (c->cluster)
- for (i = 0; i < c->n; ++i)
- graph_free(ctx, &c->cluster[i]);
- free(c->cluster);
- free(c->scc_cluster);
- free(c->scc_node);
- free(c->scc_in_merge);
- }
- /* Should we refrain from merging the cluster in "graph" with
- * any other cluster?
- * In particular, is its current schedule band empty and incomplete.
- */
- static int bad_cluster(struct isl_sched_graph *graph)
- {
- return graph->n_row < graph->maxvar &&
- graph->n_total_row == graph->band_start;
- }
- /* Is "edge" a proximity edge with a non-empty dependence relation?
- */
- static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
- {
- if (!is_proximity(edge))
- return isl_bool_false;
- return isl_bool_not(isl_map_plain_is_empty(edge->map));
- }
- /* Return the index of an edge in "graph" that can be used to merge
- * two clusters in "c".
- * Return graph->n_edge if no such edge can be found.
- * Return -1 on error.
- *
- * In particular, return a proximity edge between two clusters
- * that is not marked "no_merge" and such that neither of the
- * two clusters has an incomplete, empty band.
- *
- * If there are multiple such edges, then try and find the most
- * appropriate edge to use for merging. In particular, pick the edge
- * with the greatest weight. If there are multiple of those,
- * then pick one with the shortest distance between
- * the two cluster representatives.
- */
- static int find_proximity(struct isl_sched_graph *graph,
- struct isl_clustering *c)
- {
- int i, best = graph->n_edge, best_dist, best_weight;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- int dist, weight;
- isl_bool prox;
- prox = is_non_empty_proximity(edge);
- if (prox < 0)
- return -1;
- if (!prox)
- continue;
- if (edge->no_merge)
- continue;
- if (bad_cluster(&c->scc[edge->src->scc]) ||
- bad_cluster(&c->scc[edge->dst->scc]))
- continue;
- dist = c->scc_cluster[edge->dst->scc] -
- c->scc_cluster[edge->src->scc];
- if (dist == 0)
- continue;
- weight = edge->weight;
- if (best < graph->n_edge) {
- if (best_weight > weight)
- continue;
- if (best_weight == weight && best_dist <= dist)
- continue;
- }
- best = i;
- best_dist = dist;
- best_weight = weight;
- }
- return best;
- }
- /* Internal data structure used in mark_merge_sccs.
- *
- * "graph" is the dependence graph in which a strongly connected
- * component is constructed.
- * "scc_cluster" maps each SCC index to the cluster to which it belongs.
- * "src" and "dst" are the indices of the nodes that are being merged.
- */
- struct isl_mark_merge_sccs_data {
- struct isl_sched_graph *graph;
- int *scc_cluster;
- int src;
- int dst;
- };
- /* Check whether the cluster containing node "i" depends on the cluster
- * containing node "j". If "i" and "j" belong to the same cluster,
- * then they are taken to depend on each other to ensure that
- * the resulting strongly connected component consists of complete
- * clusters. Furthermore, if "i" and "j" are the two nodes that
- * are being merged, then they are taken to depend on each other as well.
- * Otherwise, check if there is a (conditional) validity dependence
- * from node[j] to node[i], forcing node[i] to follow node[j].
- */
- static isl_bool cluster_follows(int i, int j, void *user)
- {
- struct isl_mark_merge_sccs_data *data = user;
- struct isl_sched_graph *graph = data->graph;
- int *scc_cluster = data->scc_cluster;
- if (data->src == i && data->dst == j)
- return isl_bool_true;
- if (data->src == j && data->dst == i)
- return isl_bool_true;
- if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
- return isl_bool_true;
- return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
- }
- /* Mark all SCCs that belong to either of the two clusters in "c"
- * connected by the edge in "graph" with index "edge", or to any
- * of the intermediate clusters.
- * The marking is recorded in c->scc_in_merge.
- *
- * The given edge has been selected for merging two clusters,
- * meaning that there is at least a proximity edge between the two nodes.
- * However, there may also be (indirect) validity dependences
- * between the two nodes. When merging the two clusters, all clusters
- * containing one or more of the intermediate nodes along the
- * indirect validity dependences need to be merged in as well.
- *
- * First collect all such nodes by computing the strongly connected
- * component (SCC) containing the two nodes connected by the edge, where
- * the two nodes are considered to depend on each other to make
- * sure they end up in the same SCC. Similarly, each node is considered
- * to depend on every other node in the same cluster to ensure
- * that the SCC consists of complete clusters.
- *
- * Then the original SCCs that contain any of these nodes are marked
- * in c->scc_in_merge.
- */
- static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
- int edge, struct isl_clustering *c)
- {
- struct isl_mark_merge_sccs_data data;
- struct isl_tarjan_graph *g;
- int i;
- for (i = 0; i < c->n; ++i)
- c->scc_in_merge[i] = 0;
- data.graph = graph;
- data.scc_cluster = c->scc_cluster;
- data.src = graph->edge[edge].src - graph->node;
- data.dst = graph->edge[edge].dst - graph->node;
- g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
- &cluster_follows, &data);
- if (!g)
- goto error;
- i = g->op;
- if (i < 3)
- isl_die(ctx, isl_error_internal,
- "expecting at least two nodes in component",
- goto error);
- if (g->order[--i] != -1)
- isl_die(ctx, isl_error_internal,
- "expecting end of component marker", goto error);
- for (--i; i >= 0 && g->order[i] != -1; --i) {
- int scc = graph->node[g->order[i]].scc;
- c->scc_in_merge[scc] = 1;
- }
- isl_tarjan_graph_free(g);
- return isl_stat_ok;
- error:
- isl_tarjan_graph_free(g);
- return isl_stat_error;
- }
- /* Construct the identifier "cluster_i".
- */
- static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
- {
- char name[40];
- snprintf(name, sizeof(name), "cluster_%d", i);
- return isl_id_alloc(ctx, name, NULL);
- }
- /* Construct the space of the cluster with index "i" containing
- * the strongly connected component "scc".
- *
- * In particular, construct a space called cluster_i with dimension equal
- * to the number of schedule rows in the current band of "scc".
- */
- static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
- {
- int nvar;
- isl_space *space;
- isl_id *id;
- nvar = scc->n_total_row - scc->band_start;
- space = isl_space_copy(scc->node[0].space);
- space = isl_space_params(space);
- space = isl_space_set_from_params(space);
- space = isl_space_add_dims(space, isl_dim_set, nvar);
- id = cluster_id(isl_space_get_ctx(space), i);
- space = isl_space_set_tuple_id(space, isl_dim_set, id);
- return space;
- }
- /* Collect the domain of the graph for merging clusters.
- *
- * In particular, for each cluster with first SCC "i", construct
- * a set in the space called cluster_i with dimension equal
- * to the number of schedule rows in the current band of the cluster.
- */
- static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_clustering *c)
- {
- int i;
- isl_space *space;
- isl_union_set *domain;
- space = isl_space_params_alloc(ctx, 0);
- domain = isl_union_set_empty(space);
- for (i = 0; i < graph->scc; ++i) {
- isl_space *space;
- if (!c->scc_in_merge[i])
- continue;
- if (c->scc_cluster[i] != i)
- continue;
- space = cluster_space(&c->scc[i], i);
- domain = isl_union_set_add_set(domain, isl_set_universe(space));
- }
- return domain;
- }
- /* Construct a map from the original instances to the corresponding
- * cluster instance in the current bands of the clusters in "c".
- */
- static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_clustering *c)
- {
- int i, j;
- isl_space *space;
- isl_union_map *cluster_map;
- space = isl_space_params_alloc(ctx, 0);
- cluster_map = isl_union_map_empty(space);
- for (i = 0; i < graph->scc; ++i) {
- int start, n;
- isl_id *id;
- if (!c->scc_in_merge[i])
- continue;
- id = cluster_id(ctx, c->scc_cluster[i]);
- start = c->scc[i].band_start;
- n = c->scc[i].n_total_row - start;
- for (j = 0; j < c->scc[i].n; ++j) {
- isl_multi_aff *ma;
- isl_map *map;
- struct isl_sched_node *node = &c->scc[i].node[j];
- ma = node_extract_partial_schedule_multi_aff(node,
- start, n);
- ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
- isl_id_copy(id));
- map = isl_map_from_multi_aff(ma);
- cluster_map = isl_union_map_add_map(cluster_map, map);
- }
- isl_id_free(id);
- }
- return cluster_map;
- }
- /* Add "umap" to the schedule constraints "sc" of all types of "edge"
- * that are not isl_edge_condition or isl_edge_conditional_validity.
- */
- static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
- struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
- __isl_take isl_schedule_constraints *sc)
- {
- enum isl_edge_type t;
- if (!sc)
- return NULL;
- for (t = isl_edge_first; t <= isl_edge_last; ++t) {
- if (t == isl_edge_condition ||
- t == isl_edge_conditional_validity)
- continue;
- if (!is_type(edge, t))
- continue;
- sc = isl_schedule_constraints_add(sc, t,
- isl_union_map_copy(umap));
- }
- return sc;
- }
- /* Add schedule constraints of types isl_edge_condition and
- * isl_edge_conditional_validity to "sc" by applying "umap" to
- * the domains of the wrapped relations in domain and range
- * of the corresponding tagged constraints of "edge".
- */
- static __isl_give isl_schedule_constraints *add_conditional_constraints(
- struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
- __isl_take isl_schedule_constraints *sc)
- {
- enum isl_edge_type t;
- isl_union_map *tagged;
- for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
- if (!is_type(edge, t))
- continue;
- if (t == isl_edge_condition)
- tagged = isl_union_map_copy(edge->tagged_condition);
- else
- tagged = isl_union_map_copy(edge->tagged_validity);
- tagged = isl_union_map_zip(tagged);
- tagged = isl_union_map_apply_domain(tagged,
- isl_union_map_copy(umap));
- tagged = isl_union_map_zip(tagged);
- sc = isl_schedule_constraints_add(sc, t, tagged);
- if (!sc)
- return NULL;
- }
- return sc;
- }
- /* Given a mapping "cluster_map" from the original instances to
- * the cluster instances, add schedule constraints on the clusters
- * to "sc" corresponding to the original constraints represented by "edge".
- *
- * For non-tagged dependence constraints, the cluster constraints
- * are obtained by applying "cluster_map" to the edge->map.
- *
- * For tagged dependence constraints, "cluster_map" needs to be applied
- * to the domains of the wrapped relations in domain and range
- * of the tagged dependence constraints. Pick out the mappings
- * from these domains from "cluster_map" and construct their product.
- * This mapping can then be applied to the pair of domains.
- */
- static __isl_give isl_schedule_constraints *collect_edge_constraints(
- struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
- __isl_take isl_schedule_constraints *sc)
- {
- isl_union_map *umap;
- isl_space *space;
- isl_union_set *uset;
- isl_union_map *umap1, *umap2;
- if (!sc)
- return NULL;
- umap = isl_union_map_from_map(isl_map_copy(edge->map));
- umap = isl_union_map_apply_domain(umap,
- isl_union_map_copy(cluster_map));
- umap = isl_union_map_apply_range(umap,
- isl_union_map_copy(cluster_map));
- sc = add_non_conditional_constraints(edge, umap, sc);
- isl_union_map_free(umap);
- if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
- return sc;
- space = isl_space_domain(isl_map_get_space(edge->map));
- uset = isl_union_set_from_set(isl_set_universe(space));
- umap1 = isl_union_map_copy(cluster_map);
- umap1 = isl_union_map_intersect_domain(umap1, uset);
- space = isl_space_range(isl_map_get_space(edge->map));
- uset = isl_union_set_from_set(isl_set_universe(space));
- umap2 = isl_union_map_copy(cluster_map);
- umap2 = isl_union_map_intersect_domain(umap2, uset);
- umap = isl_union_map_product(umap1, umap2);
- sc = add_conditional_constraints(edge, umap, sc);
- isl_union_map_free(umap);
- return sc;
- }
- /* Given a mapping "cluster_map" from the original instances to
- * the cluster instances, add schedule constraints on the clusters
- * to "sc" corresponding to all edges in "graph" between nodes that
- * belong to SCCs that are marked for merging in "scc_in_merge".
- */
- static __isl_give isl_schedule_constraints *collect_constraints(
- struct isl_sched_graph *graph, int *scc_in_merge,
- __isl_keep isl_union_map *cluster_map,
- __isl_take isl_schedule_constraints *sc)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- if (!scc_in_merge[edge->src->scc])
- continue;
- if (!scc_in_merge[edge->dst->scc])
- continue;
- sc = collect_edge_constraints(edge, cluster_map, sc);
- }
- return sc;
- }
- /* Construct a dependence graph for scheduling clusters with respect
- * to each other and store the result in "merge_graph".
- * In particular, the nodes of the graph correspond to the schedule
- * dimensions of the current bands of those clusters that have been
- * marked for merging in "c".
- *
- * First construct an isl_schedule_constraints object for this domain
- * by transforming the edges in "graph" to the domain.
- * Then initialize a dependence graph for scheduling from these
- * constraints.
- */
- static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
- struct isl_clustering *c, struct isl_sched_graph *merge_graph)
- {
- isl_union_set *domain;
- isl_union_map *cluster_map;
- isl_schedule_constraints *sc;
- isl_stat r;
- domain = collect_domain(ctx, graph, c);
- sc = isl_schedule_constraints_on_domain(domain);
- if (!sc)
- return isl_stat_error;
- cluster_map = collect_cluster_map(ctx, graph, c);
- sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
- isl_union_map_free(cluster_map);
- r = graph_init(merge_graph, sc);
- isl_schedule_constraints_free(sc);
- return r;
- }
- /* Compute the maximal number of remaining schedule rows that still need
- * to be computed for the nodes that belong to clusters with the maximal
- * dimension for the current band (i.e., the band that is to be merged).
- * Only clusters that are about to be merged are considered.
- * "maxvar" is the maximal dimension for the current band.
- * "c" contains information about the clusters.
- *
- * Return the maximal number of remaining schedule rows or -1 on error.
- */
- static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
- {
- int i, j;
- int max_slack;
- max_slack = 0;
- for (i = 0; i < c->n; ++i) {
- int nvar;
- struct isl_sched_graph *scc;
- if (!c->scc_in_merge[i])
- continue;
- scc = &c->scc[i];
- nvar = scc->n_total_row - scc->band_start;
- if (nvar != maxvar)
- continue;
- for (j = 0; j < scc->n; ++j) {
- struct isl_sched_node *node = &scc->node[j];
- int slack;
- if (node_update_vmap(node) < 0)
- return -1;
- slack = node->nvar - node->rank;
- if (slack > max_slack)
- max_slack = slack;
- }
- }
- return max_slack;
- }
- /* If there are any clusters where the dimension of the current band
- * (i.e., the band that is to be merged) is smaller than "maxvar" and
- * if there are any nodes in such a cluster where the number
- * of remaining schedule rows that still need to be computed
- * is greater than "max_slack", then return the smallest current band
- * dimension of all these clusters. Otherwise return the original value
- * of "maxvar". Return -1 in case of any error.
- * Only clusters that are about to be merged are considered.
- * "c" contains information about the clusters.
- */
- static int limit_maxvar_to_slack(int maxvar, int max_slack,
- struct isl_clustering *c)
- {
- int i, j;
- for (i = 0; i < c->n; ++i) {
- int nvar;
- struct isl_sched_graph *scc;
- if (!c->scc_in_merge[i])
- continue;
- scc = &c->scc[i];
- nvar = scc->n_total_row - scc->band_start;
- if (nvar >= maxvar)
- continue;
- for (j = 0; j < scc->n; ++j) {
- struct isl_sched_node *node = &scc->node[j];
- int slack;
- if (node_update_vmap(node) < 0)
- return -1;
- slack = node->nvar - node->rank;
- if (slack > max_slack) {
- maxvar = nvar;
- break;
- }
- }
- }
- return maxvar;
- }
- /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
- * that still need to be computed. In particular, if there is a node
- * in a cluster where the dimension of the current band is smaller
- * than merge_graph->maxvar, but the number of remaining schedule rows
- * is greater than that of any node in a cluster with the maximal
- * dimension for the current band (i.e., merge_graph->maxvar),
- * then adjust merge_graph->maxvar to the (smallest) current band dimension
- * of those clusters. Without this adjustment, the total number of
- * schedule dimensions would be increased, resulting in a skewed view
- * of the number of coincident dimensions.
- * "c" contains information about the clusters.
- *
- * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
- * then there is no point in attempting any merge since it will be rejected
- * anyway. Set merge_graph->maxvar to zero in such cases.
- */
- static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
- struct isl_sched_graph *merge_graph, struct isl_clustering *c)
- {
- int max_slack, maxvar;
- max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
- if (max_slack < 0)
- return isl_stat_error;
- maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
- if (maxvar < 0)
- return isl_stat_error;
- if (maxvar < merge_graph->maxvar) {
- if (isl_options_get_schedule_maximize_band_depth(ctx))
- merge_graph->maxvar = 0;
- else
- merge_graph->maxvar = maxvar;
- }
- return isl_stat_ok;
- }
- /* Return the number of coincident dimensions in the current band of "graph",
- * where the nodes of "graph" are assumed to be scheduled by a single band.
- */
- static int get_n_coincident(struct isl_sched_graph *graph)
- {
- int i;
- for (i = graph->band_start; i < graph->n_total_row; ++i)
- if (!graph->node[0].coincident[i])
- break;
- return i - graph->band_start;
- }
- /* Should the clusters be merged based on the cluster schedule
- * in the current (and only) band of "merge_graph", given that
- * coincidence should be maximized?
- *
- * If the number of coincident schedule dimensions in the merged band
- * would be less than the maximal number of coincident schedule dimensions
- * in any of the merged clusters, then the clusters should not be merged.
- */
- static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
- struct isl_sched_graph *merge_graph)
- {
- int i;
- int n_coincident;
- int max_coincident;
- max_coincident = 0;
- for (i = 0; i < c->n; ++i) {
- if (!c->scc_in_merge[i])
- continue;
- n_coincident = get_n_coincident(&c->scc[i]);
- if (n_coincident > max_coincident)
- max_coincident = n_coincident;
- }
- n_coincident = get_n_coincident(merge_graph);
- return isl_bool_ok(n_coincident >= max_coincident);
- }
- /* Return the transformation on "node" expressed by the current (and only)
- * band of "merge_graph" applied to the clusters in "c".
- *
- * First find the representation of "node" in its SCC in "c" and
- * extract the transformation expressed by the current band.
- * Then extract the transformation applied by "merge_graph"
- * to the cluster to which this SCC belongs.
- * Combine the two to obtain the complete transformation on the node.
- *
- * Note that the range of the first transformation is an anonymous space,
- * while the domain of the second is named "cluster_X". The range
- * of the former therefore needs to be adjusted before the two
- * can be combined.
- */
- static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
- struct isl_sched_node *node, struct isl_clustering *c,
- struct isl_sched_graph *merge_graph)
- {
- struct isl_sched_node *scc_node, *cluster_node;
- int start, n;
- isl_id *id;
- isl_space *space;
- isl_multi_aff *ma, *ma2;
- scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
- if (scc_node && !is_node(&c->scc[node->scc], scc_node))
- isl_die(ctx, isl_error_internal, "unable to find node",
- return NULL);
- start = c->scc[node->scc].band_start;
- n = c->scc[node->scc].n_total_row - start;
- ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
- space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
- cluster_node = graph_find_node(ctx, merge_graph, space);
- if (cluster_node && !is_node(merge_graph, cluster_node))
- isl_die(ctx, isl_error_internal, "unable to find cluster",
- space = isl_space_free(space));
- id = isl_space_get_tuple_id(space, isl_dim_set);
- ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
- isl_space_free(space);
- n = merge_graph->n_total_row;
- ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
- ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
- return isl_map_from_multi_aff(ma);
- }
- /* Give a set of distances "set", are they bounded by a small constant
- * in direction "pos"?
- * In practice, check if they are bounded by 2 by checking that there
- * are no elements with a value greater than or equal to 3 or
- * smaller than or equal to -3.
- */
- static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
- {
- isl_bool bounded;
- isl_set *test;
- if (!set)
- return isl_bool_error;
- test = isl_set_copy(set);
- test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
- bounded = isl_set_is_empty(test);
- isl_set_free(test);
- if (bounded < 0 || !bounded)
- return bounded;
- test = isl_set_copy(set);
- test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
- bounded = isl_set_is_empty(test);
- isl_set_free(test);
- return bounded;
- }
- /* Does the set "set" have a fixed (but possible parametric) value
- * at dimension "pos"?
- */
- static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
- {
- isl_size n;
- isl_bool single;
- n = isl_set_dim(set, isl_dim_set);
- if (n < 0)
- return isl_bool_error;
- set = isl_set_copy(set);
- set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
- set = isl_set_project_out(set, isl_dim_set, 0, pos);
- single = isl_set_is_singleton(set);
- isl_set_free(set);
- return single;
- }
- /* Does "map" have a fixed (but possible parametric) value
- * at dimension "pos" of either its domain or its range?
- */
- static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
- {
- isl_set *set;
- isl_bool single;
- set = isl_map_domain(isl_map_copy(map));
- single = has_single_value(set, pos);
- isl_set_free(set);
- if (single < 0 || single)
- return single;
- set = isl_map_range(isl_map_copy(map));
- single = has_single_value(set, pos);
- isl_set_free(set);
- return single;
- }
- /* Does the edge "edge" from "graph" have bounded dependence distances
- * in the merged graph "merge_graph" of a selection of clusters in "c"?
- *
- * Extract the complete transformations of the source and destination
- * nodes of the edge, apply them to the edge constraints and
- * compute the differences. Finally, check if these differences are bounded
- * in each direction.
- *
- * If the dimension of the band is greater than the number of
- * dimensions that can be expected to be optimized by the edge
- * (based on its weight), then also allow the differences to be unbounded
- * in the remaining dimensions, but only if either the source or
- * the destination has a fixed value in that direction.
- * This allows a statement that produces values that are used by
- * several instances of another statement to be merged with that
- * other statement.
- * However, merging such clusters will introduce an inherently
- * large proximity distance inside the merged cluster, meaning
- * that proximity distances will no longer be optimized in
- * subsequent merges. These merges are therefore only allowed
- * after all other possible merges have been tried.
- * The first time such a merge is encountered, the weight of the edge
- * is replaced by a negative weight. The second time (i.e., after
- * all merges over edges with a non-negative weight have been tried),
- * the merge is allowed.
- */
- static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
- struct isl_sched_graph *graph, struct isl_clustering *c,
- struct isl_sched_graph *merge_graph)
- {
- int i, n_slack;
- isl_size n;
- isl_bool bounded;
- isl_map *map, *t;
- isl_set *dist;
- map = isl_map_copy(edge->map);
- t = extract_node_transformation(ctx, edge->src, c, merge_graph);
- map = isl_map_apply_domain(map, t);
- t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
- map = isl_map_apply_range(map, t);
- dist = isl_map_deltas(isl_map_copy(map));
- bounded = isl_bool_true;
- n = isl_set_dim(dist, isl_dim_set);
- if (n < 0)
- goto error;
- n_slack = n - edge->weight;
- if (edge->weight < 0)
- n_slack -= graph->max_weight + 1;
- for (i = 0; i < n; ++i) {
- isl_bool bounded_i, singular_i;
- bounded_i = distance_is_bounded(dist, i);
- if (bounded_i < 0)
- goto error;
- if (bounded_i)
- continue;
- if (edge->weight >= 0)
- bounded = isl_bool_false;
- n_slack--;
- if (n_slack < 0)
- break;
- singular_i = has_singular_src_or_dst(map, i);
- if (singular_i < 0)
- goto error;
- if (singular_i)
- continue;
- bounded = isl_bool_false;
- break;
- }
- if (!bounded && i >= n && edge->weight >= 0)
- edge->weight -= graph->max_weight + 1;
- isl_map_free(map);
- isl_set_free(dist);
- return bounded;
- error:
- isl_map_free(map);
- isl_set_free(dist);
- return isl_bool_error;
- }
- /* Should the clusters be merged based on the cluster schedule
- * in the current (and only) band of "merge_graph"?
- * "graph" is the original dependence graph, while "c" records
- * which SCCs are involved in the latest merge.
- *
- * In particular, is there at least one proximity constraint
- * that is optimized by the merge?
- *
- * A proximity constraint is considered to be optimized
- * if the dependence distances are small.
- */
- static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
- struct isl_sched_graph *graph, struct isl_clustering *c,
- struct isl_sched_graph *merge_graph)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- isl_bool bounded;
- if (!is_proximity(edge))
- continue;
- if (!c->scc_in_merge[edge->src->scc])
- continue;
- if (!c->scc_in_merge[edge->dst->scc])
- continue;
- if (c->scc_cluster[edge->dst->scc] ==
- c->scc_cluster[edge->src->scc])
- continue;
- bounded = has_bounded_distances(ctx, edge, graph, c,
- merge_graph);
- if (bounded < 0 || bounded)
- return bounded;
- }
- return isl_bool_false;
- }
- /* Should the clusters be merged based on the cluster schedule
- * in the current (and only) band of "merge_graph"?
- * "graph" is the original dependence graph, while "c" records
- * which SCCs are involved in the latest merge.
- *
- * If the current band is empty, then the clusters should not be merged.
- *
- * If the band depth should be maximized and the merge schedule
- * is incomplete (meaning that the dimension of some of the schedule
- * bands in the original schedule will be reduced), then the clusters
- * should not be merged.
- *
- * If the schedule_maximize_coincidence option is set, then check that
- * the number of coincident schedule dimensions is not reduced.
- *
- * Finally, only allow the merge if at least one proximity
- * constraint is optimized.
- */
- static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
- struct isl_clustering *c, struct isl_sched_graph *merge_graph)
- {
- if (merge_graph->n_total_row == merge_graph->band_start)
- return isl_bool_false;
- if (isl_options_get_schedule_maximize_band_depth(ctx) &&
- merge_graph->n_total_row < merge_graph->maxvar)
- return isl_bool_false;
- if (isl_options_get_schedule_maximize_coincidence(ctx)) {
- isl_bool ok;
- ok = ok_to_merge_coincident(c, merge_graph);
- if (ok < 0 || !ok)
- return ok;
- }
- return ok_to_merge_proximity(ctx, graph, c, merge_graph);
- }
- /* Apply the schedule in "t_node" to the "n" rows starting at "first"
- * of the schedule in "node" and return the result.
- *
- * That is, essentially compute
- *
- * T * N(first:first+n-1)
- *
- * taking into account the constant term and the parameter coefficients
- * in "t_node".
- */
- static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
- struct isl_sched_node *t_node, struct isl_sched_node *node,
- int first, int n)
- {
- int i, j;
- isl_mat *t;
- isl_size n_row, n_col;
- int n_param, n_var;
- n_param = node->nparam;
- n_var = node->nvar;
- n_row = isl_mat_rows(t_node->sched);
- n_col = isl_mat_cols(node->sched);
- if (n_row < 0 || n_col < 0)
- return NULL;
- t = isl_mat_alloc(ctx, n_row, n_col);
- if (!t)
- return NULL;
- for (i = 0; i < n_row; ++i) {
- isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
- isl_seq_clr(t->row[i] + 1 + n_param, n_var);
- for (j = 0; j < n; ++j)
- isl_seq_addmul(t->row[i],
- t_node->sched->row[i][1 + n_param + j],
- node->sched->row[first + j],
- 1 + n_param + n_var);
- }
- return t;
- }
- /* Apply the cluster schedule in "t_node" to the current band
- * schedule of the nodes in "graph".
- *
- * In particular, replace the rows starting at band_start
- * by the result of applying the cluster schedule in "t_node"
- * to the original rows.
- *
- * The coincidence of the schedule is determined by the coincidence
- * of the cluster schedule.
- */
- static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
- struct isl_sched_node *t_node)
- {
- int i, j;
- isl_size n_new;
- int start, n;
- start = graph->band_start;
- n = graph->n_total_row - start;
- n_new = isl_mat_rows(t_node->sched);
- if (n_new < 0)
- return isl_stat_error;
- for (i = 0; i < graph->n; ++i) {
- struct isl_sched_node *node = &graph->node[i];
- isl_mat *t;
- t = node_transformation(ctx, t_node, node, start, n);
- node->sched = isl_mat_drop_rows(node->sched, start, n);
- node->sched = isl_mat_concat(node->sched, t);
- node->sched_map = isl_map_free(node->sched_map);
- if (!node->sched)
- return isl_stat_error;
- for (j = 0; j < n_new; ++j)
- node->coincident[start + j] = t_node->coincident[j];
- }
- graph->n_total_row -= n;
- graph->n_row -= n;
- graph->n_total_row += n_new;
- graph->n_row += n_new;
- return isl_stat_ok;
- }
- /* Merge the clusters marked for merging in "c" into a single
- * cluster using the cluster schedule in the current band of "merge_graph".
- * The representative SCC for the new cluster is the SCC with
- * the smallest index.
- *
- * The current band schedule of each SCC in the new cluster is obtained
- * by applying the schedule of the corresponding original cluster
- * to the original band schedule.
- * All SCCs in the new cluster have the same number of schedule rows.
- */
- static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
- struct isl_sched_graph *merge_graph)
- {
- int i;
- int cluster = -1;
- isl_space *space;
- for (i = 0; i < c->n; ++i) {
- struct isl_sched_node *node;
- if (!c->scc_in_merge[i])
- continue;
- if (cluster < 0)
- cluster = i;
- space = cluster_space(&c->scc[i], c->scc_cluster[i]);
- node = graph_find_node(ctx, merge_graph, space);
- isl_space_free(space);
- if (!node)
- return isl_stat_error;
- if (!is_node(merge_graph, node))
- isl_die(ctx, isl_error_internal,
- "unable to find cluster",
- return isl_stat_error);
- if (transform(ctx, &c->scc[i], node) < 0)
- return isl_stat_error;
- c->scc_cluster[i] = cluster;
- }
- return isl_stat_ok;
- }
- /* Try and merge the clusters of SCCs marked in c->scc_in_merge
- * by scheduling the current cluster bands with respect to each other.
- *
- * Construct a dependence graph with a space for each cluster and
- * with the coordinates of each space corresponding to the schedule
- * dimensions of the current band of that cluster.
- * Construct a cluster schedule in this cluster dependence graph and
- * apply it to the current cluster bands if it is applicable
- * according to ok_to_merge.
- *
- * If the number of remaining schedule dimensions in a cluster
- * with a non-maximal current schedule dimension is greater than
- * the number of remaining schedule dimensions in clusters
- * with a maximal current schedule dimension, then restrict
- * the number of rows to be computed in the cluster schedule
- * to the minimal such non-maximal current schedule dimension.
- * Do this by adjusting merge_graph.maxvar.
- *
- * Return isl_bool_true if the clusters have effectively been merged
- * into a single cluster.
- *
- * Note that since the standard scheduling algorithm minimizes the maximal
- * distance over proximity constraints, the proximity constraints between
- * the merged clusters may not be optimized any further than what is
- * sufficient to bring the distances within the limits of the internal
- * proximity constraints inside the individual clusters.
- * It may therefore make sense to perform an additional translation step
- * to bring the clusters closer to each other, while maintaining
- * the linear part of the merging schedule found using the standard
- * scheduling algorithm.
- */
- static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
- struct isl_clustering *c)
- {
- struct isl_sched_graph merge_graph = { 0 };
- isl_bool merged;
- if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
- goto error;
- if (compute_maxvar(&merge_graph) < 0)
- goto error;
- if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
- goto error;
- if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
- goto error;
- merged = ok_to_merge(ctx, graph, c, &merge_graph);
- if (merged && merge(ctx, c, &merge_graph) < 0)
- goto error;
- graph_free(ctx, &merge_graph);
- return merged;
- error:
- graph_free(ctx, &merge_graph);
- return isl_bool_error;
- }
- /* Is there any edge marked "no_merge" between two SCCs that are
- * about to be merged (i.e., that are set in "scc_in_merge")?
- * "merge_edge" is the proximity edge along which the clusters of SCCs
- * are going to be merged.
- *
- * If there is any edge between two SCCs with a negative weight,
- * while the weight of "merge_edge" is non-negative, then this
- * means that the edge was postponed. "merge_edge" should then
- * also be postponed since merging along the edge with negative weight should
- * be postponed until all edges with non-negative weight have been tried.
- * Replace the weight of "merge_edge" by a negative weight as well and
- * tell the caller not to attempt a merge.
- */
- static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
- struct isl_sched_edge *merge_edge)
- {
- int i;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- if (!scc_in_merge[edge->src->scc])
- continue;
- if (!scc_in_merge[edge->dst->scc])
- continue;
- if (edge->no_merge)
- return 1;
- if (merge_edge->weight >= 0 && edge->weight < 0) {
- merge_edge->weight -= graph->max_weight + 1;
- return 1;
- }
- }
- return 0;
- }
- /* Merge the two clusters in "c" connected by the edge in "graph"
- * with index "edge" into a single cluster.
- * If it turns out to be impossible to merge these two clusters,
- * then mark the edge as "no_merge" such that it will not be
- * considered again.
- *
- * First mark all SCCs that need to be merged. This includes the SCCs
- * in the two clusters, but it may also include the SCCs
- * of intermediate clusters.
- * If there is already a no_merge edge between any pair of such SCCs,
- * then simply mark the current edge as no_merge as well.
- * Likewise, if any of those edges was postponed by has_bounded_distances,
- * then postpone the current edge as well.
- * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
- * if the clusters did not end up getting merged, unless the non-merge
- * is due to the fact that the edge was postponed. This postponement
- * can be recognized by a change in weight (from non-negative to negative).
- */
- static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
- struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
- {
- isl_bool merged;
- int edge_weight = graph->edge[edge].weight;
- if (mark_merge_sccs(ctx, graph, edge, c) < 0)
- return isl_stat_error;
- if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
- merged = isl_bool_false;
- else
- merged = try_merge(ctx, graph, c);
- if (merged < 0)
- return isl_stat_error;
- if (!merged && edge_weight == graph->edge[edge].weight)
- graph->edge[edge].no_merge = 1;
- return isl_stat_ok;
- }
- /* Does "node" belong to the cluster identified by "cluster"?
- */
- static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
- {
- return node->cluster == cluster;
- }
- /* Does "edge" connect two nodes belonging to the cluster
- * identified by "cluster"?
- */
- static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
- {
- return edge->src->cluster == cluster && edge->dst->cluster == cluster;
- }
- /* Swap the schedule of "node1" and "node2".
- * Both nodes have been derived from the same node in a common parent graph.
- * Since the "coincident" field is shared with that node
- * in the parent graph, there is no need to also swap this field.
- */
- static void swap_sched(struct isl_sched_node *node1,
- struct isl_sched_node *node2)
- {
- isl_mat *sched;
- isl_map *sched_map;
- sched = node1->sched;
- node1->sched = node2->sched;
- node2->sched = sched;
- sched_map = node1->sched_map;
- node1->sched_map = node2->sched_map;
- node2->sched_map = sched_map;
- }
- /* Copy the current band schedule from the SCCs that form the cluster
- * with index "pos" to the actual cluster at position "pos".
- * By construction, the index of the first SCC that belongs to the cluster
- * is also "pos".
- *
- * The order of the nodes inside both the SCCs and the cluster
- * is assumed to be same as the order in the original "graph".
- *
- * Since the SCC graphs will no longer be used after this function,
- * the schedules are actually swapped rather than copied.
- */
- static isl_stat copy_partial(struct isl_sched_graph *graph,
- struct isl_clustering *c, int pos)
- {
- int i, j;
- c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
- c->cluster[pos].n_row = c->scc[pos].n_row;
- c->cluster[pos].maxvar = c->scc[pos].maxvar;
- j = 0;
- for (i = 0; i < graph->n; ++i) {
- int k;
- int s;
- if (graph->node[i].cluster != pos)
- continue;
- s = graph->node[i].scc;
- k = c->scc_node[s]++;
- swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
- if (c->scc[s].maxvar > c->cluster[pos].maxvar)
- c->cluster[pos].maxvar = c->scc[s].maxvar;
- ++j;
- }
- return isl_stat_ok;
- }
- /* Is there a (conditional) validity dependence from node[j] to node[i],
- * forcing node[i] to follow node[j] or do the nodes belong to the same
- * cluster?
- */
- static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
- {
- struct isl_sched_graph *graph = user;
- if (graph->node[i].cluster == graph->node[j].cluster)
- return isl_bool_true;
- return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
- }
- /* Extract the merged clusters of SCCs in "graph", sort them, and
- * store them in c->clusters. Update c->scc_cluster accordingly.
- *
- * First keep track of the cluster containing the SCC to which a node
- * belongs in the node itself.
- * Then extract the clusters into c->clusters, copying the current
- * band schedule from the SCCs that belong to the cluster.
- * Do this only once per cluster.
- *
- * Finally, topologically sort the clusters and update c->scc_cluster
- * to match the new scc numbering. While the SCCs were originally
- * sorted already, some SCCs that depend on some other SCCs may
- * have been merged with SCCs that appear before these other SCCs.
- * A reordering may therefore be required.
- */
- static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
- struct isl_clustering *c)
- {
- int i;
- for (i = 0; i < graph->n; ++i)
- graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
- for (i = 0; i < graph->scc; ++i) {
- if (c->scc_cluster[i] != i)
- continue;
- if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
- &edge_cluster_exactly, i, &c->cluster[i]) < 0)
- return isl_stat_error;
- c->cluster[i].src_scc = -1;
- c->cluster[i].dst_scc = -1;
- if (copy_partial(graph, c, i) < 0)
- return isl_stat_error;
- }
- if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
- return isl_stat_error;
- for (i = 0; i < graph->n; ++i)
- c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
- return isl_stat_ok;
- }
- /* Compute weights on the proximity edges of "graph" that can
- * be used by find_proximity to find the most appropriate
- * proximity edge to use to merge two clusters in "c".
- * The weights are also used by has_bounded_distances to determine
- * whether the merge should be allowed.
- * Store the maximum of the computed weights in graph->max_weight.
- *
- * The computed weight is a measure for the number of remaining schedule
- * dimensions that can still be completely aligned.
- * In particular, compute the number of equalities between
- * input dimensions and output dimensions in the proximity constraints.
- * The directions that are already handled by outer schedule bands
- * are projected out prior to determining this number.
- *
- * Edges that will never be considered by find_proximity are ignored.
- */
- static isl_stat compute_weights(struct isl_sched_graph *graph,
- struct isl_clustering *c)
- {
- int i;
- graph->max_weight = 0;
- for (i = 0; i < graph->n_edge; ++i) {
- struct isl_sched_edge *edge = &graph->edge[i];
- struct isl_sched_node *src = edge->src;
- struct isl_sched_node *dst = edge->dst;
- isl_basic_map *hull;
- isl_bool prox;
- isl_size n_in, n_out, n;
- prox = is_non_empty_proximity(edge);
- if (prox < 0)
- return isl_stat_error;
- if (!prox)
- continue;
- if (bad_cluster(&c->scc[edge->src->scc]) ||
- bad_cluster(&c->scc[edge->dst->scc]))
- continue;
- if (c->scc_cluster[edge->dst->scc] ==
- c->scc_cluster[edge->src->scc])
- continue;
- hull = isl_map_affine_hull(isl_map_copy(edge->map));
- hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
- isl_mat_copy(src->vmap));
- hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
- isl_mat_copy(dst->vmap));
- hull = isl_basic_map_project_out(hull,
- isl_dim_in, 0, src->rank);
- hull = isl_basic_map_project_out(hull,
- isl_dim_out, 0, dst->rank);
- hull = isl_basic_map_remove_divs(hull);
- n_in = isl_basic_map_dim(hull, isl_dim_in);
- n_out = isl_basic_map_dim(hull, isl_dim_out);
- if (n_in < 0 || n_out < 0)
- hull = isl_basic_map_free(hull);
- hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
- isl_dim_in, 0, n_in);
- hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
- isl_dim_out, 0, n_out);
- n = isl_basic_map_n_equality(hull);
- isl_basic_map_free(hull);
- if (n < 0)
- return isl_stat_error;
- edge->weight = n;
- if (edge->weight > graph->max_weight)
- graph->max_weight = edge->weight;
- }
- return isl_stat_ok;
- }
- /* Call compute_schedule_finish_band on each of the clusters in "c"
- * in their topological order. This order is determined by the scc
- * fields of the nodes in "graph".
- * Combine the results in a sequence expressing the topological order.
- *
- * If there is only one cluster left, then there is no need to introduce
- * a sequence node. Also, in this case, the cluster necessarily contains
- * the SCC at position 0 in the original graph and is therefore also
- * stored in the first cluster of "c".
- */
- static __isl_give isl_schedule_node *finish_bands_clustering(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- struct isl_clustering *c)
- {
- int i;
- isl_ctx *ctx;
- isl_union_set_list *filters;
- if (graph->scc == 1)
- return compute_schedule_finish_band(node, &c->cluster[0], 0);
- ctx = isl_schedule_node_get_ctx(node);
- filters = extract_sccs(ctx, graph);
- node = isl_schedule_node_insert_sequence(node, filters);
- for (i = 0; i < graph->scc; ++i) {
- int j = c->scc_cluster[i];
- node = isl_schedule_node_child(node, i);
- node = isl_schedule_node_child(node, 0);
- node = compute_schedule_finish_band(node, &c->cluster[j], 0);
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_parent(node);
- }
- return node;
- }
- /* Compute a schedule for a connected dependence graph by first considering
- * each strongly connected component (SCC) in the graph separately and then
- * incrementally combining them into clusters.
- * Return the updated schedule node.
- *
- * Initially, each cluster consists of a single SCC, each with its
- * own band schedule. The algorithm then tries to merge pairs
- * of clusters along a proximity edge until no more suitable
- * proximity edges can be found. During this merging, the schedule
- * is maintained in the individual SCCs.
- * After the merging is completed, the full resulting clusters
- * are extracted and in finish_bands_clustering,
- * compute_schedule_finish_band is called on each of them to integrate
- * the band into "node" and to continue the computation.
- *
- * compute_weights initializes the weights that are used by find_proximity.
- */
- static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- isl_ctx *ctx;
- struct isl_clustering c;
- int i;
- ctx = isl_schedule_node_get_ctx(node);
- if (clustering_init(ctx, &c, graph) < 0)
- goto error;
- if (compute_weights(graph, &c) < 0)
- goto error;
- for (;;) {
- i = find_proximity(graph, &c);
- if (i < 0)
- goto error;
- if (i >= graph->n_edge)
- break;
- if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
- goto error;
- }
- if (extract_clusters(ctx, graph, &c) < 0)
- goto error;
- node = finish_bands_clustering(node, graph, &c);
- clustering_free(ctx, &c);
- return node;
- error:
- clustering_free(ctx, &c);
- return isl_schedule_node_free(node);
- }
- /* Compute a schedule for a connected dependence graph and return
- * the updated schedule node.
- *
- * If Feautrier's algorithm is selected, we first recursively try to satisfy
- * as many validity dependences as possible. When all validity dependences
- * are satisfied we extend the schedule to a full-dimensional schedule.
- *
- * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
- * depending on whether the user has selected the option to try and
- * compute a schedule for the entire (weakly connected) component first.
- * If there is only a single strongly connected component (SCC), then
- * there is no point in trying to combine SCCs
- * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
- * is called instead.
- */
- static __isl_give isl_schedule_node *compute_schedule_wcc(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
- {
- isl_ctx *ctx;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- if (detect_sccs(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- if (compute_maxvar(graph) < 0)
- return isl_schedule_node_free(node);
- if (need_feautrier_step(ctx, graph))
- return compute_schedule_wcc_feautrier(node, graph);
- if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
- return compute_schedule_wcc_whole(node, graph);
- else
- return compute_schedule_wcc_clustering(node, graph);
- }
- /* Compute a schedule for each group of nodes identified by node->scc
- * separately and then combine them in a sequence node (or as set node
- * if graph->weak is set) inserted at position "node" of the schedule tree.
- * Return the updated schedule node.
- *
- * If "wcc" is set then each of the groups belongs to a single
- * weakly connected component in the dependence graph so that
- * there is no need for compute_sub_schedule to look for weakly
- * connected components.
- *
- * If a set node would be introduced and if the number of components
- * is equal to the number of nodes, then check if the schedule
- * is already complete. If so, a redundant set node would be introduced
- * (without any further descendants) stating that the statements
- * can be executed in arbitrary order, which is also expressed
- * by the absence of any node. Refrain from inserting any nodes
- * in this case and simply return.
- */
- static __isl_give isl_schedule_node *compute_component_schedule(
- __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
- int wcc)
- {
- int component;
- isl_ctx *ctx;
- isl_union_set_list *filters;
- if (!node)
- return NULL;
- if (graph->weak && graph->scc == graph->n) {
- if (compute_maxvar(graph) < 0)
- return isl_schedule_node_free(node);
- if (graph->n_row >= graph->maxvar)
- return node;
- }
- ctx = isl_schedule_node_get_ctx(node);
- filters = extract_sccs(ctx, graph);
- if (graph->weak)
- node = isl_schedule_node_insert_set(node, filters);
- else
- node = isl_schedule_node_insert_sequence(node, filters);
- for (component = 0; component < graph->scc; ++component) {
- node = isl_schedule_node_child(node, component);
- node = isl_schedule_node_child(node, 0);
- node = compute_sub_schedule(node, ctx, graph,
- &node_scc_exactly,
- &edge_scc_exactly, component, wcc);
- node = isl_schedule_node_parent(node);
- node = isl_schedule_node_parent(node);
- }
- return node;
- }
- /* Compute a schedule for the given dependence graph and insert it at "node".
- * Return the updated schedule node.
- *
- * We first check if the graph is connected (through validity and conditional
- * validity dependences) and, if not, compute a schedule
- * for each component separately.
- * If the schedule_serialize_sccs option is set, then we check for strongly
- * connected components instead and compute a separate schedule for
- * each such strongly connected component.
- */
- static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
- struct isl_sched_graph *graph)
- {
- isl_ctx *ctx;
- if (!node)
- return NULL;
- ctx = isl_schedule_node_get_ctx(node);
- if (isl_options_get_schedule_serialize_sccs(ctx)) {
- if (detect_sccs(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- } else {
- if (detect_wccs(ctx, graph) < 0)
- return isl_schedule_node_free(node);
- }
- if (graph->scc > 1)
- return compute_component_schedule(node, graph, 1);
- return compute_schedule_wcc(node, graph);
- }
- /* Compute a schedule on sc->domain that respects the given schedule
- * constraints.
- *
- * In particular, the schedule respects all the validity dependences.
- * If the default isl scheduling algorithm is used, it tries to minimize
- * the dependence distances over the proximity dependences.
- * If Feautrier's scheduling algorithm is used, the proximity dependence
- * distances are only minimized during the extension to a full-dimensional
- * schedule.
- *
- * If there are any condition and conditional validity dependences,
- * then the conditional validity dependences may be violated inside
- * a tilable band, provided they have no adjacent non-local
- * condition dependences.
- */
- __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
- __isl_take isl_schedule_constraints *sc)
- {
- isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
- struct isl_sched_graph graph = { 0 };
- isl_schedule *sched;
- isl_schedule_node *node;
- isl_union_set *domain;
- isl_size n;
- sc = isl_schedule_constraints_align_params(sc);
- domain = isl_schedule_constraints_get_domain(sc);
- n = isl_union_set_n_set(domain);
- if (n == 0) {
- isl_schedule_constraints_free(sc);
- return isl_schedule_from_domain(domain);
- }
- if (n < 0 || graph_init(&graph, sc) < 0)
- domain = isl_union_set_free(domain);
- node = isl_schedule_node_from_domain(domain);
- node = isl_schedule_node_child(node, 0);
- if (graph.n > 0)
- node = compute_schedule(node, &graph);
- sched = isl_schedule_node_get_schedule(node);
- isl_schedule_node_free(node);
- graph_free(ctx, &graph);
- isl_schedule_constraints_free(sc);
- return sched;
- }
- /* Compute a schedule for the given union of domains that respects
- * all the validity dependences and minimizes
- * the dependence distances over the proximity dependences.
- *
- * This function is kept for backward compatibility.
- */
- __isl_give isl_schedule *isl_union_set_compute_schedule(
- __isl_take isl_union_set *domain,
- __isl_take isl_union_map *validity,
- __isl_take isl_union_map *proximity)
- {
- isl_schedule_constraints *sc;
- sc = isl_schedule_constraints_on_domain(domain);
- sc = isl_schedule_constraints_set_validity(sc, validity);
- sc = isl_schedule_constraints_set_proximity(sc, proximity);
- return isl_schedule_constraints_compute_schedule(sc);
- }
|