123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511 |
- //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains both code to deal with invoking "external" functions, but
- // also contains code that implements "exported" external functions.
- //
- // There are currently two mechanisms for handling external functions in the
- // Interpreter. The first is to implement lle_* wrapper functions that are
- // specific to well-known library functions which manually translate the
- // arguments from GenericValues and make the call. If such a wrapper does
- // not exist, and libffi is available, then the Interpreter will attempt to
- // invoke the function using libffi, after finding its address.
- //
- //===----------------------------------------------------------------------===//
- #include "Interpreter.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/Config/config.h" // Detect libffi
- #include "llvm/ExecutionEngine/GenericValue.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/DynamicLibrary.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/Mutex.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <cmath>
- #include <csignal>
- #include <cstdint>
- #include <cstdio>
- #include <cstring>
- #include <map>
- #include <mutex>
- #include <string>
- #include <utility>
- #include <vector>
- #ifdef HAVE_FFI_CALL
- #ifdef HAVE_FFI_H
- #include <ffi.h>
- #define USE_LIBFFI
- #elif HAVE_FFI_FFI_H
- #include <ffi/ffi.h>
- #define USE_LIBFFI
- #endif
- #endif
- using namespace llvm;
- static ManagedStatic<sys::Mutex> FunctionsLock;
- typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
- static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
- static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
- #ifdef USE_LIBFFI
- typedef void (*RawFunc)();
- static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
- #endif
- static Interpreter *TheInterpreter;
- static char getTypeID(Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return 'V';
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 1: return 'o';
- case 8: return 'B';
- case 16: return 'S';
- case 32: return 'I';
- case 64: return 'L';
- default: return 'N';
- }
- case Type::FloatTyID: return 'F';
- case Type::DoubleTyID: return 'D';
- case Type::PointerTyID: return 'P';
- case Type::FunctionTyID:return 'M';
- case Type::StructTyID: return 'T';
- case Type::ArrayTyID: return 'A';
- default: return 'U';
- }
- }
- // Try to find address of external function given a Function object.
- // Please note, that interpreter doesn't know how to assemble a
- // real call in general case (this is JIT job), that's why it assumes,
- // that all external functions has the same (and pretty "general") signature.
- // The typical example of such functions are "lle_X_" ones.
- static ExFunc lookupFunction(const Function *F) {
- // Function not found, look it up... start by figuring out what the
- // composite function name should be.
- std::string ExtName = "lle_";
- FunctionType *FT = F->getFunctionType();
- ExtName += getTypeID(FT->getReturnType());
- for (Type *T : FT->params())
- ExtName += getTypeID(T);
- ExtName += ("_" + F->getName()).str();
- sys::ScopedLock Writer(*FunctionsLock);
- ExFunc FnPtr = (*FuncNames)[ExtName];
- if (!FnPtr)
- FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
- if (!FnPtr) // Try calling a generic function... if it exists...
- FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
- ("lle_X_" + F->getName()).str());
- if (FnPtr)
- ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
- return FnPtr;
- }
- #ifdef USE_LIBFFI
- static ffi_type *ffiTypeFor(Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return &ffi_type_void;
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 8: return &ffi_type_sint8;
- case 16: return &ffi_type_sint16;
- case 32: return &ffi_type_sint32;
- case 64: return &ffi_type_sint64;
- }
- llvm_unreachable("Unhandled integer type bitwidth");
- case Type::FloatTyID: return &ffi_type_float;
- case Type::DoubleTyID: return &ffi_type_double;
- case Type::PointerTyID: return &ffi_type_pointer;
- default: break;
- }
- // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- report_fatal_error("Type could not be mapped for use with libffi.");
- return NULL;
- }
- static void *ffiValueFor(Type *Ty, const GenericValue &AV,
- void *ArgDataPtr) {
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 8: {
- int8_t *I8Ptr = (int8_t *) ArgDataPtr;
- *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 16: {
- int16_t *I16Ptr = (int16_t *) ArgDataPtr;
- *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 32: {
- int32_t *I32Ptr = (int32_t *) ArgDataPtr;
- *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 64: {
- int64_t *I64Ptr = (int64_t *) ArgDataPtr;
- *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- }
- llvm_unreachable("Unhandled integer type bitwidth");
- case Type::FloatTyID: {
- float *FloatPtr = (float *) ArgDataPtr;
- *FloatPtr = AV.FloatVal;
- return ArgDataPtr;
- }
- case Type::DoubleTyID: {
- double *DoublePtr = (double *) ArgDataPtr;
- *DoublePtr = AV.DoubleVal;
- return ArgDataPtr;
- }
- case Type::PointerTyID: {
- void **PtrPtr = (void **) ArgDataPtr;
- *PtrPtr = GVTOP(AV);
- return ArgDataPtr;
- }
- default: break;
- }
- // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- report_fatal_error("Type value could not be mapped for use with libffi.");
- return NULL;
- }
- static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
- const DataLayout &TD, GenericValue &Result) {
- ffi_cif cif;
- FunctionType *FTy = F->getFunctionType();
- const unsigned NumArgs = F->arg_size();
- // TODO: We don't have type information about the remaining arguments, because
- // this information is never passed into ExecutionEngine::runFunction().
- if (ArgVals.size() > NumArgs && F->isVarArg()) {
- report_fatal_error("Calling external var arg function '" + F->getName()
- + "' is not supported by the Interpreter.");
- }
- unsigned ArgBytes = 0;
- std::vector<ffi_type*> args(NumArgs);
- for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- const unsigned ArgNo = A->getArgNo();
- Type *ArgTy = FTy->getParamType(ArgNo);
- args[ArgNo] = ffiTypeFor(ArgTy);
- ArgBytes += TD.getTypeStoreSize(ArgTy);
- }
- SmallVector<uint8_t, 128> ArgData;
- ArgData.resize(ArgBytes);
- uint8_t *ArgDataPtr = ArgData.data();
- SmallVector<void*, 16> values(NumArgs);
- for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- const unsigned ArgNo = A->getArgNo();
- Type *ArgTy = FTy->getParamType(ArgNo);
- values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
- ArgDataPtr += TD.getTypeStoreSize(ArgTy);
- }
- Type *RetTy = FTy->getReturnType();
- ffi_type *rtype = ffiTypeFor(RetTy);
- if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
- FFI_OK) {
- SmallVector<uint8_t, 128> ret;
- if (RetTy->getTypeID() != Type::VoidTyID)
- ret.resize(TD.getTypeStoreSize(RetTy));
- ffi_call(&cif, Fn, ret.data(), values.data());
- switch (RetTy->getTypeID()) {
- case Type::IntegerTyID:
- switch (cast<IntegerType>(RetTy)->getBitWidth()) {
- case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
- case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
- case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
- case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
- }
- break;
- case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
- case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
- case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
- default: break;
- }
- return true;
- }
- return false;
- }
- #endif // USE_LIBFFI
- GenericValue Interpreter::callExternalFunction(Function *F,
- ArrayRef<GenericValue> ArgVals) {
- TheInterpreter = this;
- std::unique_lock<sys::Mutex> Guard(*FunctionsLock);
- // Do a lookup to see if the function is in our cache... this should just be a
- // deferred annotation!
- std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
- if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
- : FI->second) {
- Guard.unlock();
- return Fn(F->getFunctionType(), ArgVals);
- }
- #ifdef USE_LIBFFI
- std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
- RawFunc RawFn;
- if (RF == RawFunctions->end()) {
- RawFn = (RawFunc)(intptr_t)
- sys::DynamicLibrary::SearchForAddressOfSymbol(std::string(F->getName()));
- if (!RawFn)
- RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
- if (RawFn != 0)
- RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
- } else {
- RawFn = RF->second;
- }
- Guard.unlock();
- GenericValue Result;
- if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
- return Result;
- #endif // USE_LIBFFI
- if (F->getName() == "__main")
- errs() << "Tried to execute an unknown external function: "
- << *F->getType() << " __main\n";
- else
- report_fatal_error("Tried to execute an unknown external function: " +
- F->getName());
- #ifndef USE_LIBFFI
- errs() << "Recompiling LLVM with --enable-libffi might help.\n";
- #endif
- return GenericValue();
- }
- //===----------------------------------------------------------------------===//
- // Functions "exported" to the running application...
- //
- // void atexit(Function*)
- static GenericValue lle_X_atexit(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- assert(Args.size() == 1);
- TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
- GenericValue GV;
- GV.IntVal = 0;
- return GV;
- }
- // void exit(int)
- static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
- TheInterpreter->exitCalled(Args[0]);
- return GenericValue();
- }
- // void abort(void)
- static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
- //FIXME: should we report or raise here?
- //report_fatal_error("Interpreted program raised SIGABRT");
- raise (SIGABRT);
- return GenericValue();
- }
- // int sprintf(char *, const char *, ...) - a very rough implementation to make
- // output useful.
- static GenericValue lle_X_sprintf(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- char *OutputBuffer = (char *)GVTOP(Args[0]);
- const char *FmtStr = (const char *)GVTOP(Args[1]);
- unsigned ArgNo = 2;
- // printf should return # chars printed. This is completely incorrect, but
- // close enough for now.
- GenericValue GV;
- GV.IntVal = APInt(32, strlen(FmtStr));
- while (true) {
- switch (*FmtStr) {
- case 0: return GV; // Null terminator...
- default: // Normal nonspecial character
- sprintf(OutputBuffer++, "%c", *FmtStr++);
- break;
- case '\\': { // Handle escape codes
- sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
- FmtStr += 2; OutputBuffer += 2;
- break;
- }
- case '%': { // Handle format specifiers
- char FmtBuf[100] = "", Buffer[1000] = "";
- char *FB = FmtBuf;
- *FB++ = *FmtStr++;
- char Last = *FB++ = *FmtStr++;
- unsigned HowLong = 0;
- while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
- Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
- Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
- Last != 'p' && Last != 's' && Last != '%') {
- if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
- Last = *FB++ = *FmtStr++;
- }
- *FB = 0;
- switch (Last) {
- case '%':
- memcpy(Buffer, "%", 2); break;
- case 'c':
- sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
- break;
- case 'd': case 'i':
- case 'u': case 'o':
- case 'x': case 'X':
- if (HowLong >= 1) {
- if (HowLong == 1 &&
- TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
- sizeof(long) < sizeof(int64_t)) {
- // Make sure we use %lld with a 64 bit argument because we might be
- // compiling LLI on a 32 bit compiler.
- unsigned Size = strlen(FmtBuf);
- FmtBuf[Size] = FmtBuf[Size-1];
- FmtBuf[Size+1] = 0;
- FmtBuf[Size-1] = 'l';
- }
- sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
- } else
- sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
- break;
- case 'e': case 'E': case 'g': case 'G': case 'f':
- sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
- case 'p':
- sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
- case 's':
- sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
- default:
- errs() << "<unknown printf code '" << *FmtStr << "'!>";
- ArgNo++; break;
- }
- size_t Len = strlen(Buffer);
- memcpy(OutputBuffer, Buffer, Len + 1);
- OutputBuffer += Len;
- }
- break;
- }
- }
- return GV;
- }
- // int printf(const char *, ...) - a very rough implementation to make output
- // useful.
- static GenericValue lle_X_printf(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- char Buffer[10000];
- std::vector<GenericValue> NewArgs;
- NewArgs.push_back(PTOGV((void*)&Buffer[0]));
- llvm::append_range(NewArgs, Args);
- GenericValue GV = lle_X_sprintf(FT, NewArgs);
- outs() << Buffer;
- return GV;
- }
- // int sscanf(const char *format, ...);
- static GenericValue lle_X_sscanf(FunctionType *FT,
- ArrayRef<GenericValue> args) {
- assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
- char *Args[10];
- for (unsigned i = 0; i < args.size(); ++i)
- Args[i] = (char*)GVTOP(args[i]);
- GenericValue GV;
- GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
- Args[5], Args[6], Args[7], Args[8], Args[9]));
- return GV;
- }
- // int scanf(const char *format, ...);
- static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
- assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
- char *Args[10];
- for (unsigned i = 0; i < args.size(); ++i)
- Args[i] = (char*)GVTOP(args[i]);
- GenericValue GV;
- GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
- Args[5], Args[6], Args[7], Args[8], Args[9]));
- return GV;
- }
- // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
- // output useful.
- static GenericValue lle_X_fprintf(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- assert(Args.size() >= 2);
- char Buffer[10000];
- std::vector<GenericValue> NewArgs;
- NewArgs.push_back(PTOGV(Buffer));
- NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
- GenericValue GV = lle_X_sprintf(FT, NewArgs);
- fputs(Buffer, (FILE *) GVTOP(Args[0]));
- return GV;
- }
- static GenericValue lle_X_memset(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- int val = (int)Args[1].IntVal.getSExtValue();
- size_t len = (size_t)Args[2].IntVal.getZExtValue();
- memset((void *)GVTOP(Args[0]), val, len);
- // llvm.memset.* returns void, lle_X_* returns GenericValue,
- // so here we return GenericValue with IntVal set to zero
- GenericValue GV;
- GV.IntVal = 0;
- return GV;
- }
- static GenericValue lle_X_memcpy(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
- (size_t)(Args[2].IntVal.getLimitedValue()));
- // llvm.memcpy* returns void, lle_X_* returns GenericValue,
- // so here we return GenericValue with IntVal set to zero
- GenericValue GV;
- GV.IntVal = 0;
- return GV;
- }
- void Interpreter::initializeExternalFunctions() {
- sys::ScopedLock Writer(*FunctionsLock);
- (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
- (*FuncNames)["lle_X_exit"] = lle_X_exit;
- (*FuncNames)["lle_X_abort"] = lle_X_abort;
- (*FuncNames)["lle_X_printf"] = lle_X_printf;
- (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
- (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
- (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
- (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
- (*FuncNames)["lle_X_memset"] = lle_X_memset;
- (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
- }
|