123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966 |
- /*
- * Copyright 2010 INRIA Saclay
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
- * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
- * 91893 Orsay, France
- */
- #include <isl_map_private.h>
- #include <isl/set.h>
- #include <isl_space_private.h>
- #include <isl_seq.h>
- #include <isl_aff_private.h>
- #include <isl_mat_private.h>
- #include <isl_factorization.h>
- /*
- * Let C be a cone and define
- *
- * C' := { y | forall x in C : y x >= 0 }
- *
- * C' contains the coefficients of all linear constraints
- * that are valid for C.
- * Furthermore, C'' = C.
- *
- * If C is defined as { x | A x >= 0 }
- * then any element in C' must be a non-negative combination
- * of the rows of A, i.e., y = t A with t >= 0. That is,
- *
- * C' = { y | exists t >= 0 : y = t A }
- *
- * If any of the rows in A actually represents an equality, then
- * also negative combinations of this row are allowed and so the
- * non-negativity constraint on the corresponding element of t
- * can be dropped.
- *
- * A polyhedron P = { x | b + A x >= 0 } can be represented
- * in homogeneous coordinates by the cone
- * C = { [z,x] | b z + A x >= and z >= 0 }
- * The valid linear constraints on C correspond to the valid affine
- * constraints on P.
- * This is essentially Farkas' lemma.
- *
- * Since
- * [ 1 0 ]
- * [ w y ] = [t_0 t] [ b A ]
- *
- * we have
- *
- * C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
- * or
- *
- * C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
- *
- * In practice, we introduce an extra variable (w), shifting all
- * other variables to the right, and an extra inequality
- * (w - t b >= 0) corresponding to the positivity constraint on
- * the homogeneous coordinate.
- *
- * When going back from coefficients to solutions, we immediately
- * plug in 1 for z, which corresponds to shifting all variables
- * to the left, with the leftmost ending up in the constant position.
- */
- /* Add the given prefix to all named isl_dim_set dimensions in "space".
- */
- static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space,
- const char *prefix)
- {
- int i;
- isl_ctx *ctx;
- isl_size nvar;
- size_t prefix_len = strlen(prefix);
- if (!space)
- return NULL;
- ctx = isl_space_get_ctx(space);
- nvar = isl_space_dim(space, isl_dim_set);
- if (nvar < 0)
- return isl_space_free(space);
- for (i = 0; i < nvar; ++i) {
- const char *name;
- char *prefix_name;
- name = isl_space_get_dim_name(space, isl_dim_set, i);
- if (!name)
- continue;
- prefix_name = isl_alloc_array(ctx, char,
- prefix_len + strlen(name) + 1);
- if (!prefix_name)
- goto error;
- memcpy(prefix_name, prefix, prefix_len);
- strcpy(prefix_name + prefix_len, name);
- space = isl_space_set_dim_name(space,
- isl_dim_set, i, prefix_name);
- free(prefix_name);
- }
- return space;
- error:
- isl_space_free(space);
- return NULL;
- }
- /* Given a dimension specification of the solutions space, construct
- * a dimension specification for the space of coefficients.
- *
- * In particular transform
- *
- * [params] -> { S }
- *
- * to
- *
- * { coefficients[[cst, params] -> S] }
- *
- * and prefix each dimension name with "c_".
- */
- static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space)
- {
- isl_space *space_param;
- isl_size nvar;
- isl_size nparam;
- nvar = isl_space_dim(space, isl_dim_set);
- nparam = isl_space_dim(space, isl_dim_param);
- if (nvar < 0 || nparam < 0)
- return isl_space_free(space);
- space_param = isl_space_copy(space);
- space_param = isl_space_drop_dims(space_param, isl_dim_set, 0, nvar);
- space_param = isl_space_move_dims(space_param, isl_dim_set, 0,
- isl_dim_param, 0, nparam);
- space_param = isl_space_prefix(space_param, "c_");
- space_param = isl_space_insert_dims(space_param, isl_dim_set, 0, 1);
- space_param = isl_space_set_dim_name(space_param,
- isl_dim_set, 0, "c_cst");
- space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
- space = isl_space_prefix(space, "c_");
- space = isl_space_join(isl_space_from_domain(space_param),
- isl_space_from_range(space));
- space = isl_space_wrap(space);
- space = isl_space_set_tuple_name(space, isl_dim_set, "coefficients");
- return space;
- }
- /* Drop the given prefix from all named dimensions of type "type" in "space".
- */
- static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space,
- enum isl_dim_type type, const char *prefix)
- {
- int i;
- isl_size n;
- size_t prefix_len = strlen(prefix);
- n = isl_space_dim(space, type);
- if (n < 0)
- return isl_space_free(space);
- for (i = 0; i < n; ++i) {
- const char *name;
- name = isl_space_get_dim_name(space, type, i);
- if (!name)
- continue;
- if (strncmp(name, prefix, prefix_len))
- continue;
- space = isl_space_set_dim_name(space,
- type, i, name + prefix_len);
- }
- return space;
- }
- /* Given a dimension specification of the space of coefficients, construct
- * a dimension specification for the space of solutions.
- *
- * In particular transform
- *
- * { coefficients[[cst, params] -> S] }
- *
- * to
- *
- * [params] -> { S }
- *
- * and drop the "c_" prefix from the dimension names.
- */
- static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space)
- {
- isl_size nparam;
- space = isl_space_unwrap(space);
- space = isl_space_drop_dims(space, isl_dim_in, 0, 1);
- space = isl_space_unprefix(space, isl_dim_in, "c_");
- space = isl_space_unprefix(space, isl_dim_out, "c_");
- nparam = isl_space_dim(space, isl_dim_in);
- if (nparam < 0)
- return isl_space_free(space);
- space = isl_space_move_dims(space,
- isl_dim_param, 0, isl_dim_in, 0, nparam);
- space = isl_space_range(space);
- return space;
- }
- /* Return the rational universe basic set in the given space.
- */
- static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
- {
- isl_basic_set *bset;
- bset = isl_basic_set_universe(space);
- bset = isl_basic_set_set_rational(bset);
- return bset;
- }
- /* Compute the dual of "bset" by applying Farkas' lemma.
- * As explained above, we add an extra dimension to represent
- * the coefficient of the constant term when going from solutions
- * to coefficients (shift == 1) and we drop the extra dimension when going
- * in the opposite direction (shift == -1).
- * The dual can be created in an arbitrary space.
- * The caller is responsible for putting the result in the appropriate space.
- *
- * If "bset" is (obviously) empty, then the way this emptiness
- * is represented by the constraints does not allow for the application
- * of the standard farkas algorithm. We therefore handle this case
- * specifically and return the universe basic set.
- */
- static __isl_give isl_basic_set *farkas(__isl_take isl_basic_set *bset,
- int shift)
- {
- int i, j, k;
- isl_ctx *ctx;
- isl_space *space;
- isl_basic_set *dual = NULL;
- isl_size total;
- total = isl_basic_set_dim(bset, isl_dim_all);
- if (total < 0)
- return isl_basic_set_free(bset);
- ctx = isl_basic_set_get_ctx(bset);
- space = isl_space_set_alloc(ctx, 0, total + shift);
- if (isl_basic_set_plain_is_empty(bset)) {
- isl_basic_set_free(bset);
- return rational_universe(space);
- }
- dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
- total, bset->n_ineq + (shift > 0));
- dual = isl_basic_set_set_rational(dual);
- for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
- k = isl_basic_set_alloc_div(dual);
- if (k < 0)
- goto error;
- isl_int_set_si(dual->div[k][0], 0);
- }
- for (i = 0; i < total; ++i) {
- k = isl_basic_set_alloc_equality(dual);
- if (k < 0)
- goto error;
- isl_seq_clr(dual->eq[k], 1 + shift + total);
- isl_int_set_si(dual->eq[k][1 + shift + i], -1);
- for (j = 0; j < bset->n_eq; ++j)
- isl_int_set(dual->eq[k][1 + shift + total + j],
- bset->eq[j][1 + i]);
- for (j = 0; j < bset->n_ineq; ++j)
- isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
- bset->ineq[j][1 + i]);
- }
- for (i = 0; i < bset->n_ineq; ++i) {
- k = isl_basic_set_alloc_inequality(dual);
- if (k < 0)
- goto error;
- isl_seq_clr(dual->ineq[k],
- 1 + shift + total + bset->n_eq + bset->n_ineq);
- isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
- }
- if (shift > 0) {
- k = isl_basic_set_alloc_inequality(dual);
- if (k < 0)
- goto error;
- isl_seq_clr(dual->ineq[k], 2 + total);
- isl_int_set_si(dual->ineq[k][1], 1);
- for (j = 0; j < bset->n_eq; ++j)
- isl_int_neg(dual->ineq[k][2 + total + j],
- bset->eq[j][0]);
- for (j = 0; j < bset->n_ineq; ++j)
- isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
- bset->ineq[j][0]);
- }
- dual = isl_basic_set_remove_divs(dual);
- dual = isl_basic_set_simplify(dual);
- dual = isl_basic_set_finalize(dual);
- isl_basic_set_free(bset);
- return dual;
- error:
- isl_basic_set_free(bset);
- isl_basic_set_free(dual);
- return NULL;
- }
- /* Construct a basic set containing the tuples of coefficients of all
- * valid affine constraints on the given basic set, ignoring
- * the space of input and output and without any further decomposition.
- */
- static __isl_give isl_basic_set *isl_basic_set_coefficients_base(
- __isl_take isl_basic_set *bset)
- {
- return farkas(bset, 1);
- }
- /* Return the inverse mapping of "morph".
- */
- static __isl_give isl_mat *peek_inv(__isl_keep isl_morph *morph)
- {
- return morph ? morph->inv : NULL;
- }
- /* Return a copy of the inverse mapping of "morph".
- */
- static __isl_give isl_mat *get_inv(__isl_keep isl_morph *morph)
- {
- return isl_mat_copy(peek_inv(morph));
- }
- /* Information about a single factor within isl_basic_set_coefficients_product.
- *
- * "start" is the position of the first coefficient (beyond
- * the one corresponding to the constant term) in this factor.
- * "dim" is the number of coefficients (other than
- * the one corresponding to the constant term) in this factor.
- * "n_line" is the number of lines in "coeff".
- * "n_ray" is the number of rays (other than lines) in "coeff".
- * "n_vertex" is the number of vertices in "coeff".
- *
- * While iterating over the vertices,
- * "pos" represents the inequality constraint corresponding
- * to the current vertex.
- */
- struct isl_coefficients_factor_data {
- isl_basic_set *coeff;
- int start;
- int dim;
- int n_line;
- int n_ray;
- int n_vertex;
- int pos;
- };
- /* Internal data structure for isl_basic_set_coefficients_product.
- * "n" is the number of factors in the factorization.
- * "pos" is the next factor that will be considered.
- * "start_next" is the position of the first coefficient (beyond
- * the one corresponding to the constant term) in the next factor.
- * "factors" contains information about the individual "n" factors.
- */
- struct isl_coefficients_product_data {
- int n;
- int pos;
- int start_next;
- struct isl_coefficients_factor_data *factors;
- };
- /* Initialize the internal data structure for
- * isl_basic_set_coefficients_product.
- */
- static isl_stat isl_coefficients_product_data_init(isl_ctx *ctx,
- struct isl_coefficients_product_data *data, int n)
- {
- data->n = n;
- data->pos = 0;
- data->start_next = 0;
- data->factors = isl_calloc_array(ctx,
- struct isl_coefficients_factor_data, n);
- if (!data->factors)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Free all memory allocated in "data".
- */
- static void isl_coefficients_product_data_clear(
- struct isl_coefficients_product_data *data)
- {
- int i;
- if (data->factors) {
- for (i = 0; i < data->n; ++i) {
- isl_basic_set_free(data->factors[i].coeff);
- }
- }
- free(data->factors);
- }
- /* Does inequality "ineq" in the (dual) basic set "bset" represent a ray?
- * In particular, does it have a zero denominator
- * (i.e., a zero coefficient for the constant term)?
- */
- static int is_ray(__isl_keep isl_basic_set *bset, int ineq)
- {
- return isl_int_is_zero(bset->ineq[ineq][1]);
- }
- /* isl_factorizer_every_factor_basic_set callback that
- * constructs a basic set containing the tuples of coefficients of all
- * valid affine constraints on the factor "bset" and
- * extracts further information that will be used
- * when combining the results over the different factors.
- */
- static isl_bool isl_basic_set_coefficients_factor(
- __isl_keep isl_basic_set *bset, void *user)
- {
- struct isl_coefficients_product_data *data = user;
- isl_basic_set *coeff;
- isl_size n_eq, n_ineq, dim;
- int i, n_ray, n_vertex;
- coeff = isl_basic_set_coefficients_base(isl_basic_set_copy(bset));
- data->factors[data->pos].coeff = coeff;
- if (!coeff)
- return isl_bool_error;
- dim = isl_basic_set_dim(bset, isl_dim_set);
- n_eq = isl_basic_set_n_equality(coeff);
- n_ineq = isl_basic_set_n_inequality(coeff);
- if (dim < 0 || n_eq < 0 || n_ineq < 0)
- return isl_bool_error;
- n_ray = n_vertex = 0;
- for (i = 0; i < n_ineq; ++i) {
- if (is_ray(coeff, i))
- n_ray++;
- else
- n_vertex++;
- }
- data->factors[data->pos].start = data->start_next;
- data->factors[data->pos].dim = dim;
- data->factors[data->pos].n_line = n_eq;
- data->factors[data->pos].n_ray = n_ray;
- data->factors[data->pos].n_vertex = n_vertex;
- data->pos++;
- data->start_next += dim;
- return isl_bool_true;
- }
- /* Clear an entry in the product, given that there is a "total" number
- * of coefficients (other than that of the constant term).
- */
- static void clear_entry(isl_int *entry, int total)
- {
- isl_seq_clr(entry, 1 + 1 + total);
- }
- /* Set the part of the entry corresponding to factor "data",
- * from the factor coefficients in "src".
- */
- static void set_factor(isl_int *entry, isl_int *src,
- struct isl_coefficients_factor_data *data)
- {
- isl_seq_cpy(entry + 1 + 1 + data->start, src + 1 + 1, data->dim);
- }
- /* Set the part of the entry corresponding to factor "data",
- * from the factor coefficients in "src" multiplied by "f".
- */
- static void scale_factor(isl_int *entry, isl_int *src, isl_int f,
- struct isl_coefficients_factor_data *data)
- {
- isl_seq_scale(entry + 1 + 1 + data->start, src + 1 + 1, f, data->dim);
- }
- /* Add all lines from the given factor to "bset",
- * given that there is a "total" number of coefficients
- * (other than that of the constant term).
- */
- static __isl_give isl_basic_set *add_lines(__isl_take isl_basic_set *bset,
- struct isl_coefficients_factor_data *factor, int total)
- {
- int i;
- for (i = 0; i < factor->n_line; ++i) {
- int k;
- k = isl_basic_set_alloc_equality(bset);
- if (k < 0)
- return isl_basic_set_free(bset);
- clear_entry(bset->eq[k], total);
- set_factor(bset->eq[k], factor->coeff->eq[i], factor);
- }
- return bset;
- }
- /* Add all rays (other than lines) from the given factor to "bset",
- * given that there is a "total" number of coefficients
- * (other than that of the constant term).
- */
- static __isl_give isl_basic_set *add_rays(__isl_take isl_basic_set *bset,
- struct isl_coefficients_factor_data *data, int total)
- {
- int i;
- int n_ineq = data->n_ray + data->n_vertex;
- for (i = 0; i < n_ineq; ++i) {
- int k;
- if (!is_ray(data->coeff, i))
- continue;
- k = isl_basic_set_alloc_inequality(bset);
- if (k < 0)
- return isl_basic_set_free(bset);
- clear_entry(bset->ineq[k], total);
- set_factor(bset->ineq[k], data->coeff->ineq[i], data);
- }
- return bset;
- }
- /* Move to the first vertex of the given factor starting
- * at inequality constraint "start", setting factor->pos and
- * returning 1 if a vertex is found.
- */
- static int factor_first_vertex(struct isl_coefficients_factor_data *factor,
- int start)
- {
- int j;
- int n = factor->n_ray + factor->n_vertex;
- for (j = start; j < n; ++j) {
- if (is_ray(factor->coeff, j))
- continue;
- factor->pos = j;
- return 1;
- }
- return 0;
- }
- /* Move to the first constraint in each factor starting at "first"
- * that represents a vertex.
- * In particular, skip the initial constraints that correspond to rays.
- */
- static void first_vertex(struct isl_coefficients_product_data *data, int first)
- {
- int i;
- for (i = first; i < data->n; ++i)
- factor_first_vertex(&data->factors[i], 0);
- }
- /* Move to the next vertex in the product.
- * In particular, move to the next vertex of the last factor.
- * If all vertices of this last factor have already been considered,
- * then move to the next vertex of the previous factor(s)
- * until a factor is found that still has a next vertex.
- * Once such a next vertex has been found, the subsequent
- * factors are reset to the first vertex.
- * Return 1 if any next vertex was found.
- */
- static int next_vertex(struct isl_coefficients_product_data *data)
- {
- int i;
- for (i = data->n - 1; i >= 0; --i) {
- struct isl_coefficients_factor_data *factor = &data->factors[i];
- if (!factor_first_vertex(factor, factor->pos + 1))
- continue;
- first_vertex(data, i + 1);
- return 1;
- }
- return 0;
- }
- /* Add a vertex to the product "bset" combining the currently selected
- * vertices of the factors.
- *
- * In the dual representation, the constant term is always zero.
- * The vertex itself is the sum of the contributions of the factors
- * with a shared denominator in position 1.
- *
- * First compute the shared denominator (lcm) and
- * then scale the numerators to this shared denominator.
- */
- static __isl_give isl_basic_set *add_vertex(__isl_take isl_basic_set *bset,
- struct isl_coefficients_product_data *data)
- {
- int i;
- int k;
- isl_int lcm, f;
- k = isl_basic_set_alloc_inequality(bset);
- if (k < 0)
- return isl_basic_set_free(bset);
- isl_int_init(lcm);
- isl_int_init(f);
- isl_int_set_si(lcm, 1);
- for (i = 0; i < data->n; ++i) {
- struct isl_coefficients_factor_data *factor = &data->factors[i];
- isl_basic_set *coeff = factor->coeff;
- int pos = factor->pos;
- isl_int_lcm(lcm, lcm, coeff->ineq[pos][1]);
- }
- isl_int_set_si(bset->ineq[k][0], 0);
- isl_int_set(bset->ineq[k][1], lcm);
- for (i = 0; i < data->n; ++i) {
- struct isl_coefficients_factor_data *factor = &data->factors[i];
- isl_basic_set *coeff = factor->coeff;
- int pos = factor->pos;
- isl_int_divexact(f, lcm, coeff->ineq[pos][1]);
- scale_factor(bset->ineq[k], coeff->ineq[pos], f, factor);
- }
- isl_int_clear(f);
- isl_int_clear(lcm);
- return bset;
- }
- /* Combine the duals of the factors in the factorization of a basic set
- * to form the dual of the entire basic set.
- * The dual share the coefficient of the constant term.
- * All other coefficients are specific to a factor.
- * Any constraint not involving the coefficient of the constant term
- * can therefor simply be copied into the appropriate position.
- * This includes all equality constraints since the coefficient
- * of the constant term can always be increased and therefore
- * never appears in an equality constraint.
- * The inequality constraints involving the coefficient of
- * the constant term need to be combined across factors.
- * In particular, if this coefficient needs to be greater than or equal
- * to some linear combination of the other coefficients in each factor,
- * then it needs to be greater than or equal to the sum of
- * these linear combinations across the factors.
- *
- * Alternatively, the constraints of the dual can be seen
- * as the vertices, rays and lines of the original basic set.
- * Clearly, rays and lines can simply be copied,
- * while vertices needs to be combined across factors.
- * This means that the number of rays and lines in the product
- * is equal to the sum of the numbers in the factors,
- * while the number of vertices is the product
- * of the number of vertices in the factors. Note that each
- * factor has at least one vertex.
- * The only exception is when the factor is the dual of an obviously empty set,
- * in which case a universe dual is created.
- * In this case, return a universe dual for the product as well.
- *
- * While constructing the vertices, look for the first combination
- * of inequality constraints that represent a vertex,
- * construct the corresponding vertex and then move on
- * to the next combination of inequality constraints until
- * all combinations have been considered.
- */
- static __isl_give isl_basic_set *construct_product(isl_ctx *ctx,
- struct isl_coefficients_product_data *data)
- {
- int i;
- int n_line, n_ray, n_vertex;
- int total;
- isl_space *space;
- isl_basic_set *product;
- if (!data->factors)
- return NULL;
- total = data->start_next;
- n_line = 0;
- n_ray = 0;
- n_vertex = 1;
- for (i = 0; i < data->n; ++i) {
- n_line += data->factors[i].n_line;
- n_ray += data->factors[i].n_ray;
- n_vertex *= data->factors[i].n_vertex;
- }
- space = isl_space_set_alloc(ctx, 0, 1 + total);
- if (n_vertex == 0)
- return rational_universe(space);
- product = isl_basic_set_alloc_space(space, 0, n_line, n_ray + n_vertex);
- product = isl_basic_set_set_rational(product);
- for (i = 0; i < data->n; ++i)
- product = add_lines(product, &data->factors[i], total);
- for (i = 0; i < data->n; ++i)
- product = add_rays(product, &data->factors[i], total);
- first_vertex(data, 0);
- do {
- product = add_vertex(product, data);
- } while (next_vertex(data));
- return product;
- }
- /* Given a factorization "f" of a basic set,
- * construct a basic set containing the tuples of coefficients of all
- * valid affine constraints on the product of the factors, ignoring
- * the space of input and output.
- * Note that this product may not be equal to the original basic set,
- * if a non-trivial transformation is involved.
- * This is handled by the caller.
- *
- * Compute the tuples of coefficients for each factor separately and
- * then combine the results.
- */
- static __isl_give isl_basic_set *isl_basic_set_coefficients_product(
- __isl_take isl_factorizer *f)
- {
- struct isl_coefficients_product_data data;
- isl_ctx *ctx;
- isl_basic_set *coeff;
- isl_bool every;
- ctx = isl_factorizer_get_ctx(f);
- if (isl_coefficients_product_data_init(ctx, &data, f->n_group) < 0)
- f = isl_factorizer_free(f);
- every = isl_factorizer_every_factor_basic_set(f,
- &isl_basic_set_coefficients_factor, &data);
- isl_factorizer_free(f);
- if (every >= 0)
- coeff = construct_product(ctx, &data);
- else
- coeff = NULL;
- isl_coefficients_product_data_clear(&data);
- return coeff;
- }
- /* Given a factorization "f" of a basic set,
- * construct a basic set containing the tuples of coefficients of all
- * valid affine constraints on the basic set, ignoring
- * the space of input and output.
- *
- * The factorization may involve a linear transformation of the basic set.
- * In particular, the transformed basic set is formulated
- * in terms of x' = U x, i.e., x = V x', with V = U^{-1}.
- * The dual is then computed in terms of y' with y'^t [z; x'] >= 0.
- * Plugging in y' = [1 0; 0 V^t] y yields
- * y^t [1 0; 0 V] [z; x'] >= 0, i.e., y^t [z; x] >= 0, which is
- * the desired set of coefficients y.
- * Note that this transformation to y' only needs to be applied
- * if U is not the identity matrix.
- */
- static __isl_give isl_basic_set *isl_basic_set_coefficients_morphed_product(
- __isl_take isl_factorizer *f)
- {
- isl_bool is_identity;
- isl_space *space;
- isl_mat *inv;
- isl_multi_aff *ma;
- isl_basic_set *coeff;
- if (!f)
- goto error;
- is_identity = isl_mat_is_scaled_identity(peek_inv(f->morph));
- if (is_identity < 0)
- goto error;
- if (is_identity)
- return isl_basic_set_coefficients_product(f);
- inv = get_inv(f->morph);
- inv = isl_mat_transpose(inv);
- inv = isl_mat_lin_to_aff(inv);
- coeff = isl_basic_set_coefficients_product(f);
- space = isl_space_map_from_set(isl_basic_set_get_space(coeff));
- ma = isl_multi_aff_from_aff_mat(space, inv);
- coeff = isl_basic_set_preimage_multi_aff(coeff, ma);
- return coeff;
- error:
- isl_factorizer_free(f);
- return NULL;
- }
- /* Construct a basic set containing the tuples of coefficients of all
- * valid affine constraints on the given basic set, ignoring
- * the space of input and output.
- *
- * The caller has already checked that "bset" does not involve
- * any local variables. It may have parameters, though.
- * Treat them as regular variables internally.
- * This is especially important for the factorization,
- * since the (original) parameters should be taken into account
- * explicitly in this factorization.
- *
- * Check if the basic set can be factorized.
- * If so, compute constraints on the coefficients of the factors
- * separately and combine the results.
- * Otherwise, compute the results for the input basic set as a whole.
- */
- static __isl_give isl_basic_set *basic_set_coefficients(
- __isl_take isl_basic_set *bset)
- {
- isl_factorizer *f;
- isl_size nparam;
- nparam = isl_basic_set_dim(bset, isl_dim_param);
- if (nparam < 0)
- return isl_basic_set_free(bset);
- bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
- isl_dim_param, 0, nparam);
- f = isl_basic_set_factorizer(bset);
- if (!f)
- return isl_basic_set_free(bset);
- if (f->n_group > 0) {
- isl_basic_set_free(bset);
- return isl_basic_set_coefficients_morphed_product(f);
- }
- isl_factorizer_free(f);
- return isl_basic_set_coefficients_base(bset);
- }
- /* Construct a basic set containing the tuples of coefficients of all
- * valid affine constraints on the given basic set.
- */
- __isl_give isl_basic_set *isl_basic_set_coefficients(
- __isl_take isl_basic_set *bset)
- {
- isl_space *space;
- if (!bset)
- return NULL;
- if (bset->n_div)
- isl_die(bset->ctx, isl_error_invalid,
- "input set not allowed to have local variables",
- goto error);
- space = isl_basic_set_get_space(bset);
- space = isl_space_coefficients(space);
- bset = basic_set_coefficients(bset);
- bset = isl_basic_set_reset_space(bset, space);
- return bset;
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- /* Construct a basic set containing the elements that satisfy all
- * affine constraints whose coefficient tuples are
- * contained in the given basic set.
- */
- __isl_give isl_basic_set *isl_basic_set_solutions(
- __isl_take isl_basic_set *bset)
- {
- isl_space *space;
- if (!bset)
- return NULL;
- if (bset->n_div)
- isl_die(bset->ctx, isl_error_invalid,
- "input set not allowed to have local variables",
- goto error);
- space = isl_basic_set_get_space(bset);
- space = isl_space_solutions(space);
- bset = farkas(bset, -1);
- bset = isl_basic_set_reset_space(bset, space);
- return bset;
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- /* Construct a basic set containing the tuples of coefficients of all
- * valid affine constraints on the given set.
- */
- __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
- {
- int i;
- isl_basic_set *coeff;
- if (!set)
- return NULL;
- if (set->n == 0) {
- isl_space *space = isl_set_get_space(set);
- space = isl_space_coefficients(space);
- isl_set_free(set);
- return rational_universe(space);
- }
- coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));
- for (i = 1; i < set->n; ++i) {
- isl_basic_set *bset, *coeff_i;
- bset = isl_basic_set_copy(set->p[i]);
- coeff_i = isl_basic_set_coefficients(bset);
- coeff = isl_basic_set_intersect(coeff, coeff_i);
- }
- isl_set_free(set);
- return coeff;
- }
- /* Wrapper around isl_basic_set_coefficients for use
- * as a isl_basic_set_list_map callback.
- */
- static __isl_give isl_basic_set *coefficients_wrap(
- __isl_take isl_basic_set *bset, void *user)
- {
- return isl_basic_set_coefficients(bset);
- }
- /* Replace the elements of "list" by the result of applying
- * isl_basic_set_coefficients to them.
- */
- __isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
- __isl_take isl_basic_set_list *list)
- {
- return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
- }
- /* Construct a basic set containing the elements that satisfy all
- * affine constraints whose coefficient tuples are
- * contained in the given set.
- */
- __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
- {
- int i;
- isl_basic_set *sol;
- if (!set)
- return NULL;
- if (set->n == 0) {
- isl_space *space = isl_set_get_space(set);
- space = isl_space_solutions(space);
- isl_set_free(set);
- return rational_universe(space);
- }
- sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));
- for (i = 1; i < set->n; ++i) {
- isl_basic_set *bset, *sol_i;
- bset = isl_basic_set_copy(set->p[i]);
- sol_i = isl_basic_set_solutions(bset);
- sol = isl_basic_set_intersect(sol, sol_i);
- }
- isl_set_free(set);
- return sol;
- }
|